1
|
Zhou J, Li L, Wu B, Feng Z, Lu Y, Wang Z. MST1/2: Important regulators of Hippo pathway in immune system associated diseases. Cancer Lett 2024; 587:216736. [PMID: 38369002 DOI: 10.1016/j.canlet.2024.216736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The Hippo signaling pathway is first found in Drosophila and is highly conserved in evolution. Previous studies on this pathway in mammals have revealed its key role in cell proliferation and differentiation, organ size control, and carcinogenesis. Apart from these, recent findings indicate that mammalian Ste20-like kinases 1 and 2 (MST1/2) have significant effects on immune regulation. In this review, we summarize the updated understanding of how MST1/2 affect the regulation of the immune system and the specific mechanism. The effect of MST1/2 on immune cells and its role in the tumor immune microenvironment can alter the body's response to tumor cells. The relationship between MST1/2 and the immune system suggests new directions in the manipulation of immune responses for clinical immunotherapy, especially for tumor treatment.
Collapse
Affiliation(s)
- Jingjing Zhou
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lanfang Li
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Jing'an District, Shanghai, 200040, China
| | - Zhen Feng
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zuoyun Wang
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Lin X, Krishnamoorthy P, Walker EC, Joshi H, Morley SC. Expression of non-phosphorylatable S5A-L-plastin exerts phenotypes distinct from L-plastin deficiency during podosome formation and phagocytosis. Front Cell Dev Biol 2023; 11:1020091. [PMID: 37138794 PMCID: PMC10150066 DOI: 10.3389/fcell.2023.1020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction: The actin cytoskeleton remodels to enable diverse processes essential to immunity, such as cell adhesion, migration and phagocytosis. A panoply of actin-binding proteins regulate these rapid rearrangements to induce actin-based shape changes and to generate force. L-plastin (LPL) is a leukocyte-specific, actin-bundling protein that is regulated in part by phosphorylation of the Ser-5 residue. LPL deficiency in macrophages impairs motility, but not phagocytosis; we recently found that expression of LPL in which the S5 residue is converted to a non-phosphorylatable alanine (S5A-LPL) resulted in diminished phagocytosis, but unimpaired motility. Methods: To provide mechanistic insight into these findings, we now compare the formation of podosomes (an adhesive structure) and phagosomes in alveolar macrophages derived from wild-type (WT), LPL-deficient, or S5A-LPL mice. Both podosomes and phagosomes require rapid remodeling of actin, and both are force-transmitting. Actin rearrangement, force generation, and signaling rely upon recruitment of many actin-binding proteins, including the adaptor protein vinculin and the integrin-associated kinase Pyk2. Prior work suggested that vinculin localization to podosomes was independent of LPL, while Pyk2 was displaced by LPL deficiency. We therefore chose to compare vinculin and Pyk2 co-localization with F-actin at sites of adhesion of phagocytosis in AMs derived from WT, S5A-LPL or LPL-/- mice, using Airyscan confocal microscopy. Results: As described previously, podosome stability was significantly disrupted by LPL deficiency. In contrast, LPL was dispensable for phagocytosis and was not recruited to phagosomes. Recruitment of vinculin to sites of phagocytosis was significantly enhanced in cells lacking LPL. Expression of S5A-LPL impeded phagocytosis, with reduced appearance of ingested bacteria-vinculin aggregates. Discussion: Our systematic analysis of the regulation of LPL during podosome vs. phagosome formation illuminates essential remodeling of actin during key immune processes.
