1
|
Nguyen HT, Li M, Vadakath R, Henke KA, Tran TC, Li H, Yamadi M, Darbha S, Yang Y, Kabat J, Albright AR, Centeno EG, Phelan JD, Roulland S, Huang DW, Kelly MC, Young RM, Pittaluga S, Difilippantonio S, Muppidi JR. Gα13 restricts nutrient driven proliferation in mucosal germinal centers. Nat Immunol 2024; 25:1718-1730. [PMID: 39025963 PMCID: PMC11362015 DOI: 10.1038/s41590-024-01910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Germinal centers (GCs) that form in mucosal sites are exposed to gut-derived factors that have the potential to influence homeostasis independent of antigen receptor-driven selective processes. The G-protein Gα13 confines B cells to the GC and limits the development of GC-derived lymphoma. We discovered that Gα13-deficiency fuels the GC reaction via increased mTORC1 signaling and Myc protein expression specifically in the mesenteric lymph node (mLN). The competitive advantage of Gα13-deficient GC B cells (GCBs) in mLN was not dependent on T cell help or gut microbiota. Instead, Gα13-deficient GCBs were selectively dependent on dietary nutrients likely due to greater access to gut lymphatics. Specifically, we found that diet-derived glutamine supported proliferation and Myc expression in Gα13-deficient GCBs in the mLN. Thus, GC confinement limits the effects of dietary glutamine on GC dynamics in mucosal tissues. Gα13 pathway mutations coopt these processes to promote the gut tropism of aggressive lymphoma.
Collapse
Affiliation(s)
- Hang T Nguyen
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Moyi Li
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Rahul Vadakath
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Keirstin A Henke
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Tam C Tran
- Precision Health Informatics Section, NHGRI NIH, Bethesda, MD, USA
| | - Huifang Li
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Maryam Yamadi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Sriranjani Darbha
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Juraj Kabat
- Research Technologies Branch, NIAID NIH, Bethesda, MD, USA
| | - Anne R Albright
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Enoc Granados Centeno
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Simone Difilippantonio
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Deng X, Zeng Y, Ding D. MiR-30c-5p-Targeted Regulation of GNAI2 Improves Neural Function Injury and Inflammation in Cerebral Ischemia-Reperfusion Injury. Appl Biochem Biotechnol 2024; 196:5235-5248. [PMID: 38153649 DOI: 10.1007/s12010-023-04802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
MiRNAs are related to neuronal proliferation and apoptosis following cerebral ischemia-reperfusion injury (CIRI). This study focused on miR-30c-5p in the disease. An oxygen-glucose deprivation/re-oxygenation (OGD/R) model was prepared in HT22 cells and transfected to overexpress miR-30c-5p and G Protein Subunit Alpha I2 (GNAI2) respectively or co-transfected to silence miR-30c-5p and GNAI2. Meanwhile, a middle cerebral artery occlusion (MCAO) model was constructed in mice, and miR-30c-5p and GNAI2 were silenced in vivo simultaneously. The mice were evaluated for neurological damage, apoptosis, and inflammation. HT22 cells were tested for cytotoxicity, proliferation, apoptosis, and inflammatory factors. The interaction between miR-30c-5p and GNAI2 was predicted, analyzed, and confirmed. MiR-30c-5p was found to be downregulated in both experimental models. miR-30c-5p reduced lactate dehydrogenase production, inflammatory response, inhibit apoptosis, and enhanced neuronal proliferation, while GNAI2 overexpression showed the opposite results. Downregulated miR-30c-5p worsened neurological function, apoptosis, and inflammation of MCAO mice while silencing GNAI2 attenuated the influence of downregulated miR-30c-5p. MiR-30c-5p can improve neuronal apoptosis and inflammatory response caused by CIRI and is neuroprotective by targeting GNAI2, providing a new target for treating CIRI.
