1
|
Duarte C, Yamada C, Ngala B, Garcia C, Akkaoui J, Birsa M, Ho A, Nusbaum A, AlQallaf H, John V, Movila A. Effects of IL-34 and anti-IL-34 neutralizing mAb on alveolar bone loss in a ligature-induced model of periodontitis. Mol Oral Microbiol 2024; 39:93-102. [PMID: 37902168 PMCID: PMC11058120 DOI: 10.1111/omi.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1 receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
- Hussman Institute for Autism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bidii Ngala
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Garcia
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
- School of Medicine, Florida International University, Miami, FL, USA
| | - Maxim Birsa
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Anny Ho
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hawra AlQallaf
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Vanchit John
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Alexandru Movila
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Cao R, Li C, Geng F, Pan Y. J-shaped association between systemic immune-inflammation index and periodontitis: Results from NHANES 2009-2014. J Periodontol 2024; 95:397-406. [PMID: 37713193 DOI: 10.1002/jper.23-0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND To examine the relationship between the systemic immune-inflammation index (SII) and periodontitis and to investigate possible effect modifiers. METHODS Data used in the present cross-sectional study are from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 (N = 10,301). The SII was calculated using the following formula: (neutrophils count × platelet count)/lymphocytes count. The category of periodontitis was defined by the Centers for Disease Control and Prevention and American Academy of Periodontology (CDC/AAP) classification. We employed natural cubic spline and multivariable logistic regression analyses to evaluate the associations of the SII with periodontitis. RESULTS The associations between SII and periodontal health followed a J-shape (p < 0.001). The risk of periodontitis tended to reduce with the increment of log2(SII) in participants with log2(SII) ≤ 8.66 (odds radio [OR] = 0.83; 95% CI: 0.69-0.999), especially among non-Hispanic Whites (OR = 0.70; 95% CI: 0.52-0.95), and increased with the increment of log2(SII) in participants with log2(SII) > 8.66 (OR = 1.19; 95% CI: 1.02-1.38). A similar trend was also observed between the SII and the number of sites with probing pocket depth (PPD) ≥4 mm and clinical attachment loss (CAL) ≥ 3 or 5 mm. Furthermore, we found a significantly stronger correlation between lymphocytes and either neutrophils or platelets in individuals with log2(SII) > 8.66, as opposed to those with log2(SII) ≤ 8.66. CONCLUSIONS There is a J-shaped association between SII and periodontitis in US adults, with an inflection point of log2(SII) at 8.66, which may provide potential adjunctive treatment strategies for periodontitis with different immune response states. Further prospective trials are still required to confirm our findings.
Collapse
Affiliation(s)
- Ruoyan Cao
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Guo J, Xu R, Liu R, Lai W, Hu C, He H, Zhang G, Li G, Zheng W, Zhang R. Association between the systemic immune inflammation index and periodontitis: a cross-sectional study. J Transl Med 2024; 22:96. [PMID: 38263194 PMCID: PMC10804475 DOI: 10.1186/s12967-024-04888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic oral inflammatory disease that seriously affects people's quality of life. The purpose of our study was to investigate the correlation between the systemic immune inflammation index (SII) and periodontitis by utilizing a large national survey. This will establish a reference for the early identification and management of periodontitis. METHODS This study comprised the adult US population who participated in a national periodontitis surveillance project during the six years from 2009 to 2014. Through the utilization of univariate and multivariate weighted logistic regression, we investigated the correlation between the systemic immune inflammation index and periodontitis. Additionally, we employed sensitivity analyses to evaluate the robustness of our findings. RESULTS The study involved 10,366 participants with an average age of 51.00 years, of whom 49.45% were male (N = 5126) and 50.55% were female (N = 5240). The prevalence of periodontitis is estimated to be about 38.43% in the US adults aged 30 or older population. Our logistic regression models indicated a positive association between a SII higher than 978 × 109/L and periodontitis. The elder group (aged 50 or older) with SII higher than 978 × 109/L demonstrated a significant correlation with periodontitis in the fully adjusted model (Odds Ratio [OR] = 1.409, 95% Confidence Interval [CI] 1.037, 1.915, P = 0.022). However, there is no statistical difference among adults aged 30 to 50. The robustness of our findings was confirmed through sensitivity analyses. CONCLUSIONS Our study highlights that SII is associated with periodontitis in a nationally representative sample of US adults. And the SII is significantly associated with a high risk of periodontitis in individuals aged 50 or older.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China.
| | - Rufu Xu
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rongxing Liu
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Haitao He
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Gang Zhang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weiwei Zheng
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China.
| | - Rong Zhang
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
4
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Ishii T, Ruiz‐Torruella M, Kim JY, Kanzaki H, Albassam A, Wisitrasameewong W, Shindo S, Pierrelus R, Heidari A, Kandalam U, Nakamura S, Movila A, Minond D, Kawai T. Soluble Sema4D cleaved from osteoclast precursors by TACE suppresses osteoblastogenesis. J Cell Mol Med 2023; 27:1750-1756. [PMID: 37170687 PMCID: PMC10273054 DOI: 10.1111/jcmm.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 05/13/2023] Open
Abstract
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.
Collapse
Affiliation(s)
- Takenobu Ishii
- Department of OrthodonticsTokyo Dental CollegeChibaJapan
| | | | - Jae Young Kim
- Department of ProsthodonticsYonsei University Dental HospitalSeoulKorea
| | - Hiroyuki Kanzaki
- Department of orthodontics, School of Dental MedicineTsurumi UniversityYokohamaJapan
| | - Abdullah Albassam
- Department of Endodontics, Faculty of DentistryKing Abdulaziz UniversityJeddahSaudi Arabia
| | | | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Roodelyne Pierrelus
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Alireza Heidari
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Umadevi Kandalam
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Dmitriy Minond
- Department of Pharmaceutical Sciences, College of PharmacyNova Southeastern UniversityFort LauderdaleFloridaUSA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental MedicineNova Southeastern UniversityFort LauderdaleFloridaUSA
- Center for Collaborative Research, Cell Therapy InstituteNova Southeastern UniversityFort LauderdaleFloridaUSA
| |
Collapse
|
6
|
Chen Y, Hu Y. Wnt Signaling Activation in Gingival Epithelial Cells and Macrophages of Experimental Periodontitis. Dent J (Basel) 2023; 11:129. [PMID: 37232780 PMCID: PMC10217294 DOI: 10.3390/dj11050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Objective: Wingless/integrated (Wnt) signaling plays critical roles in maintaining environmental homeostasis and is also involved in the pathogenesis of inflammatory diseases. However, its role in macrophages during periodontitis is not well understood. The present study aims to investigate the interaction between Wnt signaling and macrophages in the context of periodontitis. Methods: Experimental periodontitis was induced in C57/BL6 mice using a Porphyromonas gingivalis (P.g)-associated ligature for 14 days. Immunohistochemistry was performed to study the expression of the pro-inflammatory cytokine tumor necrosis factor (TNF-α), the stabilization of β-catenin, and the macrophage marker F4/80 in the periodontal tissues. The effect of Wnt signaling on TNF-α was examined using Western blot analysis in Raw 264.7 murine macrophages stimulated by Wnt3a-conditioned medium, with or without Wnt3a antibody neutralization, and compared with primary cultured gingival epithelial cells (GECs). The effect of P.g lipopolysaccharide (LPS) on Wnt signaling was assessed by analyzing key components of the Wnt signaling pathway, including the activity of low-density lipoprotein receptor-related protein (LRP) 6 and nuclear accumulation of β-catenin in GEC and Raw 264.7 cells. Results: Over-expressions of TNF-α and activated β-catenin were presented in the macrophages in the gingiva from mice with P.g-associated ligature-induced periodontitis. The expression patterns of TNF-α and activated β-catenin were consistent with the expression of F4/80. In Raw 264.7 cells, activation of the Wnt signaling pathway led to an increase in TNF-α, but this effect was not observed in GEC. Additionally, treatment with LPS induced β-catenin accumulation and LRP6 activation in Raw 264.7 cells, which were blocked by the addition of Dickkopf-1(DKK1). Conclusions: Wnt signaling was aberrantly activated in the macrophages in experimental periodontitis. The activation of Wnt signaling in the macrophages may play a pro-inflammatory role in periodontitis. Targeting specific signaling pathways, such as the Wnt pathway, may hold promise for developing novel therapeutic interventions for periodontitis.
