1
|
Chen C, Xie Z, Ni Y, He Y. Screening immune-related blood biomarkers for DKD-related HCC using machine learning. Front Immunol 2024; 15:1339373. [PMID: 38318171 PMCID: PMC10838782 DOI: 10.3389/fimmu.2024.1339373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Background Diabetes mellitus is a significant health problem worldwide, often leading to diabetic kidney disease (DKD), which may also influence the occurrence of hepatocellular carcinoma (HCC). However, the relationship and diagnostic biomarkers between DKD and HCC are unclear. Methods Using public database data, we screened DKD secretory RNAs and HCC essential genes by limma and WGCNA. Potential mechanisms, drugs, and biomarkers for DKD-associated HCC were identified using PPI, functional enrichment, cMAP, and machine learning algorithms, and a diagnostic nomogram was constructed. Then, ROC, calibration, and decision curves were used to evaluate the diagnostic performance of the nomograms. In addition, immune cell infiltration in HCC was explored using CIBERSORT. Finally, the detectability of critical genes in blood was verified by qPCR. Results 104 DEGs associated with HCC using WGCNA were identified. 101 DEGs from DKD were predicated on secreting into the bloodstream with Exorbase datasets. PPI analysis identified three critical modules considered causative genes for DKD-associated HCC, primarily involved in inflammation and immune regulation. Using lasso and RM, four hub genes associated with DKD-associated HCC were identified, and a diagnostic nomogram confirmed by DCA curves was established. The results of immune cell infiltration showed immune dysregulation in HCC, which was associated with the expression of four essential genes. PLVAP was validated by qPCR as a possible blood-based diagnostic marker for DKD-related HCC. Conclusion We revealed the inflammatory immune pathways of DKD-related HCC and developed a diagnostic nomogram for HCC based on PLVAP, C7, COL15A1, and MS4A6A. We confirmed with qPCR that PLVAP can be used as a blood marker to assess the risk of HCC in DKD patients.
Collapse
Affiliation(s)
- Chao Chen
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
- Instrumentation and Service Center for Science and Technology, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Zhinan Xie
- Medical Engineering Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ying Ni
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Yuxi He
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Wen Y, Wang Y, Huang Y, Liu Z, Hui C. PLVAP protein expression correlated with microbial composition, clinicopathological features, and prognosis of patients with stomach adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:7139-7153. [PMID: 36884119 DOI: 10.1007/s00432-023-04607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Plasmalemma vesicle-associated protein (PLVAP) is involved in many immune‑related signals; however, its role in stomach adenocarcinoma (STAD) remains to be elucidated. This study investigated PLVAP expression in tumor tissues and defined the value in STAD patients. METHODS A total of 96 patient paraffin-embedded STAD specimens and 30 paraffin-embedded adjacent non-tumor specimens from the Ninth Hospital of Xi'an were consecutively recruited in analyses. All RNA‑sequence data were available from the Cancer Genome Atlas database (TCGA). PLVAP protein expression was detected using immunohistochemistry. Microbial community analysis was performed by 16S rRNA gene sequencing using Illumina MiSeq. PLVAP mRNA expression was explored with the Tumor Immune Estimation Resource (TIMER), GEPIA, and UALCAN databases. The effect of PLVAP mRNA on prognosis was analyzed via GEPIA, and Kaplan-Meier plotter database. GeneMANIA and STRING databases were used to predict gene/protein interactions and functions. The relationships between PLVAP mRNA expression and tumor-infiltrated immune cells were analyzed via the TIMER and GEPIA databases. RESULTS Significantly elevated transcriptional and proteomic PLVAP expressions were found in STAD samples. Increased PLVAP protein and mRNA expression were significantly associated with advanced clinicopathological parameters and correlated with shorter disease-free survival (DFS) and overall survival (OS) in TCGA (P < 0.001). The microbiota in the PLVAP-rich (3+) group was significantly different from that in the PLVAP-poor (1+) group (P < 0.05). The results from TIMER showed that high PLVAP mRNA expression had significant positive correlations with CD4 + T cell (r = 0.42, P < 0.001). CONCLUSION PLVAP is a potential biomarker to predict the prognosis of patients with STAD, and the high level of PLVAP protein expression was closely related to bacteria. The relative abundance of Fusobacteriia was positvely associated with the level of PLVAP. In conclusion, positive staining for PLVAP was useful for predicting the poor prognosis of STAD with Fusobacteriia infection.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Yi Wang
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Yao Huang
- Department of Oncology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, 710054, Shaanxi, China.
| | - Zhe Liu
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Chan Hui
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
3
|
Denzer L, Muranyi W, Schroten H, Schwerk C. The role of PLVAP in endothelial cells. Cell Tissue Res 2023; 392:393-412. [PMID: 36781482 PMCID: PMC10172233 DOI: 10.1007/s00441-023-03741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involvement of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight the structure and functions of PLVAP in different endothelial types in health and disease.