Collapse
Affiliation(s)
- Xinbo Deng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Ying Zeng
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China
| | - Dan Ding
- Department of Neurology, Yichun People's Hospital of Jiangxi Province, No. 1061 Jinxiu Avenue, Yuanzhou District, Yichun City, Jiangxi Province, 336000, China.
| |
Collapse
|
3
|
Cheng B, Wu C, Wei W, Niu H, Wen Y, Li C, Chen P, Chang H, Yang Z, Zhang F. Identification of cell-specific epigenetic patterns associated with chondroitin sulfate treatment response in an endemic arthritis, Kashin-Beck disease. Bone Joint Res 2024; 13:237-246. [PMID: 38754865 PMCID: PMC11098597 DOI: 10.1302/2046-3758.135.bjr-2023-0271.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Aims To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Methods Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue. Results This study revealed 21,060 hypermethylated and 44,472 hypomethylated DMRs, and 13,194 hypermethylated and 22,448 hypomethylated CpG islands for differential global methylation for chondroitin sulphate treatment response. A total of 12,666 DMR-related genes containing DMRs were identified in their promoter regions, such as CHL1 (false discovery rate (FDR) = 2.11 × 10-11), RIC8A (FDR = 7.05 × 10-4), and SOX12 (FDR = 1.43 × 10-3). Additionally, RIC8A and CHL1 were hypermethylated in responders, while SOX12 was hypomethylated in responders, all showing decreased gene expression. The patterns of cell-specific differential global methylation associated with chondroitin sulphate response were observed. Specifically, we found that DMRs located in TESPA1 and ATP11A exhibited differential DNA methylation between responders and non-responders in granulocytes, monocytes, and B cells. Conclusion Our study identified cell-specific changes in DNA methylation associated with chondroitin sulphate response in KBD patients.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hui Niu
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Li
- Research Laboratory of Kashin-Beck Disease and Keshan Disease, Shaanxi Institute for Endemic Disease Prevention and Control, Xi'an, China
| | - Ping Chen
- Research Laboratory of Kashin-Beck Disease and Keshan Disease, Shaanxi Institute for Endemic Disease Prevention and Control, Xi'an, China
| | - Hong Chang
- Research Laboratory of Kashin-Beck Disease and Keshan Disease, Shaanxi Institute for Endemic Disease Prevention and Control, Xi'an, China
| | - Zhengjun Yang
- Research Laboratory of Kashin-Beck Disease and Keshan Disease, Shaanxi Institute for Endemic Disease Prevention and Control, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Metabolic control of T FH cells and humoral immunity by phosphatidylethanolamine. Nature 2021; 595:724-729. [PMID: 34234346 PMCID: PMC8448202 DOI: 10.1038/s41586-021-03692-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Collapse
|
6
|
Sebastian S, Nobles M, Tsisanova E, Ludwig A, Munroe PB, Tinker A. The role of resistance to inhibitors of cholinesterase 8b in the control of heart rate. Physiol Genomics 2021; 53:150-159. [PMID: 33719582 DOI: 10.1152/physiolgenomics.00157.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have assessed the role of ric-b8 in the control of heart rate after the gene was implicated in a recent genome-wide association study of resting heart rate. We developed a novel murine model in which it was possible to conditionally delete ric-8b in the sinoatrial (SA) node after the addition of tamoxifen. Despite this, we were unable to obtain homozygotes and thus studied heterozygotes. Haploinsufficiency of ric-8b in the sinoatrial node induced by the addition of tamoxifen in adult animals leads to mice with a reduced heart rate. However, other electrocardiographic intervals (e.g., PR and QRS) were normal, and there was no apparent arrhythmia such as heart block. The positive chronotropic response to isoprenaline was abrogated, whereas the response to carbachol was unchanged. The pacemaker current If (funny current) has an important role in regulating heart rate, and its function is modulated by both isoprenaline and carbachol. Using a heterologous system expressing HCN4, we show that ric-8b can modulate the HCN4 current. Overexpression of ric-8b led to larger HCN4 currents, whereas silencing ric-8b led to smaller currents. Ric-8b modulates heart rate responses in vivo likely via its actions on the stimulatory G-protein.
