1
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Mao L, Wang L, Xu J, Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov 2023; 9:119. [PMID: 37037822 PMCID: PMC10086008 DOI: 10.1038/s41420-023-01417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Integrins have been the research focus of cell-extracellular matrix adhesion (ECM) and cytokine receptor signal transduction. They are involved in the regulation of bone metabolism of bone precursor cells, mesenchymal stem cells (MSCs), osteoblasts (OBs), osteoclasts (OCs), and osteocytes. Recent studies expanded and updated the role of integrin in bone metabolism, and a large number of novel cytokines were found to activate bone metabolism pathways through interaction with integrin receptors. Integrins act as transducers that mediate the regulation of bone-related cells by mechanical stress, fluid shear stress (FSS), microgravity, hypergravity, extracellular pressure, and a variety of physical factors. Integrins mediate bone metastasis of breast, prostate, and lung cancer by promoting cancer cell adhesion, migration, and survival. Integrin-mediated targeted therapy showed promising prospects in bone metabolic diseases. This review emphasizes the latest research results of integrins in bone metabolism and bone metastasis and provides a vision for treatment strategies.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, WA, 6009, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China.
| |
Collapse
|
3
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
5
|
Hamoudi C, Muheidli A, Aoudjit F. β1 Integrin induces adhesion and migration of human Th17 cells via Pyk2-dependent activation of P2X4 receptor. Immunology 2023; 168:83-95. [PMID: 36054607 DOI: 10.1111/imm.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
Integrin-mediated T-cell adhesion and migration is a crucial step in immune response and autoimmune diseases. However, the underlying signalling mechanisms are not fully elucidated. In this study, we examined the implication of purinergic signalling, which has been associated with T-cell activation, in the adhesion and migration of human Th17 cells across fibronectin, a major matrix protein associated with inflammatory diseases. We showed that the adhesion of human Th17 cells to fibronectin induces, via β1 integrin, a sustained release of adenosine triphosphate (ATP) from the mitochondria through the pannexin-1 hemichannels. Inhibition of ATP release or its degradation with apyrase impaired the capacity of the cells to attach and migrate across fibronectin. Inhibition studies identified a major role for the purinergic receptor P2X4 in T-cell adhesion and migration but not for P2X7 or P2Y11 receptors. Blockade of P2X4 but not P2X7 or P2Y11 receptors reduced cell adhesion and migration by inhibiting activation of β1 integrins, which is essential for ligand binding. Furthermore, we found that β1 integrin-induced ATP release, P2X4 receptor transactivation, cell adhesion and migration were dependent on the focal adhesion kinase Pyk2 but not FAK. Finally, P2X4 receptor inhibition also blocked fibronectin-induced Pyk2 activation suggesting the existence of a positive feedback loop of activation between β1 integrin/Pyk2 and P2X4 purinergic signalling pathways. Our findings uncovered an unrecognized link between β1 integrin and P2X4 receptor signalling pathways for promoting T-cell adhesion and migration across the extracellular matrix.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada
| | - Abbas Muheidli
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Quebec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Québec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
6
|
Hamoudi C, Zhao C, Abderrazak A, Salem M, Fortin PR, Sévigny J, Aoudjit F. The Purinergic Receptor P2X4 Promotes Th17 Activation and the Development of Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1115-1127. [PMID: 35165166 DOI: 10.4049/jimmunol.2100550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/28/2021] [Indexed: 01/24/2023]
Abstract
Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Chenqi Zhao
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Amna Abderrazak
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Mabrouka Salem
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Paul R Fortin
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Jean Sévigny
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada; .,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Mechanical regulation of bone remodeling. Bone Res 2022; 10:16. [PMID: 35181672 PMCID: PMC8857305 DOI: 10.1038/s41413-022-00190-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis; skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
