1
|
Lee S, Kim JH, Jang IH, Jo S, Lee SY, Oh SC, Kim SM, Kong L, Ko J, Kim TD. Harnessing B7-H6 for Anticancer Immunotherapy: Expression, Pathways, and Therapeutic Strategies. Int J Mol Sci 2024; 25:10326. [PMID: 39408655 PMCID: PMC11476788 DOI: 10.3390/ijms251910326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapies have evolved from traditional chemotherapy to more precise molecular-targeted immunotherapies, which have been associated with improved side effects and outcomes. These modern strategies rely on cancer-specific biomarkers that differentiate malignant from normal cells. The B7 family of immune checkpoint molecules is crucial for cancer immune evasion and a prime therapeutic target. B7-H6, a recently identified member of the B7 family, has emerged as a promising therapeutic target. Unlike other B7 proteins, B7-H6 is not expressed in healthy tissues but is upregulated in several cancers. It binds to NKp30, activating natural killer (NK) cells and triggering immune responses against cancer cells. This review explores the expression of B7-H6 in different cancers, the factors that regulate its expression, and its intrinsic and extrinsic pathways. Additionally, we discuss potential anticancer therapies targeting B7-H6, highlighting its significance in advancing precision medicine. Understanding the role of B7-H6 in cancer immunity may inform the development of appropriate therapies that exploit its cancer-specific expression.
Collapse
Affiliation(s)
- Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Lingzu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Cheng P. Arming oncolytic viruses with bispecific T cell engagers: The evolution and current status. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166962. [PMID: 37984801 DOI: 10.1016/j.bbadis.2023.166962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Oncolytic viruses (OVs) are emerging as therapeutically relevant anticancer agents as contemporary immunotherapy gains traction. Furthermore, OVs are an ideal platform for genetic modification to express therapeutic transgenes. Bispecific T cell engagers (BiTEs) can redirect T cells to tumor cells, resulting in targeted cytotoxicity. BiTEs have demonstrated success in hematological cancers but are rarely used in solid tumors. The drawbacks of BiTEs, including inadequate delivery and on-target-off-tumor activity have limited their efficacy. Combining OVs with BiTEs is a prospective area to investigate. This combined strategy can benefit from the best qualities of both therapies while overcoming the limitations.
Collapse
Affiliation(s)
- Yunmeng Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, PR China
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Patwekar M, Sehar N, Patwekar F, Medikeri A, Ali S, Aldossri RM, Rehman MU. Novel immune checkpoint targets: A promising therapy for cancer treatments. Int Immunopharmacol 2024; 126:111186. [PMID: 37979454 DOI: 10.1016/j.intimp.2023.111186] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
The immune system frequently comprises immunological checkpoints. They serve as a barrier to keep the immune system from overreacting and damaging cells that are robust. Immune checkpoint inhibitors (ICIs) are utilized in immunotherapy to prevent the synergy of partner proteins of checkpoint proteins with auxiliary proteins. Moreover, the T cells may target malignant cells since the "off" signal cannot be conveyed. ICIs, which are mostly composed of monoclonal antibodies (mAbs) against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and anti- programmed death-1/programmed ligand 1 (anti-PD-1/PD-L1), might transform the context of cancer therapy. Further, more patients continued to exhibit adaptive resistance, even though several ICIs demonstrated convincing therapeutic benefits in selective tumor types. Immune checkpoint therapy's overall effectiveness is still lacking at this time. A popular area of study involves investigating additional immune checkpoint molecules. Recent research has found a number of fresh immune checkpoint targets, including NKG2A ligands, TIGIT, B7-H6 ligands, Galectin 3, TIM3, and so on. These targets have been focus of the study, and recent investigational approaches have shown encouraging outcomes. In this review article, we covered the development and present level understanding of these recently identified immune checkpoint molecules, its effectiveness and limitations.
Collapse
Affiliation(s)
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062, India
| | - Faheem Patwekar
- Luqman College of Pharmacy, Gulbarga, 585102, Karnataka, India
| | | | - Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Rana M Aldossri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Boulhen C, AIT SSI S, Benthami H, Razzouki I, Lakhdar A, Karkouri M, Badou A. TMIGD2 as a potential therapeutic target in glioma patients. Front Immunol 2023; 14:1173518. [PMID: 37261362 PMCID: PMC10227580 DOI: 10.3389/fimmu.2023.1173518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Among all types of central nervous system cancers, glioma remains the most frequent primary brain tumor in adults. Despite significant advances in immunomodulatory therapies, notably immune checkpoint inhibitors, their effectiveness remains constrained due to glioma resistance. The discovery of TMIGD2 (Transmembrane and Immunoglobulin Domain Containing 2) as an immuno-stimulatory receptor, constitutively expressed on naive T cells and most natural killer (NK) cells, has emerged as an attractive immunotherapy target in a variety of cancers. The expression profile of TMIGD2 and its significance in the overall survival of glioma patients remains unknown. Methods In the present study, we first assessed TMIGD2 mRNA expression using the Cancer Genome Atlas (TCGA) glioma transcriptome dataset (667 patients), followed by validation with the Chinese Glioma Genome Atlas (CGGA) cohort (693 patients). Secondly, we examined TMIGD2 protein staining in a series of 25 paraffin-embedded blocks from Moroccan glioma patients. The statistical analysis was performed using GraphPad Prism 8 software. Results TMIGD2 expression was found to be significantly higher in astrocytoma, IDH-1 mutations, low-grade, and young glioma patients. TMIGD2 was expressed on immune cells and, surprisingly, on tumor cells of glioma patients. Interestingly, our study demonstrated that TMIGD2 expression was negatively correlated with angiogenesis, hypoxia, G2/M checkpoint, and epithelial to mesenchymal transition signaling pathways. We also demonstrated that dendritic cells, monocytes, NK cells, gd T cells, and naive CD8 T cell infiltration correlates positively with TMIGD2 expression. On the other hand, Mantel-Cox analysis demonstrated that increased expression of TMIGD2 in human gliomas is associated with good overall survival. Cox multivariable analysis revealed that TMIGD2 is an independent predictor of a good prognosis in glioma patients. Discussion Taken together, our results highlight the tight implication of TMIGD2 in glioma progression and show its promising therapeutic potential as a stimulatory target for immunotherapy.
Collapse
Affiliation(s)
- Chaimae Boulhen
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Saadia AIT SSI
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, Faculty of Medicine and Pharmacy, University of Hassan II, Casablanca, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
6
|
Zhang W, Auguste A, Liao X, Walterskirchen C, Bauer K, Lin YH, Yang L, Sayedian F, Fabits M, Bergmann M, Binder C, Corrales L, Vogt AB, Hudson LJ, Barnes MP, Bisht A, Giragossian C, Voynov V, Adam PJ, Hipp S. A Novel B7-H6-Targeted IgG-Like T Cell-Engaging Antibody for the Treatment of Gastrointestinal Tumors. Clin Cancer Res 2022; 28:5190-5201. [PMID: 36166004 PMCID: PMC9713360 DOI: 10.1158/1078-0432.ccr-22-2108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Advanced-stage gastrointestinal cancers represent a high unmet need requiring new effective therapies. We investigated the antitumor activity of a novel T cell-engaging antibody (B7-H6/CD3 ITE) targeting B7-H6, a tumor-associated antigen that is expressed in gastrointestinal tumors. EXPERIMENTAL DESIGN Membrane proteomics and IHC analysis identified B7-H6 as a tumor-associated antigen in gastrointestinal tumor tissues with no to very little expression in normal tissues. The antitumor activity and mode of action of B7-H6/CD3 ITE was evaluated in in vitro coculture assays, in humanized mouse tumor models, and in colorectal cancer precision cut tumor slice cultures. RESULTS B7-H6 expression was detected in 98% of colorectal cancer, 77% of gastric cancer, and 63% of pancreatic cancer tissue samples. B7-H6/CD3 ITE-mediated redirection of T cells toward B7-H6-positive tumor cells resulted in B7-H6-dependent lysis of tumor cells, activation and proliferation of T cells, and cytokine secretion in in vitro coculture assays, and infiltration of T cells into tumor tissues associated with tumor regression in in vivo colorectal cancer models. In primary patient-derived colorectal cancer precision-cut tumor slice cultures, treatment with B7-H6/CD3 ITE elicited cytokine secretion by endogenous tumor-infiltrating immune cells. Combination with anti-PD-1 further enhanced the activity of the B7-H6/CD3 ITE. CONCLUSION These data highlight the potential of the B7-H6/CD3 ITE to induce T cell-redirected lysis of tumor cells and recruitment of T cells into noninflamed tumor tissues, leading to antitumor activity in in vitro, in vivo, and human tumor slice cultures, which supports further evaluation in a clinical study.