Collapse
Affiliation(s)
- Sonia Sebastian
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Muriel Nobles
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Elena Tsisanova
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia B Munroe
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew Tinker
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Srivastava D, Yadav RP, Inamdar SM, Huang Z, Sokolov M, Boyd K, Artemyev NO. Transducin Partners Outside the Phototransduction Pathway. Front Cell Neurosci 2020; 14:589494. [PMID: 33173469 PMCID: PMC7591391 DOI: 10.3389/fncel.2020.589494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Transducin mediates signal transduction in a classical G protein-coupled receptor (GPCR) phototransduction cascade. Interactions of transducin with the receptor and the effector molecules had been extensively investigated and are currently defined at the atomic level. However, partners and functions of rod transducin α (Gαt 1) and βγ (Gβ1γ1) outside the visual pathway are not well-understood. In particular, light-induced redistribution of rod transducin from the outer segment to the inner segment and synaptic terminal (IS/ST) allows Gαt1 and/or Gβ1γ1 to modulate synaptic transmission from rods to rod bipolar cells (RBCs). Protein-protein interactions underlying this modulation are largely unknown. We discuss known interactors of transducin in the rod IS/ST compartment and potential pathways leading to the synaptic effects of light-dispersed Gαt1 and Gβ1γ1. Furthermore, we show that a prominent non-GPCR guanine nucleotide exchange factor (GEF) and a chaperone of Gα subunits, resistance to inhibitors of cholinesterase 8A (Ric-8A) protein, is expressed throughout the retina including photoreceptor cells. Recent structures of Ric-8A alone and in complexes with Gα subunits have illuminated the structural underpinnings of the Ric-8A activities. We generated a mouse model with conditional knockout of Ric-8A in rods in order to begin defining the functional roles of the protein in rod photoreceptors and the retina. Our analysis suggests that Ric-8A is not an obligate chaperone of Gαt1. Further research is needed to investigate probable roles of Ric-8A as a GEF, trafficking chaperone, or a mediator of the synaptic effects of Gαt1.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhen Huang
- Department of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim Sokolov
- Department of Ophthalmology, Biochemistry and Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
8
|
Zeng H, Castillo-Cabrera J, Manser M, Lu B, Yang Z, Strande V, Begue D, Zamponi R, Qiu S, Sigoillot F, Wang Q, Lindeman A, Reece-Hoyes JS, Russ C, Bonenfant D, Jiang X, Wang Y, Cong F. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. eLife 2019; 8:50223. [PMID: 31741433 PMCID: PMC6927754 DOI: 10.7554/elife.50223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses. Cancer is caused by cells growing and dividing uncontrollably as a result of mutations in certain genes. Many human lung cancers have a mutation in the gene that makes the protein EGFR. In healthy cells, EGFR allows a cell to respond to chemical signals that encourage healthy growth. In cancer, the altered EGFR is always on, which allows the cell to rapidly grow without any control, resulting in cancer. One approach to treating these cancers is with drugs that block the activity of mutant EGFR. Although these drugs have been very successful, they do not always succeed in completely treating the cancer. This is because over time the cancer cells can become resistant to the drug and start forming new tumors. One way that this can happen is if random mutations lead to changes in other proteins that make the drug less effective or stop it from accessing the EGFR proteins. However, it is unclear how other proteins in cancer cells affect the response to these EGFR inhibiting drugs. Now, Zeng et al. have used gene editing to systematically remove every protein from human lung cancer cells grown in the laboratory to see how this affects resistance to EGFR inhibitor treatment. This revealed that a number of different proteins could change how cancer cells responded to the drug. For instance, cells lacking the protein RIC8A were more sensitive to EGFR inhibitors and less likely to develop resistance. This is because loss of RIC8A turns down a key cell survival pathway in cancer cells. Whereas, cancer cells lacking the ARIH2 protein were able to produce more proteins that are needed for cancer cell growth, which resulted in them having increased resistance to EGFR inhibitors. The proteins identified in this study could be used to develop new drugs that improve the effectiveness of EGFR inhibitors. Understanding how cancer cells respond to EGFR inhibitor treatment could help determine how likely a patient is to develop resistance to these drugs.