Collapse
Affiliation(s)
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Xia Y, Geng N, Ren J, Liao C, Wang M, Chen S, Chen H, Peng W. Regulation of endothelial cells on the osteogenic ability of bone marrow mesenchymal stem cells in peri-implantitis. Tissue Cell 2023; 81:102042. [PMID: 36812664 DOI: 10.1016/j.tice.2023.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES The relationship between bone resorption and angiogenesis in peri-implantitis remains to be studied. We constructed a Beagle dog model of peri-implantitis, and extracted bone marrow mesenchymal stem cells (BMSCs) and endothelial cells (ECs) for culture. The osteogenic ability of BMSCs in the presence of ECs was investigated through an in vitro osteogenic induction model, and its mechanism was initially explored. SUBJECTS AND METHODS The peri-implantitis model was verified by ligation, bone loss was observed by micro-CT, and cytokines were detected by ELISA. The isolated BMSCs and ECs were cultured to detect the expression of angiogenesis, osteogenesis-related proteins, and NF-κB signaling pathway-related proteins. RESULTS 8 weeks after surgery, the peri-implant gums were swollen, and micro-CT showed bone resorption. Compared with the control group, IL-1β, TNF-α, ANGII and VEGF were markedly increased in the peri-implantitis group. In vitro studies found that the osteogenic differentiation ability of BMSCs co-cultured with IECs was decreased, and the expression of NF-κB signaling pathway-related cytokines was increased. CONCLUSION Endothelial cells inhibit the osteogenic differentiation of bone marrow mesenchymal stem cells through NF-κB signaling in the environment of peri-implantitis, which may become a new target for the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Yixin Xia
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Ningbo Geng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Jing Ren
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Chunhui Liao
- Department of Orthodontics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ming Wang
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Songling Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Huanlin Chen
- Department of Stomatology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Wei Peng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, China.
| |
Collapse
|
8
|
Ando Y, Tsukasaki M. [RANKL and periodontitis]. Nihon Yakurigaku Zasshi 2023; 158:263-268. [PMID: 37121710 DOI: 10.1254/fpj.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Periodontal disease is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone. It is one of the most common infectious diseases in humans, being the leading cause of tooth loss in adults. Recently, it has been shown that the receptor activator of NF-κB ligand (RANKL) produced by osteoblasts and periodontal ligament fibroblasts critically contributes to the bone destruction caused by periodontal disease. Activation of the immune system plays an important role in the induction of RANKL during periodontal inflammation. Here we discuss the molecular mechanisms of periodontal bone destruction by focusing on the osteoimmune molecule RANKL.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
- Department of Microbiology, Tokyo Dental College
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| |
Collapse
|
9
|
Pape J, Bakkalci D, Hosni RA, Simpson BS, Heikinheimo K, Fedele S, Cheema U. RANKL neutralisation prevents osteoclast activation in a human in vitro ameloblastoma-bone model. J Tissue Eng 2022; 13:20417314221140500. [PMID: 36582941 PMCID: PMC9793035 DOI: 10.1177/20417314221140500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022] Open
Abstract
Ameloblastoma is a benign, locally invasive epithelial odontogenic neoplasm of the jaw. Treatment of choice is jaw resection, often resulting in significant morbidity. The aim of this study was to recapitulate ameloblastoma in a completely humanised 3D disease model containing ameloblastoma cells, osteoblasts and activated osteoclasts to investigate the RANKL pathway within the ameloblastoma stromal environment and its response to the RANKL antibody denosumab. In vitro bone was engineered by culturing human osteoblasts (hOB) in a biomimetic, dense collagen type I matrix, resulting in extensive mineral deposits by day 21 forming alizarin red positive bone like nodules throughout the 3D model. Activated TRAP + human osteoclasts were confirmed through the differentiation of human CD14+ monocytes after 10 days within the model. Lastly, the ameloblastoma cell lines AM-1 and AM-3 were incorporated into the 3D model. RANKL release was validated through TACE/ADAM17 activation chemically or through hOB co-culture. Denosumab treatment resulted in decreased osteoclast activation in the presence of hOB and ameloblastoma cells. These findings stress the importance of accurately modelling tumour and stromal populations as a preclinical testing platform.
Collapse
Affiliation(s)
- Judith Pape
- UCL Centre for 3D Models of Health and
Disease, Division of Surgery and Interventional Science, University College London,
London, UK
| | - Deniz Bakkalci
- UCL Centre for 3D Models of Health and
Disease, Division of Surgery and Interventional Science, University College London,
London, UK
| | - Rawiya Al Hosni
- UCL Centre for 3D Models of Health and
Disease, Division of Surgery and Interventional Science, University College London,
London, UK
| | - Benjamin S Simpson
- Research Department of Targeted
Intervention, Division of Surgery and Interventional Science, University College
London, London, UK
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial
Surgery, Institute of Dentistry, University of Turku and Turku University Hospital,
Turku, Finland
| | - Stefano Fedele
- Eastman Dental Institute, Oral Medicine
Unit, University College London, London, UK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and
Disease, Division of Surgery and Interventional Science, University College London,
London, UK,Umber Cheema, UCL Centre for 3D Models of
Health and Disease, Division of Surgery and Interventional Science, University
College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK.