Collapse
Affiliation(s)
- Wei Zhang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Aurélie Auguste
- Boehringer Ingelheim Pharma, GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach an der Riß, Germany
| | - Xiaoyun Liao
- Boehringer Ingelheim Pharmaceuticals, Inc., Oncology Translational Science, Ridgefield, Connecticut
| | | | - Kathrin Bauer
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Yu-Hsi Lin
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Ling Yang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | | | - Markus Fabits
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Michael Bergmann
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Leticia Corrales
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Anne B. Vogt
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | | | | | - Arnima Bisht
- Oxford BioTherapeutics, Inc., San Jose, California
| | - Craig Giragossian
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Vladimir Voynov
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Paul J. Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Susanne Hipp
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut.,Boehringer Ingelheim Pharmaceuticals, Inc., Translational Medicine and Clinical Pharmacology, Ridgefield, Connecticut.,Corresponding Author: Susanne Hipp, Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, CT 06877-0368. Phone: 203-798-4567; E-mail:
| |
Collapse
|
7
|
Gout DY, Groen LS, van Egmond M. The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci 2022; 79:509. [PMID: 36066630 PMCID: PMC9448690 DOI: 10.1007/s00018-022-04514-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022]
Abstract
Monoclonal antibody (mAb) therapy has successfully been introduced as treatment of several lymphomas and leukemias. However, solid tumors reduce the efficacy of mAb therapy because of an immune-suppressive tumor micro-environment (TME), which hampers activation of effector immune cells. Pro-inflammatory cytokine therapy may counteract immune suppression in the TME and increase mAb efficacy, but untargeted pro-inflammatory cytokine therapy is limited by severe off-target toxicity and a short half-life of cytokines. Antibody-cytokine fusion proteins, also referred to as immunocytokines, provide a solution to either issue, as the antibody both acts as local delivery platform and increases half-life. The antibody can furthermore bridge local cytotoxic immune cells, like macrophages and natural killer cells with tumor cells, which can be eliminated after effector cells are activated via the cytokine. Currently, a variety of different antibody formats as well as a handful of cytokine payloads are used to generate immunocytokines. However, many potential formats and payloads are still left unexplored. In this review, we describe current antibody formats and cytokine moieties that are used for the development of immunocytokines, and highlight several immunocytokines in (pre-)clinical studies. Furthermore, potential future routes of development are proposed.
Collapse
Affiliation(s)
- Dennis Y Gout
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lotte S Groen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,LUMICKS, Paalbergweg 3, 1105 AG, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands. .,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands. .,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands. .,Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Spunde K, Korotkaja K, Zajakina A. Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations. Biomedicines 2022; 10:2142. [PMID: 36140243 PMCID: PMC9495732 DOI: 10.3390/biomedicines10092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Viral vectors have been widely investigated as tools for cancer immunotherapy. Although many preclinical studies demonstrate significant virus-mediated tumour inhibition in synergy with immune checkpoint molecules and other drugs, the clinical success of viral vector applications in cancer therapy currently is limited. A number of challenges have to be solved to translate promising vectors to clinics. One of the key elements of successful virus-based cancer immunotherapy is the understanding of the tumour immune state and the development of vectors to modify the immunosuppressive tumour microenvironment (TME). Tumour-associated immune cells, as the main component of TME, support tumour progression through multiple pathways inducing resistance to treatment and promoting cancer cell escape mechanisms. In this review, we consider DNA and RNA virus vectors delivering immunomodulatory genes (cytokines, chemokines, co-stimulatory molecules, antibodies, etc.) and discuss how these viruses break an immunosuppressive cell development and switch TME to an immune-responsive "hot" state. We highlight the advantages and limitations of virus vectors for targeted therapeutic programming of tumour immune cell populations and tumour stroma, and propose future steps to establish viral vectors as a standard, efficient, safe, and non-toxic cancer immunotherapy approach that can complement other promising treatment strategies, e.g., checkpoint inhibitors, CAR-T, and advanced chemotherapeutics.
Collapse
Affiliation(s)
| | | | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| |
Collapse
|
9
|
Avanzino BC, Prabhakar K, Dalvi P, Hartstein S, Kehm H, Balasubramani A, Boudreau AA, Buelow B, Chang K, Davison LM, Iyer S, Kalwit V, Lewis Wilson K, Malik-Chaudhry HK, Pierson W, Pineda G, Rangaswamy US, Saiganesh S, Schellenberger U, Ugamraj HS, Yabut RD, Buelow R, Chapman J, Trinklein ND, Harris KE. A T-cell engaging bispecific antibody with a tumor-selective bivalent folate receptor alpha binding arm for the treatment of ovarian cancer. Oncoimmunology 2022; 11:2113697. [PMID: 36016696 PMCID: PMC9397469 DOI: 10.1080/2162402x.2022.2113697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
The use of T-cell engagers (TCEs) to treat solid tumors is challenging, and several have been limited by narrow therapeutic windows due to substantial on-target, off-tumor toxicities due to the expression of low levels of target antigens on healthy tissues. Here, we describe TNB-928B, a fully human TCE that has a bivalent binding arm for folate receptor alpha (FRα) to selectively target FRα overexpressing tumor cells while avoiding the lysis of cells with low levels of FRα expression. The bivalent design of the FRα binding arm confers tumor selectivity due to low-affinity but high-avidity binding to high FRα antigen density cells. TNB-928B induces preferential effector T-cell activation, proliferation, and selective cytotoxic activity on high FRα expressing cells while sparing low FRα expressing cells. In addition, TNB-928B induces minimal cytokine release compared to a positive control TCE containing OKT3. Moreover, TNB-928B exhibits substantial ex vivo tumor cell lysis using endogenous T-cells and robust tumor clearance in vivo, promoting T-cell infiltration and antitumor activity in mouse models of ovarian cancer. TNB-928B exhibits pharmacokinetics similar to conventional antibodies, which are projected to enable favorable administration in humans. TNB-928B is a novel TCE with enhanced safety and specificity for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Brian C. Avanzino
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Kirthana Prabhakar
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Pranjali Dalvi
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Sharon Hartstein
- Teneobio, Inc, Newark, CA, United States
- Therapeutic Discovery, Amgen Inc., Newark, CA, USA
| | | | - Aarti Balasubramani
- Teneobio, Inc, Newark, CA, United States
- Therapeutic Discovery, Amgen Inc., Newark, CA, USA
| | | | - Ben Buelow
- Teneobio, Inc, Newark, CA, United States
| | | | | | | | - Vidyut Kalwit
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Kristin Lewis Wilson
- Translational Safety & Bioanalytical Sciences, Amgen Inc., South San Francisco, CA, USA
| | | | - Will Pierson
- Division of Gynecologic Oncology, University of California, San Francisco, CA, USA
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Geovanni Pineda
- Division of Gynecologic Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Udaya S. Rangaswamy
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Sowmya Saiganesh
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | | | - Harshad S. Ugamraj
- Teneobio, Inc, Newark, CA, United States
- Process Development, Amgen Inc., Newark, CA, USA
| | - Rodolfovan D. Yabut
- Translational Safety & Bioanalytical Sciences, Amgen Inc., South San Francisco, CA, USA
| | | | - Jocelyn Chapman
- Division of Gynecologic Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Katherine E. Harris
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| |
Collapse
|
10
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Correia MP, Stojanovic A, Wels WS, Cerwenka A. Innate-like NKp30 +CD8 + T cells armed with TCR/CAR target tumor heterogeneity. Oncoimmunology 2022; 10:1973783. [PMID: 35036073 PMCID: PMC8758178 DOI: 10.1080/2162402x.2021.1973783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intratumoral heterogeneity is frequently associated with tumor immune escape, with MHC-class I and antigen expression loss rendering tumor cells invisible to T cell killing, representing a major challenge for the design of successful adoptive transfer protocols for cancer immunotherapy. While CD8+ T cell recognition of tumor cells is based on the detection of MHC-peptide complexes via specific T cell receptors (TCRs), Natural Killer (NK) cells detect tumor-associated NK ligands by an array of NK receptors. We have recently identified a population of innate-like CD8+ T cells marked by the expression of NKp30, a potent natural cytotoxicity activating NK receptor, whose tumor ligand, B7H6, is frequently upregulated on several cancer types. Here, we harnessed the dual-recognition potential of NKp30+CD8+ T cells, by arming these cells with TCRs or chimeric antigen receptors (CARs) targeting Epidermal Growth Factor Receptor 2 (ErbB2, or HER2), a tumor-associated target overexpressed in several malignancies. HER2-specific NKp30+CD8+ T cells killed not only HER2-expressing target cell lines, but also eliminated tumor cells in the absence of MHC-class I or antigen expression, making them especially effective in eliminating heterogeneous tumor cell populations. Our results show that NKp30+CD8+ T cells equipped with a specific TCR or CAR display a dual capacity to recognize and kill target cells, combining the anti-tumor activity of both CD8+ T and NK cells. This dual-recognition capacity allows these effector cells to target tumor heterogeneity, thus improving therapeutic strategies against tumor escape.