Collapse
|
8
|
Huang J, Long Z, Jia R, Wang M, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Mao S, Ou X, Sun D, Gao Q, Cheng A. The Broad Immunomodulatory Effects of IL-7 and Its Application In Vaccines. Front Immunol 2021; 12:680442. [PMID: 34956167 PMCID: PMC8702497 DOI: 10.3389/fimmu.2021.680442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host tissues or tumors and exerts a wide range of immune effects mediated by the IL-7 receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells, natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways. This cytokine participates in the early generation of lymphocyte subsets and maintain the survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and anti-tumor immunity and plays important roles in the restoration of immune function. These biological functions of IL-7 make it an important molecular adjuvant to improve vaccine efficacy as it can promote and extend systemic immune responses against pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and increasing antigen-specific memory cell production. This review focuses on the biological function and mechanism of IL-7 and summarizes its contribution towards improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and provide strategies for the development of the future vaccines.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
He Y, Li Z, Ding X, Xu B, Wang J, Li Y, Chen F, Meng F, Song W, Zhang Y. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioact Mater 2021; 8:109-123. [PMID: 34541390 PMCID: PMC8424426 DOI: 10.1016/j.bioactmat.2021.06.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages and osteoclasts are both derived from monocyte/macrophage lineage, which plays as the osteoclastic part of bone metabolism. Although they are regulated by bone implant surface nanoarchitecture and involved in osseointegration, the beneath mechanism has not been simultaneously analyzed in a given surface model and their communication with osteoblasts is also blurring. Here, the effect of implant surface topography on monocyte/macrophage lineage osteoclastogenesis and the subsequent effect on osteogenesis are systematically investigated. The nanoporous surface is fabricated on titanium implant by etching and anodizing to get the nanotubes structure. The early bone formation around implant is significantly accelerated by the nanoporous surface in vivo. Meanwhile, the macrophage recruitment and osteoclast formation are increased and decreased respectively. Mechanistically, the integrin mediated FAK phosphorylation and its downstream MAPK pathway (p-p38) are significantly downregulated by the nanoporous surface, which account for the inhibition of osteoclastogenesis. In addition, the nanoporous surface can alleviate the inhibition of osteoclasts on osteogenesis by changing the secretion of clastokines, and accelerate bone regeneration by macrophage cytokine profiles. In conclusion, these data indicate that physical topography of implant surface is a critical factor modulating monocyte/macrophage lineage commitment, which provides theoretical guidance and mechanism basis for promoting osseointegration by coupling the osteogenesis and osteoclastogenesis. Nanoporous implant inhibits osteoclastogenesis via integrin β1/FAKpY397/MAPK. Nanoporous implant with larger diameter inhibits osteoclastogenesis more strongly. Nanoporous implant increases osteogenic cytokines of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhe Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xin Ding
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Huaian Stomatological Hospital, Nanjing, China
| | - Boya Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jinjin Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fanghao Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fanhui Meng
- State Key Laboratory of Military Stomatology, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Dankers W, den Braanker H, Paulissen SMJ, van Hamburg JP, Davelaar N, Colin EM, Lubberts E. The heterogeneous human memory CCR6+ T helper-17 populations differ in T-bet and cytokine expression but all activate synovial fibroblasts in an IFNγ-independent manner. Arthritis Res Ther 2021; 23:157. [PMID: 34082814 PMCID: PMC8173960 DOI: 10.1186/s13075-021-02532-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chronic synovial inflammation is an important hallmark of inflammatory arthritis, but the cells and mechanisms involved are incompletely understood. Previously, we have shown that CCR6+ memory T-helper (memTh) cells and synovial fibroblasts (SF) activate each other in a pro-inflammatory feedforward loop, which potentially drives persistent