| |
Collapse
|
10
|
Tang BY, Ge J, Wu Y, Wen J, Tang XH. The Role of ADAM17 in Inflammation-Related Atherosclerosis. J Cardiovasc Transl Res 2022; 15:1283-1296. [PMID: 35648358 DOI: 10.1007/s12265-022-10275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that poses a huge economic burden due to its extremely poor prognosis. Therefore, it is necessary to explore potential mechanisms to improve the prevention and treatment of atherosclerosis. A disintegrin and metalloprotease 17 (ADAM17) is a cell membrane-bound protein that performs a range of functions through membrane protein shedding and intracellular signaling. ADAM17-mediated inflammation has been identified to be an important contributor to atherosclerosis; however, the specific relationship between its multiple regulatory roles and the pathogenesis of atherosclerosis remains unclear. Here, we reviewed the activation, function, and regulation of ADAM17, described in detail the role of ADAM17-mediated inflammatory damage in atherosclerosis, and discussed several controversial points. We hope that these insights into ADAM17 biology will lead to rational management of atherosclerosis. ADAM17 promotes vascular inflammation in endothelial cells, smooth muscle cells, and macrophages, and regulates the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Bai-Yi Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Ge
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yang Wu
- Department of Cardiology, Third Hospital of Changsha, 176 W. Laodong Road, Changsha, 410015, Hunan, China
| | - Juan Wen
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Xiao-Hong Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
12
|
Huang D, Zhao C, Li R, Chen B, Zhang Y, Sun Z, Wei J, Zhou H, Gu Q, Xu J. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun 2022; 13:5338. [PMID: 36097003 PMCID: PMC9468151 DOI: 10.1038/s41467-022-33006-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major challenges for discovering protein-protein interaction inhibitors is identifying selective and druggable binding sites at the protein surface. Here, we report an approach to identify a small molecular binding site to selectively inhibit the interaction of soluble RANKL and RANK for designing anti-osteoporosis drugs without undesirable immunosuppressive effects. Through molecular dynamic simulations, we discovered a binding site that allows a small molecule to selectively interrupt soluble RANKL-RANK interaction and without interfering with the membrane RANKL-RANK interaction. We describe a highly potent inhibitor, S3-15, and demonstrate its specificity to inhibit the soluble RANKL-RANK interaction with in vitro and in vivo studies. S3-15 exhibits anti-osteoporotic effects without causing immunosuppression. Through in silico and in vitro experiments we further confirm the binding model of S3-15 and soluble RANKL. This work might inspire structure-based drug discovery for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Dane Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China ,grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Chao Zhao
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Ruyue Li
- grid.484195.5Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095 China
| | - Bingyi Chen
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuting Zhang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhejun Sun
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Junkang Wei
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Wu S, Wu B, Liu Y, Deng S, Lei L, Zhang H. Mini Review Therapeutic Strategies Targeting for Biofilm and Bone Infections. Front Microbiol 2022; 13:936285. [PMID: 35774451 PMCID: PMC9238355 DOI: 10.3389/fmicb.2022.936285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bone infection results in a complex inflammatory response and bone destruction. A broad spectrum of bacterial species has been involved for jaw osteomyelitis, hematogenous osteomyelitis, vertebral osteomyelitis or diabetes mellitus, such as Staphylococcus aureus (S. aureus), coagulase-negative Staphylococcus species, and aerobic gram-negative bacilli. S. aureus is the major pathogenic bacterium for osteomyelitis, which results in a complex inflammatory response and bone destruction. Although various antibiotics have been applied for bone infection, the emergence of drug resistance and biofilm formation significantly decrease the effectiveness of those agents. In combination with gram-positive aerobes, gram-negative aerobes and anaerobes functionally equivalent pathogroups interact synergistically, developing as pathogenic biofilms and causing recurrent infections. The adhesion of biofilms to bone promotes bone destruction and protects bacteria from antimicrobial agent stress and host immune system infiltration. Moreover, bone is characterized by low permeability and reduced blood flow, further hindering the therapeutic effect for bone infections. To minimize systemic toxicity and enhance antibacterial effectiveness, therapeutic strategies targeting on biofilm and bone infection can serve as a promising modality. Herein, we focus on biofilm and bone infection eradication with targeting therapeutic strategies. We summarize recent targeting moieties on biofilm and bone infection with peptide-, nucleic acid-, bacteriophage-, CaP- and turnover homeostasis-based strategies. The antibacterial and antibiofilm mechanisms of those therapeutic strategies include increasing antibacterial agents’ accumulation by bone specific affinity, specific recognition of phage-bacteria, inhibition biofilm formation in transcription level. As chronic inflammation induced by infection can trigger osteoclast activation and inhibit osteoblast functioning, we additionally expand the potential applications of turnover homeostasis-based therapeutic strategies on biofilm or infection related immunity homeostasis for host-bacteria. Based on this review, we expect to provide useful insights of targeting therapeutic efficacy for biofilm and bone infection eradication.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Binjie Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Shu Deng
- Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, United States
| | - Lei Lei
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Lei,
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hui Zhang,
| |
Collapse
|
14
|
Molecular Mechanisms Leading from Periodontal Disease to Cancer. Int J Mol Sci 2022; 23:ijms23020970. [PMID: 35055157 PMCID: PMC8778447 DOI: 10.3390/ijms23020970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is prevalent in half of the adult population and raises critical health concerns as it has been recently associated with an increased risk of cancer. While information about the topic remains somewhat scarce, a deeper understanding of the underlying mechanistic pathways promoting neoplasia in periodontitis patients is of fundamental importance. This manuscript presents the literature as well as a panel of tables and figures on the molecular mechanisms of Porphyromonas gingivalis and Fusobacterium nucleatum, two main oral pathogens in periodontitis pathology, involved in instigating tumorigenesis. We also present evidence for potential links between the RANKL–RANK signaling axis as well as circulating cytokines/leukocytes and carcinogenesis. Due to the nonconclusive data associating periodontitis and cancer reported in the case and cohort studies, we examine clinical trials relevant to the topic and summarize their outcome.
Collapse
|
15
|
Update on B Cell Response in Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:175-193. [DOI: 10.1007/978-3-030-96881-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Angel SL, Samrit VD, Kharbanda OP, Duggal R, Kumar V, Chauhan SS, Coshic P. Effects of submucosally administered platelet-rich plasma on the rate of tooth movement. Angle Orthod 2022; 92:73-79. [PMID: 34491291 DOI: 10.2319/011221-40.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the effects of submucosally administered platelet-rich plasma (PRP) on the rate of maxillary canine retraction. Levels of soluble receptor activator of nuclear factor-κb ligand (sRANKL) and osteoprotegerin (OPG) in the gingival crevicular fluid (GCF) were also measured over 2 months. MATERIALS AND METHODS This split-mouth trial involved 20 sites in 10 subjects randomly assigned to PRP (experimental) side and control side. After alignment, the freshly prepared PRP was injected submucosally distal to the experimental side maxillary canine, and retraction was performed using NiTi closed-coil springs (150 g) on 0.019 × 0.025-inch stainless steel wire. The rate of canine movement was assessed using digital model superimposition at 0, 30, and 60 days. The OPG and sRANKL were assayed using enzyme-linked immunosorbent assay from GCF collected at 0, 1, 7, 21, 30, and 60 days. RESULTS Twenty sites were analyzed using paired t test. The rate of tooth movement increased significantly by 35% on the PRP side compared with the control side in the first month (P = .0001) and by 14% at the end of the second month (P = .015). Using the Mann-Whitney U test, OPG levels were found to be significantly decreased on the 7th (P = .003) and 30th day on the PRP side (P = .01), while sRANKL became detectable by the third week postinjection on the PRP side (P = .069). CONCLUSIONS Submucosal injection of platelet-rich plasma significantly increased tooth movement during the 60-day observation period. Local injection of PRP significantly altered the levels of OPG and sRANKL in GCF.
Collapse
|
17
|
Momiuchi Y, Motomura Y, Suga E, Mizuno H, Kikuta J, Morimoto A, Mochizuki M, Otaki N, Ishii M, Moro K. Group 2 innate lymphoid cells in bone marrow regulate osteoclastogenesis in a reciprocal manner via RANKL, GM-CSF and IL-13. Int Immunol 2021; 33:573-585. [PMID: 34498703 DOI: 10.1093/intimm/dxab062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.
