1
|
Mirkin CA, Langer R, Mrksich M, Margolin AA, Petrosko SH, Artzi N. Blueprints for Better Drugs: The Structural Revolution in Nanomedicine. ACS NANO 2025; 19:18889-18901. [PMID: 40359339 DOI: 10.1021/acsnano.5c06380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Structural nanomedicines are engineered constructs that arrange therapeutic components into well-defined architectures to maximize efficacy. Their multivalent, multifunctional design offers key advantages over unstructured formulations, including targeted delivery, expanded therapeutic windows, and enhanced target engagement. The mRNA COVID-19 vaccines exemplify their transformative potential. However, structural precision varies, and more well-defined architectures will streamline optimization, manufacturing, and regulation. Unlike small molecule drugs, nanomedicines within a batch are not identical. Identifying the most effective, least toxic structures will advance our understanding of structure-function relationships and therapeutic mechanisms. This work highlights structural nanomedicines─small molecules, nucleic acids, and biologics─to galvanize the field and drive innovation toward even safer, more effective treatments that benefit patients.
Collapse
Affiliation(s)
- Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
- CZ Biohub Chicago, LLC, Chicago, Illinois 60642, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Cellular and Developmental Biology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam A Margolin
- Flashpoint Therapeutics, Evanston, Illinois 60201, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Natalie Artzi
- Brigham and Women's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts 02215, United States
- Institute for Biomedical Engineering and Science, Biomedical Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Sarvepalli S, Pasika SR, Verma V, Thumma A, Bolla S, Nukala PK, Butreddy A, Bolla PK. A Review on the Stability Challenges of Advanced Biologic Therapeutics. Pharmaceutics 2025; 17:550. [PMID: 40430843 DOI: 10.3390/pharmaceutics17050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Advanced biotherapeutic systems such as gene therapy, mRNA lipid nanoparticles, antibody-drug conjugates, fusion proteins, and cell therapy have proven to be promising platforms for delivering targeted biologic therapeutics. Preserving the intrinsic stability of these advanced therapeutics is essential to maintain their innate structure, functionality, and shelf life. Nevertheless, various challenges and obstacles arise during formulation development and throughout the storage period due to their complex nature and sensitivity to various stress factors. Key stability concerns include physical degradation and chemical instability due to various factors such as fluctuations in pH and temperature, which results in conformational and colloidal instabilities of the biologics, adversely affecting their quality and therapeutic efficacy. This review emphasizes key stability issues associated with these advanced biotherapeutic systems and approaches to identify and overcome them. In gene therapy, the brittleness of viral vectors and gene encapsulation limits their stability, requiring the use of stabilizers, excipients, and lyophilization. Keeping cells viable throughout the whole cell therapy process, from culture to final formulation, is still a major difficulty. In mRNA therapeutics, stabilization strategies such as the optimization of mRNA nucleotides and lipid compositions are used to address the instability of both the mRNA and lipid nanoparticles. Monoclonal antibodies are colloidally and conformationally unstable. Hence, buffers and stabilizers are useful to maintain stability. Although fusion proteins and monoclonal antibodies share structural similarities, they show a similar pattern of instability. Antibody-drug conjugates possess issues with conjugation and linker stability. This review outlines the stability issues associated with advanced biotherapeutics and provides insights into the approaches to address these challenges.
Collapse
Affiliation(s)
- Sruthi Sarvepalli
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA
| | - Shashank Reddy Pasika
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Raebareli 226002, India
| | - Vartika Verma
- Laboratory of Translational Research in Nanomedicines, Lifecare Innovations Private Limited, Lucknow 226021, India
| | - Anusha Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sandeep Bolla
- Department of Statistical Programming, Fortrea, Durham, NC 27709, USA
| | - Pavan Kumar Nukala
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
3
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
4
|
Thijs V, Cloud GC, Gilchrist N, Parsons B, Tilvawala F, Ho J, Ruthnam L, Stanislaus V, Sprigg N, Walker M, Bath PM, Churilov L, Bernhardt J. Perispinal Etanercept to improve STroke Outcomes (PESTO): Protocol for a multicenter, international, randomized placebo-controlled trial. Eur Stroke J 2024; 9:789-795. [PMID: 38676623 PMCID: PMC11418453 DOI: 10.1177/23969873241249248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024] Open
Abstract
RATIONALE A large proportion of stroke survivors will have long-lasting, debilitating neurological impairments, yet few efficacious medical treatment options are available. Etanercept inhibits binding of tumor necrosis factor to its receptor and is used in the treatment of inflammatory conditions. Perispinal subcutaneous injection followed by a supine, head down position may bypass the blood brain barrier. In observational studies and one small randomized controlled trial the majority of patients showed improvement in multiple post stroke impairments. AIM Perispinal Etanercept to improve STroke Outcomes (PESTO) investigates whether perispinal subcutaneous injection of etanercept improves quality of life and is safe in patients with chronic, disabling, effects of stroke. METHODS AND DESIGN PESTO is a multicenter, international, randomized placebo-controlled trial. Adult participants with a history of stroke between 1 and 15 years before enrollment and a current modified Rankin scale between 2 and 5 who are otherwise eligible for etanercept are randomized 1:1 to single dose injection of etanercept or placebo. STUDY OUTCOMES The primary efficacy outcome is quality of life as measured using the Short Form 36 Health Inventory at day 28 after first injection. Safety outcomes include serious adverse events. SAMPLE SIZE TARGET A total of 168 participants assuming an improvement of the SF-36 in 11% of participants in the control arm and in 30% of participants in the intervention arm, 80% power and 5% alpha. DISCUSSION PESTO aims to provide level 1 evidence on the safety and efficacy of perispinal etanercept in patients with long-term disabling effects of stroke.
