1
|
Nagao I, Kawasaki M, Goyama T, Kim HJ, Call DR, Ambrosini YM. Enterohemorrhagic Escherichia coli (EHEC) disrupts intestinal barrier integrity in translational canine stem cell-derived monolayers. Microbiol Spectr 2024; 12:e0096124. [PMID: 39162490 PMCID: PMC11448187 DOI: 10.1128/spectrum.00961-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/30/2024] [Indexed: 08/21/2024] Open
Abstract
This study addresses the gap in translatable in vitro models for investigating Enterohemorrhagic E. coli (EHEC) infections, particularly relevant to both canine and human health. EHEC is known to induce acute colitis in dogs, leading to symptoms like hemorrhagic diarrhea and hemolytic uremic syndrome, similar to those observed in humans. However, understanding the pathophysiology and developing treatment strategies have been challenging due to the lack of effective models that replicate the clinical disease caused by EHEC in both species. Our approach involved the development of colonoid-derived monolayers using intestinal tissues from healthy, client-owned dogs. These monolayers were exposed to EHEC, and the impact of EHEC was assessed through several techniques, including trans-epithelial electrical resistance (TEER) measurement, immunofluorescence staining for junction proteins and mucus, and scanning electron microscopy for morphological analysis. Modified culture with saline, which was intended to prevent bacterial overgrowth, maintained barrier integrity and cell differentiation. EHEC infection led to significant decreases in TEER and ZO-1 expression, but not in E-cadherin levels or mucus production. In addition, EHEC elicited a notable increase in tumor necrosis factor-alpha production, highlighting its distinct impact on canine intestinal epithelial cells compared to non-pathogenic E. coli. These findings closely replicate in vivo observations in dogs and humans with EHEC enteropathy, validating the canine colonoid-derived monolayer system as a translational model to study host-pathogen interactions in EHEC and potentially other clinically significant enteric pathogens. IMPORTANCE This study develops a new model to better understand Enterohemorrhagic E. coli (EHEC) infections, a serious bacterial disease affecting both dogs and humans, characterized by symptoms such as hemorrhagic diarrhea and hemolytic uremic syndrome. Traditional research models have fallen short of mimicking how this disease manifests in patients. Our research used intestinal tissues from healthy dogs to create layers of cells, known as colonoid-derived monolayers, which we then exposed to EHEC. We assessed the damage caused by the bacteria using several techniques, observing significant changes similar to those seen in actual cases of the disease. The model proved effective in replicating the interaction between the host and the pathogen, marking an important step toward understanding EHEC's effects and developing treatments. This canine colonoid-derived monolayer system not only bridges a crucial gap in current research but also offers a promising platform for studying other enteric pathogens affecting both canine and human health.
Collapse
Affiliation(s)
- Itsuma Nagao
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Minae Kawasaki
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Takashi Goyama
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Douglas R. Call
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Yoko M. Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Morovati S, Baghkheirati AA, Sekhavati MH, Razmyar J. A Review on cLF36, a Novel Recombinant Antimicrobial Peptide-Derived Camel Lactoferrin. Probiotics Antimicrob Proteins 2024; 16:1886-1905. [PMID: 38722550 DOI: 10.1007/s12602-024-10285-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 10/02/2024]
Abstract
Lactoferrin is an antimicrobial peptide (AMP) playing a pivotal role in numerous biological processes. The primary antimicrobial efficacy of lactoferrin is associated with its N-terminal end, which contains various peptides, such as lactoferricin and lactoferrampin. In this context, our research team has developed a refined chimeric 42-mer peptide known as cLF36 over the past few years. This peptide encompasses the complete amino acid sequence of camel lactoferrampin and partial amino acid sequence of lactoferricin. The peptide's activity against human, avian, and plant bacterial pathogens has been assessed using different biological platforms, including prokaryotic (P170 and pET) and eukaryotic (HEK293) expression systems. The peptide positively influenced the growth performance and intestinal morphology of chickens challenged with pathogen bacteria. Computational methods and in vitro studies showed the peptide's antiviral effects against hepatitis C virus, influenza virus, and rotavirus. The chimeric peptide exhibited higher activity against certain tumor cell lines compared to normal cells, which may be attributed to the peptide's interaction with negatively charged glycosaminoglycans on the surface of tumor cells. Importantly, this peptide exhibited no toxicity against host cells and demonstrated remarkable thermal and protease stability in serum. In conclusion, while our investigations suggest that the chimeric peptide, cLF36, may offer potential as a candidate or complementary option to some available antibiotics, antiviral agents, and chemical pesticides, significant uncertainties remain regarding its cost-effectiveness, as well as its pharmacodynamic and pharmacokinetic characteristics, which require further elucidation.
Collapse
Affiliation(s)
- Solmaz Morovati
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jamshid Razmyar
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Kim NY, Lee SI. Lauric acid reduces apoptosis by inhibiting FOXO3a-signaling in deoxynivalenol-treated IPEC-J2 cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1010-1020. [PMID: 39398305 PMCID: PMC11466732 DOI: 10.5187/jast.2023.e92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2024]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin contaminant of food or feed worldwide and causes disease in animals. Lauric acid (LA) is a medium-chain fatty acid useful for barrier functions such as antimicrobial activity in the intestine of monogastric animals. However, the molecular mechanisms by which lauric acid exerts its effects on the deoxynivalenol-exposed small intestine have not been studied. We used an intestinal porcine epithelial cell line (IPEC-J2) as an in vitro model to explore the molecular mechanism of lauric acid in alleviating deoxynivalenol-induced damage. We found that lauric acid reversed deoxynivalenol-induced reduction in cell viability. Our quantitative real-time polymerase chain reaction results indicated that lauric acid alleviated deoxynivalenol-induced apoptosis through Annexin-V. Additionally, immunofluorescence and Western blotting showed that lauric acid attenuated deoxynivalenol-induced forkhead box O3 (FOXO3a) translocation into the nucleus. These results suggest that lauric acid attenuates forkhead box O3 translocation in the small intestine damaged by deoxynivalenol, thereby reducing apoptosis. In conclusion, this study found that lauric acid alleviates deoxynivalenol-induced damage in intestinal porcine epithelial cell line through various molecular mechanisms.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Sang In Lee
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal
Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
4
|
Fan J, Li C, Han W, Wu F, Fan H, Fan D, Liu Y, Gu Z, Wang Y, Chen S, Chen B. Yeast peptides alleviate lipopolysaccharide-induced intestinal barrier damage in rabbits involving Toll-like receptor signaling pathway modulation and gut microbiota regulation. Front Vet Sci 2024; 11:1393434. [PMID: 38988982 PMCID: PMC11233764 DOI: 10.3389/fvets.2024.1393434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Yeast peptides have garnered attention as valuable nutritional modifiers due to their potential health benefits. However, the precise mechanisms underlying their effects remain elusive. This study aims to explore the potential of yeast peptides, when added to diets, to mitigate lipopolysaccharide (LPS)-induced intestinal damage and microbiota alterations in rabbits. Methods A total of 160 35-day-old Hyla line rabbits (0.96 ± 0.06 kg) were randomly assigned to 4 groups. These groups constituted a 2 × 2 factorial arrangement: basal diet (CON), 100 mg/kg yeast peptide diet (YP), LPS challenge + basal diet (LPS), LPS challenge +100 mg/kg yeast peptide diet (L-YP). The experiment spanned 35 days, encompassing a 7-day pre-feeding period and a 28-day formal trial. Results The results indicated that yeast peptides mitigated the intestinal barrier damage induced by LPS, as evidenced by a significant reduction in serum Diamine oxidase and D-lactic acid levels in rabbits in the L-YP group compared to the LPS group (p < 0.05). Furthermore, in the jejunum, the L-YP group exhibited a significantly higher villus height compared to the LPS group (p < 0.05). In comparison to the LPS group, the L-YP rabbits significantly upregulated the expression of Claudin-1, Occludin-1 and ZO-1 in the jejunum (p < 0.05). Compared with the CON group, the YP group significantly reduced the levels of rabbit jejunal inflammatory cytokines (TNF-α, IL-1β and IL-6) and decreased the relative mRNA expression of jejunal signaling pathway-associated inflammatory factors such as TLR4, MyD88, NF-κB and IL-1β (p < 0.05). Additionally, notable changes in the hindgut also included the concentration of short-chain fatty acids (SCFA) of the YP group was significantly higher than that of the CON group (p < 0.05). 16S RNA sequencing revealed a substantial impact of yeast peptides on the composition of the cecal microbiota. Correlation analyses indicated potential associations of specific gut microbiota with jejunal inflammatory factors, tight junction proteins, and SCFA. Conclusion In conclusion, yeast peptides have shown promise in mitigating LPS-induced intestinal barrier damage in rabbits through their anti-inflammatory effects, modulation of the gut microbiota, and maintenance of intestinal tight junctions.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Chong Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenxiao Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Huimin Fan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Dongfeng Fan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Yajuan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Zilin Gu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Yuanyuan Wang
- Agricultural Comprehensive Management Detachment of Tangshan City, Tangshan, China
| | - Saijuan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Zhao XQ, Wang L, Zhu CL, Xue XH, Xia XJ, Wu XL, Wu YD, Liu SQ, Zhang GP, Bai YY, Fotina H, Hu JH. Oral Administration of the Antimicrobial Peptide Mastoparan X Alleviates Enterohemorrhagic Escherichia coli-Induced Intestinal Inflammation and Regulates the Gut Microbiota. Probiotics Antimicrob Proteins 2024; 16:138-151. [PMID: 36515889 DOI: 10.1007/s12602-022-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
The gut microbiota plays an important role in intestinal immune system development and in driving inflammation. Antibiotic administration for therapeutic purposes causes an imbalance in the gut microbiota. Antimicrobial peptides can regulate the gut microbiota and maintain intestinal homeostasis. The aim of this study was to investigate the anti-inflammatory effects and regulation of the gut microbiota by the orally administered antimicrobial peptide mastoparan X (MPX). In this study, Escherichia coli was used to induce intestinal inflammation, and the results showed that MPX+ E. coli alleviated weight loss and intestinal pathological changes in necropsy specimens of E. coli-infected mice. MPX+ E. coli reduced the serum levels of the inflammation-related proteins interleukin-2, interleukin-6, tumour necrosis factor-α, myeloperoxidase, and lactate dehydrogenase on days 7 and 28. Furthermore, MPX+ E. coli increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum and colon post infection. Scanning electron microscopy and transmission electron microscopy results showed that MPX could improve the morphology of jejunum villi and microvilli and increase tight junction protein levels. 16S rRNA sequencing analysis of caecal content samples showed that the species diversity and richness were lower in the E. coli-infected group. At the genus level, MPX+ E. coli significantly reduced the abundance of Bacteroidales and Alistipes and enhanced the relative abundance of Muribaculaceae. Alpha-diversity analyses (Shannon index) showed that MPX significantly increased the microbial diversity of mice. Overall, this study is the first to investigate the effects of oral administration of MPX on intestinal inflammation and the gut microbiota, providing a new perspective regarding the prevention of enteritis and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Xue Qin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chun Ling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiang Hong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Jing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xi Long Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Yun Di Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Shan Qin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Gai Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yue Yu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine.