Collapse
Affiliation(s)
- Margareta P Correia
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14111172. [PMID: 34832954 PMCID: PMC8619951 DOI: 10.3390/ph14111172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.
Collapse
|
13
|
Belmontes B, Sawant DV, Zhong W, Tan H, Kaul A, Aeffner F, O'Brien SA, Chun M, Noubade R, Eng J, Ma H, Muenz M, Li P, Alba BM, Thomas M, Cook K, Wang X, DeVoss J, Egen JG, Nolan-Stevaux O. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell-cold solid tumors. Sci Transl Med 2021; 13:13/608/eabd1524. [PMID: 34433637 DOI: 10.1126/scitranslmed.abd1524] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Therapeutic approaches are needed to promote T cell-mediated destruction of poorly immunogenic, "cold" tumors typically associated with minimal response to immune checkpoint blockade (ICB) therapy. Bispecific T cell engager (BiTE) molecules induce redirected lysis of cancer cells by polyclonal T cells and have demonstrated promising clinical activity against solid tumors in some patients. However, little is understood about the key factors that govern clinical responses to these therapies. Using an immunocompetent mouse model expressing a humanized CD3ε chain (huCD3e mice) and BiTE molecules directed against mouse CD19, mouse CLDN18.2, or human EPCAM antigens, we investigated the pharmacokinetic and pharmacodynamic parameters and immune correlates associated with BiTE efficacy across multiple syngeneic solid-tumor models. These studies demonstrated that pretreatment tumor-associated T cell density is a critical determinant of response to BiTE therapy, identified CD8+ T cells as important targets and mediators of BiTE activity, and revealed an antagonistic role for CD4+ T cells in BiTE efficacy. We also identified therapeutic combinations, including ICB and 4-1BB agonism, that synergized with BiTE treatment in poorly T cell-infiltrated, immunotherapy-refractory tumors. In these models, BiTE efficacy was dependent on local expansion of tumor-associated CD8+ T cells, rather than their recruitment from circulation. Our findings highlight the relative contributions of baseline T cell infiltration, local T cell proliferation, and peripheral T cell trafficking for BiTE molecule-mediated efficacy, identify combination strategies capable of overcoming resistance to BiTE therapy, and have clinical relevance for the development of BiTE and other T cell engager therapies.
Collapse
Affiliation(s)
- Brian Belmontes
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Deepali V Sawant
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Wendy Zhong
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Hong Tan
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Anupurna Kaul
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Famke Aeffner
- Amgen Research, Thousand Oaks, CA 91320, USA.,Translational Safety and Bioanalytical Sciences, Amgen, South San Francisco, CA 94080, USA
| | - Sarah A O'Brien
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Matthew Chun
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Rajkumar Noubade
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Jason Eng
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Hayley Ma
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Markus Muenz
- Amgen Research, Thousand Oaks, CA 91320, USA.,Amgen Research GmbH, Munich 81477, Germany
| | - Peng Li
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Benjamin M Alba
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Melissa Thomas
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Kevin Cook
- Amgen Research, Thousand Oaks, CA 91320, USA.,Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA 94080, USA
| | - Xiaoting Wang
- Amgen Research, Thousand Oaks, CA 91320, USA.,Translational Safety and Bioanalytical Sciences, Amgen, South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Jackson G Egen
- Amgen Research, Thousand Oaks, CA 91320, USA. .,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Olivier Nolan-Stevaux
- Amgen Research, Thousand Oaks, CA 91320, USA. .,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
Huang Q, Cai WQ, Han ZW, Wang MY, Zhou Y, Cheng JT, Zhang Y, Wang YY, Xin Q, Wang XW, Peng XC, Xiang Y, Fang SX, Ma ZW, Xin HY, Cui SZ, Xin HW. Bispecific T cell engagers and their synergistic tumor immunotherapy with oncolytic viruses. Am J Cancer Res 2021; 11:2430-2455. [PMID: 34249409 PMCID: PMC8263669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/01/2021] [Indexed: 06/13/2023] Open
Abstract
Tumor immunotherapy, especially T cell based therapy, is becoming the main force in clinical tumor therapies. Bispecific T cell engager (BiTE) uses the single chain variable fragments (scFv) of two antibodies to redirect T cells to kill target cells. BiTEs for hematologic tumors has been approved for clinical use, and BiTEs for solid tumors showed therapeutic effects in clinical trials. Oncolytic viruses (OVs) of the adenovirus expressing p53 and herpes simplex virus expressing GM-CSF was approved for clinical use in 2003 and 2015, respectively, while other OVs showed therapeutic effects in clinical trials. However, BiTE and Oncolytic virus (OV) have their own limitations. We propose that OV-BiTE has a synergistic effect on tumor immunotherapy. Feng Yu et al. designed the first OV-BiTE in 2014, which remarkably eradicated tumors in mice. Here we review the latest development of the structure, function, preclinical studies and/or clinical trials of BiTE and OV-BiTE and provide perspective views for optimizing the design of OV-BiTE. There is no doubt that OV-BiTE is becoming an exciting new platform for tumor immunotherapy and will enter clinical trial soon. Exploring the therapeutic effects and safety of OV-BiTE for synergistic tumor immunotherapy will bring new hope to tumor patients.
Collapse
Affiliation(s)
- Qi Huang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Mo-Yu Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Ying Zhang
- Department of Gastroenterology, Chun’an County First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch)Hangzhou 311700, Zhejiang Province, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical SchoolD30625, Hannover, Germany
| | - Qiang Xin
- Clinical Medicine Research Center, The Key Laboratory of Biological Cells of Inner Mongolia Autonomous Region, The Affiliated Hospital, Inner Mongolia Medical UniversityHohhot 010050, Inner Mongolia
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University1 Nanhuan Road, Jingzhou 434023, Hubei, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Shu-Xian Fang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou 510095, China
| | - Zhao-Wu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Hong-Yi Xin
- Department of Microbiology and Immunology, Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Center for Life Sciences28 Medical Drive, #03-09, 117456, Singapore
| | - Shu-Zhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou 510095, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Lianjiang People’s HospitalGuangdong 524400, China
| |
Collapse
|
15
|
Crawford A, Chiu D. Targeting Solid Tumors Using CD3 Bispecific Antibodies. Mol Cancer Ther 2021; 20:1350-1358. [PMID: 34045228 DOI: 10.1158/1535-7163.mct-21-0073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapies to treat cancer have made tremendous progress over the past decade. In particular, T cell-directed therapies have gained considerable attention with CD3 bispecific antibodies and CAR T cells showing potent responses against hematologic tumors. At present, the ability to adapt these therapeutics to treat solid tumors is less established. Herein, we discuss recent advances in T cell-engaging CD3 bispecific antibodies targeting solid tumors, potential mechanisms of resistance, and future prospects. A better understanding of the mechanisms of immune evasion in solid tumors will enable the development of strategies to overcome this resistance and inform choices of therapeutic combinations.
Collapse
Affiliation(s)
| | - Danica Chiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| |
Collapse
|
16
|
Guo R, Liu G, Li C, Liu X, Xu Y, Yang W, Wang F. B7 homolog 6 promotes the progression of cervical cancer. Exp Ther Med 2021; 22:774. [PMID: 34055073 PMCID: PMC8145428 DOI: 10.3892/etm.2021.10206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
B7 homolog 6 (B7-H6) was recently discovered to act as a co-stimulatory molecule. In particular, the expression of B7-H6 has been found to play an important biological role in several types of tumors. The aim of the present study was to determine the role of B7-H6 in cervical cancer. Immunohistochemistry was used to analyze the expression levels of B7-H6 in cervical precancerous and cancerous tissues. Furthermore, the expression of B7-H6 was knocked down in HeLa cells using short hairpin RNA and the effects of B7-H6 on HeLa cell proliferation, migration and invasion were determined using Cell Counting Kit-8, colony formation, wound healing and Transwell invasion assays, respectively. In addition, flow cytometry was used to analyze the levels of cell apoptosis and the cell cycle distribution. The results of the immunohistochemical staining revealed that the expression levels of B7-H6 were upregulated in cervical lesions. Furthermore, the expression levels of B7-H6 were positively associated with the clinical stage of the cervical lesions. B7-H6 knockdown suppressed the invasive, migratory and proliferative abilities of HeLa cells, and promoted G1 cell cycle arrest and apoptosis. In conclusion, the findings of the present study suggested that B7-H6 may serve as a novel oncogene and may hold promise as a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Ruimeng Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Guoyan Liu
- Department of Gynecology, The General Hospital of Tianjin Medical University, Tianjin 300053, P.R. China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuejing Liu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Weina Yang
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Fang Wang
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
17
|
Yeku OO, Rao TD, Laster I, Kononenko A, Purdon TJ, Wang P, Cui Z, Liu H, Brentjens RJ, Spriggs D. Bispecific T-Cell Engaging Antibodies Against MUC16 Demonstrate Efficacy Against Ovarian Cancer in Monotherapy and in Combination With PD-1 and VEGF Inhibition. Front Immunol 2021; 12:663379. [PMID: 33936101 PMCID: PMC8079980 DOI: 10.3389/fimmu.2021.663379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy for ovarian cancer is an area of intense investigation since the majority of women with relapsed disease develop resistance to conventional cytotoxic therapy. The paucity of safe and validated target antigens has limited the development of clinically relevant antibody-based immunotherapeutics for this disease. Although MUC16 expression is almost universal in High Grade Serous Ovarian Cancers, engagement of the shed circulating MUC16 antigen (CA-125) presents a theoretical risk of systemic activation and toxicity. We designed and evaluated a series of bispecific tandem single-chain variable fragments specific to the retained portion of human MUC16 ectodomain (MUC16ecto) and human CD3. These MUC16ecto- BiTEDs retain binding in the presence of soluble MUC16 (CA-125) and show cytotoxicity against a panel of ovarian cancer cells in vitro. MUC16ecto- BiTEDs delay tumor progression in vivo and significantly prolong survival in a xenograft model of ovarian peritoneal carcinomatosis. This effect was significantly enhanced by antiangiogenic (anti-VEGF) therapy and immune checkpoint inhibition (anti-PD1). However, the combination of BiTEDs with anti-VEGF was superior to combination with anti-PD1, based on findings of decreased peritoneal tumor burden and ascites with the former. This study shows the feasibility and efficacy of MUC16ecto- specific BiTEDs and provides a basis for the combination with anti-VEGF therapy for ovarian cancer.
