1
|
Singh SP, Parween F, Edara N, Zhang HH, Chen J, Otaizo-Carrasquero F, Cheng D, Oppenheim NA, Ransier A, Zhu W, Shamsaddini A, Gardina PJ, Darko SW, Singh TP, Douek DC, Myers TG, Farber JM. Human CCR6+ Th Cells Show Both an Extended Stable Gradient of Th17 Activity and Imprinted Plasticity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1700-1716. [PMID: 37093875 PMCID: PMC10463241 DOI: 10.4049/jimmunol.2200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Th17 cells have been investigated in mice primarily for their contributions to autoimmune diseases. However, the pathways of differentiation of Th17 and related Th cells (type 17 cells) and the structure of the type 17 memory population in humans are not well understood; such understanding is critical for manipulating these cells in vivo. By exploiting differences in levels of surface CCR6, we found that human type 17 memory cells, including individual T cell clonotypes, form an elongated continuum of type 17 character along which cells can be driven by increasing RORγt. This continuum includes cells preserved within the memory pool with potentials that reflect the early preferential activation of multiple over single lineages. The phenotypes and epigenomes of CCR6+ cells are stable across cell divisions under noninflammatory conditions. Nonetheless, activation in polarizing and nonpolarizing conditions can yield additional functionalities, revealing, respectively, both environmentally induced and imprinted mechanisms that contribute differentially across the type 17 continuum to yield the unusual plasticity ascribed to type 17 cells.
Collapse
Affiliation(s)
- Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Nithin Edara
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Hongwei H. Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Jinguo Chen
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Francisco Otaizo-Carrasquero
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Debby Cheng
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Nicole A. Oppenheim
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Amy Ransier
- Genome Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Wenjun Zhu
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Amirhossein Shamsaddini
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Paul J. Gardina
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Samuel W. Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy G. Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| |
Collapse
|
2
|
Mladenov M, Lubomirov L, Grisk O, Avtanski D, Mitrokhin V, Sazdova I, Keremidarska-Markova M, Danailova Y, Nikolaev G, Konakchieva R, Gagov H. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants (Basel) 2023; 12:antiox12051126. [PMID: 37237992 DOI: 10.3390/antiox12051126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, "Ss. Cyril and Methodius" University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Lubomir Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10003, USA
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
3
|
Chen K, Tang L, Nong X. Artesunate targets cellular metabolism to regulate the Th17/Treg cell balance. Inflamm Res 2023; 72:1037-1050. [PMID: 37024544 DOI: 10.1007/s00011-023-01729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION Metabolic reprogramming is one of the important mechanisms of cell differentiation, and different cells have different preferences for energy sources. During the differentiation of naive CD4 + T cells into Th17 and Treg cells, these cells show specific energy metabolism characteristics. Th17 cells depend on enhanced glycolysis, fatty acid synthesis, and glutaminolysis. In contrast, Treg cells are dependent on oxidative phosphorylation, fatty acid oxidation, and amino acid depletion. As a potent antimalarial drug, artesunate has been shown to modulate the Th17/Treg imbalance and regulate cell metabolism. METHODOLOGY Relevant literatures on ART, cellular metabolism, glycolysis, lipid metabolism, amino acid metabolism, CD4 + T cells, Th17 cells, and Treg cells published from January 1, 2010 to now were searched in PubMed database. CONCLUSION In this review, we will highlight recent advances in which artesunate can restore the Th17/Treg imbalance in disease states by altering T-cell metabolism to influence differentiation and lineage selection. Data from the current study show that few studies have focused on the effect of ART on cellular metabolism. ART can affect the metabolic characteristics of T cells (glycolysis, lipid metabolism, and amino acid metabolism) and interfere with their differentiation lineage, thereby regulating the balance of Th17/Treg and alleviating the symptoms of the disease.
Collapse
Affiliation(s)
- Kun Chen
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Liying Tang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
5
|
Singh SP, Parween F, Edara N, Zhang HH, Chen J, Otaizo-Carrasquero F, Cheng D, Oppenheim NA, Ransier A, Zhu W, Shamsaddini A, Gardina PJ, Darko SW, Singh TP, Douek DC, Myers TG, Farber JM. Human CCR6 + Th cells show both an extended stable gradient of Th17 activity and imprinted plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522630. [PMID: 36789418 PMCID: PMC9928045 DOI: 10.1101/2023.01.05.522630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Th17 cells have been investigated in mice primarily for their contributions to autoimmune diseases. However, the pathways of differentiation of Th17 and related (type 17) cells and the structure of the type 17 memory population in humans are not well understood; such understanding is critical for manipulating these cells in vivo . By exploiting differences in levels of surface CCR6, we found that human type 17 memory cells, including individual T cell clonotypes, form an elongated continuum of type 17 character along which cells can be driven by increasing RORγt. This continuum includes cells preserved within the memory pool with potentials that reflect the early preferential activation of multiple over single lineages. The CCR6 + cells' phenotypes and epigenomes are stable across cell divisions under homeostatic conditions. Nonetheless, activation in polarizing and non-polarizing conditions can yield additional functionalities, revealing, respectively, both environmentally induced and imprinted mechanisms that contribute differentially across the continuum to yield the unusual plasticity ascribed to type 17 cells.
Collapse
Affiliation(s)
- Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Nithin Edara
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Hongwei H. Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Jinguo Chen
- Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Francisco Otaizo-Carrasquero
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Debby Cheng
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Nicole A. Oppenheim
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Amy Ransier
- Genome Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Wenjun Zhu
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Amirhossein Shamsaddini
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Paul J. Gardina
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Samuel W. Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy G. Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD
| |
Collapse
|
6
|
Leija-Martínez JJ, Giacoman-Martínez A, Del-Río-Navarro BE, Sanchéz-Muñoz F, Hernández-Diazcouder A, Muñoz-Hernández O, Romero-Nava R, Villafaña S, Marchat LA, Hong E, Huang F. Promoter methylation status of RORC, IL17A, and TNFA in peripheral blood leukocytes in adolescents with obesity-related asthma. Heliyon 2022; 8:e12316. [PMID: 36590520 PMCID: PMC9798174 DOI: 10.1016/j.heliyon.2022.e12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
A higher Th17-immune response characterises obesity and obesity-related asthma phenotype. Nevertheless, obesity-related asthma has a more significant Th17-immune response than obesity alone. Retinoid-related orphan receptor C (RORC) is the essential transcription factor for Th17 polarisation. Previous studies have found that adolescents with obesity-related asthma presented upregulation of RORC, IL17A, and TNFA. However, the mechanisms that cause these higher mRNA expression levels in this asthmatic phenotype are poorly understood. Methylation directly regulates gene expression by adding a methyl group to carbon 5 of dinucleotide CpG cytosine. Thus, we evaluated the relationship between RORC, IL17A, and TNFA methylation status and mRNA expression levels to investigate a possible epigenetic regulation. A total of 102 adolescents (11-18 years) were studied in the following four groups: 1) healthy participants (HP), 2) allergic asthmatic participants (AAP), 3) obese participants without asthma (OP), and 4) non-allergic obesity-related asthma participants (OAP). Real-time qPCR assessed the methylation status and gene expression levels in peripheral blood leukocytes. Remarkably, the OAP and AAP groups have lower promoter methylation patterns of RORC, IL17A, and TNFA than the HP group. Notably, the OAP group presents lower RORC promoter methylation status than the OP group. Interestingly, RORC promoter methylation status was moderately negatively associated with gene expression of RORC (r s = -0.39, p < 0.001) and IL17A (r s = -0.37, p < 0.01), respectively. Similarly, the promoter methylation pattern of IL17A was moderately negatively correlated with IL17A gene expression (r s = -0.3, p < 0.01). There is also a moderate inverse relationship between TNFA promoter methylation status and TNFA gene expression (r s = -0.3, p < 0.01). The present study suggests an association between lower RORC, IL17A, and TNFA gene promoter methylation status with obesity-related asthma and allergic asthma. RORC, IL17A, and TNFA gene promoter methylation patterns are moderately inversely correlated with their respective mRNA expression levels. Therefore, DNA methylation may regulate RORC, IL17A, and TNF gene expression in both asthmatic phenotypes.
Collapse
Affiliation(s)
- José J. Leija-Martínez
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Abraham Giacoman-Martínez
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Calz. de Los Tenorios 235, Col. Granjas Coapa, Mexico City 14330, Mexico
| | - Blanca E. Del-Río-Navarro
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy-Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | | | - Onofre Muñoz-Hernández
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Laurence A. Marchat
- Laboratorio 2 de Biomedicina Molecular, ENMH, Instituto Politécnico Nacional, Mexico
| | - Enrique Hong
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Calz. de Los Tenorios 235, Col. Granjas Coapa, Mexico City 14330, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Corresponding author.
| |
Collapse
|
7
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Watanabe R, Hashimoto M. Pathogenic role of monocytes/macrophages in large vessel vasculitis. Front Immunol 2022; 13:859502. [PMID: 35967455 PMCID: PMC9372263 DOI: 10.3389/fimmu.2022.859502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Vasculitis is an autoimmune vascular inflammation with an unknown etiology and causes vessel wall destruction. Depending on the size of the blood vessels, it is classified as large, medium, and small vessel vasculitis. A wide variety of immune cells are involved in the pathogenesis of vasculitis. Among these immune cells, monocytes and macrophages are functionally characterized by their capacity for phagocytosis, antigen presentation, and cytokine/chemokine production. After a long debate, recent technological advances have revealed the cellular origin of tissue macrophages in the vessel wall. Tissue macrophages are mainly derived from embryonic progenitor cells under homeostatic conditions, whereas bone marrow-derived circulating monocytes are recruited under inflammatory conditions, and then differentiate into macrophages in the arterial wall. Such macrophages infiltrate into an otherwise immunoprotected vascular site, digest tissue matrix with abundant proteolytic enzymes, and further recruit inflammatory cells through cytokine/chemokine production. In this way, macrophages amplify the inflammatory cascade and eventually cause tissue destruction. Recent studies have also demonstrated that monocytes/macrophages can be divided into several subpopulations based on the cell surface markers and gene expression. In this review, the subpopulations of circulating monocytes and the ontogeny of tissue macrophages in the artery are discussed. We also update the immunopathology of large vessel vasculitis, with a special focus on giant cell arteritis, and outline how monocytes/macrophages participate in the disease process of vascular inflammation. Finally, we discuss limitations of the current research and provide future research perspectives, particularly in humans. Through these processes, we explore the possibility of therapeutic strategies targeting monocytes/macrophages in vasculitis.