Collapse
Affiliation(s)
- Hao Zeng
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Johnny Castillo-Cabrera
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Mika Manser
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Bo Lu
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Zinger Yang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Vaik Strande
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Begue
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Raffaella Zamponi
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Shumei Qiu
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Frederic Sigoillot
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Qiong Wang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - John S Reece-Hoyes
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Debora Bonenfant
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Xiaomo Jiang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Youzhen Wang
- Oncology Disease Area, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Feng Cong
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, United States
| |
Collapse
|
9
|
Sun Q, He Q, Xu J, Liu Q, Lu Y, Zhang Z, Xu X, Sun B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling. FASEB J 2019; 33:7049-7060. [PMID: 30840837 DOI: 10.1096/fj.201802462r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a major challenge in liver resection and transplantation surgeries. Previous studies have revealed that guanine nucleotide-binding protein G(i)α2 (GNAI2) was involved in the progression of myocardial and cerebral I/R injury, but the role and function of GNAI2 in hepatic I/R have not been elucidated. The hepatocyte-specific GNAI2 knockout (GNAI2hep-/-) mice were generated and subjected to hepatic I/R injury. Primary hepatocytes isolated from GNAI2hep-/- and GNAI2flox/flox mice were cultured and challenged to hypoxia-reoxygenation insult. The specific function of GNAI2 in I/R-triggered hepatic injury and the underlying molecular mechanism were explored by various phenotypic analyses and molecular biology methods. In this study, we demonstrated that hepatic GNAI2 expression was significantly increased in liver transplantation patients and wild-type mice after hepatic I/R. Interestingly, hepatocyte-specific GNAI2 deficiency attenuated I/R-induced liver damage, inflammation cytokine expression, macrophage/neutrophil infiltration, and hepatocyte apoptosis in vivo and in vitro. Mechanistically, up-regulation of GNAI2 phosphorylates mixed-lineage protein kinase 3 (MLK3) through direct binding, which exacerbated hepatic I/R damage via MAPK and NF-κB pathway activation. Furthermore, blocking MLK3 signaling reversed GNAI2-mediated hepatic I/R injury. Our study firstly identifies GNAI2 as a promising target for prevention of hepatic I/R-induced injury and related liver diseases.-Sun, Q., He, Q., Xu, J., Liu, Q., Lu, Y., Zhang, Z., Xu, X., Sun, B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling.
Collapse
Affiliation(s)
- Qikai Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qifeng He
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo Xu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Beicheng Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
10
|
Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, Baba Y, Kumanogoh A, Suzuki K. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med 2019; 216:1630-1647. [PMID: 31088898 PMCID: PMC6605747 DOI: 10.1084/jem.20181494] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/08/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Nakai et al. show that the COMMD3/8 complex functions as an adaptor that selectively recruits GRK6 to chemoattractant receptors and promotes B cell migration and humoral immune responses. Lymphocyte migration is mediated by G protein–coupled receptors (GPCRs) that respond to chemoattractive molecules. After their activation, GPCRs are phosphorylated by different GPCR kinases (GRKs), which produces distinct functional outcomes through β-arrestins. However, the molecular machinery that targets individual GRKs to activated GPCRs remains elusive. Here, we identified a protein complex consisting of copper metabolism MURR1 domain–containing (COMMD) 3 and COMMD8 (COMMD3/8 complex) as an adaptor that selectively recruits a specific GRK to chemoattractant receptors and promotes lymphocyte chemotaxis. COMMD8, whose stability depended on COMMD3, was recruited to multiple chemoattractant receptors. Deficiency of COMMD8 or COMMD3 impaired B cell migration and humoral immune responses. Using CXC-chemokine receptor 4 (CXCR4) as a model, we demonstrated that the COMMD3/8 complex selectively recruited GRK6 and induced GRK6-mediated phosphorylation of the receptor and activation of β-arrestin–mediated signaling. Thus, the COMMD3/8 complex is a specificity determinant of GRK targeting to GPCRs and represents a point of regulation for immune responses.