Collapse
Affiliation(s)
- Yoshiki Momiuchi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Medical Life Sciences, Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Emiko Suga
- Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroki Mizuno
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Akito Morimoto
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Miho Mochizuki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Natsuko Otaki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Microbiology and Immunology, Graduate School of Medicine, Keio University, 3-5 Shinano-machi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Department of Medical Life Sciences, Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Turumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan.,Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.,Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
18
|
The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res 2021; 70:859-875. [PMID: 34272579 DOI: 10.1007/s00011-021-01484-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The physiological balance between bone resorption and bone formation is now known to be mediated by a cascade of events parallel to the classic osteoblast-osteoclast interaction. Thus, osteoimmunology now encompasses the role played by other cell types, such as cytokines, lymphocytes and chemokines, in immunological responses and how they help modulate bone metabolism. All these factors have an impact on the RANK/RANKL/OPG pathway, which is the major pathway for the maturation and resorption activity of osteoclast precursor cells, responsible for osteoporosis development. Recently, immunoporosis has emerged as a new research area in osteoimmunology dedicated to the immune system's role in osteoporosis. METHODS The first part of this review presents theoretical concepts on the factors involved in the skeletal system and osteoimmunology. Secondly, existing treatments and novel therapeutic approaches to treat osteoporosis are summarized. These were selected from to the most recent studies published on PubMed containing the term osteoporosis. All data relate to the results of in vitro and in vivo studies on the osteoimmunological system of humans, mice and rats. FINDINGS Treatments for osteoporosis can be classified into two categories. They either target osteoclastogenesis inhibition (denosumab, bisphosphonates), or they aim to restore the number and function of osteoblasts (romozumab, abaloparatide). Even novel therapies, such as resolvins, gene therapy, and mesenchymal stem cell transplantation, fall within this classification system. CONCLUSION This review presents alternative pathways in the pathophysiology of osteoporosis, along with some recent therapeutic breakthroughs to restore bone homeostasis.
Collapse
|
19
|
Wu P, Feng J, Wang W. Periodontal tissue regeneration combined with orthodontic treatment can improve clinical efficacy and periodontal function of patients with periodontitis. Am J Transl Res 2021; 13:6678-6685. [PMID: 34306412 PMCID: PMC8290668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine the efficacy of periodontal tissue regeneration (PTR) combined with orthodontic treatment in patients with periodontitis. METHODS A total of 118 patients with periodontitis admitted to our hospital between March 2017 and May 2019 were enrolled. Among them, 56 patients were treated with PTR as a regular group, while the rest 62 were treated with PTR combined with orthodontic treatment as a joint group. The two groups were compared in efficacy, total treatment time, recovery time for periodontal function, periodontal function-associated indexes before and after treatment, pain, serum inflammatory factors, adverse reactions, and treatment satisfaction. RESULTS The joint group showed significantly higher effective treatment rate (P<0.05), and experienced significantly shorter total treatment time and recovery time for periodontal function than the regular group (both P<0.05). Before treatment, there was no meaningful difference between the two groups in plaque index (PLI), periodontal pocket probing depth (PD), sulcus bleeding index (SBI), attachment loss (AL), visual analog scale (VAS) score, and serum IL-6, IL-1β and TNF-α levels, while after treatment, these indexes of both groups improved (all P<0.05), and the improvement in the joint group was more notable (P<0.05). Additionally, there were no significant difference between the two groups in the incidence of adverse reactions (P>0.05), and the joint group expressed significantly higher treatment satisfaction (P<0.05). CONCLUSION With a high safety, PTR combined with orthodontic treatment can effectively alleviate the clinical symptoms of patients and promote the recovery of their periodontal function, and is more acceptable, so it is worthy of clinical promotion.
Collapse
Affiliation(s)
- Peng Wu
- Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical UniversityBeijing 100050, China
| | - Jie Feng
- Department of General, Beijing Stomatological Hospital, Capital Medical UniversityBeijing 100050, China
| | - Wei Wang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical UniversityBeijing 100050, China
| |
Collapse
|
20
|
Kanegasaki S, Tsuchiya T. A possible way to prevent the progression of bone lesions in multiple myeloma via Src-homology-region-2-domain-containing-phosphatase-1 activation. J Cell Biochem 2021; 122:1313-1325. [PMID: 33969922 DOI: 10.1002/jcb.29949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
On the basis of our recent findings, in which multiple receptor-mediated mast cell functions are regulated via a common signaling cascade, we posit that the formation and functioning of osteoclasts are also controlled by a similar common mechanism. These cells are derived from the same granulocyte/monocyte progenitors and share multiple receptors except those that are cell-specific. In both types of cells, all known receptors reside in lipid rafts, form multiprotein complexes with recruited signaling molecules, and are internalized upon receptor engagement. Signal transduction proceeds in a chain of protein phosphorylations, where adaptor protein LAT (linker-for-activation-of-T-cells) plays a central role. The key kinase that associates LAT phosphorylation and lipid raft internalization is Syk (spleen-tyrosine-kinase) and/or an Src-family-kinase, most probably Lck (lymphocyte-specific-protein-tyrosine-kinase). Dephosphorylation of phosphorylated Syk and Lck by activated SHP-1 (Src-homology-region-2-domain-containing-phosphatase-1) terminates the signal transduction and endocytosis of receptors, resulting in inhibition of osteoclast differentiation and other functions. In malignant plasma cells (MM cells) too, SHP-1 plays a similar indispensable role in controlling signal transduction required for survival and proliferation, though BLNK (B-cell-linker-protein), a functional equivalent of LAT and SLP-76 (SH2-domain-containing-leukocyte-protein-of-76-kDa) in B cells, is used instead of LAT. In both osteoclasts and MM cells, therefore, activated SHP-1 acts negatively in receptor-mediated cellular functions. In osteoblasts, however, activated SHP-1 promotes differentiation, osteocalcin generation, and mineralization by preventing both downregulation of transcription factors, such as Ostrix and Runx2, and degradation of β-catenin required for activation of the transcription factors. SHP-1 is activated by tyrosine phosphorylation and micromolar doses (M-dose) of CCRI-ligand-induced SHP-1 activation. Small molecular compounds, such as A770041, Sorafenib, Nitedanib, and Dovitinib, relieve the autoinhibitory conformation. Activation of SHP-1 by M-dose CCRI ligands or the compounds described may prevent the progression of bone lesions in MM.
Collapse
Affiliation(s)
- Shiro Kanegasaki
- Department of Lipid Signaling, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoko Tsuchiya
- Department of Molecular Immunology and Inflammation, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
22
|
Abstract
Periodontitis, one of the most common infectious diseases in humans, is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone, which ultimately leads to tooth loss. Recently, it was revealed that the osteoclastic bone damage that occurs during periodontitis is dependent on the receptor activator of NF-kB ligand (RANKL) produced by osteoblastic cells and periodontal ligament cells. Immune cells provide essential cues for the RANKL induction that takes place during periodontal inflammation. The knowledge accumulated and experimental tools established in the field of "osteoimmunology" have made crucial contributions to a better understanding of periodontitis pathogenesis and, reciprocally, the investigation of periodontitis has provided important insights into the field. This review discusses the molecular mechanisms underlying periodontal bone loss by focusing on the osteoimmune interactions and RANKL.