Collapse
Affiliation(s)
- Oladapo O Yeku
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States.,Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Thapi Dharma Rao
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ian Laster
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Artem Kononenko
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pei Wang
- Eureka Therapeutics Inc., Emeryville, California, United States
| | - Ziyou Cui
- Eureka Therapeutics Inc., Emeryville, California, United States
| | - Hong Liu
- Eureka Therapeutics Inc., Emeryville, California, United States
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David Spriggs
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States.,Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
18
|
Thomas PL, Groves SM, Zhang YK, Li J, Gonzalez-Ericsson P, Sivagnanam S, Betts CB, Chen HC, Liu Q, Lowe C, Chen H, Boyd KL, Kopparapu PR, Yan Y, Coussens LM, Quaranta V, Tyson DR, Iams W, Lovly CM. Beyond Programmed Death-Ligand 1: B7-H6 Emerges as a Potential Immunotherapy Target in SCLC. J Thorac Oncol 2021; 16:1211-1223. [PMID: 33839362 DOI: 10.1016/j.jtho.2021.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors, atezolizumab and durvalumab, have received regulatory approval for the first-line treatment of patients with extensive-stage SCLC. Nevertheless, when used in combination with platinum-based chemotherapy, these PD-L1 inhibitors only improve overall survival by 2 to 3 months. This may be due to the observation that less than 20% of SCLC tumors express PD-L1 at greater than 1%. Evaluating the composition and abundance of checkpoint molecules in SCLC may identify molecules beyond PD-L1 that are amenable to therapeutic targeting. METHODS We analyzed RNA-sequencing data from SCLC cell lines (n = 108) and primary tumor specimens (n = 81) for expression of 39 functionally validated inhibitory checkpoint ligands. Furthermore, we generated tissue microarrays containing SCLC cell lines and patient with SCLC specimens to confirm expression of these molecules by immunohistochemistry. We annotated patient outcomes data, including treatment response and overall survival. RESULTS The checkpoint protein B7-H6 (NCR3LG1) exhibited increased protein expression relative to PD-L1 in cell lines and tumors (p < 0.05). Higher B7-H6 protein expression correlated with longer progression-free survival (p = 0.0368) and increased total immune infiltrates (CD45+) in patients. Furthermore, increased B7-H6 gene expression in SCLC tumors correlated with a decreased activated natural killer cell gene signature, suggesting a complex interplay between B7-H6 expression and immune signature in SCLC. CONCLUSIONS We investigated 39 inhibitory checkpoint molecules in SCLC and found that B7-H6 is highly expressed and associated with progression-free survival. In addition, 26 of 39 immune checkpoint proteins in SCLC tumors were more abundantly expressed than PD-L1, indicating an urgent need to investigate additional checkpoint targets for therapy in addition to PD-L1.
Collapse
Affiliation(s)
- Portia L Thomas
- Department of Microbiology, Immunology & Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee; School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Yun-Kai Zhang
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jia Li
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula Gonzalez-Ericsson
- Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Shamilene Sivagnanam
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Courtney B Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cindy Lowe
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelli L Boyd
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Prasad R Kopparapu
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yingjun Yan
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Wade Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee; Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
19
|
Zhang W, Qiu Y, Xie X, Fu Y, Wang L, Cai Z. B7 Family Members in Lymphoma: Promising Novel Targets for Tumor Immunotherapy? Front Oncol 2021; 11:647526. [PMID: 33869045 PMCID: PMC8044412 DOI: 10.3389/fonc.2021.647526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
T cells play a vital role in the immune responses against tumors. Costimulatory or coinhibitory molecules regulate T cell activation. Immune checkpoint inhibitors, such as programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) have shown remarkable benefits in patients with various tumor, but few patients have displayed significant immune responses against tumors after PD-1/PD-L1 immunotherapy and many have been completely unresponsive. Thus, researchers must explore novel immune checkpoints that trigger durable antitumor responses and improve clinical outcomes. In this regard, other B7 family checkpoint molecules have been identified, namely PD-L2, B7-H2, B7-H3, B7-H4 and B7-H6. The aim of the present article was to address the expression, clinical significance and roles of B7 family molecules in lymphoma, as well as in T and NK cell-mediated tumor immunity. B7 family checkpoints may offer novel and immunotherapeutic strategies for patients with lymphoma.
Collapse
Affiliation(s)
- Wei Zhang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yu Qiu
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yao Fu
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Lijuan Wang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Baragaño Raneros A, Rodriguez RM, Bernardo Flórez A, Palomo P, Colado E, Minguela A, Suárez Álvarez B, López-Larrea C. Bromodomain protein BRD4 is an epigenetic activator of B7-H6 expression in acute myeloid leukemia. Oncoimmunology 2021; 10:1897294. [PMID: 33796404 PMCID: PMC8007156 DOI: 10.1080/2162402x.2021.1897294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
B7-H6, a ligand for the NK activating receptor NKp30, has been identified as a biomarker of poor prognosis in several solid cancers. However, little is known about the role of B7-H6 and the mechanisms that control its expression in acute myeloid leukemia (AML). Epigenome modulation, including epigenomic reader dysregulation, is one of the hallmarks of AML. Bromodomain-containing protein 4 (BRD4), the best-known member of the BET family of epigenetic readers, is overexpressed in AML cells and regulates the transcription of genes involved in the pathogenesis of AML, as MYC oncogene. Here, we analyze the role of BRD4 in regulating B7-H6 in AML cells. Results demonstrated that the specific inhibition of BRD4 drastically reduces the expression of B7-H6 in AML cells. Histone acetylation mediated by CBP30/P300 facilitates the binding of BRD4 to the B7-H6 promoter, which recruits the P-TEFb elongation factor that phosphorylates RNA polymerase II, thereby activating B7-H6 transcription. BRD4 also co-bounded with JMJD6 at the distal enhancer of the B7-H6 gene. Metabolic modulation with metformin modifies the acetylation pattern in the B7-H6 promoter, impairing BRD4 binding, thereby inhibiting B7-H6 expression. B7-H6 knockdown induces the apoptosis in HEL-R cell line. Moreover, a high level of B7-H6 expression in AML patients is related to increased BRD4 levels, myelodysplastic-derived AML, and del5q, the two latter being associated with poor prognosis. Our data show that BRD4 is a positive regulator of the pro-tumorigenic molecule B7-H6 and that the blockage of the B7-H6 is a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Aroa Baragaño Raneros
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Ramon M Rodriguez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Aida Bernardo Flórez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Pilar Palomo
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Enrique Colado
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
- Department of Laboratory Medicine, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano De Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen De La Arrixaca, Murcia, Spain
| | - Beatriz Suárez Álvarez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Carlos López-Larrea
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| |
Collapse
|
21
|