| | - Jian He Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
6
|
Ge W, Li Z, Yang Y, Liu X, Zhu Z, Bai L, Qin Z, Xu X, Li J, Li S. Synthesis and antibacterial activity of FST and its effects on inflammatory response and intestinal barrier function in mice infected with Escherichia coli O78. Int Immunopharmacol 2024; 127:111386. [PMID: 38109839 DOI: 10.1016/j.intimp.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhaohan Zhu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Lixia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiao Xu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| |
Collapse
|
7
|
Qin S, Xiao X, Dai Z, Zhao G, Cui Z, Wu Y, Yang C. Effects of Bacillus licheniformis on growth performance, immune and antioxidant functions, and intestinal microbiota of broilers. Poult Sci 2024; 103:103210. [PMID: 37980737 PMCID: PMC10684393 DOI: 10.1016/j.psj.2023.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/21/2023] Open
Abstract
Bacillus licheniformis (BL) has been widely regarded as an important growth promoter in recent years. However, its usage in animal industry still needs more foundations. The aim of our study was to study the effects of BL on the growth performance, immunity, oxidative function and intestinal flora of broilers. A total of 760 one-day-old yellow-feathered broilers were randomly divided into 4 groups with 10 replicates per group and 19 broilers per replicate. The broilers in the control group (CON) were fed with basal diet. The treatment groups were supplemented with 250 mg/kg (BL250), 500 mg/kg (BL500) and 750 mg/kg (BL750) BL in the basal diet for 70 d. Results showed that BL groups significantly increased the body weight (BW) and average daily gain (ADG), decreased average daily feed intake (ADFI) and feed conversion ratio (FCR). In addition, the spleen and bursa indexes were higher in the BL groups than that in the CON group at d 70. BL supplementation also markedly increased the levels of immunoglobulins Y (IgY), IgA and anti-inflammatory interleukin 10 (IL-10), reduced the levels of proinflammatory IL-1β, tumor necrosis factor α (TNF-α) and IL-2 in the serum at 70 d in a concentration-dependent manner. Besides, BL addition significantly increased the levels of series antioxidant enzymes including total antioxidant capacity (T-AOC), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT), and decreased the level of malondialdehyde (MDA) in the serum. Moreover, BL groups showed an obvious increase of isobutyric acid markedly and BL500 group significantly promoted the level of isovaleric acid in cecal contents of broilers. Finally, microbial analysis showed that BL supplementation presented visual separations of microbial composition and increased the relative abundance of p_Proteobacteria, g_Elusimicrobium, and g_Parasutterella comparing with the CON group. Together, this study inferred that dietary BL supplementation improved the growth performance, immune and antioxidant functions, changed the intestinal microflora structure and metabolites of yellow-feathered broilers, which laid a good basis for the application of probiotics in the future.
Collapse
Affiliation(s)
- Songke Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Xiao Xiao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Guiling Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Zhenchuan Cui
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China.
| |
Collapse
|
8
|
Wang X, Xie W, Cai L, Han C, Kuang H, Shao Y, Zhang S, Zhang Q, Li J, Cui W, Jiang Y, Tang L. Microencapsulated Limosilactobacillus reuteri Encoding Lactoferricin-Lactoferrampin Targeted Intestine against Salmonella typhimurium Infection. Nutrients 2023; 15:5141. [PMID: 38140400 PMCID: PMC10745908 DOI: 10.3390/nu15245141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) is an important foodborne pathogen that infects both humans and animals and develops acute gastroenteritis. As porcine intestines are relatively similar to the human ones due to their relatively similar sizes and structural similarity, S. typhimurium causes analogous symptoms in both. Novel strategies for controlling S. typhimurium infection are also desired, such as mucosal-targeted delivery of probiotics and antimicrobial peptides. The bovine lactoferricin-lactoferrampin-encoding Limosilactobacillus reuteri (LR-LFCA) strain improves intestinal barrier function by strengthening the intestinal barrier. Weaned piglets were selected for oral administration of microencapsulated LR-LFCA (microcapsules entrap LR-LFCA into gastro-resistant polymers) and then infected with S. typhimurium for 3 days. We found that orally administering microencapsulated LR-LFCA to weaned piglets attenuated S. typhimurium-induced production of inflammatory factors in the intestinal mucosa by inhibiting the nuclear factor-kappa B (NF-κB) and P38 mitogen-activated protein kinases (MAPK) signaling pathway. Moreover, microencapsulated LR-LFCA administration significantly suppressed the oxidative stress that may correlate with gut microbiota (reduced Salmonella population and increased α-diversity and Lactobacillus abundance) and intestinal function (membrane transport and metabolism). Our work demonstrated that microencapsulated LR-LFCA effectively targeted intestine delivery of Lactobacillus and antimicrobial peptides and modulated gut microbiota and mucosal immunity. This study reveals a novel targeting mucosal strategy against S. typhimurium infection.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Chuang Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Hongdi Kuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Baindara P, Mandal SM. Gut-Antimicrobial Peptides: Synergistic Co-Evolution with Antibiotics to Combat Multi-Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1732. [PMID: 38136766 PMCID: PMC10740742 DOI: 10.3390/antibiotics12121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Due to huge diversity and dynamic competition, the human gut microbiome produces a diverse array of antimicrobial peptides (AMPs) that play an important role in human health. The gut microbiome has an important role in maintaining gut homeostasis by the AMPs and by interacting with other human organs via established connections such as the gut-lung, and gut-brain axis. Additionally, gut AMPs play a synergistic role with other gut microbiota and antimicrobials to maintain gut homeostasis by fighting against multi-antibiotic resistance (MAR) bacteria. Further, conventional antibiotics intake creates a synergistic evolutionary pressure for gut AMPs, where antibiotics and gut AMPs fight synergistically against MAR. Overall, gut AMPs are evolving under a complex and highly synergistic co-evolutionary pressure created by the various interactions between gut microbiota, gut AMPs, and antibiotics; however, the complete mechanism is not well understood. The current review explores the synergistic action of gut AMPs and antibiotics along with possibilities to fight against MAR bacteria.
Collapse
Affiliation(s)
- Piyush Baindara
- Radiation Oncology, NextGen Precision Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
10
|
Gyawali I, Zhou G, Xu G, Li G, Wang Y, Zeng Y, Li J, Zhou J, Zhu C, Shu G, Jiang Q. Supplementation of microencapsulated probiotics modulates gut health and intestinal microbiota. Food Sci Nutr 2023; 11:4547-4561. [PMID: 37576064 PMCID: PMC10420788 DOI: 10.1002/fsn3.3414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 08/15/2023] Open
Abstract
The beneficial effect of probiotics on host health is impaired due to the substantial loss of survivability during gastric transit caused by small intestinal enzymes and bile acids. Encapsulation helps to preserve the probiotics species from severe environmental factors. Lactobacillus paracasei, highly sensitive probiotic species to gastric acid, was encapsulated with polyacrylate resin. C57BL/6 male mice were equally divided into three groups; control group was fed with basal diet without any additives, the un-encapsulated group was fed with 0.1% of a mixture of encapsulating material and L. paracasei, and encapsulated group was fed with 0.1% encapsulated L. paracasei (microcapsule) for 4 weeks. The result showed elevated fecal moisture percentage in the encapsulated group, but not in the un-encapsulated group. Further study showed that the ratio of villus height to crypt depth in the small intestine was significantly higher compared to un-encapsulated and the control group. Microencapsulated probiotics also remarkably increased intestinal mucin and secretory immunoglobulin A (sIgA) concentration, intestinal MUC-2, and tight junction protein mRNA expression levels improving the intestinal barrier function of mice. In addition, microcapsules also reduced proinflammatory factor mRNA expression, while considerably increasing anti-inflammatory factor mRNA expression. Microbiota metabolites, fecal LPS (Lipopolysaccharide) were downregulated, and acetate and lactate were upraised compared to control. Furthermore, glutathione peroxidase (GSH-Px) and TAOC levels were increased and Malondialdehyde (MDA) was decreased improving antioxidant capacity. Microflora and bioinformatic predictive analysis of feces showed that encapsulated probiotics remarkably increased Lactobacillus proportions. Mice's intestinal health can thus be improved by using microencapsulated probiotics.