Collapse
Affiliation(s)
- Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, Chen L. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 2020; 18:479. [PMID: 33308247 PMCID: PMC7733264 DOI: 10.1186/s12967-020-02664-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontitis, a bacterium-induced inflammatory disease that is characterized by alveolar bone loss, is highly prevalent worldwide. Elucidating the underlying mechanisms of alveolar bone loss in periodontitis is crucial for understanding its pathogenesis. Classically, bone cells, such as osteoclasts, osteoblasts and bone marrow stromal cells, are thought to dominate the development of bone destruction in periodontitis. Recently, osteocytes, the cells embedded in the mineral matrix, have gained attention. This review demonstrates the key contributing role of osteocytes in periodontitis, especially in alveolar bone loss. Osteocytes not only initiate physiological bone remodeling but also assist in inflammation-related changes in bone remodeling. The latest evidence suggests that osteocytes are involved in regulating bone anabolism and catabolism in the progression of periodontitis. The altered secretion of receptor activator of NF-κB ligand (RANKL), sclerostin and Dickkopf-related protein 1 (DKK1) by osteocytes affects the balance of bone resorption and formation and promotes bone loss. In addition, the accumulation of prematurely senescent and apoptotic osteocytes observed in alveolar bone may exacerbate local destruction. Based on their communication with the bloodstream, it is noteworthy that osteocytes may participate in the interaction between local periodontitis lesions and systemic diseases. Overall, further investigations of osteocytes may provide vital insights that improve our understanding of the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaoshuang Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
24
|
Miao Y, He L, Qi X, Lin X. Injecting Immunosuppressive M2 Macrophages Alleviates the Symptoms of Periodontitis in Mice. Front Mol Biosci 2020; 7:603817. [PMID: 33195441 PMCID: PMC7645063 DOI: 10.3389/fmolb.2020.603817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is the second most common oral disease affecting tooth-supporting structures. The tissue damage is mainly initiated by the excessive secretion of proinflammatory cytokines by immune cells. Macrophages are a type of antigen-presenting cells that influence the adaptive immunity function. We used a unique set of cytokines, i.e., a combination of IL-4, IL-13, and IL-10, to stimulate macrophages into a subset of M2 polarization cells that express much higher levels of ARG-1, CD206, and PDL-2 genes. The cells’ anti-inflammatory potential was tested with mixed-lymphocyte reaction assay, which showed that this subset of macrophages could increase IL-2 secretion and suppress IL-17, IL-6, and TNF-α secretion by splenocytes. The gram-negative bacterial species Porphyromonas gingivalis was used to initiate an inflammatory process in murine periodontal tissues. In the meantime, cell injection therapy was used to dampen the excessive immune reaction and suppress osteoclast differentiation during periodontitis. Maxilla was collected and analyzed for osteoclast formation. The results indicated that mice in the cell injection group exhibited less osteoclast activity within the periodontal ligament region than in the periodontitis group. Moreover, the injection of M2 macrophages sustained the regulatory population ratio. Therefore, the M2 macrophages induced under the stimulation of IL-4, IL-13, and IL-10 combined had tremendous immune modulation ability. Injecting these cells into local periodontal tissue could effectively alleviate the symptom of periodontitis.
Collapse
Affiliation(s)
- Yibin Miao
- Department of Stomatology, Shengjing Hospital of China Medical University, Liaoning, China
| | - Liuting He
- Department of Stomatology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoyu Qi
- Shenyang Medical College, Liaoning, China
| | - Xiaoping Lin
- Department of Stomatology, Shengjing Hospital of China Medical University, Liaoning, China
| |
Collapse
|
25
|
Abdalla HB, Clemente-Napimoga JT, Trindade-da-Silva CA, Alves LJ, Prats RDS, Youssef A, Vieira Dos Santos PC, Buarque E Silva WA, Andrade E Silva F, Napimoga MH. Occlusion Heightened by Metal Crown Cementation is Aggressive for Periodontal Tissues. J Prosthodont 2020; 30:142-149. [PMID: 32783328 DOI: 10.1111/jopr.13235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To investigate the effect of experimental traumatic occlusion (ETO) induced by metal crowns on alveolar bone loss. MATERIALS AND METHODS Metal crowns were custom-made for the lower first molars with occlusal discrepancy of 0.4 and 0.7 mm from the maximum intercuspation. Thirty-six animals were randomly divided into three groups (n = 12 animals per group): 0.4-mm hyperocclusion group, 0.7-mm hyperocclusion group and the sham group (no metal crown). Twenty-eight days after crown cementation, the animals were euthanized and gingival tissue was collected to assess cytokine levels of IL-17, IL-6, and TNF-α using enzyme-linked immunosorbent assay (ELISA). Mandibles were stained with 1% methylene blue and alveolar bone levels were quantified. Western blotting was used to quantify the expression of receptor activator of nuclear factor κ B (RANK), and its ligand (RANKL), secreted osteoclastogenic factor of activated T cells (SOFAT) and TNF-α-converting enzyme (TACE). Also, mandibles were histologically processed and stained with hematoxylin and eosin, from which the presence of osteoclast-like cells, multinucleated cells containing ≥3 nuclei was counted at 100× magnification. The data were analyzed using one-way ANOVA and Tukey tests. RESULTS Experimental occlusal trauma for 28 consecutive days significantly increased alveolar bone loss and multinucleated cell counts (p < 0.05). RANK, RANKL, SOFAT, TACE, IL-6, and TNF-α were significantly higher in gingival tissues of ETO groups (p < 0.05). IL-17 titers were unchanged among the groups (p > 0.05). CONCLUSION Experimental traumatic occlusion activates and sustains bone resorption pathways in the periodontium inducing alveolar bone resorption. As the intensity of occlusal trauma increased, alternative osteoclastic pathways were activated, such as TACE and SOFAT.
Collapse
Affiliation(s)
- Henrique Ballassini Abdalla
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - Carlos Antônio Trindade-da-Silva
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil
| | - Luciane Jorge Alves
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| | - Roberta da Silva Prats
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| | - Alexandre Youssef
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| | - Paulo César Vieira Dos Santos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Wilkens Aurélio Buarque E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Frederico Andrade E Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Laboratoy of Neuroimmune Interface of Pain Research, Campinas, SP, Brazil.,Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Immunology, Campinas, SP, Brazil
| |
Collapse
|
26
|
Guardiola CJDA, Clemente-Napimoga JT, Martinez EF, Abdalla HB, Peruzzo DC, Joly JC, Napimoga MH. DC-STAMP and TACE Levels are Higher in Patients with Periodontitis. Braz Dent J 2020; 31:122-126. [PMID: 32556010 DOI: 10.1590/0103-6440202002939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022] Open
Abstract
Although periodontitis is one of the commonest infectious inflammatory diseases in humans, the mechanisms involved with its immunopathology remain ill understood. Numerous molecules may induce inflammation and lead to bone resorption, secondary to activation of monocytes into osteoclasts. TACE (TNF-α converting enzyme) and DC-STAMP (dendritic cell-specific transmembrane protein) appear to play a role on bone resorption since TACE induces the release of sRANKL (soluble receptor activator of nuclear factor kappa-β ligand) whereas DC-STAMP is a key factor in osteoclast induction. The present study evaluated the levels of TACE and DC-STAMP in patients with and without periodontitis. Twenty individuals were selected: 10 periodontally healthy participants undergoing gingivectomy for esthetic reasons and 10 diagnosed with periodontitis. Protein levels of such molecules in gingival tissue were established using Western blotting. Protein levels of both TACE and DC-STAMP were higher in the periodontitis group than in the control group (p<0.05; Student t-test). In conclusion, TACE and DC-STAMP protein levels are elevated in patients with periodontitis, favoring progression of bone resorption.
