1
|
Hao X, Liu X, Yu S, Qin C, Wang R, Li C, Shao J. Intravenous As 2O 3 as a promising treatment for psoriasis - an experimental study in psoriasis-like mouse model. Immunopharmacol Immunotoxicol 2022; 44:935-958. [PMID: 35748353 DOI: 10.1080/08923973.2022.2093742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the efficacy and mechanistic bases of the intravenous injection of arsenic trioxide at clinical-relevant doses for treating an imiquimod-induced psoriasis-like mouse model. METHODS After inducing psoriasis-like skin lesions on the back of mice with imiquimod, mice in each group were injected with a clinical dose of arsenic trioxide through the tail vein. The changes in the gene expression, protein expression and distribution of relevant inflammatory factors were evaluated in the inflicted skin area, for mechanisms underlying the efficacy of intravenous As2O3 intervention. HaCaT cells were used to establish an in vitro psoriasis model and pcDNA3.1-NF-κB overexpression plasmid was transfected into cells to overexpress P65, which further confirmed the role of the NF-κB signaling pathway in the effectiveness of As2O3. RESULTS Clinical dose of As2O3 can significantly improve abnormal symptoms and pathological changes in psoriasis-like skin lesions induced by IMQ in mice. While IMQ induced abnormal expression and distribution of inflammatory factors in the RIG-I pathway and the microRNA-31 (miR-31) pathway in psoriatic skin tissues, intravenous As2O3 can effectively regulate and restore the normality. The leading role of NF-κB signaling was evidenced in vivo and validated in vitro using the NF-κB-overexpressed HaCaT cell model. CONCLUSION Clinical dosage of As2O3 may achieve effective treatment of IMQ-induced psoriatic skin lesions by modulating the NF-κB signaling pathway which regulates both the RIG-I and the miR-31 lines of action. Our data provided strong evidence supporting the claim that systemic As2O3 administration of clinical doses can be a promising treatment for psoriasis patients.
Collapse
Affiliation(s)
- Xiaoji Hao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shunfei Yu
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chang Qin
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Ruonan Wang
- Office of Health Emergency, Tianjin Binhai New Area Center for Disease Control and Prevention, Tianjin, China
| | - Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China.,Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Cronk JM, Dziewulska KH, Puchalski P, Crittenden RB, Hammarskjöld ML, Brown MG. Altered-Self MHC Class I Sensing via Functionally Disparate Paired NK Cell Receptors Counters Murine Cytomegalovirus gp34-Mediated Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1545-1554. [PMID: 36165178 PMCID: PMC9529956 DOI: 10.4049/jimmunol.2200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
The murine CMV (MCMV) immunoevasin m04/gp34 escorts MHC class I (MHC I) molecules to the surface of infected cells where these complexes bind Ly49 inhibitory receptors (IRs) and prevent NK cell attack. Nonetheless, certain self-MHC I-binding Ly49 activating and inhibitory receptors are able to promote robust NK cell expansion and antiviral immunity during MCMV infection. A basis for MHC I-dependent NK cell sensing of MCMV-infected targets and control of MCMV infection however remains unclear. In this study, we discovered that the Ly49R activation receptor is selectively triggered during MCMV infection on antiviral NK cells licensed by the Ly49G2 IR. Ly49R activating receptor recognition of MCMV-infected targets is dependent on MHC I Dk and MCMV gp34 expression. Remarkably, although Ly49R is critical for Ly49G2-dependent antiviral immunity, blockade of the activation receptor in Ly49G2-deficient mice has no impact on virus control, suggesting that paired Ly49G2 MCMV sensing might enable Ly49R+ NK cells to better engage viral targets. Indeed, MCMV gp34 facilitates Ly49G2 binding to infected cells, and the IR is required to counter gp34-mediated immune evasion. A specific requirement for Ly49G2 in antiviral immunity is further explained by its capacity to license cytokine receptor signaling pathways and enhance Ly49R+ NK cell proliferation during infection. These findings advance our understanding of the molecular basis for functionally disparate self-receptor enhancement of antiviral NK cell immunity.
Collapse
Affiliation(s)
- John M Cronk
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Karolina H Dziewulska
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Patryk Puchalski
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Rowena B Crittenden
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Marie-Louise Hammarskjöld
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
| | - Michael G Brown
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA;
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
3
|
Nash WT, Okusa MD. Chess Not Checkers: Complexities Within the Myeloid Response to the Acute Kidney Injury Syndrome. Front Med (Lausanne) 2021; 8:676688. [PMID: 34124107 PMCID: PMC8187556 DOI: 10.3389/fmed.2021.676688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Immune dysregulation in acute kidney injury (AKI) is an area of intense interest which promises to enhance our understanding of the disease and how to manage it. Macrophages are a heterogeneous and dynamic population of immune cells that carry out multiple functions in tissue, ranging from maintenance to inflammation. As key sentinels of their environment and the major immune population in the uninjured kidney, macrophages are poised to play an important role in the establishment and pathogenesis of AKI. These cells have a profound capacity to orchestrate downstream immune responses and likely participate in skewing the kidney environment toward either pathogenic inflammation or injury resolution. A clear understanding of macrophage and myeloid cell dynamics in the development of AKI will provide valuable insight into disease pathogenesis and options for intervention. This review considers evidence in the literature that speaks to the role and regulation of macrophages and myeloid cells in AKI. We also highlight barriers or knowledge gaps that need to be addressed as the field advances.