Collapse
|
9
|
Thirunavukarasu AJ, Ross AC, Gilbert RM. Vitamin A, systemic T-cells, and the eye: Focus on degenerative retinal disease. Front Nutr 2022; 9:914457. [PMID: 35923205 PMCID: PMC9339908 DOI: 10.3389/fnut.2022.914457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The first discovered vitamin, vitamin A, exists in a range of forms, primarily retinoids and provitamin carotenoids. The bioactive forms of vitamin A, retinol and retinoic acid, have many critical functions in body systems including the eye and immune system. Vitamin A deficiency is associated with dysfunctional immunity, and presents clinically as a characteristic ocular syndrome, xerophthalmia. The immune functions of vitamin A extend to the gut, where microbiome interactions and nutritional retinoids and carotenoids contribute to the balance of T cell differentiation, thereby determining immune status and contributing to inflammatory disease around the whole body. In the eye, degenerative conditions affecting the retina and uvea are influenced by vitamin A. Stargardt's disease (STGD1; MIM 248200) is characterised by bisretinoid deposits such as lipofuscin, produced by retinal photoreceptors as they use and recycle a vitamin A-derived chromophore. Age-related macular degeneration features comparable retinal deposits, such as drusen featuring lipofuscin accumulation; and is characterised by parainflammatory processes. We hypothesise that local parainflammatory processes secondary to lipofuscin deposition in the retina are mediated by T cells interacting with dietary vitamin A derivatives and the gut microbiome, and outline the current evidence for this. No cures exist for Stargardt's or age-related macular degeneration, but many vitamin A-based therapeutic approaches have been or are being trialled. The relationship between vitamin A's functions in systemic immunology and the eye could be further exploited, and further research may seek to leverage the interactions of the gut-eye immunological axis.
Collapse
Affiliation(s)
- Arun J. Thirunavukarasu
- Corpus Christi College, University of Cambridge, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Rose M. Gilbert
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
10
|
Fert A, Raymond Marchand L, Wiche Salinas TR, Ancuta P. Targeting Th17 cells in HIV-1 remission/cure interventions. Trends Immunol 2022; 43:580-594. [PMID: 35659433 DOI: 10.1016/j.it.2022.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania; The Research Institute of the University of Bucharest, Bucharest, Romania.
| |
Collapse
|
11
|
Chang HD, Radbruch A, Kallinich T, Mashreghi MF, Hegazy AN, Kruglov A, Nedospasov S, Baumgrass R. [How T lymphocytes coordinate rheumatic inflammation]. Z Rheumatol 2022; 81:635-641. [PMID: 35380250 DOI: 10.1007/s00393-022-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Helper T (Th) cells play a decisive role in triggering and maintaining chronic rheumatic inflammation. Via secretion of proinflammatory cytokines and expression of costimulatory cell surface molecules, Th lymphocytes coordinate the recruitment and activation of effector cells, which are ultimately responsible for the immunopathology and tissue destruction. However, therapeutic approaches aimed at eliminating Th cells were unsuccessful due to their lack of selectivity. At the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ), we are working to improve the understanding of the Th cells involved in chronic inflammatory reactions. Based on this understanding, our aim is to develop novel treatment strategies that selectively target the pathogenic Th lymphocytes causing rheumatic inflammation. The current article summarizes the DRFZ's research activities on this subject.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland.
- Institut für Biotechnologie, Technische Universität Berlin, Berlin, Deutschland.
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Tilmann Kallinich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
- Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
- Single Cell Laboratory for Advanced Cellular Therapies, Berlin Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Berlin, Deutschland
| | - Ahmed N Hegazy
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Sergei Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russland
- Sirius University of Science and Technology, Sochi, Russland
| | - Ria Baumgrass
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
12
|
Cendón C, Du W, Durek P, Liu YC, Alexander T, Serene L, Yang X, Gasparoni G, Salhab A, Nordström K, Lai T, Schulz AR, Rao A, Heinz GA, Stefanski AL, Claußnitzer A, Siewert K, Dörner T, Chang HD, Volk HD, Romagnani C, Qin Z, Hardt S, Perka C, Reinke S, Walter J, Mashreghi MF, Thurley K, Radbruch A, Dong J. Resident memory CD4+ T lymphocytes mobilize from bone marrow to contribute to a systemic secondary immune reaction. Eur J Immunol 2022; 52:737-752. [PMID: 35245389 DOI: 10.1002/eji.202149726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 11/12/2022]
Abstract
Resident memory T lymphocytes (TRM ) of epithelial tissues and the bone marrow protect their host tissue. To what extent these cells are mobilized and contribute to systemic immune reactions is less clear. Here we show that in secondary immune reactions to the measles-mumps-rubella (MMR) vaccine, CD4+ TRM are mobilized into the blood within 16 to 48 hours after immunization in humans. This mobilization of TRM is cognate: TRM recognizing other antigens are not mobilized, unless they cross-react with the vaccine. We also demonstrate through methylome analyses that TRM are mobilized from the bone marrow. These mobilized cells make significant contribution to the systemic immune reaction, as evidenced by their T-cell receptor Vβ clonotypes represented among the newly generated circulating memory T-cells, 14 days after vaccination. Thus, TRM of the bone marrow confer not only local, but also systemic immune memory. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carla Cendón
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Weijie Du
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Yuk-Chien Liu
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lindsay Serene
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xinyi Yang
- Otto-Warburg-Laboratory, Computational Epigenomics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Karl Nordström
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Tina Lai
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anna Rao
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ana L Stefanski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Claußnitzer
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hyun-Dong Chang
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Hans-Dieter Volk
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Medical Department / Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Bejing, China.,University of Chinese Academy of Sciences, Bejing, China.,Zhengzhou University, Zhengzhou, China
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Mir-F Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Thurley
- Systems Biology of Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Institute for Theoretical Biology, Humboldt University Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
13
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
14
|
Marwaha AK, Chow S, Pesenacker AM, Cook L, Sun A, Long SA, Yang JHM, Ward-Hartstonge KA, Williams E, Domingo-Vila C, Halani K, Harris KM, Tree TIM, Levings MK, Elliott T, Tan R, Dutz JP. A phase 1b open-label dose-finding study of ustekinumab in young adults with type 1 diabetes. IMMUNOTHERAPY ADVANCES 2021; 2:ltab022. [PMID: 35072168 PMCID: PMC8769169 DOI: 10.1093/immadv/ltab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives We assessed the safety of ustekinumab (a monoclonal antibody used in psoriasis to target the IL-12 and IL-23 pathways) in a small cohort of recent-onset (<100 days of diagnosis) adults with type 1 diabetes (T1D) by conducting a pilot open-label dose-finding and mechanistic study (NCT02117765) at the University of British Columbia. Methods We sequentially enrolled 20 participants into four subcutaneous dosing cohorts: (i) 45 mg loading weeks 0/4/16, (ii) 45 mg maintenance weeks 0/4/16/28/40, (iii) 90 mg loading weeks 0/4/16, and (iv) 90 mg maintenance weeks 0/4/16/28/40. The primary endpoint was safety as assessed by an independent data and safety monitoring board (DSMB) but we also measured mixed meal tolerance test C-peptide, insulin use/kg, and HbA1c. Immunophenotyping was performed to assess immune cell subsets and islet antigen-specific T cell responses. Results Although several adverse events were reported, only two (bacterial vaginosis and hallucinations) were thought to be possibly related to drug administration by the study investigators. At 1 year, the 90 mg maintenance dosing cohort had the smallest mean decline in C-peptide area under the curve (AUC) (0.1 pmol/ml). Immunophenotyping showed that ustekinumab reduced the percentage of circulating Th17, Th1, and Th17.1 cells and proinsulin-specific T cells that secreted IFN-γ and IL-17A. Conclusion Ustekinumab was deemed safe to progress to efficacy studies by the DSMB at doses used to treat psoriasis in adults with T1D. A 90 mg maintenance dosing schedule reduced proinsulin-specific IFN-γ and IL-17A-producing T cells. Further studies are warranted to determine if ustekinumab can prevent C-peptide AUC decline and induce a clinical response.
Collapse
Affiliation(s)
- Ashish K Marwaha
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Samuel Chow
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Anne M Pesenacker
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika Sun
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, WA, USA
| | - Jennie H M Yang
- Department of Immunobiology, King’s College London, London, UK
| | - Kirsten A Ward-Hartstonge
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | - Megan K Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas Elliott
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BCDiabetes, Vancouver, British Columbia, Canada
| | - Rusung Tan
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan P Dutz
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Julé AM, Hoyt KJ, Wei K, Gutierrez-Arcelus M, Taylor ML, Ng J, Lederer JA, Case SM, Chang MH, Cohen EM, Dedeoglu F, Hazen MM, Hausmann JS, Halyabar O, Janssen E, Lo J, Lo MS, Meidan E, Roberts JE, Son MBF, Sundel RP, Lee PY, Chatila T, Nigrovic PA, Henderson LA. Th1 polarization defines the synovial fluid T cell compartment in oligoarticular juvenile idiopathic arthritis. JCI Insight 2021; 6:e149185. [PMID: 34403374 PMCID: PMC8492302 DOI: 10.1172/jci.insight.149185] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Oligoarticular juvenile idiopathic arthritis (oligo JIA) is the most common form of chronic inflammatory arthritis in children, yet the cause of this disease remains unknown. To understand immune responses in oligo JIA, we immunophenotyped synovial fluid T cells with flow cytometry, bulk RNA-Seq, single-cell RNA-Seq (scRNA-Seq), DNA methylation studies, and Treg suppression assays. In synovial fluid, CD4+, CD8+, and γδ T cells expressed Th1-related markers, whereas Th17 cells were not enriched. Th1 skewing was prominent in CD4+ T cells, including Tregs, and was associated with severe disease. Transcriptomic studies confirmed a Th1 signature in CD4+ T cells from synovial fluid. The regulatory gene expression signature was preserved in Tregs, even those exhibiting Th1 polarization. These Th1-like Tregs maintained Treg-specific methylation patterns and suppressive function, supporting the stability of this Treg population in the joint. Although synovial fluid CD4+ T cells displayed an overall Th1 phenotype, scRNA-Seq uncovered heterogeneous effector and regulatory subpopulations, including IFN-induced Tregs, peripheral helper T cells, and cytotoxic CD4+ T cells. In conclusion, oligo JIA is characterized by Th1 polarization that encompasses Tregs but does not compromise their regulatory identity. Targeting Th1-driven inflammation and augmenting Treg function may represent important therapeutic approaches in oligo JIA.