Collapse
Affiliation(s)
- Cyro José de Almeida Guardiola
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Elizabeth Ferreira Martinez
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Henrique Balassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Daiane Cristina Peruzzo
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Júlio César Joly
- Periodontics and Implantology, Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
27
|
Gu Y, Han X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int J Mol Sci 2020; 21:ijms21093329. [PMID: 32397173 PMCID: PMC7247565 DOI: 10.3390/ijms21093329] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is known to be initiated by periodontal microbiota derived from biofilm formation. The microbial dysbiotic changes in the biofilm trigger the host immune and inflammatory responses that can be both beneficial for the protection of the host from infection, and detrimental to the host, causing tissue destruction. During this process, recognition of Pathogen-Associated Molecular Patterns (PAMPs) by the host Pattern Recognition Receptors (PRRs) such as Toll-like receptors (TLRs) play an essential role in the host–microbe interaction and the subsequent innate as well as adaptive responses. If persistent, the adverse interaction triggered by the host immune response to the microorganisms associated with periodontal biofilms is a direct cause of periodontal inflammation and bone loss. A large number of T and B lymphocytes are infiltrated in the diseased gingival tissues, which can secrete inflammatory mediators and activate the osteolytic pathways, promoting periodontal inflammation and bone resorption. On the other hand, there is evidence showing that immune regulatory T and B cells are present in the diseased tissue and can be induced for the enhancement of their anti-inflammatory effects. Changes and distribution of the T/B lymphocytes phenotype seem to be a key determinant of the periodontal disease outcome, as the functional activities of these cells not only shape up the overall immune response pattern, but may directly regulate the osteoimmunological balance. Therefore, interventional strategies targeting TLR signaling and immune regulatory T/B cells may be a promising approach to rebalance the immune response and alleviate bone loss in periodontal disease. In this review, we will examine the etiological role of TLR signaling and immune cell osteoclastogenic activity in the pathogenesis of periodontitis. More importantly, the protective effects of immune regulatory lymphocytes, particularly the activation and functional role of IL-10 expressing regulatory B cells, will be discussed.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
28
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
29
|
Tielking K, Fischer S, Preissner KT, Vajkoczy P, Xu R. Extracellular RNA in Central Nervous System Pathologies. Front Mol Neurosci 2019; 12:254. [PMID: 31680858 PMCID: PMC6811659 DOI: 10.3389/fnmol.2019.00254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
The discovery of extracellular RNA (exRNA) has shifted our understanding of the role of RNA in complex cellular functions such as cell-to-cell communication and a variety of pathologies. ExRNAs constitute a heterogenous group of RNAs ranging from small (such as microRNAs) and long non-coding to coding RNAs or ribosomal RNAs. ExRNAs can be liberated from cells in a free form or bound to proteins as well as in association with microvesicles (MVs), exosomes, or apoptotic bodies. Their composition and quantity depend heavily on the cellular or non-cellular component, the origin, and the RNA species being investigated; ribosomal RNA provides the majority of exRNA and miRNAs are predominantly associated with exosomes or MVs. Several studies showed that ribosomal exRNA (rexRNA) constitutes a proinflammatory and prothrombotic alarmin. It is released by various cell types upon inflammatory stimulation and by damaged cells undergoing necrosis or apoptosis and contributes to innate immunity responses. This exRNA has the potential to directly promote the release of cytokines such as tumor necrosis factor factor-α (TNF-α) or interleukin-6 from immune cells, thereby leading to a proinflammatory environment and promoting cardiovascular pathologies. The potential role of exRNA in different pathologies of the central nervous system (CNS) has become of increasing interest in recent years. Although various exRNA species including both ribosomal exRNA as well as miRNAs have been associated with CNS pathologies, their precise roles remain to be further elucidated. In this review, the different entities of exRNA and their postulated roles in CNS pathologies including tumors, vascular pathologies and neuroinflammatory diseases will be discussed. Furthermore, the potential role of exRNAs as diagnostic markers for specific CNS diseases will be outlined, as well as possible treatment strategies addressing exRNA inhibition or interference.
Collapse
Affiliation(s)
- Katharina Tielking
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Figueredo CM, Lira-Junior R, Love RM. T and B Cells in Periodontal Disease: New Functions in A Complex Scenario. Int J Mol Sci 2019; 20:ijms20163949. [PMID: 31416146 PMCID: PMC6720661 DOI: 10.3390/ijms20163949] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Periodontal disease is characterised by a dense inflammatory infiltrate in the connective tissue. When the resolution is not achieved, the activation of T and B cells is crucial in controlling chronic inflammation through constitutive cytokine secretion and modulation of osteoclastogenesis. The present narrative review aims to overview the recent findings of the importance of T and B cell subsets, as well as their cytokine expression, in the pathogenesis of the periodontal disease. T regulatory (Treg), CD8+ T, and tissue-resident γδ T cells are important to the maintenance of gingival homeostasis. In inflamed gingiva, however, the secretion of IL-17 and secreted osteoclastogenic factor of activated T cells (SOFAT) by activated T cells is crucial to induce osteoclastogenesis via RANKL activation. Moreover, the capacity of mucosal-associated invariant T cells (MAIT cells) to produce cytokines, such as IFN-γ, TNF-α, and IL-17, might indicate a critical role of such cells in the disease pathogenesis. Regarding B cells, low levels of memory B cells in clinically healthy periodontium seem to be important to avoid bone loss due to the subclinical inflammation that occurs. On the other hand, they can exacerbate alveolar bone loss in a receptor activator of nuclear factor kappa-B ligand (RANKL)-dependent manner and affect the severity of periodontitis. In conclusion, several new functions have been discovered and added to the complex knowledge about T and B cells, such as possible new functions for Tregs, the role of SOFAT, and MAIT cells, as well as B cells activating RANKL. The activation of distinct T and B cell subtypes is decisive in defining whether the inflammatory lesion will stabilise as chronic gingivitis or will progress to a tissue destructive periodontitis.
Collapse
Affiliation(s)
- C M Figueredo
- School of Dentistry and Oral Health, Griffith University, Queensland 4222, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.