Collapse
Affiliation(s)
- Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Melbourne Medical School, University of Melbourne, Heidelberg/Parkville, VIC Australia
| | - Geoffrey C Cloud
- Department of Neuroscience, Central Clinical School, Monash University Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | | | - Brooke Parsons
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Forum Tilvawala
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Jan Ho
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Lara Ruthnam
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Vimal Stanislaus
- Department of Neuroscience, Central Clinical School, Monash University Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nikola Sprigg
- Stroke Trials Unit, Mental Health & Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Marion Walker
- Stroke Trials Unit, Mental Health & Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, Mental Health & Clinical Neuroscience, University of Nottingham, Nottingham, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Leonid Churilov
- Department of Medicine, Melbourne Medical School, University of Melbourne, Heidelberg/Parkville, VIC Australia
| | - Julie Bernhardt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
5
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
6
|
Zervou MI, Tarlatzis BC, Grimbizis GF, Spandidos DA, Niewold TB, Goulielmos GN. Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). Int J Mol Med 2024; 53:20. [PMID: 38186322 PMCID: PMC10781419 DOI: 10.3892/ijmm.2024.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.
Collapse
Affiliation(s)
- Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Basil C. Tarlatzis
- First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Grigoris F. Grimbizis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, 56403 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Timothy B. Niewold
- Barbara Volcker Center for Women and Rheumatic Disease, New York, NY 10021, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
7
|
Yamashita M, Takayasu M, Maruyama H, Hirayama K. The Immunobiological Agents for Treatment of Antiglomerular Basement Membrane Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2014. [PMID: 38004064 PMCID: PMC10673378 DOI: 10.3390/medicina59112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Combination therapy with glucocorticoids, cyclophosphamide, and plasmapheresis is recommended as the standard treatment for anti-glomerular basement membrane (anti-GBM) disease, but the prognosis of this disease remains poor. Several immunobiological agents have been administered or are expected to be useful for anti-GBM disease in light of refractory disease or the standard treatments' tolerability. Many data regarding the use of biologic agents for anti-GBM disease have accumulated, verifying the effectiveness and potential of biologic agents as a new treatment option for anti-GBM disease. Tumor necrosis factor (TNF) inhibitors were shown to be useful in animal studies, but these agents have no clinical use and were even shown to induce anti-GBM disease in several cases. Although the efficacy of the TNF-receptor antagonist has been observed in animal models, there are no published case reports of its clinical use. There are also no published reports of animal or clinical studies of anti-B-cell-activating factor, which is a member of the TNF family of agents. Anti-interleukin (IL)-6 antibodies have been demonstrated to have no effect on or to exacerbate nephritis in animal models. Anti-C5 inhibitor was observed to be useful in a few anti-GBM disease cases. Among the several immunobiological agents, only rituximab has been demonstrated to be useful in refractory or poor-tolerance patients or small uncontrolled studies. Rituximab is usually used in combination with steroids and plasma exchange and is used primarily as an alternative to cyclophosphamide, but there is insufficient evidence regarding the efficacy of rituximab for anti-GBM disease, and thus, randomized controlled studies are required.
Collapse
Affiliation(s)
| | | | | | - Kouichi Hirayama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan; (M.Y.); (M.T.); (H.M.)