Collapse
Affiliation(s)
- William T Nash
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
4
|
Ly49R activation receptor drives self-MHC-educated NK cell immunity against cytomegalovirus infection. Proc Natl Acad Sci U S A 2019; 116:26768-26778. [PMID: 31843910 DOI: 10.1073/pnas.1913064117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells mediate vital control of cancer and viral infection. They rely on MHC class I (MHC I)-specific self-receptors to identify and lyse diseased cells without harming self-MHC I-bearing host cells. NK cells bearing inhibitory self-receptors for host MHC I also undergo education, referred to as licensing, which causes them to become more responsive to stimulation via activation receptor signaling. Previous work has shown that licensed NK cells selectively expand during virus infections and they are associated with improved clinical response in human patients experiencing certain chronic virus infections, including HIV and hepatitis C virus. However, the importance of inhibitory self-receptors in NK-mediated virus immunity is debated as they also limit signals in NK cells emanating from virus-specific activation receptors. Using a mouse model of MHC I-dependent (H-2Dk) virus immunity, we discovered that NK cells depend on the Ly49G2 inhibitory self-receptor to mediate virus control, which coincided with host survival during murine cytomegalovirus infection. This antiviral effect further requires active signaling in NK cells via the Ly49R activation receptor that also binds H-2Dk In tandem, these functionally discordant Ly49 self-receptors increase NK cell proliferation and effector activity during infection, resulting in selective up-regulation of CD25 and KLRG1 in virus-specific Ly49R+ Ly49G2+ NK cells. Our findings establish that paired self-receptors act as major determinants of NK cell-mediated virus sensing and immunity.
Collapse
|
5
|
Li M, Boddeda S, Chen B, Zeng Q, Schoeb TR, Velazquez VM, Shimamura M. NK cell and Th17 responses are differentially induced in murine cytomegalovirus infected renal allografts and vary according to recipient virus dose and strain. Am J Transplant 2018; 18:2647-2662. [PMID: 29659179 PMCID: PMC6191363 DOI: 10.1111/ajt.14868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) donor positive (D+) serostatus with acute rejection is associated with renal allograft loss, but the impact of recipient positive (R+) serostatus is unclear. In an allogeneic renal transplant model, antiviral natural killer (NK) and CD8+ T cell memory responses in murine CMV (MCMV) D+/R+ transplants were compared to D-/R- and D+/R- transplants, with recipient infection varied by MCMV dose and strain. D+/R- transplants had high primary antiviral cytolytic (interferon-γ+) and cytotoxic (granzyme B+) NK responses, whereas NK memory responses were lower in D+/R+ recipients receiving a high primary MCMV dose. Despite MCMV immunity, D+/R+ recipients receiving a low MCMV dose showed primary-like high cytolytic and cytotoxic NK responses. D+/R+ transplants infected with different D/R strains had low cytolytic NK responses but high cytotoxic NK responses. NK memory also induced a novel TNF-α+ NK response among high-dose virus recipients. MCMV+ transplants had greater Th17 responses than MCMV-uninfected transplants and Th17 inhibition ameliorated graft injury. All MCMV+ recipients had similar CD8+ T cell responses. In sum, NK and Th17 responses, but not CD8+ T cells, varied according to conditions of primary recipient infection. This variability could contribute to variable graft outcomes in HCMV D+/R+ renal transplantation.
Collapse
Affiliation(s)
- Mao Li
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham AL
| | - Srinivasa Boddeda
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Bo Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL
| | - Qiang Zeng
- Center for Cardiovascular Research, The Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Trenton R. Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham AL
| | - Victoria M. Velazquez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Masako Shimamura
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus OH,Division of Infectious Diseases, Department of Pediatrics, The Ohio State University, Columbus OH,Corresponding author:
| |
Collapse
|
6
|
Nash WT, Gillespie AL, Brown MG. Murine Cytomegalovirus Disrupts Splenic Dendritic Cell Subsets via Type I Interferon-Dependent and -Independent Mechanisms. Front Immunol 2017; 8:251. [PMID: 28337202 PMCID: PMC5343017 DOI: 10.3389/fimmu.2017.00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DC) are well-known modulators of immunity. This heterogeneous population is composed of defined subsets that exhibit functional specialization and are critical in initiating responses to pathogens. As such, many infectious agents employ strategies to disrupt DC functioning in attempts to evade the immune system. In some instances, this manifests as an outright loss of these cells. Previous work has suggested that, in the absence of an efficient natural killer (NK) cell response, murine cytomegalovirus (MCMV) induces large amounts of interferon (IFN)-I. This heightened IFN-I response is thought to contribute to conventional DC (cDC) loss and delayed development of T cell immunity. However, the precise role of IFN-I in such cDC loss remains unclear. We investigated the effects of licensed NK cells and IFN-I signaling on splenic cDC subsets during MCMV infection and found that a licensed NK cell response partially protects cDC numbers, but does not prevent increases in serum IFN-I. This suggested that high residual IFN-I could contribute to cDC loss. Therefore, we used multiple strategies to modulate IFN-I signaling during MCMV infection including plasmacytoid DC depletion, IFN-I receptor (IFNAR) blockade, and genetic ablation of IFNAR expression. Interestingly, restriction of IFN-I signals did not substantially preserve either CD8+ or CD4+ DC total numbers, but resulted in significant retention and/or accumulation of the splenic CD8− CD4− [double negative (DN)] subset. However, the DN DC effect manifested in a DC-extrinsic manner since IFNAR-deficient cells were not preferentially retained over their IFNAR wild-type counterparts in a mixed-chimera setting. Our results show that IFN-I signaling is not responsible for overt cDC toxicity in the setting of acute MCMV infection and emphasize that additional mechanisms contribute to DC loss and require exploration.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Alyssa L Gillespie
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|