Collapse
Affiliation(s)
- Ishwari Gyawali
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Guilian Zhou
- Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan ProvinceChengduChina
| | - Guli Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Genghui Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yujun Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yuxian Zeng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Jincheng Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Jingjing Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Canjun Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Gang Shu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Qingyan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
11
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
12
|
Pirozzi C, Opallo N, Coretti L, Lama A, Annunziata C, Comella F, Melini S, Buommino E, Mollica MP, Aviello G, Mattace Raso G, Lembo F, Meli R. Alkalihalobacillus clausii (formerly Bacillus clausii) spores lessen antibiotic-induced intestinal injury and reshape gut microbiota composition in mice. Biomed Pharmacother 2023; 163:114860. [PMID: 37196540 DOI: 10.1016/j.biopha.2023.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
The antibiotic-induced intestinal injury (AIJ) is associated with diarrhoea and gastrointestinal discomfort. However, the pathological intestinal mechanisms and related side effects associated with antibiotic use/misuse may be counteracted by probiotics. This study aims to evaluate the effect and the protective mechanisms of a probiotic formulation containing Alkalihalobacillus clausii (formerly Bacillus clausii; BC) spores in an experimental model of AIJ. C57/Bl6J mice were orally challenged with a high dose of ceftriaxone for five days along with BC treatment which lasted up to the 15th day. Our results showed the beneficial effect of the probiotic in preserving colonic integrity and limiting tissue inflammation and immune cell infiltration in AIJ mice. BC increased tight junction expression and regulated the unbalanced production of colonic pro- and anti-inflammatory cytokines, converging toward the full resolution of the intestinal damage. These findings were supported by the histological evaluation of the intestinal mucosa, suggesting a potential restoration of mucus production. Notably, BC treatment increased gene transcription of the secretory products responsible for epithelium repair and mucus synthesis and normalized the expression of antimicrobial peptides involved in immune activation. Reconstruction of complex and diverse gut microbiota in antibiotic-induced dysbiosis was recorded upon BC supplementation. Specifically, the expansion of A. clausii, Prevotella rara and Eubacterium ruminatium drove intestinal microbiota rebalance by primarily impacting Bacteroidota members. Taken together, our data indicate that BC administration alleviates AIJ by multiple converging mechanisms leading to restoring gut integrity and homeostasis and reshaping microbiota composition.
Collapse
Affiliation(s)
- C Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - N Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - L Coretti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - A Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - C Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - F Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - S Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - E Buommino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - M P Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - G Aviello
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - G Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.
| | - F Lembo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - R Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Improvement of soybean meal quality by one-step fermentation with mixed-culture based on protease activity. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Xiong J, Kaleja P, Ückert L, Nezaratizadeh N, Krantz S, Krause MF, Fitschen-Oestern S, Seekamp A, Cassidy L, Tholey A, Fuchs S. Alveolar-Capillary Barrier Protection In Vitro: Lung Cell Type-Specific Effects and Molecular Mechanisms Induced by 1α, 25-Dihydroxyvitamin D3. Int J Mol Sci 2023; 24:ijms24087298. [PMID: 37108455 PMCID: PMC10138495 DOI: 10.3390/ijms24087298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Low serum levels of 1α, 25-dihydroxyvitamin D3 (VD3) are associated with a higher mortality in trauma patients with sepsis or ARDS. However, the molecular mechanisms behind this observation are not yet understood. VD3 is known to stimulate lung maturity, alveolar type II cell differentiation, or pulmonary surfactant synthesis and guides epithelial defense during infection. In this study, we investigated the impact of VD3 on the alveolar-capillary barrier in a co-culture model of alveolar epithelial cells and microvascular endothelial cells respectively in the individual cell types. After stimulation with bacterial LPS (lipopolysaccharide), gene expression of inflammatory cytokines, surfactant proteins, transport proteins, antimicrobial peptide, and doublecortin-like kinase 1 (DCLK1) were analyzed by real-time PCR, while corresponding proteins were evaluated by ELISA, immune-fluorescence, or Western blot. The effect of VD3 on the intracellular protein composition in H441 cells was analyzed by quantitative liquid chromatography-mass spectrometry-based proteomics. VD3 effectively protected the alveolar-capillary barrier against LPS treatment, as indicated by TEER measurement and morphological assessment. VD3 did not inhibit the IL-6 secretion by H441 and OEC but restricted the diffusion of IL-6 to the epithelial compartment. Further, VD3 could significantly suppress the surfactant protein A expression induced in the co-culture system by LPS treatment. VD3 induced high levels of the antimicrobial peptide LL-37, which counteracted effects by LPS and strengthened the barrier. Quantitative proteomics identified VD3-dependent protein abundance changes ranging from constitutional extracellular matrix components and surfactant-associated proteins to immune-regulatory molecules. DCLK1, as a newly described target molecule for VD3, was prominently stimulated by VD3 (10 nM) and seems to influence the alveolar-epithelial cell barrier and regeneration.
Collapse
Affiliation(s)
- Junyu Xiong
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Patrick Kaleja
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24015 Kiel, Germany
| | - Larissa Ückert
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Niloufar Nezaratizadeh
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Stefanie Krantz
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Martin Friedrich Krause
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Stefanie Fitschen-Oestern
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Liam Cassidy
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24015 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24015 Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
15
|
Shih CC, Liao WC, Ke HY, Kuo CW, Tsao CM, Tsai WC, Chiu YL, Huang HC, Wu CC. Antimicrobial peptide cathelicidin LL-37 preserves intestinal barrier and organ function in rats with heat stroke. Biomed Pharmacother 2023; 161:114565. [PMID: 36958193 DOI: 10.1016/j.biopha.2023.114565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Global warming increases the incidence of heat stroke (HS) and HS causes the reduction of visceral blood flow during hyperthermia, leading to intestinal barrier disruption, microbial translocation, systemic inflammation and multiple organ failure. Cathelicidin LL-37 exhibits antimicrobial activities, helps innate immunity within the gut to maintain intestinal homeostasis, and augments intestinal wound healing and barrier function. Thus, we evaluated the effects and possible mechanisms of cathelicidin LL-37 on HS. Wistar rats were placed in a heating-chamber of 42 ̊C to induce HS. Changes in rectal temperature, hemodynamic parameters, and survival rate were measured during the experimental period. Blood samples and ilea were collected to analyze the effects of LL-37 on systemic inflammation, multiple organ dysfunction, and intestinal injury. Furthermore, LS174T and HT-29 cells were used to assess the underlying mechanisms. Our data showed cathelicidin LL-37 ameliorated the damage of intestinal cells induced by HS. Intestinal injury, systemic inflammation, and nitrosative stress (high nitric oxide level) caused by continuous hyperthermia were attenuated in HS rats treated with cathelicidin LL-37, and hence, improved multiple organ dysfunction, coagulopathy, and survival rate. These beneficial effects of cathelicidin LL-37 were attributed to the protection of intestinal goblet cells (by increasing transepithelial resistance, mucin-2 and Nrf2 expression) and the improvement of intestinal barrier function (less cyclooxygenase-2 expression and FITC-dextran translocation). Interestingly, high cathelicidin expression in the ileal samples of inflammatory bowel disease patients was associated with better clinical outcome. These results suggest that cathelicidin LL-37 could prevent heat stress-induced intestinal damage and heat-related illnesses.