Collapse
Affiliation(s)
- Xue Lin
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Praveen Krishnamoorthy
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, United States
| | - Emma C. Walker
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Hemant Joshi
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Sharon Celeste Morley,
| |
Collapse
|
3
|
Linehan JB, Zepeda JL, Mitchell TA, LeClair EE. Follow that cell: leukocyte migration in L-plastin mutant zebrafish. Cytoskeleton (Hoboken) 2022; 79:26-37. [PMID: 35811499 DOI: 10.1002/cm.21717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Actin assemblies are important in motile cells such as leukocytes which form dynamic plasma membrane extensions or podia. L-plastin (LCP1) is a leukocyte-specific calcium-dependent actin-bundling protein that, in mammals, is known to affect immune cell migration. Previously, we generated CRISPR/Cas9 engineered zebrafish lacking L-plastin (lcp1-/-) and reported that they had reduced survival to adulthood, suggesting that lack of this actin-bundler might negatively affect the immune system. To test this hypothesis, we examined the distribution and migration of neutrophils and macrophages in the transparent tail of early zebrafish larvae using cell-specific markers and an established wound-migration assay. Knockout larvae were similar to their heterozygous siblings in having equal body sizes and comparable numbers of neutrophils in caudal hematopoietic tissue at two days post-fertilization, indicating no gross defect in neutrophil production or developmental migration. When stimulated by a tail wound, all genotypes of neutrophils were equally migratory in a two-hour window. However for macrophages we observed both migration defects and morphological differences. L-plastin knockout macrophages (lcp1 -/-) still homed to wounds but were slower, less directional and had a star-like morphology with many leading and trailing projections. In contrast, heterozygous macrophages lcp1 (+/-) were faster, more directional, and had a streamlined, slug-like morphology. Overall, these findings show that in larval zebrafish L-plastin knockout primarily affects the macrophage response with possible consequences for organismal immunity. Consistent with our observations, we propose a model in which cytoplasmic L-plastin negatively regulates macrophage integrin adhesion by holding these transmembrane heterodimers in a 'clasped', inactive form and is a necessary part of establishing macrophage polarity during chemokine-induced motility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- J B Linehan
- Department of Biological Sciences, DePaul University, USA
| | - J L Zepeda
- Department of Biological Sciences, DePaul University, USA
| | - T A Mitchell
- Department of Biological Sciences, DePaul University, USA
| | - E E LeClair
- Department of Biological Sciences, DePaul University, USA
| |
Collapse
|
4
|
Joshi H, Morley SC. Efficient T Cell Migration and Activation Require L-Plastin. Front Immunol 2022; 13:916137. [PMID: 35844504 PMCID: PMC9277003 DOI: 10.3389/fimmu.2022.916137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Rapid re-organization of the actin cytoskeleton supports T-cell trafficking towards immune sites and interaction with antigen presenting cells (APCs). F-actin rearrangement enables T-cell trafficking by stabilizing adhesion to vascular endothelial cells and promoting transendothelial migration. T-cell/APC immune synapse (IS) maturation also relies upon f-actin-anchored LFA-1:ICAM-1 ligation. Therefore, efficient T-cell responses require tight regulation of f-actin dynamics. In this review, we summarize how the actin-bundling protein L-plastin (LPL) regulates T-cell activation and migration. LPL enhances f-actin polymerization and also directly binds to the β2 chain of the integrin LFA-1 to support intercellular adhesion and IS formation in human and murine T cells. LPL- deficient T cells migrate slowly in response to chemo-attractants such as CXCL12, CCL19, and poorly polarize towards ICAM-1. Loss of LPL impairs thymic egress and intranodal motility. LPL is also required for T-cell IS maturation with APCs, and therefore for efficient cytokine production and proliferation. LPL-/- mice are less susceptible to T-cell mediated pathologies, such as allograft rejection and experimental autoimmune encephalomyelitis (EAE). LPL activity is regulated by its N-terminal “headpiece”, which contains serine and threonine phosphorylation and calcium- and calmodulin-binding sites. LPL phosphorylation is required for lamellipodia formation during adhesion and migration, and also for LFA-1 clustering during IS formation. However, the precise molecular interactions by which LPL supports T-cell functional responses remain unclear. Future studies elucidating LPL-mediated regulation of T-cell migration and/or activation may illuminate pathways for therapeutic targeting in T-cell-mediated diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Sharon Celeste Morley,
| |
Collapse
|
5
|
Allosteric regulation controls actin-bundling properties of human plastins. Nat Struct Mol Biol 2022; 29:519-528. [PMID: 35589838 DOI: 10.1038/s41594-022-00771-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022]
Abstract
Plastins/fimbrins are conserved actin-bundling proteins contributing to motility, cytokinesis and other cellular processes by organizing strikingly different actin assemblies as in aligned bundles and branched networks. We propose that this ability of human plastins stems from an allosteric communication between their actin-binding domains (ABD1/2) engaged in a tight spatial association. Here we show that ABD2 can bind actin three orders of magnitude stronger than ABD1, unless the domains are involved in an equally strong inhibitory engagement. A mutation mimicking physiologically relevant phosphorylation at the ABD1-ABD2 interface greatly weakened their association, dramatically potentiating actin cross-linking. Cryo-EM reconstruction revealed the ABD1-actin interface and enabled modeling of the plastin bridge and domain separation in parallel bundles. We predict that a strong and tunable allosteric inhibition between the domains allows plastins to modulate the cross-linking strength, contributing to remodeling of actin assemblies of different morphologies defining the unique place of plastins in actin organization.
Collapse
|
6
|
Al-Mathkour MM, Dwead AM, Alp E, Boston AM, Cinar B. The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility. Sci Rep 2022; 12:3840. [PMID: 35264657 PMCID: PMC8907295 DOI: 10.1038/s41598-022-07790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.