Collapse
Affiliation(s)
- Amélie M. Julé
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kacie J. Hoyt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maria L. Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, and
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Siobhan M. Case
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ezra M. Cohen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa M. Hazen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Hausmann
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan E. Roberts
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Beth F. Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal Chatila
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Elfaki Y, Yang J, Boehme J, Schultz K, Bruder D, Falk CS, Huehn J, Floess S. Tbx21 and Foxp3 Are Epigenetically Stabilized in T-Bet + Tregs That Transiently Accumulate in Influenza A Virus-Infected Lungs. Int J Mol Sci 2021; 22:ijms22147522. [PMID: 34299148 PMCID: PMC8307036 DOI: 10.3390/ijms22147522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023] Open
Abstract
During influenza A virus (IAV) infections, CD4+ T cell responses within infected lungs mainly involve T helper 1 (Th1) and regulatory T cells (Tregs). Th1-mediated responses favor the co-expression of T-box transcription factor 21 (T-bet) in Foxp3+ Tregs, enabling the efficient Treg control of Th1 responses in infected tissues. So far, the exact accumulation kinetics of T cell subsets in the lungs and lung-draining lymph nodes (dLN) of IAV-infected mice is incompletely understood, and the epigenetic signature of Tregs accumulating in infected lungs has not been investigated. Here, we report that the total T cell and the two-step Treg accumulation in IAV-infected lungs is transient, whereas the change in the ratio of CD4+ to CD8+ T cells is more durable. Within lungs, the frequency of Tregs co-expressing T-bet is steadily, yet transiently, increasing with a peak at Day 7 post-infection. Interestingly, T-bet+ Tregs accumulating in IAV-infected lungs displayed a strongly demethylated Tbx21 locus, similarly as in T-bet+ conventional T cells, and a fully demethylated Treg-specific demethylated region (TSDR) within the Foxp3 locus. In summary, our data suggest that T-bet+ but not T-bet- Tregs are epigenetically stabilized during IAV-induced infection in the lung.
Collapse
Affiliation(s)
- Yassin Elfaki
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
| | - Juhao Yang
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
| | - Julia Boehme
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
| | - Kristin Schultz
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (J.B.); (K.S.); (D.B.)
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research DZIF, Thematical Translation Unit-Immunocompromized Host (TTU-IICH), Hannover-Braunschweig Site, 30625 Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (J.H.); (S.F.)
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (Y.E.); (J.Y.)
- Correspondence: (J.H.); (S.F.)
| |
Collapse
|
17
|
Human T-Cell Cloning by Limiting Dilution. Methods Mol Biol 2021. [PMID: 33928552 DOI: 10.1007/978-1-0716-1311-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Human T cells represent a heterogeneous population, including cells with different phenotypical and function properties. Despite, in the last years, several technologies were developed to investigate phenotypical properties of T cells at single cell level, in vitro T cell clone 's culture remains the only way to perform functional study on T cells at single cell levels. Here, we describe the method to obtain human T cell clones by limiting dilution in the presence of feeder cells and to maintain them in culture for further investigations.
Collapse
|
18
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
19
|
Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol 2021; 18:805-828. [PMID: 32879472 PMCID: PMC7463107 DOI: 10.1038/s41423-020-00530-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system is a fascinating world of cells, soluble factors, interacting cells, and tissues, all of which are interconnected. The highly complex nature of the immune system makes it difficult to view it as a whole, but researchers are now trying to put all the pieces of the puzzle together to obtain a more complete picture. The development of new specialized equipment and immunological techniques, genetic approaches, animal models, and a long list of monoclonal antibodies, among many other factors, are improving our knowledge of this sophisticated system. The different types of cell subsets, soluble factors, membrane molecules, and cell functionalities are some aspects that we are starting to understand, together with their roles in health, aging, and illness. This knowledge is filling many of the gaps, and in some cases, it has led to changes in our previous assumptions; e.g., adaptive immune cells were previously thought to be unique memory cells until trained innate immunity was observed, and several innate immune cells with features similar to those of cytokine-secreting T cells have been discovered. Moreover, we have improved our knowledge not only regarding immune-mediated illnesses and how the immune system works and interacts with other systems and components (such as the microbiome) but also in terms of ways to manipulate this system through immunotherapy. The development of different types of immunotherapies, including vaccines (prophylactic and therapeutic), and the use of pathogens, monoclonal antibodies, recombinant proteins, cytokines, and cellular immunotherapies, are changing the way in which we approach many diseases, especially cancer.
Collapse
Affiliation(s)
- Jezabel Varadé
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Susana Magadán
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - África González-Fernández
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain.
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
20
|
Leipe J, Pirronello F, Schulze-Koops H, Skapenko A. Altered T cell plasticity favours Th17 cells in early arthritis. Rheumatology (Oxford) 2021; 59:2754-2763. [PMID: 32030419 DOI: 10.1093/rheumatology/kez660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The predominance of differentiated Th17 cells has been implied as a key driver of autoimmune arthritis, including early RA. Because accumulating evidence suggests that Th cell differentiation is a plastic process, we investigated plasticity and underlying molecular mechanisms to address the shift towards the Th17 phenotype in early RA. METHODS A cohort of 61 patients with early, active, untreated RA and 45 age- and sex-matched healthy controls were studied. Viable in vitro- and in vivo-generated Th1, Th2 and Th17 cells were FACS-sorted and transdifferentiated under Th1-, Th2- or Th17-inducing conditions. The cytokine Th profile of the transdifferentiated cells was assessed by flow cytometry. Th cell-associated cytokine and transcription factor gene loci were analysed by chromatin immunoprecipitation assay and their expression by quantitative real-time PCR. RESULTS In vitro-generated Th cells showed substantial plasticity, which was similar between RA and healthy controls, whereas in vivo-derived Th1 and Th2 cells from RA patients demonstrated an enhanced plasticity towards IL-17-expressing phenotypes compared with healthy controls. Further, in vivo-generated Th17 cells from RA patients showed a resistance to transdifferentiate into Th1 or Th2 cells. The serum/glucocorticoid-regulated kinase 1-forkhead box protein O1-IL-23 receptor (SGK1-FOXO1-IL-23R) axis together with increased RORC expression was associated with the predominant Th17 phenotype in early RA. CONCLUSIONS Our data indicate that in vivo-originated Th subsets are prone to Th17 cell transdifferentiation in early RA, while Th17 cells are resistant to changes in their phenotype. Together, the data imply that an altered plasticity contributes to the Th17 shift in early RA.
Collapse
Affiliation(s)
- Jan Leipe
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany.,Division of Rheumatology, Department of Medicine V, University Hospital Mannheim, Mannheim, Germany ∗Jan Leipe and Fausto Pirronello contributed equally to this work
| | - Fausto Pirronello
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| |
Collapse
|
21
|
Cerboni S, Gehrmann U, Preite S, Mitra S. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology 2020; 163:3-18. [PMID: 33064842 DOI: 10.1111/imm.13280] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Upon activation, naïve CD4+ T helper (Th) cells differentiate into distinct Th effector cell lineages depending on the local cytokine environment. However, these polarized Th cells can also adapt their function and phenotype depending on the changing cytokine environment, demonstrating functional plasticity. Here, Th17 cells, which play a critical role in host protection from extracellular pathogens and in autoimmune disorders, are of particular interest. While being able to shift phenotype within their lineage, Th17 cells can also acquire characteristics of Th1, Th2, T follicular helper (Tfh) or regulatory T cells. Th17 cell identity is determined by a spectrum of extracellular signals, including cytokines, which are critical orchestrators of cellular immune responses. Cytokine induces changes in epigenetic, transcriptional, translational and metabolomic parameters. How these signals are integrated to determine Th17 plasticity is not well defined, yet this is a crucial point of investigation as it represents a potential target to treat autoimmune and inflammatory diseases. The goal of this review was to discuss how cytokines regulate intracellular networks, focusing on the regulation of lineage-specific transcription factors, chromatin remodelling and metabolism, to control human Th17 cell plasticity. We discuss the importance of Th17 plasticity in autoimmunity and cancer and present current strategies and challenges in targeting pathogenic Th17 cells with cytokine-based approaches, considering human genetic variants associated with altered Th17 differentiation. Finally, we discuss how modulating Th17 plasticity rather than targeting the Th17 lineage as a whole might preserve its essential immune function while purging its adverse effects.
Collapse
Affiliation(s)
- Silvia Cerboni
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvia Preite
- Bioscience, In vivo, Research and Early Development, Respiratory & Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suman Mitra
- CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| |
Collapse
|
22
|
Decipher manifestations and Treg /Th17 imbalance in multi-staging rheumatoid arthritis and correlation with TSDR/RORC methylation. Mol Immunol 2020; 127:1-11. [PMID: 32866740 DOI: 10.1016/j.molimm.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/16/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
T regulatory (Treg)/T-helper (Th) 17 imbalance has been shown to integrate with epigenetics to result in the development of autoimmune diseases. We aim to investigate the influence of disease staging on Treg/Th17 cells and whether the aberrant DNA methylation is implicated in the development of rheumatoid arthritis (RA). By recruiting 65 patients with multi-staging RA and 20 healthy controls (HC), we found that patients with active RA exhibited relative lymphopenia and higher WBC, neutrophils, and PLT. Circulating Treg/Th17 in patients with early active RA was significantly decreased. The expression of IL-6 and IL-17A was significantly increased in early active RA, whereas that of IL-10 and TGF-β was on the contrary. Furthermore, the frequency of Treg cells and Treg/Th17 were negatively correlated with DAS28, and the frequency of Th17 cells was on the contrary. Levels of DNA methylation related enzymes had significant difference between early active RA and HC. Relative hypermethylation was observed at the gene level for Treg-specific demethylated region (TSDR) and hypomethylation for retinoic acid-related orphan receptor (ROR)-C in early active RA. Thus, manifestations of RA and Treg/Th17 imbalance vary with disease staging, and the aberrant DNA methylation pattern may contribute to RA disease pathogenesis. Our results highlight the importance of disease staging in clinical research.