| |
Collapse
|
8
|
Bojalil R, Ruíz-Hernández A, Villanueva-Arias A, Amezcua-Guerra LM, Cásarez-Alvarado S, Hernández-Dueñas AM, Rodríguez-Galicia V, Pavón L, Marquina B, Becerril-Villanueva E, Hernández-Pando R, Márquez-Velasco R. Two murine models of sepsis: immunopathological differences between the sexes-possible role of TGFβ1 in female resistance to endotoxemia. Biol Res 2023; 56:54. [PMID: 37875957 PMCID: PMC10594922 DOI: 10.1186/s40659-023-00469-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Endotoxic shock (ExSh) and cecal ligature and puncture (CLP) are models that induce sepsis. In this work, we investigated early immunologic and histopathologic changes induced by ExSh or CLP models in female and male mice. Remarkable results showed that females supported twice the LD100 of LPS for males, CLP survival and CFU counts were similar between genders, high circulating LPS levels in ExSh mice and low levels of IgM anti-LPS in males. In the serum of ExSh males, TNF and IL-6 increased in the first 6 h, in CLP males at 12 h. In the liver of ExSh mice, TNF increased at 1.5 and 12 h, IL-1 at 6 h. TGFβ1 increased in females throughout the study and at 12 h in males. In CLP mice, IL-6 decreased at 12 h, TGFβ1 increased at 6-12 h in males and at 12 h in females. In the lungs of ExSh males, IL-1β increased at 1.5-6 h and TGFβ1 at 12 h; in females, TNF decrease at 6 h and TGFβ1 increased from 6 h; in CLP females, TNF and IL-1β decreased at 12 h and 1.5 h, respectively, and TGFβ1 increased from 6 h; in males, TGFβ1 increased at 12 h. In the livers of ExSh mice, signs of inflammation were more common in males; in the CLP groups, inflammation was similar but less pronounced. ExSh females had leucocytes with TGFβ1. The lungs of ExSh males showed patches of hyaline membranes and some areas of inflammatory cells, similar but fewer and smaller lesions were seen in male mice with CLP. In ExSh females, injuries were less extent than in males, similar pulmonary lesions were seen in female mice with CLP. ExSh males had lower levels of TGFβ1 than females, and even lower levels were seen in CLP males. We conclude that the ExSh was the most lethal model in males, associated with high levels of free LPS, low IgM anti-LPS, exacerbated inflammation and target organ injury, while females showed early TGFβ1 production in the lungs and less tissue damage. We didn't see any differences between CLP mice.
Collapse
Affiliation(s)
- Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Armando Ruíz-Hernández
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Arturo Villanueva-Arias
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Manuel Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Sergio Cásarez-Alvarado
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente, Mexico City, Mexico
| | - Brenda Marquina
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
| |
Collapse
|
9
|
Goh XX, Tang PY, Tee SF. Meta-analysis of soluble tumour necrosis factor receptors in severe mental illnesses. J Psychiatr Res 2023; 165:180-190. [PMID: 37515950 DOI: 10.1016/j.jpsychires.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Tumour necrosis factor (TNF), as an innate immune defense molecule, functions through binding to TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2). Peripheral levels of soluble TNFR1 (sTNFR1) and soluble TNFR2 (sTNFR2) were widely measured in severe mental illnesses (SMIs) including schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD) but inconsistencies existed. Hence, the present meta-analysis was conducted to identify the overall association between plasma/serum sTNFR1 and sTNFR2 levels and SMIs. Published studies were searched using Pubmed and Scopus. Data were analysed using Comprehensive Meta-Analysis version 2. Hedges's g effect sizes and 95% confidence intervals were pooled using fixed-effect or random-effects models. Heterogeneity, publication bias and study quality were assessed. Sensitivity analysis and subgroup analysis were performed. Our findings revealed that sTNFR1 level was significantly higher in SMI, particularly in BD. The sTNFR2 level significantly elevated in SMI but with smaller effect size. These findings further support the association between altered immune system and inflammatory abnormalities in SMI, especially in patients with BD. Subgroup analysis showed that younger age of onset, longer illness duration and psychotropic medication raised both sTNFR levels, especially sTNFR1, as these factors may contribute to the activation of inflammation. Future studies were suggested to identify the causality between TNFR pathway and SCZ, BD and MDD respectively using homogenous group of each SMI, and to determine the longitudinal effect of each psychotropic medication on TNFR pathway.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia.
| |
Collapse
|
10
|
Ebrahimi SB, Samanta D. Engineering protein-based therapeutics through structural and chemical design. Nat Commun 2023; 14:2411. [PMID: 37105998 PMCID: PMC10132957 DOI: 10.1038/s41467-023-38039-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Protein-based therapeutics have led to new paradigms in disease treatment. Projected to be half of the top ten selling drugs in 2023, proteins have emerged as rivaling and, in some cases, superior alternatives to historically used small molecule-based medicines. This review chronicles both well-established and emerging design strategies that have enabled this paradigm shift by transforming protein-based structures that are often prone to denaturation, degradation, and aggregation in vitro and in vivo into highly effective therapeutics. In particular, we discuss strategies for creating structures with increased affinity and targetability, enhanced in vivo stability and pharmacokinetics, improved cell permeability, and reduced amounts of undesired immunogenicity.
Collapse
Affiliation(s)
- Sasha B Ebrahimi
- Drug Product Development-Steriles, GlaxoSmithKline, Collegeville, PA, 19426, USA.