Collapse
Affiliation(s)
- Marwah M Al-Mathkour
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Abdulrahman M Dwead
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Esma Alp
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Ava M Boston
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Bekir Cinar
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
8
|
Chellaiah MA. L-Plastin Phosphorylation: Possible Regulation by a TNFR1 Signaling Cascade in Osteoclasts. Cells 2021; 10:2432. [PMID: 34572081 PMCID: PMC8464874 DOI: 10.3390/cells10092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvβ3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
WASP and Mst1 coregulate B-cell development and B-cell receptor signaling. Blood Adv 2021; 4:573-585. [PMID: 32045478 DOI: 10.1182/bloodadvances.2018027870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/11/2019] [Indexed: 12/25/2022] Open
Abstract
Mst1 is a serine/threonine kinase involved in cell survival, proliferation, apoptosis, and tumorigenesis. In mice, Mst1 regulates actin dynamics required for T-cell adhesion and migration, which correlate with thymic egress and entry into lymphatic tissue. The role of Mst1 in B cells and how it may control actin-dependent processes has not been well characterized. Wiskott-Aldrich syndrome protein (WASP) deficiency only moderately affects development and B-cell receptor (BCR) signaling, suggesting WASP likely associates with other molecules. We investigated whether Mst1 associates with WASP to regulate B-cell development and activation. Experimenting on Mst1/WASP double knockout (DKO) mice, we found a severe defect in the bone marrow B-cell development, and BCR signaling in the DKO mice was severely reduced. Even though WASP or Mst1 could influence the early B-cell activation, we found that the early activation events such as B-cell spreading, BCR clustering, and BCR signaling were much more impaired in the B cells from DKO mice. Furthermore, reciprocal regulation between Mst1 and WASP was observed in WASP and Mst1 KO mice, whereby the localization and function of phosphorylated WASP were affected in Mst1 KO mice. Most importantly, Mst1 inhibits the expression of WASP by decreasing the expression of WASP-interacting protein. Interestingly, we also found that WASP deficiency in patients and mice interferes with phosphorylated Mst1 localization and therefore function in B cells. Overall, our study provides a partner for WASP to regulate B-cell development and BCR signaling, as well as the reciprocal regulating molecular mechanism of one another.
Collapse
|
10
|
Anaya EP, Lin X, Todd EM, Szasz TP, Morley SC. Novel Mouse Model Reveals That Serine Phosphorylation of L-Plastin Is Essential for Effective Splenic Clearance of Pneumococcus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2135-2145. [PMID: 33858961 DOI: 10.4049/jimmunol.2000899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
Asplenia imparts susceptibility to life-threatening sepsis with encapsulated bacteria, such as the pneumococcus. However, the cellular components within the splenic environment that guard against pneumococcal bacteremia have not been defined. The actin-bundling protein L-plastin (LPL) is essential for the generation of marginal zone B cells and for anti-pneumococcal host defense, as revealed by a mouse model of genetic LPL deficiency. In independent studies, serine phosphorylation of LPL at residue 5 (S5) has been described as a key "switch" in regulating LPL actin binding and subsequent cell motility, although much of the data are correlative. To test the importance of S5 phosphorylation in LPL function, and to specifically assess the requirement of LPL S5 phosphorylation in anti-pneumococcal host defense, we generated the "S5A" mouse, expressing endogenous LPL bearing a serine-to-alanine mutation at this position. S5A mice were bred to homozygosity, and LPL was expressed at levels equivalent to wild-type, but S5 phosphorylation was absent. S5A mice exhibited specific impairment in clearance of pneumococci following i.v. challenge, with 10-fold-higher bacterial bloodstream burden 24 h after challenge compared with wild-type or fully LPL-deficient animals. Defective bloodstream clearance correlated with diminished population of marginal zone macrophages and with reduced phagocytic capacity of multiple innate immune cells. Development and function of other tested leukocyte lineages, such as T and B cell motility and activation, were normal in S5A mice. The S5A mouse thus provides a novel system in which to elucidate the precise molecular control of critical immune cell functions in specific host-pathogen defense interactions.