synovial inflammation in inflammatory arthritis. However, the CCR6+ memTh cells are a heterogeneous population, containing Th17/Th22 and Th17.1 cells. Currently, it is unclear which of these subpopulations drive SF activation and how they should be targeted. In this study, we examined the individual contribution of these CCR6+ memTh subpopulations to SF activation and examined ways to regulate their function. METHODS Th17/Th22 (CXCR3-CCR4+), Th17.1 (CXCR3+CCR4-), DP (CXCR3+CCR4+), and DN (CXCR3-CCR4-) CCR6+ memTh, cells sorted from PBMC of healthy donors or treatment-naïve early rheumatoid arthritis (RA) patients, were cocultured with SF from RA patients with or without anti-IL17A, anti-IFNγ, or 1,25(OH)2D3. Cultures were analyzed by RT-PCR, ELISA, or flow cytometry. RESULTS Th17/Th22, Th17.1, DP, and DN cells equally express RORC but differ in production of TBX21 and cytokines like IL-17A and IFNγ. Despite these differences, all the individual CCR6+ memTh subpopulations, both from healthy individuals and RA patients, were more potent in activating SF than the classical Th1 cells. SF activation was partially inhibited by blocking IL-17A, but not by inhibiting IFNγ or TBX21. However, active vitamin D inhibited the pathogenicity of all subpopulations leading to suppression of SF activation. CONCLUSIONS Human CCR6+ memTh cells contain several subpopulations that equally express RORC but differ in TBX21, IFNγ, and IL-17A expression. All individual Th17 subpopulations are more potent in activating SF than classical Th1 cells in an IFNγ-independent manner. Furthermore, our data suggest that IL-17A is not dominant in this T cell-SF activation loop but that a multiple T cell cytokine inhibitor, such as 1,25(OH)2D3, is able to suppress CCR6+ memTh subpopulation-driven SF activation.
Collapse
Affiliation(s)
- Wendy Dankers
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
- Current address: Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Hannah den Braanker
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Sandra M J Paulissen
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
- Current address: Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Nadine Davelaar
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Edgar M Colin
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Cici D, Corrado A, Rotondo C, Colia R, Cantatore FP. Adipokines and Chronic Rheumatic Diseases: from Inflammation to Bone Involvement. Clin Rev Bone Miner Metab 2021. [DOI: 10.1007/s12018-021-09275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractBesides its well-known role as energy storage tissue, adipose tissue is a biologically active tissue that can also be considered as an endocrine organ, as it is able to secrete adipokines. These bioactive factors, similar in structure to cytokines, are involved in several physiological and pathological conditions, such as glucose homeostasis, angiogenesis, blood pressure regulation, control of food intake, and also inflammation and bone homeostasis via endocrine, paracrine, and autocrine mechanisms. Given their pleiotropic functions, the role of adipokines has been evaluated in chronic rheumatic osteoarticular inflammatory diseases, particularly focusing on their effects on inflammatory and immune response and on bone alterations. Indeed, these diseases are characterized by different bone complications, such as local and systemic bone loss and new bone formation. The aim of this review is to summarize the role of adipokines in rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, osteoarthritis, and osteoporosis, especially considering their role in the pathogenesis of bone complications typical of these conditions.
Collapse
|
12
|
Brito VGB, Patrocinio MS, Sousa MCL, Barreto AEA, Frasnelli SCT, Lara VS, Santos CF, Oliveira SHP. Mast cells contribute to alveolar bone loss in Spontaneously Hypertensive Rats with periodontal disease regulating cytokines production. PLoS One 2021; 16:e0247372. [PMID: 33661916 PMCID: PMC7932174 DOI: 10.1371/journal.pone.0247372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Mast cells (MCs) play a pivotal role in inflammatory responses and had been studied in inflammatory bone disorders, however, their role in alveolar bone loss induced by periodontal disease (PD) is not yet fully understood. We, therefore, aimed to evaluate the effects of MCs depletion in the PD-induced alveolar bone loss in Wistar (W) and Spontaneously Hypertensive Rats (SHRs). PD was induced by ligating the lower first molars with silk thread one day after the MCs depletion, by the pre-treatment with compound 48/80 for 4 days. After 15 days of PD induction, the hemi-mandibles were surgically collected for