Collapse
|
23
|
Maggi L, Capone M, Mazzoni A, Liotta F, Cosmi L, Annunziato F. Plasticity and regulatory mechanisms of human ILC2 functions. Immunol Lett 2020; 227:109-116. [PMID: 32822747 DOI: 10.1016/j.imlet.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Human group 2 innate lymphoid cells (ILC2) represent the innate counterpart of Th2 cells and cooperate with them in helminths protection and in the pathogenesis of allergic diseases. Some reports described ILC2 plasticity and few studies investigated the cellular and molecular mechanisms regulating human ILC2 functions. The aim of this study is to define how immune deviation and immune regulation control human ILC2-mediated immune response. Human circulating ILC2 were expanded in vitro and then cultured in presence of IL-12 or IL-1β plus IL-23 or co-coltured in presence of circulating CD4+CD25highFoxp3+Treg. IL-12 induces IFN-γ production and upregulation of T-bet mRNA level on human circulating ILC2 whereas IL-1β and IL-23 mediate IL-22 production and upregulation of RORC mRNA level. In all these conditions, GATA-3 mRNA level is not reduced and the typical type 2 cytokines are only partially reduced. Moreover, "modulated" ILC2 have reduced ability to induce IgE producing by B cells. ILC2 proliferation, cytokines production and CD154 expression were inhibited by CD4+CD25highFoxp3+ Treg cells. TGF-β reduced CD154 expression on ILC2 stimulated with IL-25/IL-33. This study defines possible cellular and molecular mechanisms responsible for modulation and inhibition of human ILC2 activity. These results may be useful in the development of strategies aimed to dampen ILC2 function in type-2 mediated diseases.
Collapse
Affiliation(s)
- Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, 50134, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, 50134, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, 50134, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, 50134, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, 50134, Italy.
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, 50134, Italy
| |
Collapse
|
24
|
Usharauli D, Kamala T. Could cross-reactivity rescue Foxp3+ regulatory T cell precursors from thymic deletion? Scand J Immunol 2020; 93:e12940. [PMID: 32776320 DOI: 10.1111/sji.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022]
Abstract
Thymocytes that bind with high affinity to peptides displayed by MHC class II (pMHC-II) are deleted while low-affinity binders differentiate into naive CD4+ T cells. However, Foxp3+ regulatory T cells (Tregs) seem to defy this binary choice as their precursors require high-affinity interaction with pMHC-II for maturation in the thymus. Here, we rely on the antigen-specific interpretive framework, SPIRAL (Specific ImmunoRegulatory Algorithm), to propose that Tregs escape thymic deletion by forming dyads with IL-2-producing T cells via antigen cross-reactivity. This interpretation reconciles contradictions related to Treg ontogeny in the thymus and their role in modulating antigen-specific immune responses.
Collapse
|
25
|
Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT, Barski A. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med 2020; 217:jem.20182009. [PMID: 31653690 PMCID: PMC7037242 DOI: 10.1084/jem.20182009] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.
Collapse
Affiliation(s)
- Masashi Yukawa
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sushmitha Vallabh
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrey V Kartashov
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
26
|
miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma. Leukemia 2020; 35:823-834. [PMID: 32632096 DOI: 10.1038/s41375-020-0947-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is tightly dependent on inflammatory bone marrow microenvironment. IL-17 producing CD4+ T cells (Th17) sustain MM cells growth and osteoclasts-dependent bone damage. In turn, Th17 differentiation relies on inflammatory stimuli. Here, we investigated the role of miR-21 in Th17-mediated MM tumor growth and bone disease. We found that early inhibition of miR-21 in naive T cells (miR-21i-T cells) impaired Th17 differentiation in vitro and abrogated Th17-mediated MM cell proliferation and osteoclasts activity. We validated these findings in NOD/SCID-g-NULL mice, intratibially injected with miR-21i-T cells and MM cells. A Pairwise RNAseq and proteome/phosphoproteome analysis in Th17 cells demonstrated that miR-21 inhibition led to upregulation of STAT-1/-5a-5b, STAT-3 impairment and redirection of Th17 to Th1/Th2 like activated/polarized cells. Our findings disclose the role of miR-21 in pathogenic Th17 activity and open the avenue to the design of miR-21-targeting strategies to counteract microenvironment dependence of MM growth and bone disease.
Collapse
|
27
|
Sałkowska A, Karaś K, Karwaciak I, Walczak-Drzewiecka A, Krawczyk M, Sobalska-Kwapis M, Dastych J, Ratajewski M. Identification of Novel Molecular Markers of Human Th17 Cells. Cells 2020; 9:cells9071611. [PMID: 32635226 PMCID: PMC7407666 DOI: 10.3390/cells9071611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Th17 cells are important players in host defense against pathogens such as Staphylococcus aureus, Candida albicans, and Bacillus anthracis. Th17 cell-mediated inflammation, under certain conditions in which balance in the immune system is disrupted, is the underlying pathogenic mechanism of certain autoimmune disorders, e.g., rheumatoid arthritis, Graves' disease, multiple sclerosis, and psoriasis. In the present study, using transcriptomic profiling, we selected genes and analyzed the expression of these genes to find potential novel markers of Th17 lymphocytes. We found that APOD (apolipoprotein D); C1QL1 (complement component 1, Q subcomponent-like protein 1); and CTSL (cathepsin L) are expressed at significantly higher mRNA and protein levels in Th17 cells than in the Th1, Th2, and Treg subtypes. Interestingly, these genes and the proteins they encode are well associated with the function of Th17 cells, as these cells produce inflammation, which is linked with atherosclerosis and angiogenesis. Furthermore, we found that high expression of these genes in Th17 cells is associated with the acetylation of H2BK12 within their promoters. Thus, our results provide new information regarding this cell type. Based on these results, we also hope to better identify pathological conditions of clinical significance caused by Th17 cells.
Collapse
Affiliation(s)
- Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | | | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- BBMRI.pl Consortium, 54-066 Wroclaw, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
- Correspondence: ; Tel.: +48-42-209-33-89
| |
Collapse
|
28
|
The Fate of Th17 Cells is Shaped by Epigenetic Modifications and Remodeled by the Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21051673. [PMID: 32121394 PMCID: PMC7084267 DOI: 10.3390/ijms21051673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Th17 cells represent a subset of CD4+ T cells characterized by the master transcription factor RORγt and the production of IL-17. Epigenetic modifications such as post-translational histone modifications and DNA methylation play a key role in Th17 cell differentiation and high plasticity. Th17 cells are highly recruited in many types of cancer and can be associated with good or bad prognosis. Here, we will review the remodeling of the epigenome induced by the tumor microenvironment, which may explain Th17 cell predominance. We will also discuss the promising treatment perspectives of molecules targeting epigenetic enzymes to remodel a Th17-enriched tumor microenvironment.
Collapse
|
29
|
Leija-Martínez JJ, Huang F, Del-Río-Navarro BE, Sanchéz-Muñoz F, Romero-Nava R, Muñoz-Hernandez O, Rodríguez-Cortés O, Hall-Mondragon MS. Decreased methylation profiles in the TNFA gene promoters in type 1 macrophages and in the IL17A and RORC gene promoters in Th17 lymphocytes have a causal association with non-atopic asthma caused by obesity: A hypothesis. Med Hypotheses 2019; 134:109527. [PMID: 31877441 DOI: 10.1016/j.mehy.2019.109527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Obesity is a serious public health problem worldwide and has been associated in epidemiological studies with a unique type of non-atopic asthma, although the causal association of asthma and obesity has certain criteria, such as the strength of association, consistency, specificity, temporality, biological gradient, coherence, analogy and experimentation; nevertheless, the biological plausibility of this association remains uncertain. Various mechanisms have been postulated, such as immunological, hormonal, mechanical, environmental, genetic and epigenetic mechanisms. Our hypothesis favours immunological mechanisms because some cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin (IL)-17A, are responsible for orchestrating low-grade systemic inflammation associated with obesity; however, these cytokines are regulated by epigenetic mechanisms, such as gene promoter methylation.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, Mexico City, Mexico
| | | | - Octavio Rodríguez-Cortés
- Laboratorio 103, SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, Calle Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | | |
Collapse
|
30
|
Leipe J, Pirronello F, Klose A, Schulze-Koops H, Skapenko A. Increased plasticity of non-classic Th1 cells toward the Th17 phenotype. Mod Rheumatol 2019; 30:930-936. [PMID: 31512538 DOI: 10.1080/14397595.2019.1667473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objectives: To analyze occurrence and plasticity of two recently described distinct subtypes of Th1 cells named classic (CD161-/CCR6-) and non-classic (CD161+/CCR6+) Th1 cells in early rheumatoid arthritis (RA) patients and healthy controls (HCs).Methods: Frequencies of in vivo-generated Th1 cell populations were assessed after cytokine secretion assay for IFNγ/IL-17 and surface staining for CD161/CCR6. Viable Th1 cells (IFNγ+IL-17-) were sorted into classic Th1 (CD161-CCR6-) and non-classic Th1 (CD161+CCR6+) cells, trans-differentiated under different Th cell-inducing conditions, and assessed for plastic changes by analyzing the Th cell-associated cytokine and transcription factor profiles.Results: Ex vivo frequencies of classic (CD161-CCR6-) and non-classic (CD161+CCR6+) Th1 cells as well as related Th1 cell subpopulations CD161+CCR6- and CD161-/CCR6+ did not differ significantly between RA and HCs. However, trans-differentiation of ex vivo non-classic (CD161+CCR6+) and CD161-/CCR6+ Th1 cells resulted in a substantial shift toward Th17 and Th1/Th17 phenotypes, particularly under Th17-inducing conditions. In contrast, classic (CD161-/CCR6-) and CD161+CCR6- Th1 cells showed higher plasticity towards IL-4-producing cells, most of them shifting to a Th1/Th2 phenotype.Conclusion: Whereas non-classic (CD161+/CCR6+) and CD161-CCR6+ Th1 cells demonstrated an increased plasticity towards IL-17- phenotypes, classic Th1 and CD161+CCR6- Th1 cells showed more plasticity towards IL-4-producing phenotypes.