Collapse
Affiliation(s)
- Edgar P Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - Xue Lin
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - Elizabeth M Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - Taylor P Szasz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and
| | - S Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO; and .,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021. [PMID: 33488606 DOI: 10.3389/fimmu.2020.604206)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
12
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021; 11:604206. [PMID: 33488606 PMCID: PMC7817698 DOI: 10.3389/fimmu.2020.604206] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
13
|
Hills LB, Abdullah L, Lust HE, Degefu H, Huang YH. Foxo1 Serine 209 Is a Critical Regulatory Site of CD8 T Cell Differentiation and Survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:89-100. [PMID: 33229443 PMCID: PMC7855204 DOI: 10.4049/jimmunol.2000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
Foxo1 is an essential transcription factor required for the survival and differentiation of memory CD8 T cells, yet it is unclear whether these Foxo1-dependent functions are inherently coupled. To address this question, we examined the effects of different Foxo1 posttranslational modifications. Phosphorylation of Foxo1 by Akt kinases at three distinct residues is well characterized to inhibit Foxo1 transcriptional activity. However, the effect of Foxo1 phosphorylation within its DNA-binding domain at serine 209 by Mst1 kinase is not fully understood. In this study, we show that an S209A phospho-null Foxo1 exhibited Akt-dependent nuclear trafficking in mouse CD8 T cells and augmented the expression of canonical Foxo1 target genes such as Il7r and Sell In contrast, an S209D phosphomimetic Foxo1 (SD-Foxo1) was largely excluded from the nucleus of CD8 T cells and failed to transactivate these genes. RNA sequencing analysis revealed that SD-Foxo1 was associated with a distinct Foxo1-dependent transcriptional profile, including genes mediating CD8 effector function and cell survival. Despite defective transactivation of canonical target genes, SD-Foxo1 promoted IL-15-mediated CD8 T cell survival in vitro and survival of short-lived effector cells in vivo in response to Listeria monocytogenes infection. However, SD-Foxo1 actively repressed CD127 expression and failed to generate memory precursors and long-lived memory T cells. Together, these data indicate that S209 is a critical residue for the regulation of Foxo1 subcellular localization and for balancing CD8 T cell differentiation and survival.
Collapse
Affiliation(s)
- Leonard Benjamin Hills
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Hannah E Lust
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Hanna Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
14
|
Bouchard A, Witalis M, Chang J, Panneton V, Li J, Bouklouch Y, Suh WK. Hippo Signal Transduction Mechanisms in T Cell Immunity. Immune Netw 2020; 20:e36. [PMID: 33163244 PMCID: PMC7609160 DOI: 10.4110/in.2020.20.e36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.
Collapse
Affiliation(s)
- Antoine Bouchard
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yasser Bouklouch
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.,Molecular Biology Program, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
15
|
Schaffner-Reckinger E, Machado RAC. The actin-bundling protein L-plastin-A double-edged sword: Beneficial for the immune response, maleficent in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:109-154. [PMID: 32859369 DOI: 10.1016/bs.ircmb.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic organization of the actin cytoskeleton into bundles and networks is orchestrated by a large variety of actin-binding proteins. Among them, the actin-bundling protein L-plastin is normally expressed in hematopoietic cells, where it is involved in the immune response. However, L-plastin is also often ectopically expressed in malignant cancer cells of non-hematopoietic origin and is even considered as a marker for cancer progression. Post-translational modification modulates L-plastin activity. In particular, L-plastin Ser5 phosphorylation has been shown to be important for the immune response in leukocytes as well as for invasion and metastasis formation of carcinoma cells. This chapter discusses the physiological and pathological role of L-plastin with a special focus on the importance of L-plastin Ser5 phosphorylation for the protein functions. The potential use of Ser5 phosphorylated L-plastin as a biomarker and/or therapeutic target will be evoked.
Collapse
Affiliation(s)
- Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Raquel A C Machado
- Cancer Cell Biology and Drug Discovery Group, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
16
|
Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020; 19:480-494. [PMID: 32555376 DOI: 10.1038/s41573-020-0070-z] [Citation(s) in RCA: 518] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.