Collapse
Affiliation(s)
- Akiko Nakai
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Jun Fujimoto
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan .,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Vural A, Nabar NR, Hwang IY, Sohn S, Park C, Karlsson MCI, Blumer JB, Kehrl JH. Gα i2 Signaling Regulates Inflammasome Priming and Cytokine Production by Biasing Macrophage Phenotype Determination. THE JOURNAL OF IMMUNOLOGY 2019; 202:1510-1520. [PMID: 30683698 DOI: 10.4049/jimmunol.1801145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Macrophages exist as innate immune subsets that exhibit phenotypic heterogeneity and functional plasticity. Their phenotypes are dictated by inputs from the tissue microenvironment. G-protein-coupled receptors are essential in transducing signals from the microenvironment, and heterotrimeric Gα signaling links these receptors to downstream effectors. Several Gαi-coupled G-protein-coupled receptors have been implicated in macrophage polarization. In this study, we use genetically modified mice to investigate the role of Gαi2 on inflammasome activity and macrophage polarization. We report that Gαi2 in murine bone marrow-derived macrophages (BMDMs) regulates IL-1β release after activation of the NLRP3, AIM2, and NLRC4 inflammasomes. We show this regulation stems from the biased polarity of Gαi2 deficient (Gnai2 -/-) and RGS-insensitive Gαi2 (Gnai2 G184S/G184S) BMDMs. We determined that although Gnai2 G184S/G184S BMDMs (excess Gαi2 signaling) have a tendency toward classically activated proinflammatory (M1) phenotype, Gnai2-/- BMDMs (Gαi2 deficient) are biased toward alternatively activated anti-inflammatory (M2) phenotype. Finally, we find that Gαi2-deficient macrophages have increased Akt activation and IFN-β production but defects in ERK1/2 and STAT3 activation after LPS stimulation. Gαi2-deficient macrophages also exhibit increased STAT6 activation after IL-4 stimulation. In summary, our data indicates that excess Gαi2 signaling promotes an M1 macrophage phenotype, whereas Gαi2 signaling deficiency promotes an M2 phenotype. Understanding Gαi2-mediated effects on macrophage polarization may bring to light insights regarding disease pathogenesis and the reprogramming of macrophages for the development of novel therapeutics.
Collapse
Affiliation(s)
- Ali Vural
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Neel R Nabar
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Silke Sohn
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Chung Park
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; and
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
12
|
G Proteins and GPCRs in C. elegans Development: A Story of Mutual Infidelity. J Dev Biol 2018; 6:jdb6040028. [PMID: 30477278 PMCID: PMC6316442 DOI: 10.3390/jdb6040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.
Collapse
|
13
|
Toro-Tapia G, Villaseca S, Beyer A, Roycroft A, Marcellini S, Mayor R, Torrejón M. The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus. Development 2018; 145:dev.164269. [PMID: 30297374 DOI: 10.1242/dev.164269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Collapse
Affiliation(s)
- Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Alice Roycroft
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sylvain Marcellini
- Departamento de Biología Cellular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| |
Collapse
|
14
|
Leal JI, Villaseca S, Beyer A, Toro-Tapia G, Torrejón M. Ric-8A, a GEF for heterotrimeric G-proteins, controls cranial neural crest cell polarity during migration. Mech Dev 2018; 154:170-178. [PMID: 30016646 DOI: 10.1016/j.mod.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/23/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is a transient embryonic cell population that migrates extensively during development. Ric-8A, a guanine nucleotide exchange factor (GEF) for different Gα subunits regulates cranial NC (CNC) cell migration in Xenopus through a mechanism that still remains to be elucidated. To properly migrate, CNC cells establish an axis of polarization and undergo morphological changes to generate protrusions at the leading edge and retraction of the cell rear. Here, we aim to study the role of Ric-8A in cell polarity during CNC cell migration by examining whether its signaling affects the localization of GTPase activity in Xenopus CNC using GTPase-based probes in live cells and aPKC and Par3 as polarity markers. We show that the levels of Ric-8A are critical during migration and affect the localization of polarity markers and the subcellular localization of GTPase activity, suggesting that Ric-8A, probably through heterotrimeric G-protein signaling, regulates cell polarity during CNC migration.