Yuan L, Sun L, Yang S, Chen X, Wang J, Jing H, Zhao Y, Ke X. B7-H6 is a new potential biomarker and therapeutic target of T-lymphoblastic lymphoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:328. [PMID: 33708955 PMCID: PMC7944329 DOI: 10.21037/atm-20-5308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background B7-H6 is a novel co-stimulatory protein exclusively expressed on a variety of cancer cells and associated with poor prognosis. T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive hematological malignancy whose treatment requires reliable prognostic biomarkers and therapeutic targets. However, the rare nature and delayed progression of T-LBL have limited its clinical management. Methods The expression of B7-H6 was analyzed by immunohistochemistry (IHC) in 65 T-LBL samples; the association with the clinicopathological characteristics and prognosis was also investigated. B7-H6-depleted Jurkat cells were also generated to investigate the effect of B7-H6 on cell proliferation, migration, and invasion. RNA sequencing was used to explore differentially expressed genes. Results B7-H6 was expressed in 61.5% (40/65) of T-LBL patients; of note, 38.5% (25/65) of patients showed membrane/cytoplasmic expression of B7-H6. Although the expression of B7-H6 varied across samples and did not correlate with patient survival, it was significantly associated with B symptoms, high ECOG scores (3 to 4), elevated serum lactate dehydrogenase level, and reduced complete remission at interim evaluation. B7-H6 underwent translocation into the nucleus of T-LBL cells, showing a specific nuclear localization sequence in the C-terminus. Moreover, the depletion of B7-H6 in Jurkat cells impaired cell proliferation, migration, and invasion. RNAseq showed the differential expression of RAG-1, which may be involved in the tumorigenesis of T-LBL. Conclusions B7-H6 may serve as a novel prognostic biomarker and therapeutic target of T-LBL.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lu Sun
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yu Zhao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Chen W, Mou KY, Solomon P, Aggarwal R, Leung KK, Wells JA. Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2018861118. [PMID: 33483421 PMCID: PMC7848737 DOI: 10.1073/pnas.2018861118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MYC is a powerful transcription factor overexpressed in many human cancers including B cell and prostate cancers. Antibody therapeutics are exciting opportunities to attack cancers but require knowledge of surface proteins that change due to oncogene expression. To identify how MYC overexpression remodels the cell surface proteome in a cell autologous fashion and in different cell types, we investigated the impact of MYC overexpression on 800 surface proteins in three isogenic model cell lines either of B cell or prostate cell origin engineered to have high or low MYC levels. We found that MYC overexpression resulted in dramatic remodeling (both up- and down-regulation) of the cell surfaceome in a cell type-dependent fashion. We found systematic and large increases in distinct sets of >80 transporters including nucleoside transporters and nutrient transporters making cells more sensitive to toxic nucleoside analogs like cytarabine, commonly used for treating hematological cancers. Paradoxically, MYC overexpression also increased expression of surface proteins driving cell turnover such as TNFRSF10B, also known as death receptor 5, and immune cell attacking signals such as the natural killer cell activating ligand NCR3LG1, also known as B7-H6. We generated recombinant antibodies to these two targets and verified their up-regulation in MYC overexpression cell lines and showed they were sensitive to bispecific T cell engagers (BiTEs). Our studies demonstrate how MYC overexpression leads to dramatic bidirectional remodeling of the surfaceome in a cell type-dependent but functionally convergent fashion and identify surface targets or combinations thereof as possible candidates for cytotoxic metabolite or immunotherapy.
Collapse
Affiliation(s)
- Wentao Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA 91320
| | - Kurt Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529
| | - Paige Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, CA 94158
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158;
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
23
|
Anti-fouling SERS-based immunosensor for point-of-care detection of the B7–H6 tumor biomarker in cervical cancer patient serum. Anal Chim Acta 2020; 1138:110-122. [DOI: 10.1016/j.aca.2020.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
24
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
25
|
Abstract
Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Joseph Cursons
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia
| |
Collapse
|
26
|
Zhao Y, Li Y, Liu W, Xing S, Wang D, Chen J, Sun L, Mu J, Liu W, Xing B, Sun W, He F. Identification of noninvasive diagnostic biomarkers for hepatocellular carcinoma by urinary proteomics. J Proteomics 2020; 225:103780. [PMID: 32298775 DOI: 10.1016/j.jprot.2020.103780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
27
|
Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation. Cancers (Basel) 2020; 12:cancers12071998. [PMID: 32708305 PMCID: PMC7409301 DOI: 10.3390/cancers12071998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.
Collapse
|
28
|
Godbersen-Palmer C, Coupet TA, Grada Z, Zhang SC, Sentman CL. Toxicity Induced by a Bispecific T Cell-Redirecting Protein Is Mediated by Both T Cells and Myeloid Cells in Immunocompetent Mice. THE JOURNAL OF IMMUNOLOGY 2020; 204:2973-2983. [PMID: 32295875 DOI: 10.4049/jimmunol.1901401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Bispecific T cell engagers have demonstrated clinical efficacy; however, their use can be accompanied by severe toxicity. Mechanistic understanding of these toxicities is limited by a lack of suitable immunocompetent preclinical models. In this study, we describe an immunocompetent mouse tumor model that exhibits bispecific T cell engager-induced toxicity and recapitulates key features similar to those in human cytokine release syndrome. In this study, toxicity occurred between the second and fourth injections of an NK Group 2D bispecific T cell engager protein. Symptoms were transient, peaking 3-4 h after treatment and resolving by 8 h. Mice developed weight loss, elevated plasma cytokines, a significant reduction in spleen white pulp, and lymphocyte infiltration in the liver. Systemic cellular immune changes also occurred; notably, an increase in CD8+ T cell activation, an increase in myeloid cells in the blood, and a population of Ly-6Cint monocytes (CD11b+Ly-6G-F4/80-) emerged in the liver and spleens of bispecific protein-treated mice. IFN-γ was primarily produced by CD8+ T cells in the spleen and was required for the observed changes in both T cell and myeloid populations. Rag deficiency, IFN-γ deficiency, or depletion of either CD4+ or CD8+ T cells prevented toxicity, whereas perforin deficiency, GM-CSF deficiency, or modulation of the myeloid population through clodronate-mediated depletion showed a partial abrogation of toxicity. Together, these findings reveal that T cell activation by a bispecific T cell engager leads to changes in the host myeloid cell population, both of which contribute to treatment induced toxicity in immunocompetent mice.
Collapse
Affiliation(s)
- Claire Godbersen-Palmer
- Center for Synthetic Immunity, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Tiffany A Coupet
- Center for Synthetic Immunity, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Zakaria Grada
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Samuel C Zhang
- Center for Synthetic Immunity, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Charles L Sentman
- Center for Synthetic Immunity, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| |
Collapse
|
29
|
Kamperschroer C, Shenton J, Lebrec H, Leighton JK, Moore PA, Thomas O. Summary of a workshop on preclinical and translational safety assessment of CD3 bispecifics. J Immunotoxicol 2020; 17:67-85. [DOI: 10.1080/1547691x.2020.1729902] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | | | - Hervé Lebrec
- Translational Safety, Amgen Research, South San Francisco, CA, USA
| | | | | | - Oliver Thomas
- Translational Safety, Amgen Research, Munich, Germany
| |
Collapse
|
30
|
Hu Y, Zeng T, Xiao Z, Hu Q, Li Y, Tan X, Yue H, Wang W, Tan H, Zou J. Immunological role and underlying mechanisms of B7-H6 in tumorigenesis. Clin Chim Acta 2020; 502:191-198. [PMID: 31904350 DOI: 10.1016/j.cca.2019.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
B7 homolog 6 (B7-H6) has been identified as involved in tumorigenesis. Elucidating its role and potential mechanism of action is essential for understanding tumorigenesis and the potential development of an effective clinical strategy. Abnormal overexpression of B7-H6 in various types of tumors was reported to be linked with poor prognosis. B7-H6 suppresses the initiation of the "caspase cascade" and induces anti-apoptosis by STAT3 pathway activation to provoke tumorigenesis. B7-H6 facilitates tumor proliferation and cell cycle progression by regulating apoptosis suppressors. B7-H6 induces cellular cytotoxicity, secretion of TNF-α and IFN-γ and B7-H6-specific BiTE triggers T cells to accelerate tumorigenesis. B7-H6 induces abnormal immunological progression by HER2-scFv mediated ADCC and NKp30 immune escape to promote tumorigenesis. B7-H6 promotes tumorigenesis via apoptosis inhibition, proliferation and immunological progression. B7-H6 may a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment in cancer.