Collapse
|
17
|
Ueda Y, Kondo N, Kinashi T. MST1/2 Balance Immune Activation and Tolerance by Orchestrating Adhesion, Transcription, and Organelle Dynamics in Lymphocytes. Front Immunol 2020; 11:733. [PMID: 32435241 PMCID: PMC7218056 DOI: 10.3389/fimmu.2020.00733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/31/2020] [Indexed: 01/15/2023] Open
Abstract
The STE20-like serine/threonine kinases MST1 and MST2 (MST1/2) are mammalian homologs of Hippo in flies. MST1/2 regulate organ size by suppressing the transcription factor YAP, which promotes proliferation. MST1 is predominantly expressed in immune cells, where it plays distinct roles. Here, we review the functions of MST1/2 in immune cells, uncovered by a series of recent studies, and discuss the connection between MST1/2 function and immune responses. MST1/2 regulate lymphocyte development, trafficking, survival, and antigen recognition by naive T cells. MST1/2 also regulate the function of regulatory T cells and effector T cell differentiation, thus acting to balance immune activation and tolerance. Interestingly, MST1/2 elicit these functions not by the “canonical” Hippo pathway, but by the non-canonical Hippo pathway or alternative pathways. In these pathways, MST1/2 regulates cellular processes relating to immune response, such as chemotaxis, cell adhesion, immunological synapse, gene transcriptions. Recent advances in our understanding of the molecular mechanisms of these processes have revealed important roles of MST1/2 in regulating cytoskeleton remodeling, integrin activation, and vesicular transport in lymphocytes. We discuss the significance of the MST1/2 signaling in lymphocytes in the regulation of organelle dynamics.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
18
|
Chellaiah MA, Moorer MC, Majumdar S, Aljohani H, Morley SC, Yingling V, Stains JP. L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction. Bone Res 2020; 8:3. [PMID: 31993243 PMCID: PMC6976634 DOI: 10.1038/s41413-019-0079-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption pits in vitro. Transduction of TAT-fused full-length L-plastin peptide into osteoclasts from L-plastin knockout mice rescued the formation of nascent sealing zones and sealing rings in a time-dependent manner. This response was not observed with mutated full-length L-plastin (Ser-5 and -7 to Ala-5 and -7) peptide. In contrast to the observed defect in the NSZ, L-plastin deficiency did not affect podosome formation or adhesion of osteoclasts in vitro or in vivo. Histomorphometry analyses in 8- and 12-week-old female L-plastin knockout mice demonstrated a decrease in eroded perimeters and an increase in trabecular bone density, without a change in bone formation by osteoblasts. This decrease in eroded perimeters supports that osteoclast function is attenuated in L-plastin knockouts. Micro-CT analyses confirmed a marked increase in trabecular bone mass. In conclusion, female L-plastin knockout mice had increased trabecular bone density due to impaired bone resorption by osteoclasts. L-plastin could be a potential target for therapeutic interventions to treat trabecular bone loss.
Collapse
Affiliation(s)
- Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Megan C. Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Sharon C. Morley
- Department of Pediatrics, Division of Infectious Diseases, and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Vanessa Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
19
|
Cho KM, Kim MS, Jung HJ, Choi EJ, Kim TS. Mst1-Deficiency Induces Hyperactivation of Monocyte-Derived Dendritic Cells via Akt1/c-myc Pathway. Front Immunol 2019; 10:2142. [PMID: 31572367 PMCID: PMC6749027 DOI: 10.3389/fimmu.2019.02142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Mst1 is a multifunctional serine/threonine kinase that is highly expressed in several immune organs. The role of Mst1 in the activation of dendritic cells (DCs), a key player of adaptive immunity, is poorly understood. In this study, we investigated the role of Mst1 in GM-CSF-induced bone marrow-derived DCs and the underlying mechanisms. Mst1−/− DCs in response to GM-CSF expressed higher levels of activation/maturation-related cell surface molecules, such as B7 and MHC class II than Mst1+/+ DCs. Furthermore, the expression of proinflammatory cytokines, such as IL-23, TNF-α, and IL-12p40, was increased in Mst1−/− DCs, indicating that Mst1-deficiency may induce the hyperactivation of DCs. Additionally, Mst1−/− DCs exhibited a stronger capacity to activate allogeneic T cells than Mst1+/+ DCs. Silencing of Mst1 in DCs promoted their hyperactivation, similar to the phenotypes of Mst1−/− DCs. Mst1−/− DCs exhibited an increase in Akt1 phosphorylation and c-myc protein levels. In addition, treatment with an Akt1 inhibitor downregulated the protein level of c-myc increased in Mst1-deficient DCs, indicating that Akt1 acts as an upstream inducer of the de novo synthesis of c-myc. Finally, Akt1 and c-myc inhibitors downregulated the increased expression of IL-23p19 observed in Mst1-knockdown DCs. Taken together, these data demonstrate that Mst1 negatively regulates the hyperactivation of DCs through downregulation of the Akt1/c-myc axis in response to GM-CSF, and suggest that Mst1 is one of the endogenous factors that determine the activation status of GM-CSF-stimulated inflammatory DCs.