| | - R Lira-Junior
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 141 04 Stockholm, Sweden
| | - R M Love
- School of Dentistry and Oral Health, Griffith University, Queensland 4222, Australia
| |
Collapse
|
31
|
Liu H, Gu R, Li W, Zhou W, Cong Z, Xue J, Liu Y, Wei Q, Zhou Y. Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 2019; 10:2040622319860653. [PMID: 31321013 PMCID: PMC6610433 DOI: 10.1177/2040622319860653] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Although antiretroviral agents trigger bone loss in human immunodeficiency
virus patients, tenofovir disoproxil fumarate (TDF) induces more severe bone
damage, such as osteoporosis. While, the mechanisms are unclear, probiotic
supplements may be effective against osteoporosis. Methods: C57BL6/J mice were administered with Lactobacillus rhamnosus
GG (LGG)+TDF, TDF, and zoledronic acid+TDF, respectively. Bone morphometry
and biomechanics were evaluated using microcomputed tomography, bone
slicing, and flexural tests. The lymphocyte, proinflammatory cytokines, and
intestinal permeability levels were detected using enzyme-linked
immunosorbent assays, quantitative real-time polymerase chain reaction, and
flow cytometry. The gut microbiota composition and metabolomics were
analyzed using 16S recombinant deoxyribonucleic acid pyrosequencing and
ultra-performance liquid-chromatography–quadrupole time-of-flight mass
spectrometry. Results: LGG administered orally induced marked increases in trabecular bone
microarchitecture, cortical bone volume, and biomechanical properties in the
LGG+TDF group compared with that in the TDF-only group. Moreover, LGG
treatment increased intestinal barrier integrity, expanded regulatory T
cells, decreased Th17 cells, and downregulated osteoclastogenesis-related
cytokines in the bone marrow, spleen, and gut. Furthermore, LGG
reconstructed the gut microbiota and changed the metabolite composition,
especially lysophosphatidylcholine levels. However, the amount of
N-acetyl-leukotriene E4 was the highest in the TDF-only group. Conclusion: LGG reconstructed the community structure of the gut microbiota, promoted the
expression of lysophosphatidylcholines, and improved intestinal integrity to
suppress the TDF-induced inflammatory response, which resulted in
attenuation of TDF-induced bone loss in mice. LGG probiotics may be a safe
and effective strategy to prevent and treat TDF-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wen Zhou
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zhe Cong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing 100021, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
32
|
Wang CM, Tsai SC, Lin JC, Wu YJJ, Wu J, Chen JY. Association of Genetic Variants of RANK, RANKL, and OPG with Ankylosing Spondylitis Clinical Features in Taiwanese. Mediators Inflamm 2019; 2019:8029863. [PMID: 31015798 PMCID: PMC6446096 DOI: 10.1155/2019/8029863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that leads to spinal ankylosis. The receptor activator of the nuclear factor-kappa (RANK), RANK ligand, and osteoprotegerin (OPG) (RANK/RANKL/OPG) pathway plays critical roles in bone metabolism and the immune system. The current study was aimed at investigating whether six single-nucleotide polymorphisms (SNPs) within the RANK, RANKL, and OPG genes essential for bone homeostasis are associated with AS. Genotype distributions, allele and haplotype frequencies, were compared between 1120 AS patients and 1435 healthy controls and among AS patients with stratification by syndesmophyte formation, onset age, and HLA-B27 positivity. We found that RANKL SNPs were associated with AS syndesmophyte formation. Notably, the RANKL SNP haplotype rs7984870C/rs9533155G/rs9525641C was negatively associated with AS susceptibility and appeared to protect against syndesmophyte formation in AS. Functionally, RANKL promoter SNPs (rs9525641 C/T and rs9533155 G/C) affected DNA-protein complex formation and promoter activity in promoter reporter analyses. The OPG SNP haplotype rs2073618G/rs3102735T was significantly associated with HLA-B27 negativity in AS patients. Furthermore, AS patients with syndesmophyte formation had significantly lower levels of soluble RANKL levels than those without syndesmophyte formation. Our data suggested a role for RANKL in AS susceptibility and severity.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Shu-Chun Tsai
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2 Nankang, Taipei 115, Taiwan
| | - Jing-Chi Lin
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Yeong-Jian Jan Wu
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Jianming Wu
- Associate Professor, Department of Veterinary and Biomedical Sciences, Department of Medicine, University of Minnesota, USA
| | - Ji-Yih Chen
- Attending Physician, Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| |
Collapse
|
33
|
Chandran M, Muddaiah S, Nair S, Shetty B, Somaiah S, Reddy G, Abraham B. Clinical and molecular-level comparison between conventional and corticotomy-assisted canine retraction techniques. J World Fed Orthod 2018. [DOI: 10.1016/j.ejwf.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Han Y, Jin Y, Miao Y, Shi T, Lin X. Improved RANKL production by memory B cells: A way for B cells promote alveolar bone destruction during periodontitis. Int Immunopharmacol 2018; 64:232-237. [DOI: 10.1016/j.intimp.2018.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
|
35
|
Han Y, Jin Y, Miao Y, Shi T, Lin X. Improved RANKL expression and osteoclastogenesis induction of CD27+CD38- memory B cells: A link between B cells and alveolar bone damage in periodontitis. J Periodontal Res 2018; 54:73-80. [PMID: 30346027 DOI: 10.1111/jre.12606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a bacteria-induced disease that often leads to alveolar bone damage. Its mechanisms were considered to be complicated, involving an imbalance of the formation and resorption of bone. We sought to disclose the antibody-independent function of B cells during periodontitis. MATERIAL AND METHODS Production of receptor activator for nuclear factor-κB ligand (RANKL) by total lymphocytes or sorted B-cell subsets in gingiva from healthy or experimental periodontitis animals was examined by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. To define the effects of lymphocytes or B-cell subsets on osteoclastogenesis induction, bone marrow mononuclear cells were culture in culture medium of lymphocytes or cocultured with B-cell subsets. Osteoclasts were enumerated by tartrate-resistant acid phosphatase staining. Constituent ratio of B-cell subsets in healthy or experimental periodontitis was also detected by flow cytometry. RESULT Gingiva B cells produce more RANKL and support more osteoclastogenesis than T and other lymphocytes, and this potential improved in periodontitis. Memory B cells (CD27+CD38-) decreased their percentage in periodontitis. Memory B cells have the highest propensity for RANKL production. Remarkably, memory B cells from periodontitis animals expressed significantly more RANKL compared to healthy controls. Memory B cells supported osteoclast differentiation in vitro in a RANKL-dependent manner, and the number of osteoclasts was higher in cultures with memory B cells from periodontitis animals than in those derived from healthy ones. Other B-cell subsets have limited impact on osteoclast formation. CONCLUSION Findings of this study further disclose the roles of B cells engaged in periodontal immunomodulation and reveal the considerable importance of memory B cells in alveolar bone homeostasis and their likely contribution to alveolar bone destruction in periodontitis.
Collapse
Affiliation(s)
- Yakun Han
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yibin Miao
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie Shi
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoping Lin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Moonen CGJ, Alders ST, Bontkes HJ, Schoenmaker T, Nicu EA, Loos BG, de Vries TJ. Survival, Retention, and Selective Proliferation of Lymphocytes Is Mediated by Gingival Fibroblasts. Front Immunol 2018; 9:1725. [PMID: 30140265 PMCID: PMC6094995 DOI: 10.3389/fimmu.2018.01725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis, a chronic inflammatory disease of the periodontium, is characterized by osteoclast-mediated alveolar bone destruction. Gingival fibroblasts (GFs) present in the bone-lining mucosa have the capacity to activate the formation of osteoclasts, but little is known about which local immune cells (co-)mediate this process. The aim of this study was to investigate the cellular interactions of GFs with immune cells, including the contribution of GFs to osteoclast formation and their possible role in the proliferation of these immune cells. In addition, we investigated the expression of adhesion molecules and the inflammatory cytokines that are evoked by this interaction. GFs were cocultured with peripheral blood mononuclear cells (PBMCs), CD14+ monocytes or peripheral blood lymphocytes (PBLs) for 7, 14, and 21 days. After 21 days, comparable numbers of multinucleated cells (osteoclasts) were found in gingival fibroblast (GF)-PBMC and GF-monocyte cocultures. No osteoclasts were formed in GF-PBL cocultures, indicating that the PBLs present in GF-PBMC cocultures do not contribute to osteoclastogenesis. Persisting mononuclear cells were interacting with osteoclasts in GF-PBMC cocultures. Remarkably, a predominance of CD3+ T cells was immunohistochemically detected in GF cocultures with PBLs and PBMCs for 21 days that frequently interacted with osteoclasts. Significantly more T, B (CD19+), and NK (CD56+CD3-) cells were identified with multicolor flow cytometry in both GF-PBMC and GF-PBL cocultures compared to monocultures without GFs at all time points. GFs retained PBLs independently of the presence of monocytes or osteoclasts over time, showing a stable population of T, B, and NK cells between 7 and 21 days. T helper and cytotoxic T cell subsets remained stable over time in GF cocultures, while the number of Th17 cells fluctuated. Lymphocyte retention is likely mediated by lymphocyte-function-associated antigen-1 (LFA-1) expression, which was significantly higher in GF-PBL cultures compared to GF-monocyte cultures. When assessing inflammatory cytokine expression, high tumor necrosis alpha expression was only observed in the GF-PBMC cultures, indicating that this tripartite presence of GFs, monocytes, and lymphocytes is required for such an induction. Carboxyfluorescein succinimidyl ester-labeling showed that only the CD3+ cells proliferated in presence of GFs. This study demonstrates a novel role for GFs in the survival, retention, and selective proliferation of lymphocytes.