qRT-PCR, histological analyses, immunostaining, and ELISA. Systolic blood pressure (SBP) was verified by tail plethysmography to confirm the hypertensive status, and SHR presented SBP >150 mmHg, and previous MC depletion alone or associated with PD did not alter this parameter. SHRs showed a more severe alveolar bone loss compared to W, and MC depletion significantly inhibited this response in both strains, with a more significant response in SHRs. MCs were less abundant in 48/80+PD groups, thus validating the previous MCs depletion in our model. PD increased the number of MC in the gingival tissue of SHR. Cytokine production (TNF-α, IL-6, IL-1β, and CXCL3) was constitutively higher in SHR and increased further after PD, which was also significantly reduced in the MCs-depleted animals. PD led to an increased expression of Opn, Rankl, Rank, Vtn, Itga5, Itgb5, Trap, and Ctsk in the mandible of W and SHRs, which was reversed in MCs-depleted animals. These results suggest that MCs significantly contributes to the PD-induced alveolar bone resorption, especially in the SHR, which is associated with a more severe PD progression compared to Wistar, partly explained by these cells contribution to the inflammatory status and mediator production, stimulating osteoclast-related response markers, which were reduced after MC depletion in our experimental model.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Ayná Emanuelli Alves Barreto
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Vanessa Soares Lara
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Carlos Ferreira Santos
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Sandra Helena Penha Oliveira
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
- * E-mail:
| |
Collapse
|
13
|
Brito VGB, Patrocinio MS, de Sousa MCL, Barreto AEA, Frasnelli SCT, Lara VS, Santos CF, Oliveira SHP. Telmisartan Prevents Alveolar Bone Loss by Decreasing the Expression of Osteoclasts Markers in Hypertensive Rats With Periodontal Disease. Front Pharmacol 2020; 11:579926. [PMID: 33364953 PMCID: PMC7751694 DOI: 10.3389/fphar.2020.579926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease (PD) is a prevalent inflammatory disease with the most severe consequence being the loss of the alveolar bone and teeth. We therefore aimed to evaluate the effects of telmisartan (TELM), an angiotensin II type 1 receptor (Agtr1) antagonist, on the PD-induced alveolar bone loss, in Wistar (W) and Spontaneous Hypertensive Rats (SHRs). PD was induced by ligating the lower first molars with silk, and 10 mg/kg TELM was concomitantly administered for 15 days. The hemimandibles were subjected to microtomography, ELISA was used for detecting tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), CXCL3, and CCL2, while qRT-PCR was used for analyzing expression of components of renin-angiotensin system (RAS) (Agt, Ace, Agt1r, Agt2r, Ace2, and Masr), and bone markers (Runx2, Osx, Catnb, Alp, Col1a1, Opn, Ocn, Bsp, Bmp2, Trap, Rank, Rankl, CtsK, Mmp-2, Mmp-9, and osteoclast-associated receptor (Oscar)). The SHR + PD group showed greater alveolar bone loss than the W + PD group, what was significantly inhibited by treatment with TELM, especially in the SHR group. Additionally, TELM reduced the production of TNF-α, IL-1β, and CXCL3 in the SHR group. The expression of Agt increased in the groups with PD, while Agtr2 reduced, and TELM reduced the expression of Agtr1 and increased the expression of Agtr2, in W and SHRs. PD did not induce major changes in the expression of bone formation markers, except for the expression of Alp, which decreased in the PD groups. The bone resorption markers expression, Mmp9, Ctsk, and Vtn, was higher in the SHR + PD group, compared to the respective control and W + PD group. However, TELM attenuated these changes and increased the expression of Runx2 and Alp. Our study suggested that TELM has a protective effect on the progression of PD, especially in hypertensive animals, as evaluated by the resorption of the lower alveolar bone. This can be partly explained by the modulation in the expression of Angiotensin II receptors (AT1R and AT2R), reduced production of inflammatory mediators, the reduced expression of resorption markers, and the increased expression of the bone formation markers.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Maria Carolina Linjardi de Sousa
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Ayná Emanuelli Alves Barreto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Sabrina Cruz Tfaile Frasnelli
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Vanessa Soares Lara
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
14
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