Collapse
Affiliation(s)
- Kyung-Min Cho
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Myun Soo Kim
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Hak-Jun Jung
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eui-Ju Choi
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
20
|
Freudenmann LK, Mayer C, Rodemann HP, Dittmann K. Reduced exosomal L-Plastin is responsible for radiation-induced bystander effect. Exp Cell Res 2019; 383:111498. [PMID: 31302031 DOI: 10.1016/j.yexcr.2019.111498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/21/2023]
Abstract
Radiation-induced bystander effects (RIBE) are discussed as relevant processes during radiotherapy. Irradiated cells are suggested to release growth-inhibitory/DNA-damaging factors transported to non-irradiated cells. However, the molecular nature of this phenomenon has not yet been resolved. We aimed at identifying the growth-inhibitory factor(s) transmitted to non-irradiated cells. RIBE-competent PC3 cells were used to produce conditioned medium (CM) after exposure to ionizing radiation. Indicator cells were incubated with CM and clonogenic survival as well as cell proliferation were determined as endpoints. A549 indicator cells exhibited a bystander effect upon incubation with CM from irradiated PC3 cells. This bystander effect was not due to DNA-damaging factors, but a radiation-triggered reduction of mitogenic/clonogenic activity present in CM. Several tumor cells, but not normal fibroblasts secrete this factor, whose release is reduced by irradiation. We identified L-Plastin to be responsible for the mitogenic/clonogenic activity. Removal of L-Plastin from CM by immunoprecipitation or siRNA-mediated knockdown of L-Plastin expression resulted in loss or reduction of mitogenic/clonogenic activity transmitted via CM, respectively. Exosome-transported L-Plastin was constitutively Ser5-phosphorylated, indicative of its bioactive conformation. In summary, we observed production and exosomal secretion of L-Plastin by cancer cells. Via exosome-transmitted L-Plastin, tumors induce clonogenic and mitogenic activity in cancer and normal cells of the tumor microenvironment. Irradiation inhibits L-Plastin production targeting both cancer cells and the tumor niche and may explain the high impact of radiotherapy in tumor control.
Collapse
Affiliation(s)
- Lena Katharina Freudenmann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Germany; DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Germany
| | - Claus Mayer
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Germany; DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Germany
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Germany; DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Germany
| | - Klaus Dittmann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Germany; DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Germany.
| |
Collapse
|
21
|
Liu K, Lowengrub J, Allard J. Efficient simulation of thermally fluctuating biopolymers immersed in fluids on 1-micron, 1-second scales. JOURNAL OF COMPUTATIONAL PHYSICS 2019; 386:248-263. [PMID: 31787778 PMCID: PMC6884323 DOI: 10.1016/j.jcp.2018.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The combination of fluid-structure interactions with stochasticity, due to thermal fluctuations, remains a challenging problem in computational fluid dynamics. We develop an efficient scheme based on the stochastic immersed boundary method, Stokeslets, and multiple timestepping. We test our method for spherical particles and filaments under purely thermal and deterministic forces and find good agreement with theoretical predictions for Brownian Motion of a particle and equilibrium thermal undulations of a semi-flexible filament. As an initial application, we simulate bio-filaments with the properties of F-actin. We specifically study the average time for two nearby parallel filaments to bundle together. Interestingly, we find a two-fold acceleration in this time between simulations that account for long-range hydrodynamics compared to those that do not, suggesting that our method will reveal significant hydrodynamic effects in biological phenomena.
Collapse
Affiliation(s)
- Kai Liu
- Department of Mathematics, University of California at Irvine
| | - John Lowengrub
- Department of Mathematics, University of California at Irvine
- Center for Complex Biological Systems, University of California at Irvine
- Department of Biomedical Engineering, University of California at Irvine
| | - Jun Allard
- Department of Mathematics, University of California at Irvine
- Center for Complex Biological Systems, University of California at Irvine
- Department of Physics, University of California at Irvine
| |
Collapse
|
22
|
MST1/Hippo promoter gene methylation predicts poor survival in patients with malignant pleural mesothelioma in the IFCT-GFPC-0701 MAPS Phase 3 trial. Br J Cancer 2019; 120:387-397. [PMID: 30739911 PMCID: PMC6461894 DOI: 10.1038/s41416-019-0379-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS/NCT00651456) phase 3 trial demonstrated the superiority of bevacizumab plus pemetrexed-cisplatin triplet over chemotherapy alone in 448 malignant pleural mesothelioma (MPM) patients. Here, we evaluated the prognostic role of Hippo pathway gene promoter methylation. METHODS Promoter methylations were assayed using methylation-specific polymerase chain reaction in samples from 223 MAPS patients, evaluating their prognostic value for overall survival (OS) and disease-free survival in univariate and multivariate analyses. MST1 inactivation effects on invasion, soft agar growth, apoptosis, proliferation, and YAP/TAZ activation were investigated in human mesothelial cell lines. RESULTS STK4 (MST1) gene promoter methylation was detected in 19/223 patients tested (8.5%), predicting poorer OS in univariate and multivariate analyses (adjusted HR: 1.78, 95% CI (1.09-2.93), p = 0.022). Internal validation by bootstrap resampling supported this prognostic impact. MST1 inactivation reduced cellular basal apoptotic activity while increasing proliferation, invasion, and soft agar or in suspension growth, resulting in nuclear YAP accumulation, yet TAZ cytoplasmic retention in mesothelial cell lines. YAP silencing decreased invasion of MST1-depleted mesothelial cell lines. CONCLUSIONS MST1/hippo kinase expression loss is predictive of poor prognosis in MPM patients, leading to nuclear YAP accumulation and electing YAP as a putative target for therapeutic intervention in human MPM.