Collapse
Affiliation(s)
- Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Soraya Villaseca
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Andrea Beyer
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Gabriela Toro-Tapia
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
15
|
Hwang IY, Boularan C, Harrison K, Kehrl JH. Gα i Signaling Promotes Marginal Zone B Cell Development by Enabling Transitional B Cell ADAM10 Expression. Front Immunol 2018; 9:687. [PMID: 29696016 PMCID: PMC5904254 DOI: 10.3389/fimmu.2018.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
The follicular (FO) versus marginal zone (MZ) B cell fate decision in the spleen depends upon BCR, BAFF, and Notch2 signaling. Whether or how Gi signaling affects this fate decision is unknown. Here, we show that direct contact with Notch ligand expressing stromal cells (OP9-Delta-like 1) cannot promote normal MZ B cell development when progenitor B cells lack Gαi proteins, or if Gi signaling is disabled. Consistent with faulty ADAM10-dependent Notch2 processing, Gαi-deficient transitional B cells had low ADAM10 membrane expression levels and reduced Notch2 target gene expression. Immunoblotting Gαi-deficient B cell lysates revealed a reduction in mature, processed ADAM10. Suggesting that Gαi signaling promotes ADAM10 membrane expression, stimulating normal transitional B cells with CXCL12 raised it, while inhibiting Gαi nucleotide exchange blocked its upregulation. Surprisingly, inhibiting Gαi nucleotide exchange in transitional B cells also impaired the upregulation of ADAM10 that occurs following antigen receptor crosslinking. These results indicate that Gαi signaling supports ADAM10 maturation and activity in transitional B cells, and ultimately Notch2 signaling to promote MZ B cell development.
Collapse
Affiliation(s)
- Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cedric Boularan
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,InvivoGen, Toulouse, France
| | - Kathleen Harrison
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Loss of Gα i proteins impairs thymocyte development, disrupts T-cell trafficking, and leads to an expanded population of splenic CD4 +PD-1 +CXCR5 +/- T-cells. Sci Rep 2017. [PMID: 28646160 PMCID: PMC5482867 DOI: 10.1038/s41598-017-04537-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thymocyte and T cell trafficking relies on signals initiated by G-protein coupled receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in thymocyte and T cell function, we developed several mouse models. Gαi2 deficiency in hematopoietic progenitors led to a small thymus, a double negative (DN)1/DN2 thymocyte transition block, and an accumulation of mature single positive (SP) thymocytes. Loss at the double positive (DP) stage of thymocyte development caused an increase in mature cells within the thymus. In both models an abnormal distribution of memory and naïve CD4 T cells occurred, and peripheral CD4 and CD8 T cells had reduced chemoattractant responses. The loss of Gαi3 had no discernable impact, however the lack of both G-proteins commencing at the DP stage caused a severe T cell phenotype. These mice lacked a thymic medullary region, exhibited thymocyte retention, had a peripheral T cell deficiency, and lacked T cell chemoattractant responses. Yet a noteworthy population of CD4+PD-1+CXCR5+/− cells resided in the spleen of these mice likely due to a loss of regulatory T cell function. Our results delineate a role for Gαi2 in early thymocyte development and for Gαi2/3 in multiple aspects of T cell biology.