Collapse
Affiliation(s)
- Lea Denzer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Ma K, Chen X, Zhao X, Chen S, Yang J. PLVAP is associated with glioma-associated malignant processes and immunosuppressive cell infiltration as a promising marker for prognosis. Heliyon 2022; 8:e10298. [PMID: 36033326 PMCID: PMC9404362 DOI: 10.1016/j.heliyon.2022.e10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previous reports have confirmed the significance of plasmalemma vesicle-associated protein (PLVAP) in the progression of multiple tumors; however, there are few studies examining its immune properties in the context of gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. A total of 699 patients diagnosed with gliomas in the cancer genome atlas along with 325 glioma patients in the Chinese glioma genome atlas were collected for the training and validation sets. We analyzed and visualized the total statistics using RStudio. PLVAP was markedly upregulated among high grade gliomas, O6-methylguanine-DNA methyltransferase promoter unmethylated subforms, isocitrate dehydrogenase wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. The receiver operating characteristics analysis illustrated the favorable applicability of PLVAP in regard to estimating mesenchyme subform gliomas. Subsequent Kaplan–Meier curves together with multivariable Cox analyses upon survival identified high-expression PLVAP as a distinct prognostic variable for patients with gliomas. Gene ontology analysis of PLVAP among gliomas has documented the predominant role of this protein in glioma-associated immunobiological processes and also in inflammatory responses. We consequently examined the associations of PLVAP with immune-related meta-genes, and PLVAP was positively correlated with hematopoietic cell kinase, lymphocyte-specific protein tyrosine kinase, major histocompatibility complex (MHC) I, MHC II, signal transducer and activator of transcription 1, and interferon and was negatively correlated with immunoglobulin G. Moreover, association analyses between PLVAP and glioma-infiltrating immunocytes indicated that the infiltrating degrees of most immune cells exhibited positive correlations with PLVAP expression, particularly immunosuppressive subsets such as tumor-related macrophages, myeloid-derived suppressor cells, and regulatory T lymphocytes. In summary, we originally demonstrated that PLVAP is markedly associated with immunosuppressive immune cell infiltration degrees, unfavorable survival, and adverse pathology types among gliomas, thus identifying PLVAP as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Zhang X, Li Y, Chen X, Jin B, Shu C, Ni W, Jiang Y, Zhang J, Ma L, Shu J. Single-cell transcriptome analysis uncovers the molecular and cellular characteristics of thin endometrium. FASEB J 2022; 36:e22193. [PMID: 35201635 DOI: 10.1096/fj.202101579r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Infertility is a social and medical problem around the world and the incidence continues to rise. Thin endometrium (TE) is a great challenge of infertility treatment, even by in vitro fertilization and embryo transfer. It is widely believed that TE impairs endometrium receptivity. However, only a few studies have explained the molecular mechanism. Herein, in order to reveal the possible mechanism, we sampled endometrium from a TE patient and a control volunteer and got a transcriptomic atlas of 18 775 individual cells which was constructed using single-cell RNA sequencing, and seven cell types have been identified. The cells were acquired during proliferative and secretory phases, respectively. The proportion of epithelial cells and stromal cells showed a significant difference between the TE group and the control group. In addition, differential expressed genes (DEGs) in diverse cell types were revealed, the enriched pathways of DEGs were found closely related to the protein synthesis in TE of both proliferative and secretory phases. Some DEGs can influence cell-type ratio and impaired endometrial receptivity in TE. Furthermore, divergent expression of estrogen receptors 1 and progesterone receptors in stromal and epithelial cells were compared in the TE sample from the control. The cellular and molecular heterogeneity found in this study provided valuable information for disclosing the mechanisms of impaired receptivity in TE.