Collapse
|
23
|
Taha Z, Janse van Rensburg HJ, Yang X. The Hippo Pathway: Immunity and Cancer. Cancers (Basel) 2018; 10:cancers10040094. [PMID: 29597279 PMCID: PMC5923349 DOI: 10.3390/cancers10040094] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.
Collapse
Affiliation(s)
- Zaid Taha
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
24
|
Cheng J, Jing Y, Kang D, Yang L, Li J, Yu Z, Peng Z, Li X, Wei Y, Gong Q, Miron RJ, Zhang Y, Liu C. The Role of Mst1 in Lymphocyte Homeostasis and Function. Front Immunol 2018; 9:149. [PMID: 29459865 PMCID: PMC5807685 DOI: 10.3389/fimmu.2018.00149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway crucial for regulating tissue size and for limiting cancer development. However, recent work has also uncovered key roles for the mammalian Hippo kinases, Mst1/2, in driving appropriate immune responses by directing T cell migration, morphology, survival, differentiation, and activation. In this review, we discuss the classical signaling pathways orchestrated by the Hippo signaling pathway, and describe how Mst1/2 direct T cell function by mechanisms not seeming to involve the classical Hippo pathway. We also discuss why Mst1/2 might have different functions within organ systems and the immune system. Overall, understanding how Mst1/2 transmit signals to discrete biological processes in different cell types might allow for the development of better drug therapies for the treatments of cancers and immune-related diseases.
Collapse
Affiliation(s)
- Jiali Cheng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zican Peng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Wei
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Targeted deletion of the zebrafish actin-bundling protein L-plastin (lcp1). PLoS One 2018; 13:e0190353. [PMID: 29293625 PMCID: PMC5749806 DOI: 10.1371/journal.pone.0190353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023] Open
Abstract
Regulation of the cytoskeleton is essential for cell migration in health and disease. Lymphocyte cytosolic protein 1 (lcp1, also called L-plastin) is a hematopoietic-specific actin-bundling protein that is highly conserved in zebrafish, mice and humans. In addition, L-plastin expression is documented as both a genetic marker and a cellular mechanism contributing to the invasiveness of tumors and transformed cell lines. Despite L-plastin’s role in both immunity and cancer, in zebrafish there are no direct studies of its function, and no mutant, knockout or reporter lines available. Using CRISPR-Cas9 genome editing, we generated null alleles of zebrafish lcp1 and examined the phenotypes of these fish throughout the life cycle. Our editing strategy used gRNA to target the second exon of lcp1, producing F0 mosaic fish that were outcrossed to wild types to confirm germline transmission. F1 heterozygotes were then sequenced to identify three unique null alleles, here called ‘Charlie’, ‘Foxtrot’ and ‘Lima’. In silico, each allele truncates the endogenous protein to less than 5% normal size and removes both essential actin-binding domains (ABD1 and ABD2). Although none of the null lines express detectable LCP1 protein, homozygous mutant zebrafish (-/-) can develop and reproduce normally, a finding consistent with that of the L-plastin null mouse (LPL -/-). However, such mice do have a profound immune defect when challenged by lung bacteria. Interestingly, we observed reduced long-term survival of zebrafish lcp1 -/- homozygotes (~30% below the expected numbers) in all three of our knockout lines, with greatest mortality corresponding to the period (4–6 weeks post-fertilization) when the innate immune system is functional, but the adaptive immune system is not yet mature. This suggests that null zebrafish may have reduced capacity to combat opportunistic infections, which are more easily transmissible in the aquatic environment. Overall, our novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin gene function in hematopoiesis and cancer.
Collapse
|
26
|
Abstract
The mammalian STE20-like (MST) protein kinases are composed of MST1, MST2, MST3, MST4 and YSK1. They play crucial roles in cell growth, migration, polarity and apoptosis. Dysfunction of these kinases often leads to diseases. MST kinases are extensively involved in development and function of immune system. Here, we review recent progresses on the regulatory function of MST kinases in innate immune signaling.