Collapse
Affiliation(s)
- Jan Leipe
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Fausto Pirronello
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Antonia Klose
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| |
Collapse
|
31
|
Mazzoni A, Maggi L, Liotta F, Cosmi L, Annunziato F. Biological and clinical significance of T helper 17 cell plasticity. Immunology 2019; 158:287-295. [PMID: 31566706 DOI: 10.1111/imm.13124] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Mature T helper (Th) effector cells originate following antigen recognition by naive T precursors. The maturation process is accompanied by the acquisition of specific effector functions that distinguish at least three different T helper subsets: Th1, Th2 and Th17. In general, maturation of somatic cells is accompanied by terminal differentiation. However, accumulating evidence shows that effector T cells retain a certain degree of plasticity. This is especially true for Th17 cells, which have been shown to converge towards other phenotypes in response to specific microenvironmental pressure. In this review we will discuss the experimental evidence that supports the hypothesis of Th17 plasticity, with particular emphasis on the generation of Th17-derived 'non-classic' Th1 cells, and the molecular networks that control it. Moreover, we will consider why Th17 plasticity is important for host protection, but also why it can have pathogenic functions during chronic inflammation. Regarding the last point, we will discuss a possible role for biological drugs in the control of Th17 plasticity and disease course.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Agace WW, Aghaeepour N, Akdis M, Allez M, Almeida LN, Alvisi G, Anderson G, Andrä I, Annunziato F, Anselmo A, Bacher P, Baldari CT, Bari S, Barnaba V, Barros-Martins J, Battistini L, Bauer W, Baumgart S, Baumgarth N, Baumjohann D, Baying B, Bebawy M, Becher B, Beisker W, Benes V, Beyaert R, Blanco A, Boardman DA, Bogdan C, Borger JG, Borsellino G, Boulais PE, Bradford JA, Brenner D, Brinkman RR, Brooks AES, Busch DH, Büscher M, Bushnell TP, Calzetti F, Cameron G, Cammarata I, Cao X, Cardell SL, Casola S, Cassatella MA, Cavani A, Celada A, Chatenoud L, Chattopadhyay PK, Chow S, Christakou E, Čičin-Šain L, Clerici M, Colombo FS, Cook L, Cooke A, Cooper AM, Corbett AJ, Cosma A, Cosmi L, Coulie PG, Cumano A, Cvetkovic L, Dang VD, Dang-Heine C, Davey MS, Davies D, De Biasi S, Del Zotto G, Cruz GVD, Delacher M, Bella SD, Dellabona P, Deniz G, Dessing M, Di Santo JP, Diefenbach A, Dieli F, Dolf A, Dörner T, Dress RJ, Dudziak D, Dustin M, Dutertre CA, Ebner F, Eckle SBG, Edinger M, Eede P, Ehrhardt GR, Eich M, Engel P, Engelhardt B, Erdei A, Esser C, Everts B, Evrard M, Falk CS, Fehniger TA, Felipo-Benavent M, Ferry H, Feuerer M, Filby A, Filkor K, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frehse B, Frenette PS, Frischbutter S, Fritzsche W, Galbraith DW, Gangaev A, Garbi N, Gaudilliere B, Gazzinelli RT, Geginat J, Gerner W, Gherardin NA, Ghoreschi K, Gibellini L, Ginhoux F, Goda K, Godfrey DI, Goettlinger C, González-Navajas JM, Goodyear CS, Gori A, Grogan JL, Grummitt D, Grützkau A, Haftmann C, Hahn J, Hammad H, Hämmerling G, Hansmann L, Hansson G, Harpur CM, Hartmann S, Hauser A, Hauser AE, Haviland DL, Hedley D, Hernández DC, Herrera G, Herrmann M, Hess C, Höfer T, Hoffmann P, Hogquist K, Holland T, Höllt T, Holmdahl R, Hombrink P, Houston JP, Hoyer BF, Huang B, Huang FP, Huber JE, Huehn J, Hundemer M, Hunter CA, Hwang WYK, Iannone A, Ingelfinger F, Ivison SM, Jäck HM, Jani PK, Jávega B, Jonjic S, Kaiser T, Kalina T, Kamradt T, Kaufmann SHE, Keller B, Ketelaars SLC, Khalilnezhad A, Khan S, Kisielow J, Klenerman P, Knopf J, Koay HF, Kobow K, Kolls JK, Kong WT, Kopf M, Korn T, Kriegsmann K, Kristyanto H, Kroneis T, Krueger A, Kühne J, Kukat C, Kunkel D, Kunze-Schumacher H, Kurosaki T, Kurts C, Kvistborg P, Kwok I, Landry J, Lantz O, Lanuti P, LaRosa F, Lehuen A, LeibundGut-Landmann S, Leipold MD, Leung LY, Levings MK, Lino AC, Liotta F, Litwin V, Liu Y, Ljunggren HG, Lohoff M, Lombardi G, Lopez L, López-Botet M, Lovett-Racke AE, Lubberts E, Luche H, Ludewig B, Lugli E, Lunemann S, Maecker HT, Maggi L, Maguire O, Mair F, Mair KH, Mantovani A, Manz RA, Marshall AJ, Martínez-Romero A, Martrus G, Marventano I, Maslinski W, Matarese G, Mattioli AV, Maueröder C, Mazzoni A, McCluskey J, McGrath M, McGuire HM, McInnes IB, Mei HE, Melchers F, Melzer S, Mielenz D, Miller SD, Mills KH, Minderman H, Mjösberg J, Moore J, Moran B, Moretta L, Mosmann TR, Müller S, Multhoff G, Muñoz LE, Münz C, Nakayama T, Nasi M, Neumann K, Ng LG, Niedobitek A, Nourshargh S, Núñez G, O’Connor JE, Ochel A, Oja A, Ordonez D, Orfao A, Orlowski-Oliver E, Ouyang W, Oxenius A, Palankar R, Panse I, Pattanapanyasat K, Paulsen M, Pavlinic D, Penter L, Peterson P, Peth C, Petriz J, Piancone F, Pickl WF, Piconese S, Pinti M, Pockley AG, Podolska MJ, Poon Z, Pracht K, Prinz I, Pucillo CEM, Quataert SA, Quatrini L, Quinn KM, Radbruch H, Radstake TRDJ, Rahmig S, Rahn HP, Rajwa B, Ravichandran G, Raz Y, Rebhahn JA, Recktenwald D, Reimer D, e Sousa CR, Remmerswaal EB, Richter L, Rico LG, Riddell A, Rieger AM, Robinson JP, Romagnani C, Rubartelli A, Ruland J, Saalmüller A, Saeys Y, Saito T, Sakaguchi S, de-Oyanguren FS, Samstag Y, Sanderson S, Sandrock I, Santoni A, Sanz RB, Saresella M, Sautes-Fridman C, Sawitzki B, Schadt L, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schimisky E, Schlitzer A, Schlosser J, Schmid S, Schmitt S, Schober K, Schraivogel D, Schuh W, Schüler T, Schulte R, Schulz AR, Schulz SR, Scottá C, Scott-Algara D, Sester DP, Shankey TV, Silva-Santos B, Simon AK, Sitnik KM, Sozzani S, Speiser DE, Spidlen J, Stahlberg A, Stall AM, Stanley N, Stark R, Stehle C, Steinmetz T, Stockinger H, Takahama Y, Takeda K, Tan L, Tárnok A, Tiegs G, Toldi G, Tornack J, Traggiai E, Trebak M, Tree TI, Trotter J, Trowsdale J, Tsoumakidou M, Ulrich H, Urbanczyk S, van de Veen W, van den Broek M, van der Pol E, Van Gassen S, Van Isterdael G, van Lier RA, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Borstel A, von Volkmann K, Waisman A, Walker RV, Wallace PK, Wang SA, Wang XM, Ward MD, Ward-Hartstonge KA, Warnatz K, Warnes G, Warth S, Waskow C, Watson JV, Watzl C, Wegener L, Weisenburger T, Wiedemann A, Wienands J, Wilharm A, Wilkinson RJ, Willimsky G, Wing JB, Winkelmann R, Winkler TH, Wirz OF, Wong A, Wurst P, Yang JHM, Yang J, Yazdanbakhsh M, Yu L, Yue A, Zhang H, Zhao Y, Ziegler SM, Zielinski C, Zimmermann J, Zychlinsky A. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 2019; 49:1457-1973. [PMID: 31633216 PMCID: PMC7350392 DOI: 10.1002/eji.201970107] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Acs
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabine Adam-Klages
- Institut für Transfusionsmedizin, Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - William W. Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Matthieu Allez
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U1160, and Gastroenterology Department, Hôpital Saint-Louis – APHP, Paris, France
| | | | - Giorgia Alvisi
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Petra Bacher
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Institut für Klinische Molekularbiologie, Christian-Albrechts Universität zu Kiel, Germany
| | | | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Nicole Baumgarth
- Center for Comparative Medicine & Dept. Pathology, Microbiology & Immunology, University of California, Davis, CA, USA
| | - Dirk Baumjohann
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, Australia
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Center for Inflammation Research, Ghent University - VIB, Ghent, Belgium
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Jessica G. Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Philip E. Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | | | - Dirk Brenner
- Luxembourg Institute of Health, Department of Infection and Immunity, Experimental and Molecular Immunology, Esch-sur-Alzette, Luxembourg
- Odense University Hospital, Odense Research Center for Anaphylaxis, University of Southern Denmark, Department of Dermatology and Allergy Center, Odense, Denmark
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Ryan R. Brinkman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Anna E. S. Brooks
- University of Auckland, School of Biological Sciences, Maurice Wilkins Center, Auckland, New Zealand
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Martin Büscher
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Timothy P. Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, USA
| | - Federica Calzetti
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology, Nankai University, Tianjin, China
| | - Susanna L. Cardell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Casola
- The FIRC Institute of Molecular Oncology (FOM), Milan, Italy
| | - Marco A. Cassatella
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty (INMP), Rome, Italy
| | - Antonio Celada
- Macrophage Biology Group, School of Biology, University of Barcelona, Barcelona, Spain
| | - Lucienne Chatenoud
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Eleni Christakou
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Luka Čičin-Šain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrea M. Cooper
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierre G. Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ana Cumano
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - Ljiljana Cvetkovic
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Research Unit, Berlin Institute of Health (BIH), Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Martin S. Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Derek Davies
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Gelo Victoriano Dela Cruz
- Novo Nordisk Foundation Center for Stem Cell Biology – DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Michael Delacher
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | - James P. Di Santo
- Innate Immunty Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut Pasteur, Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Francesco Dieli
- University of Palermo, Central Laboratory of Advanced Diagnosis and Biomedical Research, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo, Italy
| | - Andreas Dolf
- Flow Cytometry Core Facility, Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Regine J. Dress
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Charles-Antoine Dutertre
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | | | - Marcus Eich
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Pablo Engel
- University of Barcelona, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Barcelona, Spain
| | | | - Anna Erdei
- Department of Immunology, University L. Eotvos, Budapest, Hungary
| | - Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Todd A. Fehniger
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Principe Felipe Research Center, Valencia, Spain
| | - Helen Ferry
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon Fillatreau
- Institut Necker-Enfants Malades, Université Paris Descartes Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Universitaetsklinikum FreiburgLighthouse Core Facility, Zentrum für Translationale Zellforschung, Klinik für Innere Medizin I, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A. Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Paul S. Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefan Frischbutter
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - David W. Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, USA
- Honorary Dean of Life Sciences, Henan University, Kaifeng, China
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Brice Gaudilliere
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, CA, USA
| | - Ricardo T. Gazzinelli
- Fundação Oswaldo Cruz - Minas, Laboratory of Immunopatology, Belo Horizonte, MG, Brazil
- Department of Mecicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jens Geginat
- INGM - Fondazione Istituto Nazionale di Genetica Molecolare “Ronmeo ed Enrica Invernizzi”, Milan, Italy
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, University of Tokyo, Tokyo, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Carl S. Goodyear
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Andrea Gori
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan
| | - Jane L. Grogan
- Cancer Immunology Research, Genentech, South San Francisco, CA, USA
| | | | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hamida Hammad
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Zwijnaarde, Belgium
| | | | - Leo Hansmann
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Goran Hansson
- Department of Medicine and Center for Molecular Medicine at Karolinska University Hospital, Solna, Sweden
| | | | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Andrea Hauser
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin
- Department of Rheumatology and Clinical Immunology, Berlin Institute of Health, Berlin, Germany
| | - David L. Haviland
- Flow Cytometry, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Daniela C. Hernández
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Thomas Höfer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, Heidelberg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tristan Holland