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Li S, Li G, Li X, Wu F, Li L. Etanercept ameliorates psoriasis progression through regulating high mobility group box 1 pathway. Skin Res Technol 2023; 29:e13329. [PMID: 37113086 PMCID: PMC10234177 DOI: 10.1111/srt.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND As a common skin disease, psoriasis is related to inflammation and immune response. Due to the frequent recurrence of psoriasis, the treatment of psoriasis remains a clinical challenge. As an effective tumor necrosis factor-alpha (TNF-α) inhibitor, etanercept has been used for the treatment of psoriasis. However, some patients with psoriasis have no response to etanercept or discontinue treatment. To improve the therapeutic effect of etanercept, searching the potential biomarkers and investigating the related mechanisms of etanercept in the treatment of psoriasis are vital. MATERIALS AND METHODS We stimulated HaCaT cells with lipopolysaccharide (LPS) to generate cellular psoriatic changes and established an imiquimod (IMQ)-induced psoriasis-like mouse model, and then used an etanercept to treat cell and mouse model. RESULTS Etanercept alleviated IMQ-induced pathological changes and inflammation, and it also decreased the protein expression of high mobility group box 1 (HMGB1), receptor for advanced glycation end-products, and toll-like receptor 4. Moreover, the results of in vitro experiments showed that etanercept inhibited proliferation and inflammation, and promoted cell cycle arrest and apoptosis in LPS-treated HaCaT cells. Knockdown of HMGB1 further enhanced the inhibitory effects of etanercept on LPS-treated HaCaT cell viability and inflammation, while overexpression of HMGB1 notably reversed the inhibitory effects of etanercept on LPS-induced HaCaT cell viability and inflammation. CONCLUSION Etanercept inhibited proliferation and inflammation and promoted cell cycle arrest and apoptosis in LPS-induced HaCaT cells, and etanercept ameliorated inflammation in a psoriasis-like mouse model.
Collapse
Affiliation(s)
- Shu Li
- Department of DermatologyTaizhou People's HospitalTaizhouP. R. China
| | - Guangli Li
- Internal Medicine DepartmentFushun Maternal and Child Health HospitalFushunP. R. China
| | - Xiaoyan Li
- Department of DermatologyLianshui County People's HospitalHuai 'anP. R. China
| | - Fan Wu
- Department of DermatologyLianshui County People's HospitalHuai 'anP. R. China
| | - Ling Li
- Department of DermatologyLianshui County People's HospitalHuai 'anP. R. China
| |
Collapse
|
12
|
Davé E, Durrant O, Dhami N, Compson J, Broadbridge J, Archer S, Maroof A, Whale K, Menochet K, Bonnaillie P, Barry E, Wild G, Peerboom C, Bhatta P, Ellis M, Hinchliffe M, Humphreys DP, Heywood SP. TRYBE®: an Fc-free antibody format with three monovalent targeting arms engineered for long in vivo half-life. MAbs 2023; 15:2160229. [PMID: 36788124 PMCID: PMC9937000 DOI: 10.1080/19420862.2022.2160229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
TrYbe® is an Fc-free therapeutic antibody format, capable of engaging up to three targets simultaneously, with long in vivo half-life conferred by albumin binding. This format is shown by small-angle X-ray scattering to be conformationally flexible with favorable 'reach' properties. We demonstrate the format's broad functionality by co-targeting of soluble and cell surface antigens. The benefit of monovalent target binding is illustrated by the lack of formation of large immune complexes when co-targeting multivalent antigens. TrYbes® are manufactured using standard mammalian cell culture and protein A affinity capture processes. TrYbes® have been formulated at high concentrations and have favorable drug-like properties, including stability, solubility, and low viscosity. The unique functionality and inherent developability of the TrYbe® makes it a promising multi-specific antibody fragment format for antibody therapy.