Collapse
Affiliation(s)
- Zhubing Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Chen X, Zheng J, Cai J, Li H, Li S, Wang L, Cheng D, Chen H, Yang Y, Chen G, Zhang Q, Peng Y, Wang Q, Wang G. The cytoskeleton protein β-actin may mediate T cell apoptosis during acute rejection reaction after liver transplantation in a rat model. Am J Transl Res 2017; 9:4888-4901. [PMID: 29218087 PMCID: PMC5714773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Cytoskeletal proteins and associated regulatory proteins are essential for maintaining cell structure and growth. β-actin is a major component of the cytoskeleton, and β-actin remodeling is involved in lymphocyte migration, infiltration and apoptosis. However, little is known about whether changes in β-actin expression affect lymphocyte cell fate, particularly during acute rejection after liver transplantation in a rat model. In our studies, grafts were harvested on days 5, 7 or 9 after xenogeneic rat liver transplantation. The acute rejection grade was histopathologically evaluated. Recipient-derived CD8+ T lymphocytes gradually infiltrated into liver allografts in cases of severe acute rejection. The apoptotic rate of CD8+ T lymphocytes peaked on day 7 and then decreased. Moreover, changes in β-actin expression were consistent with the apoptotic rate of CD8+ T lymphocytes in both allografts and peripheral blood based on western blotting and immunohistochemistry results. Additionally, jasplakinolide (an actin-stabilizing drug) evoked CD8+ T lymphocyte apoptosis. In conclusion, our study is the first to describe the fluctuating expression levels and dynamics of the cytoskeletal protein β-actin and its potential roles in the pathogenesis of acute rejection following rat liver transplantion. Our results enhance the understanding of the roles of CD8+ T lymphocytes during acute rejection and suggest that β-actin regulation leads to apoptosis.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Jun Zheng
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Jianye Cai
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Hui Li
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Shihui Li
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Li Wang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Daorou Cheng
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Huaxin Chen
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Yang Yang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Guihua Chen
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Qi Zhang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Yanwen Peng
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Qiyou Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| | - Genshu Wang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou 510630, Guangdong Province, China
| |
Collapse
|
28
|
Stewart-Hutchinson PJ, Szasz TP, Jaeger ER, Onken MD, Cooper JA, Morley SC. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate. J Leukoc Biol 2017. [PMID: 28637896 DOI: 10.1189/jlb.1ta0117-008r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL-/-) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL-/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration.
Collapse
Affiliation(s)
- Phillip J Stewart-Hutchinson
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor P Szasz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily R Jaeger
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael D Onken
- Departments of Biochemistry and Molecular Biophysics and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA; and
| | - John A Cooper
- Departments of Biochemistry and Molecular Biophysics and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA; and
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Wabnitz G, Balta E, Samstag Y. L-plastin regulates the stability of the immune synapse of naive and effector T-cells. Adv Biol Regul 2017; 63:107-114. [PMID: 27720134 DOI: 10.1016/j.jbior.2016.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
T-cells need to be tightly regulated during their activation and effector phase to assure an appropriate defence against cancer or pathogens and - vice versa - to avoid autoimmune reactions. Regulatory signals are provided via the immune synapse between T-cells and antigen-presenting cells (APCs) or target cells. The stability and kinetics of immune synapse formation is critical for proper T-cell functions. It requires dynamic rearrangements of the actin cytoskeleton necessary for organized spatio-temporal redistribution of receptors and adhesion molecules. We identified glucocorticoid-sensitive phosphorylation of serine 5 on the actin-bundling protein L-plastin as one important signalling event for this regulation. Using imaging flow cytometry as well as confocal and super-resolution microscopy we showed that L-plastin relocalizes to the immune synapse upon antigen encounter, where it associates with the β2-subunit of LFA-1 (CD11a/CD18). Interfering with L-plastin expression or activation leads to a defective LFA-1 recruitment and unstable T-cell/APC contacts. Consequently, the lack of L-plastin diminishes T-cell activation, proliferation and proximal effector responses such as cytokine production. On the other hand, a pro-oxidative milieu leads to prolonged activation of L-plastin resulting in a stronger enrichment of LFA-1 in the cytolytic immune synapse. Concomitant stabilization of conjugates formed by cytotoxic T-cells (CTLs) and their target cells impairs the ability of CTLs to kill more than one target cells (serial killing), which de facto leads to a downregulation of T-cell cytotoxicity. Together, we demonstrate that activation and spacial distribution of L-plastin regulates the maturation and stability of activating and cytolytic immune synapses important for T-cell activation and effector functions.
Collapse
Affiliation(s)
- Guido Wabnitz
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | - Emre Balta
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| |
Collapse
|