15
|
Treg-promoted New Bone Formation Through Suppressing TH17 by Secreting Interleukin-10 in Ankylosing Spondylitis. Spine (Phila Pa 1976) 2019; 44:E1349-E1355. [PMID: 31348182 DOI: 10.1097/brs.0000000000003169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective single-center study. OBJECTIVE We want to know whether interleukin (IL)-10-secreting regulatory T cells (Treg) promote the new bone formation (NBF) through suppressing TH17 in ankylosing spondylitis (AS). SUMMARY OF BACKGROUND DATA NBF in AS is unknown. Since there are balances of bone remodeling in human body and proinflammatory helper T cells TH17 promoted bone resorption. METHODS Eighteen AS patients with or without NBF (both nine cases) and nine healthy individuals were selected and the demographic data, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), MRI sacroiliitis score (MRISIS), and computer tomography sacroiliitis score (CTSIS) were recorded. Removed hip ligament tissue in the lesions after arthroplasty was collected and the lymphocytes and the peripheral blood mononuclear cells were prepared. Second, pathological section in hematoxylin-eosin stain were analyzed and flow cytometry and quantitative polymerase chain reaction analyses were carried out to detect the levels of TH17, Treg, IL-10, and nuclear factor (NF)-κB, and the relevance between them. The effect of Treg on TH17 was further analyzed by using Transwell coculturing. RESULTS Compared to AS patients without NBF, AS patients with NBF had significantly higher CTSIS and complications (P < 0.05 and 0.01, respectively), but significantly lower BASDAI (3.0 ± 0.4) and MRISIS (3.3 ± 0.8) (P < 0.01 and 0.05, respectively) and no acute inflammation in HE stain for hip joint. Compared to healthy donors, the ratio of TH17/Treg was significantly higher in AS patients without NBF and lower in AS patient with NBF (both P < 0.01) in flow cytometry analysis (FCA). Furthermore, TH17 significantly decreased after indirectly coculturing with Treg in FCA (P < 0.01). Finally, IL-10 had significantly higher mRNA expression in AS patients with NBF (P < 0.01), and NF-κB had significantly higher mRNA expression in AS patients without NBF (P < 0.05) than healthy donors. Only the mRNA expression of IL-10 was significantly correlated to the ratio of TH17/Treg (r = -0.93, P < 0.01). CONCLUSION Treg-induced NBF of AS through suppressing TH17 by secreting IL10 and declining of the ratio of TH17/Treg indicated the development of NBF. This is important not only for screening development of NBF, but also for control of NBF of AS by immune therapy. LEVEL OF EVIDENCE N/A.
Collapse
|
16
|
Salem M, El Azreq MA, Pelletier J, Robaye B, Aoudjit F, Sévigny J. Exacerbated intestinal inflammation in P2Y 6 deficient mice is associated with Th17 activation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2595-2605. [PMID: 31271845 DOI: 10.1016/j.bbadis.2019.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/09/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Extracellular nucleotides are released as constitutive danger signals by various cell types and activate nucleotide (P2) receptors such as P2Y6 receptor. P2Y6 activation on monocytes induces the secretion of the chemokine CXCL8 which may propagate intestinal inflammation. Also, P2Y6 expression is increased in infiltrating T cells of Crohn's disease patients. As inflammatory bowel disease (IBD) is associated with immune cell recruitment, we hypothesised that P2Y6 would participate to the establishment of inflammation in this disease. To address this, we used P2Y6 deficient (P2ry6--/-) mice in the dextran sodium sulfate (DSS) murine model of IBD. In disagreement with our hypothesis, P2Y6 deficient mice were more susceptible to inflammation induced by DSS than WT mice. DSS treated-P2ry6-/- mice showed increased histological damage and increased neutrophil and macrophage infiltration that correlated with increased mRNA levels of the chemokines KC and MCP-1. DSS treated-P2ry6-/- mice exhibited also higher levels of Th17/Th1 lymphocytes in their colon which correlated with increased levels of IFN-γ and IL-17A in the sera as well as increased mRNA levels of IFN-γ, IL-17A, IL-6, IL-23 and IL-1β in P2ry6-/- colons. This inflammation was also accompanied by a decreased cell proliferation and goblet cell number. Importantly, injection of anti-IL-17 intraperitoneally partially protected P2ry6-/- mice from DSS-induced colitis. Taken together, in the absence of P2Y6, an exacerbated intestinal inflammation to DSS was observed which correlated with increased recruitment of Th17/Th1 lymphocytes. These data suggest a protective role of P2Y6 expressed on leukocytes in intestinal inflammation.