Collapse
|
17
|
Ruisu K, Meier R, Kask K, Tõnissoo T, Velling T, Pooga M. RIC8A is essential for the organisation of actin cytoskeleton and cell-matrix interaction. Exp Cell Res 2017; 357:181-191. [PMID: 28526238 DOI: 10.1016/j.yexcr.2017.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/09/2017] [Accepted: 05/14/2017] [Indexed: 01/07/2023]
Abstract
RIC8A functions as a chaperone and guanine nucleotide exchange factor for a subset of G protein α subunits. Multiple G protein subunits mediate various signalling events that regulate cell adhesion and migration and the involvement of RIC8A in some of these processes has been demonstrated. We have previously shown that the deficiency of RIC8A causes a failure in mouse gastrulation and neurogenesis - major events in embryogenesis that rely on proper association of cells with the extracellular matrix (ECM) and involve active cell migration. To elaborate on these findings, we used Ric8a-/- mouse embryonic stem cells and Ric8a-deficient mouse embryonic fibroblasts, and found that RIC8A plays an important role in the organisation and remodelling of actin cytoskeleton and cell-ECM association. Ric8a-deficient cells were able to attach to different ECM components, but were unable to spread correctly, and did not form stress fibres or focal adhesion complexes. We also found that the presence of RIC8A is necessary for the activation of β1 integrins and integrin-mediated cell migration.
Collapse
Affiliation(s)
- Katrin Ruisu
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia.
| | - Riho Meier
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| | - Keiu Kask
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia
| | - Tambet Tõnissoo
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| | - Teet Velling
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| | - Margus Pooga
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| |
Collapse
|
18
|
Robichaux WG, Branham-O'Connor M, Hwang IY, Vural A, Kehrl JH, Blumer JB. Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4). J Pharmacol Exp Ther 2017; 360:424-433. [PMID: 28062526 DOI: 10.1124/jpet.116.238436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022] Open
Abstract
Activator of G-protein signaling 4 (AGS4)/G-protein signaling modulator 3 (Gpsm3) contains three G-protein regulatory (GPR) motifs, each of which can bind Gαi-GDP free of Gβγ We previously demonstrated that the AGS4-Gαi interaction is regulated by seven transmembrane-spanning receptors (7-TMR), which may reflect direct coupling of the GPR-Gαi module to the receptor analogous to canonical Gαβγ heterotrimer. We have demonstrated that the AGS4-Gαi complex is regulated by chemokine receptors in an agonist-dependent manner that is receptor-proximal. As an initial approach to investigate the functional role(s) of this regulated interaction in vivo, we analyzed leukocytes, in which AGS4/Gpsm3 is predominantly expressed, from AGS4/Gpsm3-null mice. Loss of AGS4/Gpsm3 resulted in mild but significant neutropenia and leukocytosis. Dendritic cells, T lymphocytes, and neutrophils from AGS4/Gpsm3-null mice also exhibited significant defects in chemoattractant-directed chemotaxis and extracellular signal-regulated kinase activation. An in vivo peritonitis model revealed a dramatic reduction in the ability of AGS4/Gpsm3-null neutrophils to migrate to primary sites of inflammation. Taken together, these data suggest that AGS4/Gpsm3 is required for proper chemokine signal processing in leukocytes and provide further evidence for the importance of the GPR-Gαi module in the regulation of leukocyte function.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Melissa Branham-O'Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Il-Young Hwang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Ali Vural
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Johne H Kehrl
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| |
Collapse
|
19
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
20
|
Polarity and asymmetric cell division in the control of lymphocyte fate decisions and function. Curr Opin Immunol 2016; 39:143-9. [PMID: 26945468 DOI: 10.1016/j.coi.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Polarity is important in several lymphocyte processes including lymphocyte migration, formation of the immunological synapse, and asymmetric cell division (ACD). While lymphocyte migration and immunological synapse formation are relatively well understood, the role of lymphocyte ACD is less clear. Recent advances in measuring polarity enable more robust analyses of asymmetric cell division. Use of these new methods has produced crucial quantification of ACD at precise phases of lymphocyte development and activation. These developments are leading to a better understanding of the drivers of fate choice during lymphocyte activation and provide a context within which to explain the effects of ACD.
Collapse
|