Collapse
Affiliation(s)
- Yuxuan Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qihao Hu
- Cardiothoracic Surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiongjin Tan
- The Second Department of Orthopaedic, 922 Hospital of PLA, Hengyang, Hunan 410011, PR China
| | - Haiyan Yue
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, PR China
| | - Wensong Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Tan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
31
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
32
|
The integrated stress response promotes B7H6 expression. J Mol Med (Berl) 2019; 98:135-148. [PMID: 31838577 PMCID: PMC6952340 DOI: 10.1007/s00109-019-01859-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
The B7 family member, B7H6, is a ligand for the natural killer cell receptor NKp30. B7H6 is hardly expressed on normal tissues, but undergoes upregulation on different types of tumors, implicating it as an attractive target for cancer immunotherapy. The molecular mechanisms that control B7H6 expression are poorly understood. We report that in contrast to other NK cell ligands, endoplasmic reticulum (ER) stress upregulates B7H6 mRNA levels and surface expression. B7H6 induction by ER stress requires protein kinase R-like ER kinase (PERK), one of the three canonical sensors of the unfolded protein response. PERK phosphorylates eIF2α, which regulates protein synthesis and gene expression. Because eIF2α is phosphorylated by several kinases following different stress conditions, the program downstream to eIF2α phosphorylation is called the integrated stress response (ISR). Several drugs were reported to promote the ISR. Nelfinavir and lopinavir, two clinically approved HIV protease inhibitors, promote eIF2α phosphorylation by different mechanisms. We show that nelfinavir and lopinavir sustainably instigate B7H6 expression at their pharmacologically relevant concentrations. As such, ER stress and ISR conditions sensitize melanoma targets to CAR-T cells directed against B7H6. Our study highlights a novel mechanism to induce B7H6 expression and suggests a pharmacological approach to improve B7H6-directed immunotherapy. KEY MESSAGES: B7H6 is induced by ER stress in a PERK-dependent mechanism. Induction of B7H6 is obtained pharmacologically by HIV protease inhibitors. Exposure of tumor cells to the HIV protease inhibitor nelfinavir improves the recognition by B7H6-directed CAR-T.
Collapse
|
33
|
Chen Z, Yang Y, Liu LL, Lundqvist A. Strategies to Augment Natural Killer (NK) Cell Activity against Solid Tumors. Cancers (Basel) 2019; 11:cancers11071040. [PMID: 31340613 PMCID: PMC6678934 DOI: 10.3390/cancers11071040] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a crucial role to prevent local growth and dissemination of cancer. Therapies based on activating the immune system can result in beneficial responses in patients with metastatic disease. Treatment with antibodies targeting the immunological checkpoint axis PD-1 / PD-L1 can result in the induction of anti-tumor T cell activation leading to meaningful long-lasting clinical responses. Still, many patients acquire resistance or develop dose-limiting toxicities to these therapies. Analysis of tumors from patients who progress on anti-PD-1 treatment reveal defective interferon-signaling and antigen presentation, resulting in immune escape from T cell-mediated attack. Natural killer (NK) cells are innate lymphocytes that can kill tumor cells without prior sensitization to antigens and can be activated to kill tumor cells that have an impaired antigen processing and presentation machinery. Thus, NK cells may serve as useful effectors against tumor cells that have become resistant to classical immune checkpoint therapy. Various approaches to activate NK cells are being increasingly explored in clinical trials against cancer. While clinical benefit has been demonstrated in patients with acute myeloid leukemia receiving haploidentical NK cells, responses in patients with solid tumors are so far less encouraging. Several hurdles need to be overcome to provide meaningful clinical responses in patients with solid tumors. Here we review the recent developments to augment NK cell responses against solid tumors with regards to cytokine therapy, adoptive infusion of NK cells, NK cell engagers, and NK cell immune checkpoints.
Collapse
Affiliation(s)
- Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
| | - Lisa L Liu
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden.
| |
Collapse
|
34
|
Trabolsi A, Arumov A, Schatz JH. T Cell–Activating Bispecific Antibodies in Cancer Therapy. THE JOURNAL OF IMMUNOLOGY 2019; 203:585-592. [DOI: 10.4049/jimmunol.1900496] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 01/13/2023]
|
35
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
36
|
Bjørnsen EG, Thiruchelvam-Kyle L, Hoelsbrekken SE, Henden C, Saether PC, Boysen P, Daws MR, Dissen E. B7H6 is a functional ligand for NKp30 in rat and cattle and determines NKp30 reactivity toward human cancer cell lines. Eur J Immunol 2018; 49:54-65. [PMID: 30512185 DOI: 10.1002/eji.201847746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
NK cells kill cancer cells and infected cells upon activation by cell surface receptors. Human NKp30 is an activating receptor expressed by all mature NK cells. The B7 family member B7H6 has been identified as one ligand for NKp30. Several alternative ligands have also been reported, and the field remains unsettled. To this end, we have identified full-length functional B7H6 orthologs in rat and cattle, demonstrated by phylogenetic analysis and transfection experiments. In cell-cell contact-dependent assays, chimeric NKp30 reporter cells responded strongly to B7H6 in rat and cattle. Likewise, rat NKp30 expressing target cells induced strong activation of B7H6 reporter cells. Together, these observations demonstrate that B7H6 is conserved as a functional ligand for NKp30 in mammalian species separated by more than 100 million years of evolution. B7H6 and NKp30 are pseudogenes in laboratory mice. The rat thus represents an attractive experimental animal model to study the NKp30-B7H6 interaction in vivo. B7H6 was widely expressed among human cancer cell lines, and the expression level correlated strongly with the activation of human NKp30 reporter cells. Furthermore, siRNA knockdown of B7H6 abolished NKp30 reporter responses, suggesting that B7H6 is the major functionally relevant expressed ligand for NKp30 on these cancer cell lines.
Collapse
Affiliation(s)
- Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sigurd E Hoelsbrekken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per C Saether
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Obiedat A, Seidel E, Mahameed M, Berhani O, Tsukerman P, Voutetakis K, Chatziioannou A, McMahon M, Avril T, Chevet E, Mandelboim O, Tirosh B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB J 2018; 33:3481-3495. [PMID: 30452881 DOI: 10.1096/fj.201801350rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.
Collapse
Affiliation(s)
- Akram Obiedat
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Seidel
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Mohamed Mahameed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,e-Noesis Inspired Operational Systems Applications Private Company PC, Kallithea-Athens, Greece
| | - Mari McMahon
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and.,Apoptosis Research Centre (ARC), National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Tony Avril
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
38
|
Chen L, Feng J, Xu B, Zhou Y, Zheng X, Wu C, Jiang J. B7-H6 expression in human hepatocellular carcinoma and its clinical significance [corrected]. Cancer Cell Int 2018; 18:126. [PMID: 30186042 PMCID: PMC6122564 DOI: 10.1186/s12935-018-0627-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Background Recent studies have suggested that B7-H6, a new member of the B7 family of ligands, not only is a crucial regulator of NK cell-mediated immune responses but also has important clinical implications due to its abnormal expression in many human cancers. We have previously reported that higher B7-H6 expression levels in ovarian cancer tissues are positively correlated with tumor metastasis and cancer progression. To date, the expression of B7-H6 in human hepatocellular carcinoma (HCC) and the clinical significance of B7-H6 expression still remain elusive. Methods In the present study, the expression level of B7-H6 was examined in both HCC tissues and HCC cell lines (HepG2 and SMMC-7721). And the clinical significance of B7-H6 was analyzed as well. Results Our results revealed that B7-H6 was expressed abnormally in HCC tissues, which was greatly related to tumor size. The TCGA data also showed that the B7-H6 mRNA expression level was significantly negatively correlated with the survival of HCC patients. Next, to investigate the functions of B7-H6 in HCC, we successfully constructed B7-H6 knockdown expression human HCC cell lines using the RNA interference technology. Our studies showed that reduced expression of B7-H6 in HepG2 and SMMC-7721 cells significantly attenuated cell proliferation as well as cell migration and invasion. Besides, depletion of B7-H6 greatly induced cell cycle arrest at G1 phase. And also B7-H6 knockdown in HCC cell lines dramatically decreased the C-myc, C-fos and Cyclin-D1 expression. Conclusions Our present findings suggested that B7-H6 played an important role in oncogenesis of HCC on cellular level, and B7-H6 could be employed to develop immunotherapeutic approaches targeting this malignancy.