Collapse
Affiliation(s)
- Mabrouka Salem
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec city, QC G1V 4G2, Canada
| | - Mohammed-Amine El Azreq
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec city, QC G1V 4G2, Canada
| | - Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec city, QC G1V 4G2, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Fawzi Aoudjit
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec city, QC G1V 4G2, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec city, QC G1V 4G2, Canada.
| |
Collapse
|
17
|
Abderrazak A, El Azreq MA, Naci D, Fortin PR, Aoudjit F. Alpha2beta1 Integrin (VLA-2) Protects Activated Human Effector T Cells From Methotrexate-Induced Apoptosis. Front Immunol 2018; 9:2269. [PMID: 30374344 PMCID: PMC6197073 DOI: 10.3389/fimmu.2018.02269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/12/2018] [Indexed: 01/18/2023] Open
Abstract
β1 integrins are critical for T cell migration, survival and costimulation. The integrin α2β1, which is a receptor for collagen, also named VLA-2, is a major costimulatory pathway of effector T cells and has been implicated in arthritis pathogenesis. Herein, we have examined its ability to promote methotrexate (MTX) resistance by enhancing effector T cells survival. Our results show that attachment of anti-CD3-activated human polarized Th17 cells to collagen but not to fibronectin or laminin led to a significant reduction of MTX-induced apoptosis. The anti-CD3+collagen-rescued cells still produce significant amounts of IL-17 and IFNγ upon their reactivation indicating that their inflammatory nature is preserved. Mechanistically, we found that the prosurvival role of anti-CD3+collagen involves activation of the MTX transporter ABCC1 (ATP Binding Cassette subfamily C Member 1). Finally, the protective effect of collagen/α2β1 integrin on MTX-induced apoptosis also occurs in memory CD4+ T cells isolated from rheumatoid arthritis (RA) patients suggesting its clinical relevance. Together these results show that α2β1 integrin promotes MTX resistance of effector T cells, and suggest that it could contribute to the development of MTX resistance that is seen in RA.
Collapse
Affiliation(s)
- Amna Abderrazak
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada
| | - Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada
| | - Dalila Naci
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada
| | - Paul R Fortin
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada.,Division de Rhumatologie, Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU De Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et D'immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
18
|
IL-17A promotes the formation of deep vein thrombosis in a mouse model. Int Immunopharmacol 2018; 57:132-138. [PMID: 29482157 DOI: 10.1016/j.intimp.2018.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Deep venous thrombosis (DVT) is a significant problem in the health care industry worldwide. However, the factors and signaling pathways that trigger DVT formation are still largely unknown. In this study, we investigated the role of interleukin-17A (IL-17A) in DVT formation, focusing on the role of platelet aggregation, neutrophil infiltration, and endothelium cell (EC) activation. Notably, IL-17A levels increased in DVT patients as well as in a mouse DVT model. The DVT model mice were injected with recombinant mouse-IL-17A (rIL-17A) or anti-IL-17A monoclonal antibody (mAb) to further evaluate the effects of this cytokine. We found that rIL-17A promotes DVT formation, while IL-17A mAb represses DVT formation. Furthermore, platelet activation, highlighted by CD61 and CD49β expression, and aggregation were enhanced in platelets of rIL-17A-treated mice. rIL-17A also enhanced neutrophil infiltration by regulating the expression of macrophage inflammatory protein-2 (MIP-2) and the release of neutrophil extracellular traps (NETs). IL-17A mAb treatment inhibited both platelet activation and neutrophil activity. Moreover, rIL-17A appears to promote vein EC activation, while IL-17A mAb deters it. Taken together, these data suggest that IL-17A promotes DVT pathogenesis by enhancing platelet activation and aggregation, neutrophil infiltration, and EC activation and that anti-IL-17A mAb could be used for the treatment of DVT.