Collapse
Affiliation(s)
- Emma Davé
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | - Neha Dhami
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | | | | | - Kevin Whale
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | - Emily Barry
- Early Solutions, UCB Biopharma UK, Slough, UK
| | - Gavin Wild
- PV Supply and Technology Solutions, UCB Biopharma UK, Slough, UK
| | - Claude Peerboom
- PV Supply and Technology Solutions, UCB Biopharma SRL, Braine-l'Alleud, Belgium, EU
| | | | - Mark Ellis
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | - Sam P. Heywood
- Early Solutions, UCB Biopharma UK, Slough, UK,CONTACT Sam P. Heywood Early Solutions, UCB Biopharma UK, 208 Bath Road, Slough, SL1 3XE, Slough, UK
| |
Collapse
|
13
|
Hamacher J, Hadizamani Y, Huwer H, Moehrlen U, Bally L, Stammberger U, Wendel A, Lucas R. Characteristics of inflammatory response and repair after experimental blast lung injury in rats. PLoS One 2023; 18:e0281446. [PMID: 36928833 PMCID: PMC10019677 DOI: 10.1371/journal.pone.0281446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/17/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Blast-induced lung injury is associated with inflammatory, which are characterised by disruption of the alveolar-capillary barrier, haemorrhage, pulmonary infiltrateration causing oedema formation, pro-inflammatory cytokine and chemokine release, and anti-inflammatory counter-regulation. The objective of the current study was to define sequence of such alterations in with establishing blast-induced lung injury in rats using an advanced blast generator. METHODS Rats underwent a standardized blast wave trauma and were euthanised at defined time points. Non-traumatised animals served as sham controls. Obtained samples from bronchoalveolar lavage fluid (BALF) at each time-point were assessed for histology, leukocyte infiltration and cytokine/chemokine profile. RESULTS After blast lung injury, significant haemorrhage and neutrophil infiltration were observed. Similarly, protein accumulation, lactate dehydrogenase activity (LDH), alveolar eicosanoid release, matrix metalloproteinase (MMP)-2 and -9, pro-Inflammatory cytokines, including tumour necrosis factor (TNF) and interleukin (IL) -6 raised up. While declining in the level of anti-inflammatory cytokine IL-10 occurred. Ultimately, pulmonary oedema developed that increased to its maximum level within the first 1.5 h, then recovered within 24 h. CONCLUSION Using a stablished model, can facilitate the study of inflammatory response to blast lung injury. Following the blast injury, alteration in cytokine/chemokine profile and activity of cells in the alveolar space occurs, which eventuates in alveolar epithelial barrier dysfunction and oedema formation. Most of these parameters exhibit time-dependent return to their basal status that is an indication to resilience of lungs to blast-induced lung injury.
Collapse
Affiliation(s)
- Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany
- * E-mail:
| | - Yalda Hadizamani
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
- Department of Thoracic and Cardiovascular Surgery of the University Hospital of Saarland, Homburg, Saarland, Germany
| | - Ueli Moehrlen
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Pediatric Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Lia Bally
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Uz Stammberger
- Lungen-und Atmungsstiftung, Bern, Switzerland
- STM ClinMedRes Consulting, Basel, Switzerland
| | - Albrecht Wendel
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States of America
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
14
|
Seufert AL, Hickman JW, Traxler SK, Peterson RM, Waugh TA, Lashley SJ, Shulzhenko N, Napier RJ, Napier BA. Enriched dietary saturated fatty acids induce trained immunity via ceramide production that enhances severity of endotoxemia and clearance of infection. eLife 2022; 11:e76744. [PMID: 36264059 PMCID: PMC9642993 DOI: 10.7554/elife.76744] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Trained immunity is an innate immune memory response that is induced by a primary inflammatory stimulus that sensitizes monocytes and macrophages to a secondary pathogenic challenge, reprogramming the host response to infection and inflammatory disease. Dietary fatty acids can act as inflammatory stimuli, but it is unknown if they can act as the primary stimuli to induce trained immunity. Here we find mice fed a diet enriched exclusively in saturated fatty acids (ketogenic diet; KD) confer a hyper-inflammatory response to systemic lipopolysaccharide (LPS) and increased mortality, independent of diet-induced microbiome and hyperglycemia. We find KD alters the composition of the hematopoietic stem cell compartment and enhances the response of bone marrow macrophages, monocytes, and splenocytes to secondary LPS challenge. Lipidomics identified enhanced free palmitic acid (PA) and PA-associated lipids in KD-fed mice serum. We found pre-treatment with physiologically relevant concentrations of PA induces a hyper-inflammatory response to LPS in macrophages, and this was dependent on the synthesis of ceramide. In vivo, we found systemic PA confers enhanced inflammation and mortality in response to systemic LPS, and this phenotype was not reversible for up to 7 days post-PA-exposure. Conversely, we find PA exposure enhanced clearance of Candida albicans in Rag1-/- mice. Lastly, we show that oleic acid, which depletes intracellular ceramide, reverses PA-induced hyper-inflammation in macrophages and enhanced mortality in response to LPS. These implicate enriched dietary SFAs, and specifically PA, in the induction of long-lived innate immune memory and highlight the plasticity of this innate immune reprogramming by dietary constituents.