Collapse
Affiliation(s)
- Xirong Zhang
- Department of Obstetrics and Gynecology, Qingdao Medical College of Qingdao University, Qingdao, China.,Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yini Li
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaopan Chen
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chongyi Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wanmao Ni
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yinshen Jiang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Department of Obstetrics, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lijia Ma
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jing Shu
- Department of Obstetrics and Gynecology, Qingdao Medical College of Qingdao University, Qingdao, China.,Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
7
|
Acton SE, Onder L, Novkovic M, Martinez VG, Ludewig B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol 2021; 42:782-794. [PMID: 34362676 DOI: 10.1016/j.it.2021.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Fibroblastic reticular cells (FRCs) are a crucial part of the stromal cell infrastructure of secondary lymphoid organs (SLOs). Lymphoid organ fibroblasts form specialized niches for immune cell interactions and thereby govern lymphocyte activation and differentiation. Moreover, FRCs produce and ensheath a network of extracellular matrix (ECM) microfibers called the conduit system. FRC-generated conduits contribute to fluid and immune cell control by funneling fluids containing antigens and inflammatory mediators through the SLOs. We review recent progress in FRC biology that has advanced our understanding of immune cell functions and interactions. We discuss the intricate relationships between the cellular FRC and the fibrillar conduit networks, which together form the basis for efficient communication between immune cells and the tissues they survey.
Collapse
Affiliation(s)
- Sophie E Acton
- Stromal Immunology Group, Medical Research Council (MRC) Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Victor G Martinez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
8
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 1: Murine. Cytometry A 2020; 99:251-256. [PMID: 33345421 DOI: 10.1002/cyto.a.24292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The endothelium forms a selective barrier between circulating blood or lymph and surrounding tissue. Endothelial cells play an essential role in vessel homeostasis, and identification of these cells is critical in vascular biology research. However, characteristics of endothelial cells differ depending on the location and type of blood or lymph vessel. Endothelial cell subsets are numerous and often identified using different flow cytometric markers, making immunophenotyping these cells complex. In part 1 of this two part review series, we present a comprehensive overview of markers for the flow cytometric identification and phenotyping of murine endothelial subsets. These subsets can be distinguished using a panel of cell surface and intracellular markers shared by all endothelial cells in combination with additional markers of specialized endothelial cell types. This review can be used to determine the best markers for identifying and phenotyping desired murine endothelial cell subsets.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Affiliation(s)
- Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A. Breakdown of the Paracellular Tight and Adherens Junctions in the Gut and Blood Brain Barrier and Damage to the Vascular Barrier in Patients with Deficit Schizophrenia. Neurotox Res 2019; 36:306-322. [PMID: 31077000 DOI: 10.1007/s12640-019-00054-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Deficit schizophrenia is characterized by leaky intestinal tight and adherens junctions and bacterial translocation. Here we examine whether (deficit) schizophrenia is accompanied by leaky paracellular, transcellular, and vascular barriers in the gut and blood-brain barriers. We measured IgA responses to occludin, claudin-5, E-cadherin, and β-catenin (paracellular pathway, PARA); talin, actin, vinculin, and epithelial intermediate filament (transcellular pathway, TRANS); and plasmalemma vesicle-associated protein (PLVAP, vascular pathway) in 78 schizophrenia patients and 40 controls. IgA responses to claudin-5, E-cadherin, and β-catenin, the sum of the four PARA proteins, and the ratio PARA/TRANS were significantly higher in deficit schizophrenia patients than in nondeficit schizophrenia patients and controls. A large part of the variance in PHEMN (psychosis, hostility, excitation, mannerism, and negative) symptoms, psychomotor retardation, formal thought disorders, verbal fluency, word list memory, word list recall, and executive functions was explained by the PARA/TRANS ratio coupled with plasma IgA responses to Gram-negative bacteria, IgM to malondialdehyde, CCL-11 (eotaxin), IgA levels of the ratio of noxious to more protective tryptophan catabolites (NOX/PRO TRYCATs), and a plasma immune activation index. Moreover, IgA levels to Gram-negative bacteria were significantly associated with IgA to E-cadherin, β-catenin, and PLVAP, while IgA levels to claudin-5 were significantly predicted by IgA to E-cadherin, NOX/PRO TRYCAT ratio, Gram-negative bacteria, and CCL11. The phenomenology of the deficit syndrome is to a large extent explained by the cumulative effects of lowered natural IgM, breakdown of the paracellular and vascular pathways, increased bacterial translocation, peripheral immune-inflammatory responses, and indices of BBB breakdown.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria. .,IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| | | | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aristo Vodjani