Collapse
Affiliation(s)
- Chih-Chin Shih
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Wei-Chieh Liao
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chia-Wen Kuo
- Department of Nephrology, Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming Chiao-Tung University, Taipei, Taiwan, ROC
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsieh-Chou Huang
- Department of Anesthesiology, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Chin-Chen Wu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
16
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
17
|
José Karpeggiane de Oliveira M, Diego Brandão Melo A, Alves Marçal D, Alves da Cunha Valini G, Alisson Silva C, Mari Veira A, Zem Fraga A, Righetti Arnaut P, Henrique Reis Furtado Campos P, Sousa dos Santos L, Khun Kyaw Htoo J, Gastmann Brand H, Hauschild L. Effects of lowering dietary protein content without or with increased protein-bound and feed-grade amino acids supply on growth performance, body composition, metabolism, and acute-phase protein of finishing pigs under daily cyclic heat stress. J Anim Sci 2023; 101:skac387. [PMID: 36420675 PMCID: PMC9833036 DOI: 10.1093/jas/skac387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effects of a low-protein diet with or without an increase in dietary protein and feed-grade amino acids (AAs) on the growth performance, body composition, metabolism, and serum acute-phase proteins of finishing pigs reared in thermoneutrality or cyclic heat stress conditions. A total of 90 gilts (67.7 ± 6.2 kg) were distributed in a 2 × 3 factorial arrangement (two ambient temperatures and three diets). Ambient temperatures (AT) were thermoneutral (TN, 22 °C for 24 h) and cyclic heat stress (CHS, 12 h to 35 °C and 12 h to 22 °C). The evaluated diets (D) were high crude protein (HP); low CP-free AA-supplemented diets (LPAAs); low CP-free AA-supplemented diets and digestible Lys level (+20%), and Lys:AA ratios above recommendations (LPAA+). The experimental period lasted 48 d (two experimental phases: days 0-27 and days 28-48, respectively). CHS pigs had higher skin temperature (P < 0.05) than TN pigs. Pigs in CHS had higher rectal temperature (P < 0.05) than TN pigs until day 38 but similar (P > 0.10) to TN pigs from 38 to 45 d. For the entire experiment, CHS pigs had lower (P < 0.05) final BW, average daily gain and daily feed intake, net energy intake, body lipid, bone mineral, lipid deposition, energy retention, Lys and CP intake, and nitrogen excretion than TN pigs. The level of CP intake impacted nitrogen excretion, nitrogen retention efficiency, and urea as pigs fed HP had the highest values, and pigs fed LPAA had the lowest values (P < 0.05). On day 27, CHS pigs had lower (P < 0.05) free triiodothyronine than TN pigs. LPAA+ pigs had lower (P < 0.05) insulin than LPAA. On day 48, CHS pigs had lower (P < 0.05) thyroxine, albumin, and lactate than TN pigs. On day 27, pigs fed LPAA+ had higher (P < 0.05) lactate than pigs fed HP or LPAA. Both AT and D were enough to stimulate the immune system as CHS pigs had lower (P < 0.05) transferrin and 23-kDa protein levels than TN pigs, and HP pigs had higher haptoglobin than LPAA on day 27. These results confirm the deleterious effects of high AT on performance, body composition, metabolism, and immune system stimulation in finishing pigs. These data also show that a diet with low levels of CP can be provided to pigs in CHS without affecting performance and body composition while reducing nitrogen excretion. However, the use of a diet with an AA level above the requirements obtained by increasing intact protein and free AA did not attenuate the impact of CHS on performance and body composition of pigs.
Collapse
Affiliation(s)
- Marllon José Karpeggiane de Oliveira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Antonio Diego Brandão Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Danilo Alves Marçal
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Graziela Alves da Cunha Valini
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Cleslei Alisson Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Alini Mari Veira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Alícia Zem Fraga
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Pedro Righetti Arnaut
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Luan Sousa dos Santos
- Department of Animal Nutrition and Pastures, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | | | - Luciano Hauschild
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
18
|
Wang S, Fu W, Zhao X, Chang X, Liu H, Zhou L, Li J, Cheng R, Wu X, Li X, Sun C. Zearalenone disturbs the reproductive-immune axis in pigs: the role of gut microbial metabolites. MICROBIOME 2022; 10:234. [PMID: 36536466 PMCID: PMC9762105 DOI: 10.1186/s40168-022-01397-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to zearalenone (ZEN, a widespread Fusarium mycotoxin) causes reproductive toxicity and immunotoxicity in farm animals, and it then poses potential threats to human health through the food chain. A systematic understanding of underlying mechanisms on mycotoxin-induced toxicity is necessary for overcoming potential threats to farm animals and humans. The gastrointestinal tract is a first-line defense against harmful mycotoxins; however, it remains unknown whether mycotoxin (e.g., ZEN)-induced toxicity on the reproductive-immune axis is linked to altered gut microbial metabolites. In this study, using pigs (during the three phases) as an important large animal model, we investigated whether ZEN-induced toxicity on immune defense in the reproductive-immune axis was involved in altered gut microbial-derived metabolites. Moreover, we observed whether the regulation of gut microbial-derived metabolites through engineering ZEN-degrading enzymes counteracted ZEN-induced toxicity on the gut-reproductive-immune axis. RESULTS Here, we showed ZEN exposure impaired immune defense in the reproductive-immune axis of pigs during phase 1/2. This impairment was accompanied by altered gut microbial-derived metabolites [e.g., decreased butyrate production, and increased lipopolysaccharides (LPS) production]. Reduction of butyrate production impaired the intestinal barrier via a GPR109A-dependent manner, and together with increased LPS in plasma then aggravated the systemic inflammation, thus directly and/or indirectly disturbing immune defense in the reproductive-immune axis. To validate these findings, we further generated recombinant Bacillus subtilis 168-expressing ZEN-degrading enzyme ZLHY-6 (the Bs-Z6 strain) as a tool to test the feasibility of enzymatic removal of ZEN from mycotoxin-contaminated food. Notably, modified gut microbial metabolites (e.g., butyrate, LPS) through the recombinant Bs-Z6 strain counteracted ZEN-induced toxicity on the intestinal barrier, thus enhancing immune defense in the reproductive-immune axis of pigs during phase-3. Also, butyrate supplementation restored ZEN-induced abnormalities in the porcine small intestinal epithelial cell. CONCLUSIONS Altogether, these results highlight the role of gut microbial-derived metabolites in ZEN-induced toxicity on the gut-reproductive-immune axis. Importantly, targeting these gut microbial-derived metabolites opens a new window for novel preventative strategies or therapeutic interventions for mycotoxicosis associated to ZEN.
Collapse
Affiliation(s)
- Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Xueya Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xiaojiao Chang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Hujun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Lin Zhou
- Shenzhen Premix INVE Nutrition, Co., LTD., Shenzhen, 518100, The People's Republic of China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Rui Cheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, The People's Republic of China.
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
| |
Collapse
|
19
|
Zhou J, Feng M, Zhang W, Kuang R, Zou Q, Su J, Yuan G. Oral administration of hepcidin and chitosan benefits growth, immunity, and gut microbiota in grass carp ( Ctenopharyngodon idella). Front Immunol 2022; 13:1075128. [PMID: 36591242 PMCID: PMC9798086 DOI: 10.3389/fimmu.2022.1075128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Intensive high-density culture patterns are causing an increasing number of bacterial diseases in fish. Hepcidin links iron metabolism with innate immunity in the process of resisting bacterial infection. In this study, the antibacterial effect of the combination of hepcidin (Cihep) and chitosan (CS) against Flavobacterium columnare was investigated. The dosing regimen was also optimized by adopting a feeding schedule of every three days and every seven days. After 56 days of feeding experiment, grass carp growth, immunity, and gut microbiota were tested. In vitro experiments, Cihep and CS can regulate iron metabolism and antibacterial activity, and that the combination of Cihep and CS had the best protective effect. In vivo experiments, Cihep and CS can improve the growth index of grass carp. After challenge with Flavobacterium columnare, the highest survival rate was observed in the Cihep+CS-3d group. By serum biochemical indicators assay and Prussian blue staining, Cihep and CS can increase iron accumulation and decrease serum iron levels. The contents of lysozyme and superoxide dismutase in Cihep+CS-3d group increased significantly. Meanwhile, Cihep and CS can significantly reduce the pathological damage of gill tissue. The 16S rRNA sequencing results showed that Cihep and CS can significantly increase the abundance and diversity of grass carp gut microbiota. These results indicated that the protective effect of consecutive 3-day feeding followed by a 3-day interval was better than that of consecutive 7-day feeding followed by a 7-day interval, and that the protective effect of Cihep in combination with chitosan was better than that of Cihep alone. Our findings optimize the feeding pattern for better oral administration of Cihep in aquaculture.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Mengzhen Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Kuang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Zou
- Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,*Correspondence: Gailing Yuan,
| |
Collapse
|
20
|
Bednarska O, Biskou O, Israelsen H, Winberg ME, Walter S, Keita ÅV. A postbiotic fermented oat gruel may have a beneficial effect on the colonic mucosal barrier in patients with irritable bowel syndrome. Front Nutr 2022; 9:1004084. [PMID: 36570171 PMCID: PMC9773395 DOI: 10.3389/fnut.2022.1004084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Impaired intestinal permeability and microbial dysbiosis are important pathophysiological mechanisms underlying irritable bowel syndrome (IBS). ReFerm®, also called Profermin®, is a postbiotic product of oat gruel fermented with Lactobacillus plantarum 299v. In this study, we investigated whether ReFerm® has a beneficial effect on the intestinal epithelial barrier function in patients with IBS. Materials and methods Thirty patients with moderate to severe IBS-diarrhoea (IBS-D) or IBS-mixed (IBS-M) were treated with enema containing ReFerm® or placebo. The patients underwent sigmoidoscopy with biopsies obtained from the distal colon at baseline and after 14 days of treatment with ReFerm® or placebo twice daily. The biopsies were mounted in Ussing chambers, and paracellular and transcellular permeabilities were measured for 120 min. In addition, the effects of ReFerm® or placebo on the epithelial barrier were investigated in vitro using Caco-2 cells. Results ReFerm® reduced paracellular permeability (p < 0.05) and increased transepithelial resistance (TER) over time (p < 0.01), whereas the placebo had no significant effect in patients. In ReFerm®-treated Caco-2 cells, paracellular and transcellular permeabilities were decreased compared to the control (p < 0.05) and placebo (p < 0.01). TER was increased in Caco-2 ReFerm®-treated cells, and normalised TER was increased in ReFerm®-treated Caco-2 cells compared to control (p < 0.05) and placebo-treated (p < 0.05) cells. Conclusion ReFerm® significantly reduced paracellular permeability and improved TER in colonic biopsies collected from patients with IBS and in a Caco-2 cell model. Our results offer new insights into the potential benefits of ReFerm® in IBS management. Further studies are needed to identify the molecular mechanisms underlying the barrier-protective properties of ReFerm®. Clinical trial registration [https://clinicaltrials.gov/], identifier [NCT05475314].