Collapse
Affiliation(s)
- Lujun Chen
- 1Department of Tumor Biological Treatment and Research Center for Cancer Immunotherapy Technology of Jiangsu Province, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,2Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,3Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Jun Feng
- 1Department of Tumor Biological Treatment and Research Center for Cancer Immunotherapy Technology of Jiangsu Province, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,2Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,3Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Bin Xu
- 1Department of Tumor Biological Treatment and Research Center for Cancer Immunotherapy Technology of Jiangsu Province, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,2Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,3Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - You Zhou
- 1Department of Tumor Biological Treatment and Research Center for Cancer Immunotherapy Technology of Jiangsu Province, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,2Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,3Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Xiao Zheng
- 1Department of Tumor Biological Treatment and Research Center for Cancer Immunotherapy Technology of Jiangsu Province, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,2Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,3Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Changping Wu
- 1Department of Tumor Biological Treatment and Research Center for Cancer Immunotherapy Technology of Jiangsu Province, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,2Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,3Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Jingting Jiang
- 1Department of Tumor Biological Treatment and Research Center for Cancer Immunotherapy Technology of Jiangsu Province, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,2Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China.,3Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
39
|
Slaney CY, Wang P, Darcy PK, Kershaw MH. CARs versus BiTEs: A Comparison between T Cell–Redirection Strategies for Cancer Treatment. Cancer Discov 2018; 8:924-934. [DOI: 10.1158/2159-8290.cd-18-0297] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 02/04/2023]
|
40
|
Vasilenko EA, Mokhonov VV, Gorshkova EN, Astrakhantseva IV. Bispecific Antibodies: Formats and Areas of Application. Mol Biol 2018. [DOI: 10.1134/s0026893318020176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Zhang B, Sun J, Yao X, Li J, Tu Y, Yao F, Sun S. Knockdown of B7H6 inhibits tumor progression in triple-negative breast cancer. Oncol Lett 2018; 16:91-96. [PMID: 29963127 PMCID: PMC6019890 DOI: 10.3892/ol.2018.8689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
The B7 family, the most common family of secondary signaling molecules, consists of eight cell-surface proteins, which regulate the T-cell mediated immune response by delivering co-inhibitory or co-stimulatory signals through their corresponding ligands. Among them, natural killer cell cytotoxicity receptor 3 ligand 1 (NCR3LG1, also known as B7H6) has been reported as a new member, and is involved in tumor progression of various types of human cancer. However, the role of B7H6 in triple-negative breast cancer (TNBC) remains unknown. In the present study, western blotting was performed to determine the protein expression levels of B7H6 in a normal mammary epithelial cell line (MCF-10A), non-TNBC breast cancer cell lines (MCF-7 and AU565) and TNBC cell lines (MDA-MB-231 and MDA-MB-468). B7H6 was knocked down using small interfering RNA, and an MTT assay was performed to determine proliferation ability, flow cytometry was used to analyze apoptosis, and Transwell and wound-healing assays were performed to measure migration ability. Expression of proliferation-associated proteins (SMAD family member 4 and β-catenin) and apoptosis-associated proteins (BCL2 associated X, BCL2 apoptosis regulator and caspase-3) were analyzed by western blotting. The results demonstrated that B7H6 was highly expressed in TNBC cells, and that knockdown of B7H6 inhibited cell proliferation and migration, and promoted apoptosis. Furthermore, the results revealed that proliferation and apoptosis-associated proteins were altered in the B7H6-knockdown MDA-MB-231 cells. In conclusion, the present study demonstrated that B7H6 may have significant roles in the regulation of cell proliferation, apoptosis and migration of TNBC cells.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jinzhong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoli Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
42
|
Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer. Front Immunol 2018; 9:866. [PMID: 29755464 PMCID: PMC5932159 DOI: 10.3389/fimmu.2018.00866] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.
Collapse
Affiliation(s)
- Giulia Marelli
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Anwen Howells
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Shanehbandi D, Majidi J, Kazemi T, Baradaran B, Aghebati-Maleki L. Cloning and molecular characterization of the cDNAs encoding the variable regions of an anti-CD20 monoclonal antibody. Hum Antibodies 2018; 26:1-6. [PMID: 28269762 DOI: 10.3233/hab-170314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND CD20-based targeting of B-cells in hematologic malignancies and autoimmune disorders is associated with outstanding clinical outcomes. Isolation and characterization of VH and VL cDNAs encoding the variable regions of the heavy and light chains of monoclonal antibodies (MAb) is necessary to produce next generation MAbs and their derivatives such as bispecific antibodies (bsAb) and single-chain variable fragments (scFv). OBJECTIVE This study was aimed at cloning and characterization of the VH and VL cDNAs from a hybridoma cell line producing an anti-CD20 MAb. METHODS VH and VL fragments were amplified, cloned and characterized. Furthermore, amino acid sequences of VH, VL and corresponding complementarity-determining regions (CDR) were determined and compared with those of four approved MAbs including Rituximab (RTX), Ibritumomab tiuxetan, Ofatumumab and GA101. RESULTS The cloned VH and VL cDNAs were found to be functional and follow a consensus pattern. Amino acid sequences corresponding to the VH and VL fragments also indicated noticeable homologies to those of RTX and Ibritumomab. Furthermore, amino acid sequences of the relating CDRs had remarkable similarities to their counterparts in RTX and Ibritumomab. CONCLUSIONS Successful recovery of VH and VL fragments encourages the development of novel CD20 targeting bsAbs, scFvs, antibody conjugates and T-cells armed with chimeric antigen receptors.
Collapse
Affiliation(s)
- Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
B7-H6 expression is induced by lipopolysaccharide and facilitates cancer invasion and metastasis in human gliomas. Int Immunopharmacol 2018; 59:318-327. [PMID: 29679856 DOI: 10.1016/j.intimp.2018.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023]
Abstract
Although great progress has been made in treatment regimens, gliomas are still incurable and the 5-year survival remains poor. Studies focusing on molecules that regulate tumorigenesis or tumor immunity may provide potential therapeutic strategies for patients with glioma. B7-H6 is selectively expressed in tumor cells and plays vital roles in host immune responses. In this study, we demonstrated that B7-H6 was expressed in glioma cell lines, including CRT, U251, SHG-44, SF-295, TG-905 and U373, and tumor tissues isolated from glioma patients. Moreover, the expression levels of B7-H6 were significantly correlated with glioma grade. Previous studies reported that inflammatory mediators and cytokines induced the expression of B7 family members including programmed death-ligand 1, B7-H2 and B7-H4. Therefore, we explored the regulation of B7-H6 expression in gliomas and showed that lipopolysaccharide induced the expression of B7-H6 in glioma cells. To further analyze the roles of B7-H6 in gliomas, the expression of B7-H6 in glioma cells was knocked down. The results of cell counting kit-8, colony formation, wound healing, and transwell migration and invasion assays demonstrated that the proliferation, migration and invasion of glioma cells were inhibited after knocking down B7-H6. To elucidate the specific mechanisms of B7-H6 function in cancer progression, we examined the expression levels of proteins involved in cell apoptosis, migration and invasion. We demonstrated that the expression levels of E-cadherin and Bcl-2 associated X protein increased, and the expression levels of vimentin, N-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9 and survivin decreased after knocking down B7-H6. In conclusion, B7-H6 plays important roles in glioma, and targeting B7-H6 may provide a novel therapeutic strategy for glioma patients.
Collapse
|
45
|
Hua CK, Gacerez AT, Sentman CL, Ackerman ME. Development of unique cytotoxic chimeric antigen receptors based on human scFv targeting B7H6. Protein Eng Des Sel 2017; 30:713-721. [PMID: 29040754 DOI: 10.1093/protein/gzx051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/30/2017] [Indexed: 11/14/2022] Open
Abstract
As a stress-inducible natural killer (NK) cell ligand, B7H6 plays a role in innate tumor immunosurveillance and is a fairly tumor selective marker expressed on a variety of solid and hematologic cancer cells. Here, we describe the isolation and characterization of a new family of single chain fragment variable (scFv) molecules targeting the human B7H6 ligand. Through directed evolution of a yeast surface displayed non-immune human-derived scFv library, eight candidates comprising a single family of clones differing by up to four amino acid mutations and exhibiting nM avidities for soluble B7H6-Ig were isolated. A representative clone re-formatted as an scFv-CH1-Fc molecule demonstrated specific binding to both B7H6-Ig and native membrane-bound B7H6 on tumor cell lines with a binding avidity comparable to the previously characterized B7H6-targeting antibody, TZ47. Furthermore, these clones recognized an epitope distinct from that of TZ47 and the natural NK cell ligand NKp30, and demonstrated specific activity against B7H6-expressing tumor cells when expressed as a chimeric antigen receptor (CAR) in T cells.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/genetics
- B7 Antigens/chemistry
- B7 Antigens/genetics
- B7 Antigens/immunology
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Cell Line, Tumor
- Cell Surface Display Techniques
- Cytotoxicity, Immunologic
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Gene Expression
- HEK293 Cells
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Mice
- Models, Molecular
- Mutant Chimeric Proteins/chemistry
- Mutant Chimeric Proteins/genetics
- Mutant Chimeric Proteins/immunology
- Mutation
- Natural Cytotoxicity Triggering Receptor 3/chemistry
- Natural Cytotoxicity Triggering Receptor 3/genetics
- Natural Cytotoxicity Triggering Receptor 3/immunology
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Single-Chain Antibodies/biosynthesis
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/genetics
Collapse
Affiliation(s)
- Casey K Hua
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| | - Albert T Gacerez
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
- Center for Synthetic Immunity, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
- Center for Synthetic Immunity, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| |
Collapse
|
46
|
Abstract
B7-H6 is a ligand of NKp30, which is an activating receptor of natural killer (NK) cells. High expression of B7-H6 is found in certain types of tumor cells, such as lymphoma, leukemia and gastric carcinoma. The expression of B7-H6 can be induced by inflammatory stress in healthy cells. The expression of B7-H6 is significantly correlated with distant metastasis status and post-operative prognosis in cancer patients. The effectiveness of B7-H6 modified antitumor immunotherapy strategies had been verified in tumor-bearing mice, which opened a new door to targeted therapy. In this review, we will focus on the recent development on the roles of B7-H6 in tumor immunity, as well as mechanisms involved in the regulation of B7-H6 expression.