Collapse
Affiliation(s)
- Amy L Seufert
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - James W Hickman
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Ste K Traxler
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Rachael M Peterson
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | - Trent A Waugh
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| | | | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State UniversityCorvallisUnited States
| | - Ruth J Napier
- VA Portland Health Care SystemPortlandUnited States
- Department of Molecular Microbiology and Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Brooke A Napier
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortlandUnited States
| |
Collapse
|
15
|
Majerowski J, Gordon KB. Tumor Necrosis Factor Inhibitors. COMPREHENSIVE DERMATOLOGIC DRUG THERAPY 2021:287-301.e7. [DOI: 10.1016/b978-0-323-61211-1.00026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Plater-Zyberk C, Joosten LAB, Helsen MMA, Koenders MI, Baeuerle PA, van den Berg WB. Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor alpha-independent mouse model. Ann Rheum Dis 2009; 68:721-8. [PMID: 18495731 DOI: 10.1136/ard.2007.085431] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE A pathogenic role for granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)17 in rheumatoid arthritis (RA) has been suggested. In previously published work, the therapeutic potentials of GM-CSF and IL17 blockade in arthritis have been described. In the present study, the simultaneous blockade of both pathways in a mouse model for chronic arthritis was investigated to identify whether this double blockade provides a superior therapeutic efficacy. METHODS A chronic relapsing arthritis was induced in C57Bl/6 wild type (WT) and C57Bl/6 genetically deficient for IL17 receptor (IL17R knockout (KO)) mice by intra-articular injection of Streptococcal cell wall (SCW) fragments into knees on days 0, 7, 14 and 21. Treatments (intraperitoneal) were given weekly starting on day 14. Animals were analysed for inflammation, joint damage and a range of inflammatory mediators. RESULTS Joint swelling and cartilage damage were significantly reduced in the IL17R KO mice and in WT mice receiving anti-GM-CSF neutralising mAb 22E9 compared to isotype control antibodies. The therapeutic effect was significantly more pronounced in mice where IL17 and GM-CSF pathways were inhibited (eg, IL17R KO mice treated with 22E9 mAb). Tumour necrosis factor (TNF)alpha blockade had essentially no effect. CONCLUSION Our data further support the therapeutic potentials of GM-CSF and IL17 blockade in a RA model that is no longer responsive to an established TNFalpha antagonist, moreover, our results suggest that concomitant inhibition of both pathways may provide the basis for a highly effective treatment of chronic RA in patients that are resistant to treatment by TNFalpha inhibitors.
Collapse
|
17
|
Beals JM, Shanafelt AB. Enhancing exposure of protein therapeutics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2006; 3:87-94. [PMID: 24980106 DOI: 10.1016/j.ddtec.2006.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Therapeutic proteins have made a major impact on medicine, with significant expansion in the past two decades. The medicinal attributes of these agents, particularly their efficacy and often their safety profile, make protein therapeutics attractive, despite the general necessity of invasive (parenteral) delivery. This perceived hurdle has been a primary component in limiting expansion of this class of drug therapies. Strategies that reduce the frequency of administration directly provide greater convenience to the patient, and potentially greater efficacy, that can yield a significant treatment advantage.:
Collapse
Affiliation(s)
- John M Beals
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Armen B Shanafelt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
18
|
Moreland LW. Drugs that block tumour necrosis factor: experience in patients with rheumatoid arthritis. PHARMACOECONOMICS 2004; 22:39-53. [PMID: 15157003 DOI: 10.2165/00019053-200422001-00005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three biological response modifiers that inhibit tumour necrosis factor-alpha (TNF-alpha) are approved for treating rheumatoid arthritis (RA). Etanercept is a fusion protein comprising two soluble human TNF-alpha receptors linked to the Fc fragment of human immunoglobulin G1. Infliximab is a chimeric (human/mouse) monoclonal antibody and adalimumab is a humanised monoclonal antibody. In placebo-controlled trials in established disease-modifying antirheumatic drug (DMARD)-refractory RA, the anti-TNF-alpha agents have reduced disease activity, as monotherapy or in combination with methotrexate. In long-term, open-label studies with etanercept or adalimumab, clinical response was sustained for up to 5 years. In early RA, etanercept has similar efficacy to methotrexate. However, etanercept was more effective than methotrexate in preventing radiographic progression. Preventing or delaying disease progression and disability with etanercept therapy in early RA may reduce costs associated with long-term disease outcomes. Data also suggest a benefit of infliximab plus methotrexate or adalimumab plus methotrexate in early RA. All three agents have been shown to improve functionality as assessed by health assessment questionnaire (HAQ) disability scores. Health-related quality of life is also improved in terms of physical and mental health and vitality. Furthermore, etanercept and adalimumab are associated with a reduction in fatigue. Long-term etanercept or infliximab therapy is associated with increased job employment and etanercept also reduces healthcare utilisation. Mild, transient injection-site reactions occur in about 33% of patients treated with etanercept and 20% of patients treated with adalimumab. In patients treated with infliximab, 16-20% have infusion reactions. The incidence of serious infection associated with etanercept and infliximab was low, about 2-3% in etanercept studies of up to 5 years duration, and 5% in a survey of more than 10 infliximab trials. This paper reviews the evidence for efficacy, safety and effectiveness of anti-TNF-alpha agents in RA.