Collapse
Affiliation(s)
- Olga Bednarska
- Department of Gastroenterology, Linköping University Hospital, Linköping, Sweden
| | - Olga Biskou
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Martin E. Winberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Susanna Walter
- Department of Gastroenterology, Linköping University Hospital, Linköping, Sweden,Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden,*Correspondence: Åsa V. Keita,
| |
Collapse
|
21
|
Yu HT, Zhang JQ, Sun MC, Chen H, Shi XM, You FP, Qiao SY. Polymeric Nanohybrids Engineered by Chitosan Nanoparticles and Antimicrobial Peptides as Novel Antimicrobials in Food Biopreservatives: Risk Assessment and Anti-Foodborne Pathogen Escherichia coli O157:H7 Infection by Immune Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12535-12549. [PMID: 36153996 DOI: 10.1021/acs.jafc.2c05308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polymeric nanomaterials (APs) are gaining attention as promising clinical antimicrobials with rapidly increasing antibiotic resistance. Infections by zoonotic enterohemorrhagic Escherichia coli are a severe global threat to public health. Chitosan nanoparticles-microcin J25 (CNM), a class of APs engineered by bioactive peptides and chitosan nanoparticles, can be used as a novel antimicrobial agent against bacterial infections. However, the risk assessment of CNM on animal health or its potential immune modulation to treat serotype E. coli O157:H7 infection impacts in vivo are not well understood. Herein, our findings in mouse models uncovered that oral administration of low levels of CNM significantly increased the body weight and made beneficial effects on the lifespan or clinical signs, accompanied by a significant improvement in gut health, including enhancing the intestinal barrier, immune modulation, and changes in gut microbiota compositions or metabolites. However, high concentrations of CNM induced serious adverse effects, negatively improving intestinal health targets. Anti-infective results proved that oral 0.1% CNM enhances host defense against E. coli O157:H7 infection by improving immune functions and modulating the Th1/Th2 balance. In summary, these findings uncover an instrumental link between the dosage and toxicity risk, suggesting that APs need to be comprehensively assessed for risk before application as safe and reliable food preservatives or therapeutic agents. In addition, CNM as a promising AP may markedly enhance host immunity and therapeutic effects by oral administration.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Jia-Qi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ming-Chao Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Han Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiu-Mei Shi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fu-Ping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Shi-Yan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
22
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
23
|
Liang Q, Cao L, Zhu C, Kong Q, Sun H, Zhang F, Mou H, Liu Z. Characterization of Recombinant Antimicrobial Peptide BMGlv2 Heterologously Expressed in Trichoderma reesei. Int J Mol Sci 2022; 23:ijms231810291. [PMID: 36142214 PMCID: PMC9499586 DOI: 10.3390/ijms231810291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) serve as alternative candidates for antibiotics and have attracted the attention of a wide range of industries for various purposes, including the prevention and treatment of piglet diarrhea in the swine industry. Escherichia coli, Salmonella, and Clostridium perfringens are the most common pathogens causing piglet diarrhea. In this study, the antimicrobial peptide gloverin2 (BMGlv2), derived from Bombyx mandarina, was explored to determine the efficient prevention effect on bacterial piglet diarrhea. BMGlv2 was heterologously expressed in Trichoderma reesei Tu6, and its antimicrobial properties against the three bacteria were characterized. The results showed that the minimum inhibitory concentrations of the peptide against E. coli ATCC 25922, S. derby ATCC 13076, and C. perfringens CVCC 2032 were 43.75, 43.75, and 21.86 μg/mL, respectively. The antimicrobial activity of BMGlv2 was not severely affected by high temperature, salt ions, and digestive enzymes. It had low hemolytic activity against rabbit red blood cells, indicating its safety for use as a feed additive. Furthermore, the measurements of the leakage of bacterial cell contents and scanning electron microscopy of C. perfringens CVCC 2032 indicated that BMGlv2 exerted antimicrobial activity by destroying the cell membrane. Overall, this study showed the heterologous expression of the antimicrobial peptide BMGlv2 in T. reesei and verified its antimicrobial properties against three common pathogenic bacteria associated with piglet diarrhea, which can provide a reference for the applications of AMPs as an alternative product in industrial agriculture.
Collapse
|
24
|
Wang Z, Xu C, Zhang Y, Huo X, Su J. Dietary supplementation with nanoparticle CMCS-20a enhances the resistance to GCRV infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2022; 127:572-584. [PMID: 35798246 DOI: 10.1016/j.fsi.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Combination of antimicrobial proteins and nanomaterials provides a platform for the development of immunopotentiators. Oral administration of immunopotentiators can significantly enhance the immunity of organisms, which provides ideas for disease prevention. In this study, we confirmed that nanoparticles CMCS-20a can efficiently prevent grass carp reovirus (GCRV) infection. Firstly, we verified that CiCXCL20a is involved in the immune responses post GCRV challenge in vivo and alleviates the cell death post GCRV challenge in CIK cells. Then, we prepared nanoparticles CMCS-20a using carboxymethyl chitosan (CMCS) loaded with grass carp (Ctenopharyngodon idella) CXCL20a (CiCXCL20a). Meanwhile, we confirmed nanoparticles CMCS-20a can alleviate the degradation in intestine. Subsequently, we added it to the feed by low temperature vacuum drying method and high temperature spray drying method, respectively. Grass carp were oral administration for 28 days and challenged by GCRV. Low temperature vacuum drying group (LD-CMCS-20a) significantly improve grass carp survival rate, but not high temperature spray drying group (HD-CMCS-20a). To reveal the mechanisms, we investigated the serum biochemical indexes, intestinal mucus barrier, immune gene regulation and tissue damage. The complement component 3 content, lysozyme and total superoxide dismutase activities are highest in LD-CMCS-20a group. LD-CMCS-20a effectively attenuates the damage of GCRV to the number of intestinal villous goblet cells and mucin thickness. LD-CMCS-20a effectively regulates mRNA expressions of immune genes (IFN1, Mx2, Gig1 and IgM) in spleen and head kidney tissues. In addition, LD-CMCS-20a obviously alleviate tissue lesions and viral load in spleen. These results indicated that the nanoparticles CMCS-20a can enhance the disease resistance of fish by improving their immunity, which provides a new perspective for fish to prevent viral infections.
Collapse
Affiliation(s)
- Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Chuang Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
25
|
Escherichia coli 0157:H7 virulence factors and the ruminant reservoir. Curr Opin Infect Dis 2022; 35:205-214. [PMID: 35665714 PMCID: PMC9302714 DOI: 10.1097/qco.0000000000000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review updates recent findings about Escherichia coli O157:H7 virulence factors and its bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic E. coli (EHEC) pathotype causing hemorrhagic colitis. Its low infectious dose makes it an efficient, severe, foodborne pathogen. Although EHEC remains in the intestine, Stx can translocate systemically and is cytotoxic to microvascular endothelial cells, especially in the kidney and brain. Disease can progress to life-threatening hemolytic uremic syndrome (HUS) with hemolytic anemia, acute kidney failure, and thrombocytopenia. Young children, the immunocompromised, and the elderly are at the highest risk for HUS. Healthy ruminants are the major reservoir of EHEC and cattle are the primary source of human exposure. RECENT FINDINGS Advances in understanding E. coli O157:H7 pathogenesis include molecular mechanisms of virulence, bacterial adherence, type three secretion effectors, intestinal microbiome, inflammation, and reservoir maintenance. SUMMARY Many aspects of E. coli O157:H7 disease remain unclear and include the role of the human and bovine intestinal microbiomes in infection. Therapeutic strategies involve controlling inflammatory responses and/or intestinal barrier function. Finally, elimination/reduction of E. coli O157:H7 in cattle using CRISPR-engineered conjugative bacterial plasmids and/or on-farm management likely hold solutions to reduce infections and increase food safety/security.