Collapse
|
47
|
Gutierrez-Franco J, Hernandez-Gutierrez R, Bueno-Topete MR, Haramati J, Navarro-Hernandez RE, Escarra-Senmarti M, Vega-Magaña N, Del Toro-Arreola A, Pereira-Suarez AL, Del Toro-Arreola S. Characterization of B7H6, an endogenous ligand for the NK cell activating receptor NKp30, reveals the identity of two different soluble isoforms during normal human pregnancy. Immunobiology 2017; 223:57-63. [PMID: 29055565 DOI: 10.1016/j.imbio.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of human NK cells. In contrast, the release of soluble B7H6 has been proposed as a novel mechanism by which tumors might evade NK cell-mediated recognition. Since NK cells are critical for the maintenance of early pregnancy, it is not illogical that soluble B7H6 might also be an important factor in directing NK cell activity during normal pregnancy. Thus, this study was focused on the characterization of soluble B7H6 during the development of normal pregnancy. Serum samples were obtained from healthy pregnant women who were experiencing their second pregnancies (n=36). Additionally, 17 of these pregnant participants were longitudinally studied for the presence of B7H6 during their second and third trimesters. Age-matched healthy non-pregnant women served as controls (n=30). The presence of soluble B7H6 was revealed by Western blotting. A further characterization was performed using an immunoproteomic approach based on 2DE-Western blotting combined with MALDI-MS. The results show that sera from all pregnant women were characterized by the presence of two novel isoforms of B7H6, both with lower MW than the reported of 51kDa. These isoforms were either a heavy (∼37kDa) or a light isoform (∼30kDa) and were mutually exclusive. N-glycosylation did not completely explain the different molecular weights exhibited by the two isoforms, as was demonstrated by enzymatic deglycosylation with PNGase F. The confirmation of the identity and molecular mass of each isoform indicates that B7H6, while maintaining the C- and N-termini, is most likely released during pregnancy by a mechanism distinct from proteolytic cleavage. We found that both isoforms, but mainly the heavier B7H6, were released via exosomes; and that the lighter isoform was also released in an exosome-free manner that was not observed in the heavy isoform samples. In conclusion, we find that soluble B7H6 is constitutively expressed during pregnancy and that, moreover, the soluble B7H6 is present in two new isoforms, which are released by exosomal and exosome-free mechanisms.
Collapse
Affiliation(s)
- Jorge Gutierrez-Franco
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Rodolfo Hernandez-Gutierrez
- Laboratorio en Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Guadalajara, Jalisco, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rosa Elena Navarro-Hernandez
- Instituto de Investigación en Reumatología y del Sistema Musculo Esquelético, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Marta Escarra-Senmarti
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Natali Vega-Magaña
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suarez
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
48
|
Godbersen C, Coupet TA, Huehls AM, Zhang T, Battles MB, Fisher JL, Ernstoff MS, Sentman CL. NKG2D Ligand-Targeted Bispecific T-Cell Engagers Lead to Robust Antitumor Activity against Diverse Human Tumors. Mol Cancer Ther 2017; 16:1335-1346. [PMID: 28500232 DOI: 10.1158/1535-7163.mct-16-0846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 01/06/2023]
Abstract
Two new bispecific T-cell engaging (BiTE) molecules with specificity for NKG2D ligands were developed and functionally characterized. One, huNKG2D-OKT3, was derived from the extracellular portion of the human NKG2D receptor fused to a CD3ε binding single-chain variable fragment (scFv), known as OKT3. NKG2D has multiple ligands, including MICA, which are expressed by a variety of malignant cells. A second molecule, B2-OKT3, was created in the tandem scFv BiTE format that targets MICA on tumor cells and CD3ε on human T cells. Both BiTEs specifically activated T cells to kill human tumor cell lines. Cytotoxicity by B2-OKT3, but not huNKG2D-OKT3, is blocked by soluble rMICA. The huNKG2D-OKT3 induced greater T-cell cytokine production in comparison with B2-OKT3. No T-cell pretreatment was required for IFNγ production upon coculture of B2-OKT3 or huNKG2D-OKT3 with T cells and target cells. The effector memory T-cell compartment was the primary source of IFNγ, and culture of T cells and these BiTEs with plate-bound rMICA showed ligand density-dependent production of IFNγ from both CD4+ and CD8+ T cells. There was 2-fold more IFNγ produced per CD8+ T cell and 5-fold greater percentage of CD8+ T cells producing IFNγ compared with CD4+ T cells. In addition, both BiTEs elicited significant antitumor responses against human metastatic melanoma tumor samples using autologous or healthy donor T cells. These data demonstrate the robust antitumor activity of these NKG2D ligand-binding bispecific proteins and support their further development for clinical use. Mol Cancer Ther; 16(7); 1335-46. ©2017 AACR.
Collapse
Affiliation(s)
- Claire Godbersen
- Department of Microbiology & Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- The Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Tiffany A Coupet
- Department of Microbiology & Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- The Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Amelia M Huehls
- Department of Microbiology & Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- The Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Tong Zhang
- Department of Microbiology & Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- The Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Michael B Battles
- Department of Microbiology & Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- The Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | | | - Charles L Sentman
- Department of Microbiology & Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
- The Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
49
|
Xu X, Narni-Mancinelli E, Cantoni C, Li Y, Guia S, Gauthier L, Chen Q, Moretta A, Vély F, Eisenstein E, Rangarajan S, Vivier E, Mariuzza RA. Structural Insights into the Inhibitory Mechanism of an Antibody against B7-H6, a Stress-Induced Cellular Ligand for the Natural Killer Cell Receptor NKp30. J Mol Biol 2016; 428:4457-4466. [PMID: 27663271 DOI: 10.1016/j.jmb.2016.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/15/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023]
Abstract
Antibodies have been shown to block signaling through cell surface receptors using several mechanisms. The two most common are binding to the ligand-binding site of the receptor and, conversely, binding to the receptor-binding site of the ligand. Here, we investigated the inhibitory mechanism of an antibody (17B1.3) against human B7-H6, a stress-induced cellular ligand for the natural killer (NK) cell receptor NKp30. Binding of this antibody to B7-H6, a transmembrane protein expressed on tumor and other stressed cells, but not on normal cells, prevents NK cell activation via NKp30. We determined the crystal structure of antibody 17B1.3 in complex with the ectodomain of B7-H6 to 2.5Å resolution. Surprisingly, 17B1.3 binds to a site on B7-H6 that is completely distinct from the binding site for NKp30, such that 17B1.3 does not block the NKp30-B7-H6 interaction. We then asked whether 17B1.3 prevents signaling by binding to a putative site for B7-H6 dimerization. However, structure-based mutations designed to disrupt potential B7-H6 dimerization through this site did not diminish NKp30-mediated cell activation. We conclude that the bulky 17B1.3 antibody most likely acts by sterically interfering with close cell-cell contacts at the NK cell-target cell interface that are required for NK cell activation. A similar inhibitory mechanism may apply to other antibodies, including therapeutic antibodies that block signaling through cell surface receptors whose ligands are also cell surface proteins.
Collapse
Affiliation(s)
- Xiaoping Xu
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Sichuan 610041, People's Republic of China
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France
| | - Claudia Cantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova 16132, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova 16132, Italy; Istituto Giannina Gaslini, Genova 16147, Italy
| | - Yili Li
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sophie Guia
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France
| | | | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Sichuan 610041, People's Republic of China
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova 16132, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova 16132, Italy
| | - Frédéric Vély
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France; Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, Marseille 13005, France
| | - Edward Eisenstein
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sneha Rangarajan
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France.
| | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Smits NC, Coupet TA, Godbersen C, Sentman CL. Designing multivalent proteins based on natural killer cell receptors and their ligands as immunotherapy for cancer. Expert Opin Biol Ther 2016; 16:1105-12. [PMID: 27248342 DOI: 10.1080/14712598.2016.1195364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Natural killer (NK) cells are an important component of the innate immune system that play a key role in host immunity against cancer. NK cell recognition and activation is based on cell surface receptors recognizing specific ligands that are expressed on many types of tumor cells. Some of these receptors are capable of activating NK cell function while other receptors inhibit NK cell function. Therapeutic approaches to treat cancer have been developed based on preventing NK cell inhibition or using NK cell receptors and their ligands to activate NK cells or T cells to destroy tumor cells. AREAS COVERED This article describes the various strategies for targeting NK cell receptors and NK cell receptor ligands using multivalent proteins to activate immunity against cancer. EXPERT OPINION NK cell receptors work in synergy to activate NK cell effector responses. Effective anti-cancer strategies will need to not only kill tumor cells but must also lead to the destruction of the tumor microenvironment. Immunotherapy based on NK cells and their receptors has the capacity to accomplish this through triggering lymphocyte cytotoxicity and cytokine production.
Collapse
Affiliation(s)
- Nicole C Smits
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Tiffany A Coupet
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Claire Godbersen
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Charles L Sentman
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| |
Collapse
|