Collapse
|
19
|
Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87:69-81. [DOI: 10.1016/j.jaut.2017.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
|
20
|
El Azreq MA, Kadiri M, Boisvert M, Pagé N, Tessier PA, Aoudjit F. Discoidin domain receptor 1 promotes Th17 cell migration by activating the RhoA/ROCK/MAPK/ERK signaling pathway. Oncotarget 2018; 7:44975-44990. [PMID: 27391444 PMCID: PMC5216699 DOI: 10.18632/oncotarget.10455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Effector T cell migration through the tissue extracellular matrix (ECM) is an important step of the adaptive immune response and in the development of inflammatory diseases. However, the mechanisms involved in this process are still poorly understood. In this study, we addressed the role of a collagen receptor, the discoidin domain receptor 1 (DDR1), in the migration of Th17 cells. We showed that the vast majority of human Th17 cells express DDR1 and that silencing DDR1 or using the blocking recombinant receptor DDR1:Fc significantly reduced their motility and invasion in three-dimensional (3D) collagen. DDR1 promoted Th17 migration by activating RhoA/ROCK and MAPK/ERK signaling pathways. Interestingly, the RhoA/ROCK signaling module was required for MAPK/ERK activation. Finally, we showed that DDR1 is important for the recruitment of Th17 cells into the mouse dorsal air pouch containing the chemoattractant CCL20. Collectively, our results indicate that DDR1, via the activation of RhoA/ROCK/MAPK/ERK signaling axis, is a key pathway of effector T cell migration through collagen of perivascular tissues. As such, DDR1 can contribute to the development of Th17-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Maleck Kadiri
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Marc Boisvert
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Philippe A Tessier
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
21
|
Kadiri M, El Azreq MA, Berrazouane S, Boisvert M, Aoudjit F. Human Th17 Migration in Three-Dimensional Collagen Involves p38 MAPK. J Cell Biochem 2017; 118:2819-2827. [PMID: 28198034 DOI: 10.1002/jcb.25932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases. J. Cell. Biochem. 118: 2819-2827, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maleck Kadiri
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Sofiane Berrazouane
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Marc Boisvert
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
22
|
Guo J, Guo X, Wang Y, Tian F, Luo W, Zou Y. Cytokine response to Hantaan virus infection in patients with hemorrhagic fever with renal syndrome. J Med Virol 2017; 89:1139-1145. [PMID: 27943332 DOI: 10.1002/jmv.24752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022]
Abstract
Hantaan virus (HTNV) infection of the human body causes a severe acute infectious disease known as hemorrhagic fever renal syndrome (HFRS). The aim of this study was to correlate patient cytokine profiles to HFRS severity. In this study, we discuss the clinical significance of evaluating HFRS treatment outcomes using cytokine information. The levels of 18 cytokines were quantitatively determined in three groups: 34 HTNV IgM+ cases, 63 HTNV IgM- negative cases, and 78 healthy volunteers. The level of 14 serum cytokines were higher in the patient group than that in the healthy control group. In the 34 HTNV IgM+ patient sera, a set of 27 cytokines was further assessed. The cytokines of TNF-β, IL-1ra, and IL-6 were detected at higher level in the IgM+ group than that in the IgM- group. The deterioration of HFRS was accompanied with multiple cytokines increased, such as IL-1ra, IL-12p70, IL-10, IP-10, IL-17, IL-2, and IL-6. Our data indicate that serum cytokine levels are associated with the progression of HFRS.
Collapse
Affiliation(s)
- Jing Guo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Immunology, School of Medicine, Ji Shou University, Hunan, China
| | - Xuli Guo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Tian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Weiguang Luo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province, Hunan, China
| |
Collapse
|
23
|
Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci 2016; 129:653-64. [PMID: 26857815 DOI: 10.1242/jcs.180992] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|