Collapse
Affiliation(s)
- Larry W Moreland
- University of Alabama at Birmingham, Department of Medicine, Division of Clinical Immunology and Rheumatology, Birmingham, Alabama 35294-7201, USA.
| |
Collapse
|
19
|
Chevrel G, Garnero P, Miossec P. Addition of interleukin 1 (IL1) and IL17 soluble receptors to a tumour necrosis factor alpha soluble receptor more effectively reduces the production of IL6 and macrophage inhibitory protein-3alpha and increases that of collagen in an in vitro model of rheumatoid synoviocyte activation. Ann Rheum Dis 2002; 61:730-3. [PMID: 12117682 PMCID: PMC1754206 DOI: 10.1136/ard.61.8.730] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate the usefulness of combination treatment with cytokine inhibitors. METHODS A simplified model was set up to evaluate the effect of tumour necrosis factor alpha (TNFalpha) soluble receptors (sTNFR) used alone and in combination with soluble interleukin 1 receptor (sIL1R) and sIL17R on the production of markers of inflammation (IL6), of migration of dendritic cells (macrophage inhibitory protein-3alpha (MIP-3alpha)), and of matrix synthesis (C-propeptide of type 1 collagen (P1CP)). Synoviocytes were stimulated with supernatants of activated peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA). Soluble receptors (sR) were preincubated at 1 gammag/ml alone or in combination with the supernatants before addition to RA synoviocytes. IL6, MIP-3alpha, and P1CP production was measured by enzyme linked immunosorbent assay (ELISA) in 48 hour synoviocyte supernatants. RESULTS IL6 production decreased by 16% with sTNFR alone compared with no sTNFR (p<0.001) and by 41% with the combination of the three sR (p<0.001). MIP-3alpha production decreased by 77% with sTNFR alone compared with no sTNFR (p<0.001) and by 98% with the combination of the three sR (p<0.001). In the presence of sTNFR alone, P1CP production increased by 25% compared with no sR (p<0.01). The combination of the three sR increased P1CP production by 48% (p<0.01). CONCLUSION The effect of sTNFR on IL6, MIP-3alpha, and P1CP production by RA synoviocytes stimulated by activated PBMC supernatants was further enhanced when combined with sIL1R and sIL17R.
Collapse
Affiliation(s)
- G Chevrel
- Department of Immunology, Hôpital E Herriot, 69437 Lyon Cedex 03, France
| | | | | |
Collapse
|
20
|
Quattrocchi E, Walmsley M, Browne K, Williams RO, Marinova-Mutafchieva L, Buurman W, Butler DM, Feldmann M. Paradoxical Effects of Adenovirus-Mediated Blockade of TNF Activity in Murine Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Collagen-induced arthritis (CIA) is an experimental model of arthritis widely used to dissect the pathogenesis of human rheumatoid arthritis and to identify potential therapeutic targets. Among these, TNF-α has been recognized to play an important role. Here we investigate the feasibility and therapeutic efficacy of prolonged blockade of TNF-α activity through the adenovirus-mediated gene delivery of a dimeric chimeric human p55 TNFR-IgG fusion protein and compare it to protein therapy in established CIA. A single i.v. administration of the replication-deficient adenovirus yielded microgram serum levels of the chimeric fusion protein and ameliorated CIA for 10 days. Subsequently, benefit was lost and a rebound to greater inflammatory activity was observed despite the continual presence of bioactive TNFR fusion protein. A similar trend was also observed in mice injected directly with comparable amounts of a human TNFR-IgG fusion protein, whereas the administration of a control adenovirus-encoding β-galactosidase or of a control human IgG1 protein did not significantly affect the disease course. The mechanisms of the rebound of CIA were investigated, and augmented Ab response to collagen type II and TNFR were identified as potential causes. Our results confirm the feasibility of adenovirus-mediated gene delivery of cytokine inhibitors in animal models of autoimmune diseases for investigational purposes and highlight the importance of prolonged studies. Further investigations are needed to optimize ways of exploiting the potential of adenoviral gene therapy in RA.
Collapse
Affiliation(s)
| | - Marita Walmsley
- *Kennedy Institute of Rheumatology, London, United Kingdom; and
| | - Kylie Browne
- *Kennedy Institute of Rheumatology, London, United Kingdom; and
| | | | | | - Wim Buurman
- †Department of Surgery, University of Limburg, Maastricht, The Netherlands
| | - Debra M. Butler
- *Kennedy Institute of Rheumatology, London, United Kingdom; and
| | - Marc Feldmann
- *Kennedy Institute of Rheumatology, London, United Kingdom; and
| |
Collapse
|
21
|
Carson WE, Yu H, Dierksheide J, Pfeffer K, Bouchard P, Clark R, Durbin J, Baldwin AS, Peschon J, Johnson PR, Ku G, Baumann H, Caligiuri MA. A Fatal Cytokine-Induced Systemic Inflammatory Response Reveals a Critical Role for NK Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.4943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The mechanism of cytokine-induced shock remains poorly understood. The combination of IL-2 and IL-12 has synergistic antitumor activity in vivo, yet has been associated with significant toxicity. We examined the effects of IL-2 plus IL-12 in a murine model and found that the daily, simultaneous administration of IL-2 and IL-12 resulted in shock and 100% mortality within 4 to 12 days depending on the strain employed. Mice treated with IL-2 plus IL-12 exhibited NK cell apoptosis, pulmonary edema, degenerative lesions of the gastrointestinal tract, and elevated serum levels of proinflammatory cytokines and acute phase reactants. The actions of TNF-α, IFN-γ, macrophage-inflammatory protein-1α, IL-1, IL-1-converting enzyme, Fas, perforin, inducible nitric oxide synthase, and STAT1 did not contribute to the observed toxicity, nor did B or T cells. However, toxicity and death from treatment with IL-2 plus IL-12 could be completely abrogated by elimination of NK cells. These results suggest that the fatal systemic inflammatory response induced by this cytokine treatment is critically dependent upon NK cells, but does not appear to be mediated by the known effector molecules of this cellular compartment. These data may provide insight into the pathogenesis of cytokine-induced shock in humans.