Collapse
|
26
|
Liu N, Ma X, Jiang X. Effects of Immobilized Antimicrobial Peptides on Growth Performance, Serum Biochemical Index, Inflammatory Factors, Intestinal Morphology, and Microbial Community in Weaning Pigs. Front Immunol 2022; 13:872990. [PMID: 35422808 PMCID: PMC9001916 DOI: 10.3389/fimmu.2022.872990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
This experiment was conducted to investigate the effects of immobilized antimicrobial peptides on growth performance, serum biochemical index, inflammatory factors, intestinal morphology, and microbial community of weaning piglets. A total of 21 weaning piglets [Duroc × (Landrace × Yorkshire)] with initial body weight (7.64 ± 0.65 kg) were randomly allocated to one of three treatments with seven replicates (one pig per replicate) per treatment according to sex and weight in randomized complete block design. Pigs in the three treatments were fed corn–soybean meal-based diet (CON), corn–soybean meal based diet + flavomycin (25 mg/kg) + quinone (50 mg/kg) (AB), and corn–soybean meal based diet + 1,000 mg/kg immobilized antimicrobial peptides (IAMPs), respectively. The experiment lasted for 28 days, including early stage (0–14 days) and late stage (15–28 days). The results showed the following: (1) compared with the CON group, the average daily gain in the whole experimental time (p < 0.05) was significantly increased, and the diarrhea rate of weaning piglets was decreased (p < 0.01) in the IAMPs group; (2) compared with the CON group, the concentrations of serum IgM and superoxide dismutase (SOD) in the IAMPs group were significantly higher than the CON and AB groups (p < 0.01); (3) compared with CON group, the concentrations of serum interleukin (IL)-10 and transforming growth factor (TGF-β) were significantly increased (p < 0.05), and the concentration of IL-12 was significantly decreased (p < 0.05) in the IAMPs group; (4) compared with CON group, the concentrations of serum endotoxin and D-lactate of piglets were significantly reduced (p < 0.05), and the relative expression of ZO-1 and occludin in the jejunum of piglets were significantly increased (p < 0.05) in the IAMPs group; (5) compared with the CON group, the villus height of the duodenum and jejunum of weaning piglets in IAMPs and AB groups was significantly increased (p < 0.05); and (6) compared with CON group, the relative abundance of Escherichia–Shigella in the colon and cecal digesta was decreased. In summary, the addition of 1,000 mg/kg immobilized antimicrobial peptides in the diet effectively relieved weaning stress by showing improved growth performance, antioxidant and immune capacity, intestinal morphology, and microorganisms.
Collapse
Affiliation(s)
- Nian Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Wang D, He Y, Liu K, Deng S, Fan Y, Liu Y. Sodium Humate Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Dysfunction via Alteration of Intestinal Microbiota and Metabolites in Mice. Front Microbiol 2022; 13:809086. [PMID: 35401451 PMCID: PMC8992542 DOI: 10.3389/fmicb.2022.809086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) can damage intestinal epithelial barrier function and lead to serious intestinal diarrhea in newborns and young animals. Sodium humate (HNa) is natural organic bioactive compound possessing antibacterial, anti-inflammatory, and anti-diarrheal properties. This study investigated the alleviative potential of HNa on the impaired intestinal barrier and intestinal inflammation, and regulatory effects on gut microbiota and metabolites in ETEC K88 infected mice. A total of 30 female mice were randomly assigned into three groups. The mice in the control and ETEC groups were gavaged with 0.2 mL of sterile saline, while the mice in the ETEC + HNa group were gavaged with 0.2 mL of 5% HNa, daily. On day 8, the mice in ETEC and ETEC + HNa group were challenged with ETEC K88. The trial lasted for 12 days. HNa administration elevated ETEC K88-induced body weight loss and ameliorated jejunum and colon pathological injury. HNa also reduced the levels of pro-inflammatory cytokines in the serum, jejunum, and colon. Additionally, HNa reduced intestinal barrier damage by up-regulating the expression of tight junction proteins (TJPs) and mucosal repair factors. 16s rDNA gene sequencing results showed that HNa increased the abundance of beneficial bacteria Lactobacillus, Prevotella_9, and Odoribacter but decreased the abundance of pathogenic bacteria Escherichia and Gastranaerophilales in the feces of mice. Moreover, metabolomic analysis revealed that the concentrations of 15 metabolites, the pathways of protein digestion and absorption, and propanoic acid metabolism were changed by HNa administration. In conclusion, HNa could alleviate ETEC K88-induced intestinal dysfunction through restoring intestinal barrier integrity, modulating gut microbiota, and metabolites.
Collapse
Affiliation(s)
- Dong Wang
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanjun He
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kexin Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shouxiang Deng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuying Fan
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yun Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
28
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Nanopeptide CMCS-20H loaded by carboxymethyl chitosan remarkably enhances protective efficacy against bacterial infection in fish. Int J Biol Macromol 2022; 201:226-241. [PMID: 34995671 DOI: 10.1016/j.ijbiomac.2021.12.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Oral Administration of Nanopeptide CMCS-20H Conspicuously Boosts Immunity and Precautionary Effect Against Bacterial Infection in Fish. Front Immunol 2022; 12:811616. [PMID: 35087530 PMCID: PMC8786714 DOI: 10.3389/fimmu.2021.811616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Massive mortalities caused by bacterial infections in intensive aquaculture result in serious economic losses. In this study, a novel antimicrobial peptide gcIFN-20H was efficiently expressed in Pichia pastoris (GS115) and loaded on carboxylmethyl chitosan (CMCS) to prepare CMCS-20H nanoparticles. Through physical characterization assays (TEM, DLS, BCA, and Raman) and biological activity tests (antimicrobial activity and cytotoxicity), CMCS-20H nanopeptide was verified to be spherical nanoparticles with sustained release, antimicrobial activity, and negligible toxicity. CMCS-20H nanoparticles are more resistant to intestinal degradation than unloaded gcIFN-20H by indirect immunofluorescence assay. Oral administration was then carried out for 42 days. Complement C3 content, lysozyme, and total superoxide dismutase activities are highest in CMCS-20H group by serum biochemistry index assays. After challenge with Aeromonas hydrophila, the survival rate in CMCS-20H group is highest (46%), which is 64% higher than the control group (28%). Meanwhile, the tissue bacterial loads (intestine, spleen, head kidney, trunk kidney, hepatopancreas, muscle, and blood) in the CMCS-20H group are significantly lower than other groups. By PAS staining analysis, the number of intestinal villi goblet cells and the thickness of mucin in the CMCS-20H group obviously increased. CMCS-20H effectively enhances mRNA expressions of some important immune genes (IL-1β, IL-6, TNF-α, IL-2, IFN-γ2, and IgM). The minimal tissue lesions (Intestine, spleen, and trunk kidney) were seen in the CMCS-20H group by histopathological examination. 16S rRNA sequencing showed that oral CMCS-20H maintains the intestinal microbiome homeostasis in bacterial infection. The results indicate that the novel nanopeptide CMCS-20H as the immunopotentiator can remarkably boost fish immunity and precautionary effect by oral administration and address the theoretical mechanisms and insights into the promising application prospect in aquaculture.
Collapse
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
30
|
Recombinant Enterococcus faecium Expressing Porcine Lactoferricin Exerts Bactericidal Effects and Protects Against Enterotoxigenic Escherichia coli in Mice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Alagawany M, Elnesr SS, Farag MR, El-Naggar K, Madkour M. Nutrigenomics and nutrigenetics in poultry nutrition: An updated review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2014288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M. Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Karima El-Naggar
- Nutrition and Veterinary Clinical Nutrition Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - M. Madkour
- Animal Production Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
32
|
Tang Q, Xu E, Wang Z, Xiao M, Cao S, Hu S, Wu Q, Xiong Y, Jiang Z, Wang F, Yang G, Wang L, Yi H. Dietary Hermetia illucens Larvae Meal Improves Growth Performance and Intestinal Barrier Function of Weaned Pigs Under the Environment of Enterotoxigenic Escherichia coli K88. Front Nutr 2022; 8:812011. [PMID: 35118109 PMCID: PMC8805673 DOI: 10.3389/fnut.2021.812011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the effect of Hermetia illucens larvae meal (HI) on the growth performance and intestinal barrier function of weaned pigs. To achieve this, 72 weaned pigs [28-day-old, 8.44 ± 0.04 kg body weight (BW)] were randomly assigned to three dietary treatments: basal diet (negative control, NC), zinc oxide-supplemented diet (positive control, PC), and HI-supplemented diet [100% replacement of fishmeal (FM), HI], for 28 days in the presence of enterotoxigenic Escherichia coli (ETEC). The results showed that HI and PC increased (p < 0.05) the average daily gain (ADG) and average daily feed intake (ADFI) of weaned pigs from day 1 to 14, and decreased diarrhea incidence from day 1 to 28. Additionally, HI increased (p < 0.05) claudin-1, occludin, mucin-1 (MUC-1), and MUC-2 expression, goblet cell number, and secretory immunoglobulin A (sIgA) concentration in the intestine of weaned pigs. Compared with NC, HI downregulated (p < 0.05) interleukin-1β (IL-1β) and IL-8 expression, and upregulated IL-10, transforming growth factor-β (TGF-β), antimicrobial peptide [porcine β defensin 1 (pBD1), pBD2, protegrin 1-5 (PG1-5)] expression in the jejunum or ileum. Moreover, HI decreased (p < 0.05) toll-like receptor 2 (TLR2), phosphorylated nuclear factor-κB (p-NF-κB), and phosphorylated mitogen-activated protein kinase (p-MAPK) expression, and increased sirtuin 1 (SIRT1) expression in the ileum. Additionally, HI increased histone deacetylase 3 (HDAC3) expression and acetylation of histone 3 lysine 27 (acH3k27) in the ileum. Furthermore, HI positively influenced the intestinal microbiota composition and diversity of weaned pigs and increased (p < 0.05) butyrate and valerate concentrations. Overall, dietary HI improved growth performance and intestinal barrier function, as well as regulated histone acetylation and TLR2-NF-κB/MAPK signaling pathways in weaned pigs.