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Thomas Höllt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Computer Graphics and Visualization, Department of Intelligent Systems, TU Delft, Delft, The Netherlands
| | | | - Pleun Hombrink
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica P. Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Bimba F. Hoyer
- Rheumatologie/Klinische Immunologie, Klinik für Innere Medizin I und Exzellenzzentrum Entzündungsmedizin, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Fang-Ping Huang
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Johanna E. Huber
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Y. K. Hwang
- Department of Hematology, Singapore General Hospital, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sabine M Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter K. Jani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Thomas Kamradt
- Jena University Hospital, Institute of Immunology, Jena, Germany
| | | | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven L. C. Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Paul Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Jay K. Kolls
- John W Deming Endowed Chair in Internal Medicine, Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, LA, USA
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Hendy Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Division of Cell Biology, Histology & Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Kühne
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Désirée Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tomohiro Kurosaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Francesca LaRosa
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Agnès Lehuen
- Institut Cochin, CNRS8104, INSERM1016, Department of Endocrinology, Metabolism and Diabetes, Université de Paris, Paris, France
| | | | - Michael D. Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Leslie Y.T. Leung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lohoff
- Inst. f. Med. Mikrobiology and Hospital Hygiene, University of Marburg, Germany
| | - Giovanna Lombardi
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | | | - Miguel López-Botet
- IMIM(Hospital de Mar Medical Research Institute), University Pompeu Fabra, Barcelona, Spain
| | - Amy E. Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herve Luche
- Centre d’Immunophénomique - CIPHE (PHENOMIN), Aix Marseille Université (UMS3367), Inserm (US012), CNRS (UMS3367), Marseille, France
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Florian Mair
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS and Humanitas University, Pieve Emanuele, Milan, Italy
- William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Aaron J. Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Glòria Martrus
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Wlodzimierz Maslinski
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Department of Pathophysiology and Immunology, Warsaw, Poland
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecologie Mediche, Università di Napoli Federico II and Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Anna Vittoria Mattioli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Helen M. McGuire
- Ramaciotti Facility for Human Systems Biology, and Discipline of Pathology, The University of Sydney, Camperdown, Australia
| | - Iain B. McInnes
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Henrik E. Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephen D. Miller
- Interdepartmental Immunobiology Center, Dept. of Microbiology-Immunology, Northwestern Univ. Medical School, Chicago, IL, USA
| | - Kingston H.G. Mills
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical and Experimental Medine, Linköping University, Linköping, Sweden
| | - Jonni Moore
- Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry Moran
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environmental Microbiology, Leipzig, Germany
| | - Gabriele Multhoff
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christian Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba city, Chiba, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan, Ann Arbor, Michigan, USA
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Ordonez
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), Cytometry Service, University of Salamanca, CIBERONC and Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Eva Orlowski-Oliver
- Burnet Institute, AMREP Flow Cytometry Core Facility, Melbourne, Victoria, Australia
| | - Wenjun Ouyang
- Inflammation and Oncology, Research, Amgen Inc, South San Francisco, USA
| | | | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Isabel Panse
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Kovit Pattanapanyasat
- Center of Excellence for Flow Cytometry, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
- Department for Internal Medicine 3, Institute for Rheumatology and Immunology, AG Munoz, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zhiyong Poon
- Department of Hematology, Singapore General Hospital, Singapore
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Sally A. Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | - Tim R. D. J. Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susann Rahmig
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, USA
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Raz
- Department of Internal Medicine, Groene Hart Hospital, Gouda, The Netherlands
| | - Jonathan A. Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Dorothea Reimer
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ester B.M. Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Laura G. Rico
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Andy Riddell
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Aja M. Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - J. Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Fakultät für Medizin, Technische Universität München, München, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shimon Sakaguchi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Francisco Sala de-Oyanguren
- Flow Cytometry Facility, Ludwig Cancer Institute, Faculty of Medicine and Biology, University of Lausanne, Epalinges, Switzerland
| | - Yvonne Samstag
- Heidelberg University, Institute of Immunology, Section of Molecular Immunology, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, IRCCS, Neuromed, Pozzilli, Italy
| | - Ramon Bellmàs Sanz
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Birgit Sawitzki
- Charité – Universitätsmedizin Berlin, and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Linda Schadt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Alexander Scheffold
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Josephine Schlosser
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Stephan Schmid
- Internal Medicine I, University Hospital Regensburg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Reiner Schulte
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristiano Scottá
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | - Daniel Scott-Algara
- Institut Pasteur, Cellular Lymphocytes Biology, Immunology Departement, Paris, France
| | - David P. Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, Wooloongabba, QLD, Australia
| | | | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Katarzyna M. Sitnik
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silvano Sozzani
- Dept. Molecular Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniel E. Speiser
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
| | | | - Anders Stahlberg
- Lundberg Laboratory for Cancer, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Natalie Stanley
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Regina Stark
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Attila Tárnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Tornack
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- BioGenes GmbH, Berlin, Germany
| | - Elisabetta Traggiai
- Novartis Biologics Center, Mechanistic Immunology Unit, Novartis Institute for Biomedical Research, NIBR, Basel, Switzerland
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, PA, United States
| | - Timothy I.M. Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Edwin van der Pol
- Vesicle Observation Center; Biomedical Engineering & Physics; Laboratory Experimental Clinical Chemistry; Amsterdam University Medical Centers, Location AMC, The Netherlands
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - René A.W. van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Paulo Vieira
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin and Berlin Institute of Health, Core Unit ImmunoCheck
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Paul K. Wallace
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Sa A. Wang
- Dept of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin M. Wang
- The Scientific Platforms, the Westmead Institute for Medical Research, the Westmead Research Hub, Westmead, New South Wales, Australia
| | | | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gary Warnes
- Flow Cytometry Core Facility, Blizard Institute, Queen Mary London University, London, UK
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | | | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Leonie Wegener
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Thomas Weisenburger
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Institute for Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Robert John Wilkinson
- Department of Infectious Disease, Imperial College London, UK
- Wellcome Centre for Infectious Diseases Research in Africa and Department of Medicine, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James B. Wing
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Rieke Winkelmann
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas H. Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Alicia Wong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Peter Wurst
- University Bonn, Medical Faculty, Bonn, Germany
| | - Jennie H. M. Yang
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Susanne Maria Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina Zielinski
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
- TranslaTUM, Technical University of Munich, Munich, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
33
|
SerpinB1 controls encephalitogenic T helper cells in neuroinflammation. Proc Natl Acad Sci U S A 2019; 116:20635-20643. [PMID: 31548399 DOI: 10.1073/pnas.1905762116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SerpinB1, a protease inhibitor and neutrophil survival factor, was recently linked with IL-17-expressing T cells. Here, we show that serpinB1 (Sb1) is dramatically induced in a subset of effector CD4 cells in experimental autoimmune encephalomyelitis (EAE). Despite normal T cell priming, Sb1 -/- mice are resistant to EAE with a paucity of T helper (TH) cells that produce two or more of the cytokines, IFNγ, GM-CSF, and IL-17. These multiple cytokine-producing CD4 cells proliferate extremely rapidly; highly express the cytolytic granule proteins perforin-A, granzyme C (GzmC), and GzmA and surface receptors IL-23R, IL-7Rα, and IL-1R1; and can be identified by the surface marker CXCR6. In Sb1 -/- mice, CXCR6+ TH cells are generated but fail to expand due to enhanced granule protease-mediated mitochondrial damage leading to suicidal cell death. Finally, anti-CXCR6 antibody treatment, like Sb1 deletion, dramatically reverts EAE, strongly indicating that the CXCR6+ T cells are the drivers of encephalitis.
Collapse
|
34
|
Yang P, Qian F, Zhang M, Xu A, Wang X, Jiang B, Zhou L. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 2019; 106:1233-1240. [DOI: 10.1002/jlb.4ru0619-197r] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Pei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Fei‐Ya Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Ming‐Fei Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - A‐Lan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Xiang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Bao‐Ping Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Ling‐Ling Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| |
Collapse
|
35
|
Maggi L, Mazzoni A, Cimaz R, Liotta F, Annunziato F, Cosmi L. Th17 and Th1 Lymphocytes in Oligoarticular Juvenile Idiopathic Arthritis. Front Immunol 2019; 10:450. [PMID: 30930898 PMCID: PMC6428030 DOI: 10.3389/fimmu.2019.00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/19/2019] [Indexed: 01/16/2023] Open
Abstract
In the last years much attention has focused on the Th17 and Th1 phenotypes and on their pathogenic role in juvenile idiopathic arthritis, investigating how the cytokines produced by T helper cells act on resident cells on the synovia and which signal transduction pathways regulate Th17 cells proliferation and plasticity. In this context, an important milestone was represented by the identification of the non-classic Th1 phenotype, developed from the shift of Th17 cells. The cytokine TNF-α, beyond its well-known proinflammatory activity is involved in this process and this is one of the reasons why the TNF-α inhibitors are widely used in the treatment of juvenile idiopathic arthritis patients.
