1
|
Yang Y, Han X, Sun L, Shao F, Yin Y, Zhang W. ETS Transcription Factors in Immune Cells and Immune-Related Diseases. Int J Mol Sci 2024; 25:10004. [PMID: 39337492 PMCID: PMC11432452 DOI: 10.3390/ijms251810004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The development, differentiation, and function of immune cells are precisely regulated by transcription factors. The E26 transformation-specific (ETS) transcription factor family is involved in various physiological and pathological processes by regulating cell proliferation, differentiation, and apoptosis. Emerging evidence has suggested that ETS family proteins are intimately involved in the development and function of immune cells. This review summarizes the role of the ETS family in immune cells and immune-related disorders. Seven transcription factors within the ETS family, including PU.1, ETV5, ETV6, ETS1/2, ELK3, and ELF1, play essential roles in the development and function of T cells, B cells, macrophages, neutrophils, and dendritic cells. Furthermore, they are involved in the occurrence and development of immune-related diseases, including tumors, allergies, autoimmune diseases, and arteriosclerosis. This review is conducive to a comprehensive overview of the role of the ETS family in immune cells, and thus is informative for the development of novel therapeutic strategies targeting the ETS family for immune-related diseases.
Collapse
Affiliation(s)
- Yaxu Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Xue Han
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Lijun Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Fangyu Shao
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Yue Yin
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| |
Collapse
|
2
|
Yang H, Zhao G, Lu Y, Ma K, Gao X, She X, Zhu Y, Wang K, Du L, Wang Y, Xi Z, Cui B. Circadian disturbances by altering the light-dark cycle negatively affects hematopoietic function of bone marrow in mice. FASEB J 2024; 38:e23565. [PMID: 38558188 DOI: 10.1096/fj.202302233rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.
Collapse
Affiliation(s)
- Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Guojie Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yue Lu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kun Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lianqun Du
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Wang
- School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
4
|
Yang C, Wang Z, Li L, Zhang Z, Jin X, Wu P, Sun S, Pan J, Su K, Jia F, Zhang L, Wang H, Yu X, Shao X, Wang K, Qiu F, Yan J, Huang J. Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis. J Immunother Cancer 2021; 9:jitc-2021-002875. [PMID: 34716206 PMCID: PMC8559246 DOI: 10.1136/jitc-2021-002875] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Neutrophils-linked premetastatic niche plays a key role in tumor metastasis, but not much is known about the heterogeneity and diverse role of neutrophils in niche formation. Our study focuses on the existence and biological function of a rarely delved subset of neutrophils, named as tumor-associated aged neutrophils (Naged, CXCR4+CD62Llow), involved in premetastatic niche formation during breast cancer metastasis. Methods We explored the distributions of Naged in 206 patients and mice models (4T1 and MMTV-PyMT) by flow cytometry. The ability of Naged to form neutrophil extracellular traps (NETs) and promote tumor metastasis in patients and mice was determined by polychromatic immunohistochemistry, scanning electron microscopy and real-time video detection. Furthermore, the differences among tumor-associated Naged, Non-Naged and inflammation-associated aged neutrophils were compared by transcriptome, the biological characteristics of Naged were comprehensively analyzed from the perspectives of morphology, the metabolic capacity and mitochondrial function were investigated by Seahorse, co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) and transmission electron microscopy (TEM). Finally, 120 patients’ sample were applied to confirm the acceleration of Naged formation through secreted NAMPT, and the importance of blocking this pathway in mice was evaluated. Results We find that Naged accumulate in the lung premetastatic niche at early stage of breast tumorigenesis in multiple mice models and also exist in peripheral blood and metastatic lung of patients with breast cancer. Naged exhibit distinct cell marker and morphological feature of oversegmented nuclei. Further transcriptome reveals that Naged are completely different from those of Non-Aged or inflammation-associated aged neutrophils and illustrates that the key transcription factor SIRT1 in Naged is the core to maintain their lifespan via mitophagy for their function. The responsible mechanism is that SIRT1 can induce the opening of mitochondrial permeability transition pore channels to release mitochondrial DNA and lead to the mitochondria-dependent vital NETs formation, rather than traditional Cit-Histone H3 dependent fatal-NETs. Further mechanically investigation found tumor derived NAMPT could induce Naged formation. Additionally, therapeutic interventions of Naged and its formation-linked pathways could effectively decrease breast cancer lung metastasis. Conclusions Naged exerts a vital role in breast cancer lung metastasis, and strategies targeting SIRT1-Naged-NETs axis show promise for translational application.
Collapse
Affiliation(s)
- Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lili Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyan Jin
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Pin Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Sun
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ke Su
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fang Jia
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Haijun Wang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiuyan Yu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuan Shao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ke Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fuming Qiu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Yan
- Department of Medicine and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China .,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|