Collapse
Affiliation(s)
- Carolyn G J Moonen
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Sven T Alders
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Hetty J Bontkes
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands.,Department of Clinical Chemistry, Medical Immunology, Vrije Universiteit Medical Center (VUMC), Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands.,Opris Dent SRL, Sibiu, Romania
| | - Bruno G Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
37
|
Graves DT, Alshabab A, Albiero ML, Mattos M, Correa JD, Chen S, Yang Y. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol 2018; 45:285-292. [PMID: 29220094 PMCID: PMC5811370 DOI: 10.1111/jcpe.12851] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 02/05/2023]
Abstract
AIM Periodontitis results from bacteria-induced inflammation. A key cytokine, RANKL, is produced by a number of cell types. The cellular source of RANKL critical for periodontitis has not been established. METHODS We induced periodontal bone loss by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in both normoglycaemic and streptozotocin-induced type 1 diabetic mice. Experimental transgenic mice had osteocyte-specific deletion of floxed receptor activator of nuclear factor kappa-B ligand (RANKL) mediated by DMP-1-driven Cre recombinase. Outcomes were assessed by micro-CT, histomorphometric analysis, immunofluorescent analysis of RANKL and tartrate-resistant acid phosphatase staining for osteoclasts and osteoclast activity. RESULTS Oral infection stimulated RANKL expression in osteocytes of wild-type mice, which was increased by diabetes and blocked in transgenic mice. Infected wild-type mice had significant bone loss and increased osteoclast numbers and activity, which were further enhanced by diabetes. No bone loss or increase in osteoclastogenesis or activity was detected in transgenic mice with RANKL deletion in osteocytes that were normoglycaemic or diabetic. CONCLUSIONS This study demonstrates for the first time the essential role of osteocytes in bacteria-induced periodontal bone loss and in diabetes-enhanced periodontitis.
Collapse
Affiliation(s)
- Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Alshabab
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontics, Faculty of Dentistry, Najran University, Saudi Arabia
| | - Mayra Laino Albiero
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontics, State University of Campinas, Piracicaba, Brazil
| | - Marcelo Mattos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joice Dias Correa
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Shanshan Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Host defense against oral microbiota by bone-damaging T cells. Nat Commun 2018; 9:701. [PMID: 29453398 PMCID: PMC5816021 DOI: 10.1038/s41467-018-03147-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
The immune system evolved to efficiently eradicate invading bacteria and terminate inflammation through balancing inflammatory and regulatory T-cell responses. In autoimmune arthritis, pathogenic TH17 cells induce bone destruction and autoimmune inflammation. However, whether a beneficial function of T-cell-induced bone damage exists is unclear. Here, we show that bone-damaging T cells have a critical function in the eradication of bacteria in a mouse model of periodontitis, which is the most common infectious disease. Bacterial invasion leads to the generation of specialized TH17 cells that protect against bacteria by evoking mucosal immune responses as well as inducing bone damage, the latter of which also inhibits infection by removing the tooth. Thus, bone-damaging T cells, which may have developed to stop local infection by inducing tooth loss, function as a double-edged sword by protecting against pathogens while also inducing skeletal tissue degradation.
Collapse
|
39
|
Kıran B, Toman M, Buduneli N, Lappin DF, Toksavul S, Nizam N. Intraoral versus extraoral cementation of implant-supported single crowns: Clinical, biomarker, and microbiological comparisons. Clin Implant Dent Relat Res 2017; 20:170-179. [DOI: 10.1111/cid.12567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Begüm Kıran
- Department of Prosthetic Dentistry, School of Dentistry; Ege University; İzmir Turkey
| | - Muhittin Toman
- Department of Prosthetic Dentistry, School of Dentistry; Ege University; İzmir Turkey
| | - Nurcan Buduneli
- Department of Periodontology, School of Dentistry; Ege University; İzmir Turkey
| | - David F. Lappin
- Oral Sciences Research Group, Dental Hospital and School, School of Medicine, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow United Kingdom
| | - Suna Toksavul
- Department of Prosthetic Dentistry, School of Dentistry; Ege University; İzmir Turkey
| | - Nejat Nizam
- Department of Periodontology, School of Dentistry; Ege University; İzmir Turkey
| |
Collapse
|
40
|
Saint-Pastou Terrier C, Gasque P. Bone responses in health and infectious diseases: A focus on osteoblasts. J Infect 2017; 75:281-292. [PMID: 28778751 DOI: 10.1016/j.jinf.2017.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Historically, bone was thought to be immunologically inactive with the sole function of supporting locomotion and ensuring stromaness functions as a major lymphoid organ. However, a myriad of pathogens (bacteria such as staphylococcus as well as viruses including alphaviruses, HIV or HCV) can invade the bone. These pathogens can cause apoptosis, autophagy and necrosis of osteoblasts and lead to lymphopenia and immune paralysis. There are now several detailed studies on how osteoblasts contribute to innate immune and inflammatory responses; indeed, osteoblasts in concert with resident macrophages can engage an armory of defense mechanisms capable of detecting and controlling pathogen evasion mechanisms. Osteoblasts can express the so-called pattern recognition receptors such as TOLL-like receptors involved in the detection for example of lipids and unique sugars (polysaccharides and polyriboses) expressed by bacteria or viruses (e.g. LPS and RNA respectively). Activated osteoblasts can produce interferon type I, cytokines, chemokines and interferon-stimulated proteins through autocrine and paracrine mechanisms to control for viral replication and to promote phagocytosis or lysis of bacteria for example by defensins. Uncontrolled and sustained innate immune activation of infected osteoblasts will also lead to an imbalance in the production of osteoclastogenic factors such as RANKL and osteoprotegerin involved in bone repair.
Collapse
Affiliation(s)
- Cécile Saint-Pastou Terrier
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France; Laboratoire de Biologie, secteur Laboratoire d'immunologie clinique et expérimentale ZOI (LICE OI), CHU La Réunion site Félix Guyon, St Denis, La Réunion, France.
| |
Collapse
|
41
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|