Collapse
Affiliation(s)
- Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Mondoulet L, Dioszeghy V, Busato F, Plaquet C, Dhelft V, Bethune K, Leclere L, Daviaud C, Ligouis M, Sampson H, Dupont C, Tost J. Gata3 hypermethylation and Foxp3 hypomethylation are associated with sustained protection and bystander effect following epicutaneous immunotherapy in peanut-sensitized mice. Allergy 2019; 74:152-164. [PMID: 29779209 PMCID: PMC6585762 DOI: 10.1111/all.13479] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
Background Epicutaneous immunotherapy (EPIT) is a promising method for treating food allergies. In animal models, EPIT induces sustained unresponsiveness and prevents further sensitization mediated by Tregs. Here, we elucidate the mechanisms underlying the therapeutic effect of EPIT, by characterizing the kinetics of DNA methylation changes in sorted cells from spleen and blood and by evaluating its persistence and bystander effect compared to oral immunotherapy (OIT). Methods BALB/c mice orally sensitized to peanut proteins (PPE) were treated by EPIT using a PPE‐patch or by PPE‐OIT. Another set of peanut‐sensitized mice treated by EPIT or OIT were sacrificed following a protocol of sensitization to OVA. DNA methylation was analyzed during immunotherapy and 8 weeks after the end of treatment in sorted cells from spleen and blood by pyrosequencing. Humoral and cellular responses were measured during and after immunotherapy. Results Analyses showed a significant hypermethylation of the Gata3 promoter detectable only in Th2 cells for EPIT from the 4th week and a significant hypomethylation of the Foxp3 promoter in CD62L+ Tregs, which was sustained only for EPIT. In addition, mice treated with EPIT were protected from subsequent sensitization and maintained the epigenetic signature characteristic for EPIT. Conclusions Our study demonstrates that EPIT leads to a unique and stable epigenetic signature in specific T‐cell compartments with downregulation of Th2 key regulators and upregulation of Treg transcription factors, likely explaining the sustainability of protection and the observed bystander effect.
Collapse
Affiliation(s)
| | | | - F. Busato
- Laboratory for Epigenetics & Environment Centre National de Recherche en Génomique Humaine CEA – Institut de Biologie François Jacob Evry France
| | | | | | - K. Bethune
- Laboratory for Epigenetics & Environment Centre National de Recherche en Génomique Humaine CEA – Institut de Biologie François Jacob Evry France
| | - L. Leclere
- Laboratory for Epigenetics & Environment Centre National de Recherche en Génomique Humaine CEA – Institut de Biologie François Jacob Evry France
| | - C. Daviaud
- Laboratory for Epigenetics & Environment Centre National de Recherche en Génomique Humaine CEA – Institut de Biologie François Jacob Evry France
| | | | - H. Sampson
- DBV Technologies Montrouge France
- Icahn School of Medicine at Mont Sinai New York NY USA
| | - C. Dupont
- Université Paris Descartes Hôpital Necker‐Enfants Malades Paris France
| | - J. Tost
- Laboratory for Epigenetics & Environment Centre National de Recherche en Génomique Humaine CEA – Institut de Biologie François Jacob Evry France
| |
Collapse
|
37
|
Mazzoni A, Maggi L, Siracusa F, Ramazzotti M, Rossi MC, Santarlasci V, Montaini G, Capone M, Rossettini B, Palma R, Kruglov A, Chang H, Cimaz R, Maggi E, Romagnani S, Liotta F, Cosmi L, Annunziato F. Eomes
controls the development of Th17‐derived (non‐classic) Th1 cells during chronic inflammation. Eur J Immunol 2018; 49:79-95. [DOI: 10.1002/eji.201847677] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/20/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | | | - Matteo Ramazzotti
- Department of Biomedical Experimental and Clinical Sciences “Mario Serio” University of Florence Firenze Italy
| | - Maria Caterina Rossi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Veronica Santarlasci
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Beatrice Rossettini
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Raffaele Palma
- Diparimento di Medicina di Precisione Università della Campania Napoli Italy
- Institute of Protein Biochemistry CNR Napoli
| | | | | | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
- Flow cytometry and Immunotherapy Diagnostic Center Azienda Ospedaliera Careggi Florence Italy
| |
Collapse
|
38
|
Kostic M, Zivkovic N, Cvetanovic A, Stojanovic I. Granulocyte-macrophage colony-stimulating factor as a mediator of autoimmunity in multiple sclerosis. J Neuroimmunol 2018; 323:1-9. [DOI: 10.1016/j.jneuroim.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
|
39
|
Chen BL, Chen YQ, Ma BH, Yu SF, Li LY, Zeng QX, Zhou YT, Wu YF, Liu WL, Wan JB, Yang Y, Li CW. Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL-4Rα-Jak1-STAT6 and Jagged1/Jagged2 -Notch1/Notch2 pathways in asthmatic mice. Clin Exp Allergy 2018; 48:1494-1508. [PMID: 30137697 DOI: 10.1111/cea.13258] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Curcumin (Cur), derived from Curcuma species, exhibits anti-inflammatory, antioxidant, and anticancer effects. Although Cur has some beneficial effects on asthma, its clinical application is limited by its low bioavailability. Tetrahydrocurcumin (THC), the major active metabolite of Cur, has multiple biological functions, similarly to Cur, and importantly, it showed enhanced bioavailability in tissues and plasma. However, the effect of THC on asthma has not been reported. OBJECTIVE The current study sought to investigate the efficacy of dietary THC on allergic asthma compared to that of Cur in an animal model. METHODS The anti-inflammatory effects of Cur and THC were evaluated in an ovalbumin-induced asthmatic mouse model. The nasal symptoms, pathological alterations of the lung tissues, oxidants and antioxidants, cytokine production, T cell subsets, and Th2-related signalling pathway activity were assessed. RESULTS Both THC and Cur had beneficial effects on asthmatic mice with regard to nasal symptoms, pathological changes (eosinophils and mucus hyper-production), oxidative stress (malondialdehyde), cytokine production (IL-13), Th17 and cytotoxic T cell subsets, and Th2 signalling pathway (IL-4Rα-Jak1-STAT6 and Jagged1/Jagged2-Notch1/Notch2 axis) activity. THC was more effective than Cur in suppressing tissue eosinophilia, mucus production, and IL-4Rα/Jak1/STAT6 pathway activity. Furthermore, only THC inhibited peripheral eosinophil levels, Th2 cytokines (IL-4 and IL-5), and Th2 cell subsets and enhanced an antioxidant enzyme (glutathione). CONCLUSION AND CLINICAL RELEVANCE The above results demonstrated for the first time that THC was superior to Cur in modulating allergic asthmatic phenotypes, especially attenuating the Th2 response. THC might be a potentially effective agent for asthma treatment.
Collapse
Affiliation(s)
- Bin Lin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China
| | - Yan Qiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China
| | - Bai Hui Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China
| | - Si Fei Yu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Yue Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Xiang Zeng
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China
| | - Yu Tao Zhou
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Fan Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China
| | - Wen Long Liu
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China
| | - Jian Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China
| | - Chun Wei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Dong J. Human bone marrow-resident and blood-circulating memory T lymphocytes. Z Rheumatol 2018; 77:409-411. [PMID: 29802431 DOI: 10.1007/s00393-018-0485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
41
|
Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, Mein C, Mahmud N, Galatowicz G, Tomkins-Netzer O, Calder VL, Lightman S. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T-Regulatory Cell Polarized Towards T-bet and TIGIT. Front Immunol 2018; 9:907. [PMID: 29774027 PMCID: PMC5943505 DOI: 10.3389/fimmu.2018.00907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background Non-infectious uveitis can cause chronic relapsing and remitting ocular inflammation, which may require high dose systemic immunosuppression to prevent severe sight loss. It has been classically described as an autoimmune disease, mediated by pro-inflammatory Th1 and Th17 T-cell subsets. Studies suggest that natural immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs) are involved in resolution of inflammation and may be involved in the maintenance of clinical remission. Objective To investigate whether there is a peripheral blood immunoregulatory phenotype associated with clinical remission of sight-threatening non-infectious uveitis by comparing peripheral blood levels of Treg, Th1, and Th17, and associated DNA methylation and cytokine levels in patients with active uveitic disease, control subjects and patients (with previously active disease) in clinical remission induced by immunosuppressive drugs. Methods Isolated peripheral blood mononuclear cells (PBMC) from peripheral blood samples from prospectively recruited subjects were analyzed by flow cytometry for CD3, CD4, FoxP3, TIGIT, T-bet, and related orphan receptor γt. Epigenetic DNA methylation levels of FOXP3 Treg-specific demethylated region (TSDR), FOXP3 promoter, TBX21, RORC2, and TIGIT loci were determined in cryopreserved PBMC using a next-generation sequencing approach. Related cytokines were measured in blood sera. Functional suppressive capacity of Treg was assessed using T-cell proliferation assays. Results Fifty patients with uveitis (intermediate, posterior, and panuveitis) and 10 control subjects were recruited. The frequency of CD4+CD25+FoxP3+ Treg, TIGIT+ Treg, and T-bet+ Treg and the ratio of Treg to Th1 were significantly higher in remission patients compared with patients with active uveitic disease; and TIGIT+ Tregs were a significant predictor of clinical remission. Treg from patients in clinical remission demonstrated a high level of in vitro suppressive function compared with Treg from control subjects and from patients with untreated active disease. PBMC from patients in clinical remission had significantly lower methylation levels at the FOXP3 TSDR, FOXP3 promoter, and TIGIT loci and higher levels at RORC loci than those with active disease. Clinical remission was also associated with significantly higher serum levels of transforming growth factor β and IL-10, which positively correlated with Treg levels, and lower serum levels of IFNγ, IL-17A, and IL-22 compared with patients with active disease. Conclusion Clinical remission of sight-threatening non-infectious uveitis has an immunoregulatory phenotype characterized by upregulation of peripheral Treg, polarized toward T-bet and TIGIT. These findings may assist with individualized therapy of uveitis, by informing whether drug therapy has induced phenotypically stable Treg associated with long-term clinical remission.