Collapse
Affiliation(s)
- Qingsong Tang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - E. Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhikang Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingfei Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fengying Wang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Geling Yang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Li Wang
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Hongbo Yi
| |
Collapse
|
33
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
34
|
Xie W, Song L, Wang X, Xu Y, Liu Z, Zhao D, Wang S, Fan X, Wang Z, Gao C, Wang X, Wang L, Qiao X, Zhou H, Cui W, Jiang Y, Li Y, Tang L. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge. Gut Microbes 2021; 13:1956281. [PMID: 34369287 PMCID: PMC8354667 DOI: 10.1080/19490976.2021.1956281] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in human and animal. To determine the mechanism of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactobacillus reuteri CO21 (LR-LFCA) to enhance the intestinal mucosal immunity, we used a newborn piglet intestine model to study the intestinal response to ETEC. Pigs were chosen due to the anatomical similarity between the porcine and the human intestine.4-day-old piglets were orally administered with LR-LFCA, LR-con (L. reuteri CO21 transformed with pPG612 plasmid) or phosphate buffered saline (PBS) for three consecutive days, within 21 days after these treatments, we found that LR-LFCA can colonize the intestines of piglets, improve the growth performance, enhance immune response and is beneficial for intestinal health of piglets by improving intestinal barrier function and modulating the composition of gut microbiota. Twenty-one days after, piglets were infected with ETEC K88 for 5 days, we found that oral administration of LR-LFCA to neonatal piglets attenuated ETEC-induced the weight loss of piglets and diarrhea incidence. LR-LFCA decreased the production of inflammatory factors and oxidative stress in intestinal mucosa of ETEC-infected piglets. Additionally, LR-LFCA increased the expression of tight junction proteins in the ileum of ETEC-infected piglets. Using LPS-induced porcine intestinal epithelial cells (IPEC-J2) in vitro, we demonstrated that LR-LFCA-mediated increases in the tight junction proteins might depend on the MLCK pathway; LR-LFCA might increase the anti-inflammatory ability by inhibiting the NF-κB pathway. We also found that LR-LFCA may enhance the antioxidant capacity of piglets by activating the Nrf2/HO-1 pathway. This study demonstrates that LR-LFCA is effective at maintaining intestinal epithelial integrity and host homeostasis as well as at repairing intestinal damage after ETEC infection and is thus a promising alternative therapeutic method for intestinal inflammation.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shubo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhaorui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen, Harbin, China,CONTACT Lijie Tang College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
35
|
Pediococcus pentosaceus IM96 Exerts Protective Effects against Enterohemorrhagic Escherichia coli O157:H7 Infection In Vivo. Foods 2021; 10:foods10122945. [PMID: 34945495 PMCID: PMC8700651 DOI: 10.3390/foods10122945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a notorious and prevalent foodborne pathogen which can cause serious intestinal diseases. The antagonistic activity of probiotics against EHEC is promising, but most of the studies concerning this subject have been carried out in vitro. Specifically, the interaction between Pediococcus pentosaceus and EHEC O157:H7 in vivo has not been reported yet. In this study, we investigated the protective effect of P. pentosaceus IM96 on EHEC O157:H7-infected female mice in vivo. The results demonstrated that P. pentosaceus IM96 reduced the level of pro-inflammatory factors and increased the level of anti-inflammatory factors of EHEC O157:H7-infected mice. Furthermore, P. pentosaceus IM96 alleviated intestinal mucosal damage and increased the level of MUC-2, tight junction (TJ) proteins, and short chain fatty acids (SCFAs). The intestinal microbial community structure and the diversity and richness of the microbiota were also changed by P. pentosaceus IM96 treatment. In summary, P. pentosaceus IM96 exerted protective effects against EHEC O157:H7 via alleviating intestinal inflammation, strengthening the intestinal barrier function, and regulating intestinal microbiota, suggesting that P. pentosaceus IM96 might serve as a potential microbial agent to prevent and treat intestinal diseases caused by EHEC O157:H7 infection in the future.
Collapse
|
36
|
Cantet JM, Yu Z, Ríus AG. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics (Basel) 2021; 10:antibiotics10111285. [PMID: 34827223 PMCID: PMC8615052 DOI: 10.3390/antibiotics10111285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Physiological changes in animals exposed to elevated ambient temperature are characterized by the redistribution of blood toward the periphery to dissipate heat, with a consequent decline in blood flow and oxygen and nutrient supply to splanchnic tissues. Metabolic adaptations and gut dysfunction lead to oxidative stress, translocation of lumen contents, and release of proinflammatory mediators, activating a systemic inflammatory response. This review discusses the activation and development of the inflammatory response in heat-stressed models.
Collapse
|
37
|
Porter RJ, Murray GI, Alnabulsi A, Humphries MP, James JA, Salto‐Tellez M, Craig SG, Wang JM, Yoshimura T, McLean MH. Colonic epithelial cathelicidin (LL-37) expression intensity is associated with progression of colorectal cancer and presence of CD8 + T cell infiltrate. J Pathol Clin Res 2021; 7:495-506. [PMID: 33988317 PMCID: PMC8363930 DOI: 10.1002/cjp2.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer mortality. Here, we define the colonic epithelial expression of cathelicidin (LL-37) in CRC. Cathelicidin exerts pleotropic effects including anti-microbial and immunoregulatory functions. Genetic knockout of cathelicidin led to increased size and number of colorectal tumours in the azoxymethane-induced murine model of CRC. We aimed to translate this to human disease. The expression of LL-37 in a large (n = 650) fully characterised cohort of treatment-naïve primary human colorectal tumours and 50 matched normal mucosa samples with associated clinical and pathological data (patient age, gender, tumour site, tumour stage [UICC], presence or absence of extra-mural vascular invasion, tumour differentiation, mismatch repair protein status, and survival to 18 years) was assessed by immunohistochemistry. The biological consequences of LL-37 expression on the epithelial barrier and immune cell phenotype were assessed using targeted quantitative PCR gene expression of epithelial permeability (CLDN2, CLDN4, OCLN, CDH1, and TJP1) and cytokine (IL-1β, IL-18, IL-33, IL-10, IL-22, and IL-27) genes in a human colon organoid model, and CD3+ , CD4+ , and CD8+ lymphocyte phenotyping by immunohistochemistry, respectively. Our data reveal that loss of cathelicidin is associated with human CRC progression, with a switch in expression intensity an early feature of CRC. LL-37 expression intensity is associated with CD8+ T cell infiltrate, influenced by tumour characteristics including mismatch repair protein status. There was no effect on epithelial barrier gene expression. These data offer novel insights into the contribution of LL-37 to the pathogenesis of CRC and as a therapeutic molecule.
Collapse
Affiliation(s)
- Ross J Porter
- Centre for Inflammation Research, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Graeme I Murray
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Abdo Alnabulsi
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Matthew P Humphries
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Manuel Salto‐Tellez
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
- Integrated Pathology Programme, Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
| | - Stephanie G Craig
- Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer ResearchQueen's UniversityBelfastUK
| | - Ji M Wang
- Cancer and Inflammation Program, Center for Cancer ResearchNational Cancer Institute at FrederickFrederickMDUSA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Mairi H McLean
- Division of Molecular & Clinical Medicine, School of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
38
|
Wang S, Kai L, Zhu L, Xu B, Chen N, Valencak TG, Wang Y, Shan T. Cathelicidin-WA Protects Against LPS-Induced Gut Damage Through Enhancing Survival and Function of Intestinal Stem Cells. Front Cell Dev Biol 2021; 9:685363. [PMID: 34381773 PMCID: PMC8350165 DOI: 10.3389/fcell.2021.685363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Preservation of intestinal stem cells (ISCs) plays a critical role in initiating epithelial regeneration after intestinal injury. Cathelicidin peptides have been shown to participate in regulating intestinal damage repair. However, it is not known how exactly Cathelicidin-WA (CWA) exert its function after tissue damage. Using a gut injury model in mice involving Lipopolysaccharide (LPS), we observed that CWA administration significantly improved intestinal barrier function, preserved ISCs survival, and augmented ISCs viability within the small intestine (SI) under LPS treatment. In addition, CWA administration effectively prevented proliferation stops and promoted the growth of isolated crypts. Mechanistically, our results show that the appearance of γH2AX was accompanied by weakened expression of SETDB1, a gene that has been reported to safeguard genome stability. Notably, we found that CWA significantly rescued the decreased expression of SETDB1 and reduced DNA damage after LPS treatment. Taken together, CWA could protect against LPS-induced gut damage through enhancing ISCs survival and function. Our results suggest that CWA may become an effective therapeutic regulator to treat intestinal diseases and infections.
Collapse
Affiliation(s)
- Sisi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Lixia Kai
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Luoyi Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Bocheng Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Nana Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
39
|
Shah T, Baloch Z, Shah Z, Cui X, Xia X. The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. Int J Mol Sci 2021; 22:ijms22126597. [PMID: 34202945 PMCID: PMC8235228 DOI: 10.3390/ijms22126597] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes exist in the human body, particularly the gastrointestinal tract, coevolved with the host in a mutually beneficial relationship. The main role of the intestinal microbiome is the fermentation of non-digestible substrates and increased growth of beneficial microbes that produce key antimicrobial metabolites such as short-chain fatty acids, etc., to inhibit the growth of pathogenic microbes besides other functions. Intestinal microbiota can prevent pathogen colonization through the mechanism of colonization resistance. A wide range of resistomes are present in both beneficial and pathogenic microbes. Giving antibiotic exposure to the intestinal microbiome (both beneficial and hostile) can trigger a resistome response, affecting colonization resistance. The following review provides a mechanistic overview of the intestinal microbiome and the impacts of antibiotic therapy on pathogen colonization and diseases. Further, we also discuss the epidemiology of immunocompromised patients who are at high risk for nosocomial infections, colonization and decolonization of multi-drug resistant organisms in the intestine, and the direct and indirect mechanisms that govern colonization resistance to the pathogens.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (Z.B.); (X.C.); (X.X.)
| | - Zahir Shah
- Faculty of Animal Husbandry and Veterinary Sciences, College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar 25120, Pakistan;
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
- Correspondence: (Z.B.); (X.C.); (X.X.)