Collapse
Affiliation(s)
- William E. Carson
- *Department of Surgery, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- †Department of Medical Microbiology and Immunology, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Haixin Yu
- †Department of Medical Microbiology and Immunology, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Julie Dierksheide
- ‡Department of Pathology, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Klaus Pfeffer
- §Institute for Medicine, Microbiology, and Hygiene, Munich, Germany
| | | | | | | | - Albert S. Baldwin
- **Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, Chapel Hill, NC 27514
| | - Jacques Peschon
- ††Immunex Research and Development Corporation, Seattle, WA 98101
| | | | - George Ku
- ‡‡Vertex Pharmaceuticals, Cambridge, MA 02139; and
| | | | - Michael A. Caligiuri
- †Department of Medical Microbiology and Immunology, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- ¶¶Department of Medicine, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| |
Collapse
|
22
|
Chirinos-Rojas CL, Steward MW, Partidos CD. A Peptidomimetic Antagonist of TNF-α-Mediated Cytotoxicity Identified from a Phage-Displayed Random Peptide Library. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Phage-displayed peptide libraries represent a vast collection of peptide sequences that can be used to identify novel therapeutic molecules. In this report, a 15-mer phage-displayed peptide library was used to identify potential TNF-α antagonists. After direct interaction of recombinant human TNF-α with the library, four randomly selected phage clones were shown to inhibit in a dose-dependent fashion both mouse and human TNF-α-induced cytotoxicity in vitro. DNA sequencing of the positive clones revealed a common amino acid sequence that does not bear any structural similarity to the known primary structures of the extracellular domains of either 55-kDa or 75-kDa TNF receptors. This sequence was synthesized, and the peptidomimotope was shown i) to bind to the recombinant human TNF-α using surface plasmon resonance (biosensor) technology and ii) to inhibit both recombinant mouse and human TNF-α-induced cytotoxicity in vitro in a dose-dependent fashion.
These findings highlight the potential of phage-displayed random peptide libraries for the identification of novel low molecular antagonistic molecules that can block the biologic activities of TNF-α.
Collapse
Affiliation(s)
- Carlos L. Chirinos-Rojas
- *Department of Infections and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; and
| | - Michael W. Steward
- *Department of Infections and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; and
| | - Charalambos D. Partidos
- †Department of Pathology and Infectious Diseases, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
23
|
Peschon JJ, Torrance DS, Stocking KL, Glaccum MB, Otten C, Willis CR, Charrier K, Morrissey PJ, Ware CB, Mohler KM. TNF Receptor-Deficient Mice Reveal Divergent Roles for p55 and p75 in Several Models of Inflammation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.2.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The pleiotropic activities of the potent proinflammatory cytokine TNF are mediated by two structurally related, but functionally distinct, receptors, p55 and p75, that are coexpressed on most cell types. The majority of biologic responses classically attributed to TNF are mediated by p55. In contrast, p75 has been proposed to function as both a TNF antagonist by neutralizing TNF and as a TNF agonist by facilitating the interaction between TNF and p55 at the cell surface. We have examined the roles of p55 and p75 in mediating and modulating the activity of TNF in vivo by generating and examining mice genetically deficient in these receptors. Selective deficits in several host defense and inflammatory responses are observed in mice lacking p55 or both p55 and p75, but not in mice lacking p75. In these models, the activity of p55 is not impaired by the absence of p75, arguing against a physiologic role for p75 as an essential element of p55-mediated signaling. In contrast, exacerbated pulmonary inflammation and dramatically increased endotoxin induced serum TNF levels in mice lacking p75 suggest a dominant role for p75 in suppressing TNF-mediated inflammatory responses. In summary, these data help clarify the biologic roles of p55 and p75 in mediating and modulating the biologic activity of TNF and provide genetic evidence for an antagonistic role of p75 in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Carol Otten
- †Immunobiology, Immunex Corp., Seattle, WA 98101
| | | | | | | | | | | |
Collapse
|