Collapse
Affiliation(s)
- Rose M Gilbert
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Xiaozhe Zhang
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Robert D Sampson
- Flow Cytometry Core Facility, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Michael R Ehrenstein
- Division of Medicine, Centre for Rheumatology, University College London (UCL), London, United Kingdom
| | - Dao X Nguyen
- Division of Medicine, Centre for Rheumatology, University College London (UCL), London, United Kingdom
| | - Mahid Chaudhry
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Charles Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nadiya Mahmud
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Grazyna Galatowicz
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Oren Tomkins-Netzer
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Virginia L Calder
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Sue Lightman
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
42
|
Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol 2018. [PMID: 29535070 DOI: 10.1016/j.biocel.2018.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, anti-tumor immunotherapy has shown promising results, and immune-oncology is now emerging as the fourth major wave in the treatment of tumors after radiotherapy, chemotherapy and molecular targeted therapy. Understanding the impact of the immune system on neoplastic cells is crucial to improve its effectiveness against cancer. The stratification of patients who might benefit from immunotherapy as well as the personalization of medicine have contributed to the discovery of new immunotherapeutic targets and molecules. In the present review, we discuss the mechanistic role of histone deacetylase inhibitors (HDACi) as potential immunomodulating agents to treat cancer. Our current understanding of the use of HDACi in combination with various immunotherapeutic approaches, such as immunomodulating agents and cancer vaccines, is also addressed. The potential clinical applications of the growing number of novel epigenetic drugs for cancer immunotherapy are widening, and some of these therapies are already in clinical trials.
Collapse
Affiliation(s)
| | - Raffaele De Palma
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
43
|
Sallusto F, Cassotta A, Hoces D, Foglierini M, Lanzavecchia A. Do Memory CD4 T Cells Keep Their Cell-Type Programming: Plasticity versus Fate Commitment? T-Cell Heterogeneity, Plasticity, and Selection in Humans. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029421. [PMID: 28432133 DOI: 10.1101/cshperspect.a029421] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The wide range of effector and memory T cells is instrumental for immune regulation and tailored mechanisms of protection against pathogens. Here, we will focus on human CD4 T cells and discuss T-cell plasticity and intraclonal diversification in the context of a progressive and selective model of CD4 T-cell differentiation.
Collapse
Affiliation(s)
- Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Hoces
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| |
Collapse
|
44
|
IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun 2018; 9:583. [PMID: 29422534 PMCID: PMC5805701 DOI: 10.1038/s41467-018-02890-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
Epigenetic modifications affect the differentiation of T cell subsets and the pathogenesis of autoimmune diseases, but many mechanisms of epigenetic regulation of T cell differentiation are unclear. Here we show reduced expression of the transcription factor RFX1 in CD4+ T cells from patients with systemic lupus erythematosus, which leads to IL-17A overexpression through increased histone H3 acetylation and decreased DNA methylation and H3K9 tri-methylation. Conditional deletion of Rfx1 in mice exacerbates experimental autoimmune encephalomyelitis and pristane-induced lupus-like syndrome and increases induction of Th17 cells. In vitro, Rfx1 deficiency increases the differentiation of naive CD4+ T cells into Th17 cells, but this effect can be reversed by forced expression of Rfx1. Importantly, RFX1 functions downstream of STAT3 and phosphorylated STAT3 can inhibit RFX1 expression, highlighting a non-canonical pathway that regulates differentiation of Th17 cells. Collectively, our findings identify a unique role for RFX1 in Th17-related autoimmune diseases. Th17 cells are a common pathogenic effector cell in autoimmune inflammatory diseases. Here the authors show that the transcription factor RFX1 limits Th17 differentiation and is protective against the pathogenesis of Th17-driven autoimmune diseases.
Collapse
|
45
|
Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87:69-81. [DOI: 10.1016/j.jaut.2017.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
|
46
|
Abstract
CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Federica Sallusto
- Center of Medical Immunology and Laboratory of Cellular Immunology, Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| |
Collapse
|
47
|
The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017; 9:v9100303. [PMID: 29048384 PMCID: PMC5691654 DOI: 10.3390/v9100303] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
The T helper 17 (Th17) cells represent a subset of CD4+ T-cells with unique effector functions, developmental plasticity, and stem-cell features. Th17 cells bridge innate and adaptive immunity against fungal and bacterial infections at skin and mucosal barrier surfaces. Although Th17 cells have been extensively studied in the context of autoimmunity, their role in various other pathologies is underexplored and remains an area of open investigation. This review summarizes the history of Th17 cell discovery and the current knowledge relative to the beneficial role of Th17 cells in maintaining mucosal immunity homeostasis. We further discuss the concept of Th17 pathogenicity in the context of autoimmunity, cancer, and HIV infection, and we review the most recent discoveries on molecular mechanisms regulating HIV replication/persistence in pathogenic Th17 cells. Finally, we stress the need for novel fundamental research discovery-based Th17-specific therapeutic interventions to treat pathogenic conditions associated with Th17 abnormalities, including HIV infection.
Collapse
|
48
|
Boily-Larouche G, Omollo K, Cheruiyot J, Njoki J, Kimani M, Kimani J, Oyugi J, Lajoie J, Fowke KR. CD161 identifies polyfunctional Th1/Th17 cells in the genital mucosa that are depleted in HIV-infected female sex workers from Nairobi, Kenya. Sci Rep 2017; 7:11123. [PMID: 28894259 PMCID: PMC5593931 DOI: 10.1038/s41598-017-11706-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 02/03/2023] Open
Abstract
CD161 identifies a subset of circulating Th17 cells that are depleted in the blood and gut of HIV-infected individuals. In the female reproductive tract (FRT), the pattern of CD161 expression on CD4+ cells remains unknown. Here, we characterized CD161 expression in the FRT of Kenyan female sex workers (FSW). Compared to the blood, CD161+CD4+ T cells were enriched in the FRT of uninfected FSWs. These cells were depleted in FRT of HIV-infected FSWs. Cervical CD161+ cells harboured an activated phenotype (CD69, CD95, HLA-DR) with elevated expression of tissue-homing markers (CCR6, β7 integrin) and HIV co-receptor (CCR5). Mitogen-stimulated production of IL-17 confirmed the Th17 commitment of CD161+CD4+ T cells in the FRT with a predominance of polyfunctional Th1/Th17 cells. Here, we showed that the expression of CD161 on CD4+T cells is modulated at the FRT, but still identified a highly activated cellular subset, which differentiates into pro-inflammatory Th1/Th17 cells, expresses multiple HIV susceptibility markers and are depleted in HIV-infected individuals. The use of CD161 as a biomarker of HIV targets in the FRT reduces the need for functional assessment of cells and could have important implications in better understanding HIV pathogenesis and Th17 fate in the FRT of high-risk women.
Collapse
Affiliation(s)
- Geneviève Boily-Larouche
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Manitoba, Canada
| | - Kenneth Omollo
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | - Jane Njoki
- Kenya AIDS Control Project, University of Nairobi, Nairobi, Kenya
| | - Makobu Kimani
- Kenya AIDS Control Project, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Kenya AIDS Control Project, University of Nairobi, Nairobi, Kenya
| | - Julius Oyugi
- Department Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Kenya AIDS Control Project, University of Nairobi, Nairobi, Kenya
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Manitoba, Canada.,Department Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Manitoba, Canada. .,Department Medical Microbiology, University of Nairobi, Nairobi, Kenya. .,Department of Community Health Science, University of Manitoba, Manitoba, Canada.
| |
Collapse
|
49
|
CCR6 + Th cells in the cerebrospinal fluid of persons with multiple sclerosis are dominated by pathogenic non-classic Th1 cells and GM-CSF-only-secreting Th cells. Brain Behav Immun 2017; 64:71-79. [PMID: 28336414 PMCID: PMC5490506 DOI: 10.1016/j.bbi.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022] Open
Abstract
Considerable attention has been given to CCR6+ IL-17-secreting CD4+ T cells (Th17) in the pathology of a number of autoimmune diseases including multiple sclerosis (MS). However, other Th subsets also play important pathogenic roles, including those that secrete IFNγ and GM-CSF. CCR6 expression by Th17 cells allows their migration across the choroid plexus into the cerebrospinal fluid (CSF), where they are involved in the early phase of experimental autoimmune encephalomyelitis (EAE), and in MS these cells are elevated in the CSF during relapses and contain high frequencies of autoreactive cells. However, the relatively low frequency of Th17 cells suggests they cannot by themselves account for the high percentage of CCR6+ cells in MS CSF. Here we identify the dominant CCR6+ T cell subsets in both the blood and CSF as non-classic Th1 cells, including many that secrete GM-CSF, a key encephalitogenic cytokine. In addition, we show that Th cells secreting GM-CSF but not IFNγ or IL-17, a subset termed GM-CSF-only-secreting Th cells, also accumulate in the CSF. Importantly, in MS the proportion of IFNγ- and GM-CSF-secreting T cells expressing CCR6 was significantly enriched in the CSF, and was elevated in MS, suggesting these cells play a pathogenic role in this disease.
Collapse
|
50
|
Santarlasci V, Mazzoni A, Capone M, Rossi MC, Maggi L, Montaini G, Rossettini B, Cimaz R, Ramazzotti M, Barra G, De Palma R, Maggi E, Liotta F, Cosmi L, Romagnani S, Annunziato F. Musculin inhibits human T-helper 17 cell response to interleukin 2 by controlling STAT5B activity. Eur J Immunol 2017; 47:1427-1442. [PMID: 28612433 DOI: 10.1002/eji.201746996] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023]
Abstract
We recently demonstrated that human T-helper (Th) 17 cells, unlike Th1 cells, do not proliferate in response to T-cell receptor stimulation, mainly because of their reduced capacity to produce and respond to IL-2. In this study, we show that their lower responsiveness to IL-2 is due to the selective expression of Musculin (MSC), a member of the basic helix-loop-helix transcription factors. We show that MSC expression in human Th17 cells is retinoic acid orphan receptor (ROR)γt-dependent, and allows the upregulation of PPP2R2B, a regulatory member of the protein phosphatase 2A (PP2A) enzyme. High PPP2R2B levels in human Th17 cells were responsible for the reduced STAT5B Ser-193 phosphorylation upon IL-2 signalling and, therefore, impaired STAT5B DNA binding and transcriptional activity on IL-2 target genes. PP2A, observed in Th17 cells, controls also STAT3, dephosphorylating Ser727, thus increasing its activity that plays a crucial role in Th17 development and/or maintenance. Thus, our findings identify an additional mechanism responsible for the limited expansion of human Th17 cells, and could provide a further explanation for the rarity of these cells in inflamed tissues.
Collapse
Affiliation(s)
- Veronica Santarlasci
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Maria Caterina Rossi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Beatrice Rossettini
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio" University of Florence, Firenze, Italy
| | - Giusi Barra
- Department of Clinical and Experimental Medicine, Università della Campania "L. Vanvitelli,", Napoli, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Università della Campania "L. Vanvitelli,", Napoli, Italy.,Institute of Protein Biochemistry, CNR, Napoli
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Firenze, Italy.,Regenerative Medicine Unit and Immunology and Cellular Therapy Unit of Azienda Ospedaliera Careggi, Florence, Italy
| |
Collapse
|