- Immunosciences Lab., Inc, Los Angeles, CA, USA.,Cyrex Labs, LLC, Phoenix, AZ, USA.,Department of Preventive Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
11
|
Shuvaev VV, Khoshnejad M, Pulsipher KW, Kiseleva RY, Arguiri E, Cheung-Lau JC, LeFort KM, Christofidou-Solomidou M, Stan RV, Dmochowski IJ, Muzykantov VR. Spatially controlled assembly of affinity ligand and enzyme cargo enables targeting ferritin nanocarriers to caveolae. Biomaterials 2018; 185:348-359. [PMID: 30273834 PMCID: PMC6487198 DOI: 10.1016/j.biomaterials.2018.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Makan Khoshnejad
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine W Pulsipher
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Raisa Yu Kiseleva
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasmina C Cheung-Lau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen M LeFort
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Hamilton BJ, Tse D, Stan RV. Phorbol esters induce PLVAP expression via VEGF and additional secreted molecules in MEK1-dependent and p38, JNK and PI3K/Akt-independent manner. J Cell Mol Med 2018; 23:920-933. [PMID: 30394679 PMCID: PMC6349158 DOI: 10.1111/jcmm.13993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022] Open
Abstract
Endothelial diaphragms are subcellular structures critical for mammalian survival with poorly understood biogenesis. Plasmalemma vesicle associated protein (PLVAP) is the only known diaphragm component and is necessary for diaphragm formation. Very little is known about PLVAP regulation. Phorbol esters (PMA) are known to induce de novo PLVAP expression and diaphragm formation. We show that this induction relies on the de novo production of soluble factors that will act in an autocrine manner to induce PLVAP transcription and protein expression. We identified vascular endothelial growth factor-A (VEGF-A) signalling through VEGFR2 as a necessary but not sufficient downstream event as VEGF-A inhibition with antibodies and siRNA or pharmacological inhibition of VEGFR2 only partially inhibit PLVAP upregulation. In terms of downstream pathways, inhibition of MEK1/Erk1/2 MAP kinase blocked PLVAP upregulation, whereas inhibition of p38 and JNK MAP kinases or PI3K and Akt had no effect on PMA-induced PLVAP expression. In conclusion, we show that VEGF-A along with other secreted proteins act synergistically to up-regulate PLVAP in MEK1/Erk1/2 dependent manner, bringing us one step further into understanding the genesis of the essential structures that are endothelial diaphragms.
Collapse
Affiliation(s)
- B JoNell Hamilton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Dan Tse
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
13
|
Myerson JW, Braender B, Mcpherson O, Glassman PM, Kiseleva RY, Shuvaev VV, Marcos-Contreras O, Grady ME, Lee HS, Greineder CF, Stan RV, Composto RJ, Eckmann DM, Muzykantov VR. Flexible Nanoparticles Reach Sterically Obscured Endothelial Targets Inaccessible to Rigid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802373. [PMID: 29956381 PMCID: PMC6385877 DOI: 10.1002/adma.201802373] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/19/2018] [Indexed: 05/14/2023]
Abstract
Molecular targeting of nanoparticle drug carriers promises maximized therapeutic impact to sites of disease or injury with minimized systemic effects. Precise targeting demands addressing to subcellular features. Caveolae, invaginations in cell membranes implicated in transcytosis and inflammatory signaling, are appealing subcellular targets. Caveolar geometry has been reported to impose a ≈50 nm size cutoff on nanocarrier access to plasmalemma vesicle associated protein (PLVAP), a marker found in caveolae in the lungs. The use of deformable nanocarriers to overcome that size cutoff is explored in this study. Lysozyme-dextran nanogels (NGs) are synthesized with ≈150 or ≈300 nm mean diameter. Atomic force microscopy indicates the NGs deform on complementary surfaces. Quartz crystal microbalance data indicate that NGs form softer monolayers (≈60 kPa) than polystyrene particles (≈8 MPa). NGs deform during flow through microfluidic channels, and modeling of NG extrusion through porous filters yields sieving diameters less than 25 nm for NGs with 150 and 300 nm hydrodynamic diameters. NGs of 150 and 300 nm diameter target PLVAP in mouse lungs while counterpart rigid polystyrene particles do not. The data in this study indicate a role for mechanical deformability in targeting large high-payload drug-delivery vehicles to sterically obscured targets like PLVAP.
Collapse
Affiliation(s)
- Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruce Braender
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Olivia Mcpherson
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martha E Grady
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun-Su Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin F Greineder
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Radu V Stan
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Shuvaev VV, Kiseleva RY, Arguiri E, Villa CH, Muro S, Christofidou-Solomidou M, Stan RV, Muzykantov VR. Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin. J Control Release 2017; 272:1-8. [PMID: 29292038 DOI: 10.1016/j.jconrel.2017.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/16/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Raisa Yu Kiseleva
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Carlos H Villa
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|