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (Z.B.); (X.C.); (X.X.)
| |
Collapse
|
40
|
Han S, Wen Y, Yang F, He P. Chicken Egg Yolk Antibody (IgY) Protects Mice Against Enterotoxigenic Escherichia coli Infection Through Improving Intestinal Health and Immune Response. Front Cell Infect Microbiol 2021; 11:662710. [PMID: 33928047 PMCID: PMC8076637 DOI: 10.3389/fcimb.2021.662710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Chicken egg yolk antibody (IgY), considered as a potential substitute for antibiotics, has been used for preventing pathogens infection in food, human and animals. This study investigated effects of IgY on growth, adhesion inhibitory and morphology of enterotoxigenic Escherichia coli (ETEC) K88 in vitro, and evaluated the protective effects of IgY on intestinal health and immune response of mice infected with ETEC in vivo. Sixty pathogen-free C57BL/6J (4-6 weeks of age) mice were divided into six treatments: control (neither IgY nor ETEC infection), ETEC infection, ETEC-infected mice treated with 250 μL of high-dose (32 mg/mL), medium-dose (16 mg/mL) or low-dose (8 mg/mL) anti-ETEC IgY, or ETEC-infected mice treated with 250 μL of non-specific IgY (16 mg/mL). Anti-ETEC IgY inhibited ETEC growth, reduced adherence of ETEC to intestinal epithelial cells J2 and damaged the morphology and integrity of ETEC cell. Oral administration of anti-ETEC IgY effectively ameliorated ETEC-induced clinical signs, reduced ETEC colonization and intestinal permeability, alleviated inflammatory response through reducing the production and expression of proinflammatory cytokines, improved intestinal morphology, and inhibited excessive activation of the mucosal immune response of challenged mice. The overall protective effects of high-dose and medium-dose anti-ETEC IgY against ETEC infection were more effective. These results suggest that anti-ETEC IgY may function as a promising novel prophylactic agent against enteric pathogens infection.
Collapse
Affiliation(s)
- Shuaijuan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fengfan Yang
- Hubei Shendi Biological Technology Co., LTD, Jingmen, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity. Carbohydr Polym 2021; 253:117309. [PMID: 33278958 DOI: 10.1016/j.carbpol.2020.117309] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022]
Abstract
Bacterial resistance to antibiotics is a critical public health concern. Alternatives of antibiotics are needed urgently. Herein, we designed and engineered a new nano-antimicrobial, chitosan nanoparticles (CNs)-antimicrobial peptide microcin J25 (MccJ25) conjugates (CNMs). The engineered CNMs proved to be highly active against Gram-negative and Gram-positive bacteria, and the activity of CNMs and CNs was stable in various thermal and pH environments. Escherichia coli K88 strain treated with CNMs did not acquire resistance in serial passage assays over a period of 18 days. Risk assessment with cell lines showed that CNMs did not cause toxicity. Additionally, CNMs did not reduce the lifespan of C. elegans. In summary, this study demonstrated that CNMs can serve as an excellent novel antimicrobial agent against multi-drug resistance pathogens.
Collapse
|
42
|
Bao CL, Liu SZ, Shang ZD, Liu YJ, Wang J, Zhang WX, Dong B, Cao YH. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157:H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J Appl Microbiol 2020; 131:470-484. [PMID: 33289241 DOI: 10.1111/jam.14952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023]
Abstract
AIMS This study evaluated the effects of Bacillus amyloliquefaciens TL106, isolated from Tibetan pigs' faeces, on the growth performance, immune response, intestinal barrier function, morphology of jejunum, caecum and colon, and gut microbiota in the mice with enterohaemorrhagic Escherichia coli (EHEC)-induced intestinal diseases. METHODS AND RESULTS In all, 40 female C57BL/6J mice were randomly divided into four groups: mice fed a normal diet (Control), mice oral administration of TL106 daily (Ba), mice challenged with EHEC O157:H7 on day 15 (O157) and mice oral administration of TL106 daily and challenged with EHEC O157:H7 on day 15 (Ba+O157). The TL106 was administrated to mice for 14 days, and mice were infected with O157:H7 at day 15. We found that TL106 could prevent the weight loss caused by O157:H7 infection and alleviated the associated increase in pro-inflammatory factors (TNF-α, IL-1β, IL-6 and IL-8) and decrease in anti-inflammatory factor (IL-10) in serum and intestinal tissues of mice caused by O157:H7 infection (P < 0·05). Additionally, TL106 could prevent disruption of gut morphology caused by O157:H7 infection, and alleviate the associated decrease in expression of tight junction proteins (ZO-1, occludin and claudin-1) in jejunum and colon (P < 0·05). In caecum and colon, the alpha diversity for bacterial community analysis of Chao and ACE index in Ba+O157 group were higher than O157 group. The TL106 stabilized gut microbiota disturbed by O157:H7, including increasing Lachnospiraceae, Prevotellaceae, Muribaculaceae and Akkermansiaceae, and reducing Lactobacillaceae. CONCLUSIONS We indicated the B. amyloliquefaciens TL106 can effectively protect mice against EHEC O157:H7 infection by relieving inflammation, improving intestinal barrier function, mitigating permeability disruption and stabilizing the gut microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY Bacillus amyloliquefaciens TL106 can prevent and treat intestinal disease induced by EHEC O157:H7 in mice, which may be a promising probiotic for disease prevention in animals.
Collapse
Affiliation(s)
- C L Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - S Z Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People's Republic of China
| | - Z D Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People's Republic of China
| | - Y J Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - W X Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - B Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Y H Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
43
|
Zong X, Fu J, Xu B, Wang Y, Jin M. Interplay between gut microbiota and antimicrobial peptides. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:389-396. [PMID: 33364454 PMCID: PMC7750803 DOI: 10.1016/j.aninu.2020.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
The gut microbiota is comprised of a diverse array of microorganisms that interact with immune system and exert crucial roles for the health. Changes in the gut microbiota composition and functionality are associated with multiple diseases. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Major players in this scenario are antimicrobial peptides (AMP), which belong to an ancient defense system found in all organisms and participate in a preservative co-evolution with a complex microbiome. Particularly increasing interactions between AMP and microbiota have been found in the gut. Here, we focus on the mechanisms by which AMP help to maintain a balanced microbiota and advancing our understanding of the circumstances of such balanced interactions between gut microbiota and host AMP. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota, which should have therapeutic implications for different intestinal disorders.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bocheng Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Ma T, Peng W, Liu Z, Gao T, Liu W, Zhou D, Yang K, Guo R, Duan Z, Liang W, Bei W, Yuan F, Tian Y. Tea polyphenols inhibit the growth and virulence of ETEC K88. Microb Pathog 2020; 152:104640. [PMID: 33232763 DOI: 10.1016/j.micpath.2020.104640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) causes high levels of morbidity and mortality in neonatal piglets. Owing to the abuse of antibiotics and emergence of drug resistance, antibiotics are no longer considered only beneficial, but also potentially harmful drugs. Supplements that can inhibit the growth of bacteria are expected to replace antibiotics. Tea polyphenols have numerous important biological functions, including antibacterial, antiviral, antioxidative, anti-inflammatory, and antihypertensive effects. We investigated the role of tea polyphenols in ETEC K88 infection using a mouse model. Pretreating with tea polyphenols attenuated the symptoms induced by ETEC K88. Furthermore, in a cell adherence assay, tea polyphenols inhibited ETEC K88 adherence to IPEC-J2 cells. When cells were infected with ETEC K88, mRNA and protein levels of claudin-1 were significantly decreased compared with those of control cells. However, when cells were pretreated with tea polyphenols, claudin-1 mRNA and protein levels were higher than those in cells without pretreatment upon cell infection with ETEC K88. TLR2 mRNA levels were also higher following cell infection with ETEC K88 when cells were pretreated with tea polyphenols. These data revealed that tea polyphenols could increase the barrier integrity of IPEC-J2 cells by upregulating expression of claudin-1 through activation of TLR2. Tea polyphenols had beneficial effects on epithelial barrier function. Therefore, tea polyphenols could be used as a novel strategy to control and treat pig infections caused by ETEC K88.
Collapse
Affiliation(s)
- Tianfeng Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
45
|
Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteritis. Sci Rep 2020; 10:17704. [PMID: 33077741 PMCID: PMC7573599 DOI: 10.1038/s41598-020-74754-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Three hundred and sixty 1-day-old male broiler chicks were randomly allocated to 4 treatments of 6 replicates to evaluate the effects of cLFchimera, a recombinant antimicrobial peptide (AMP), on gut health attributes of broiler chickens under necrotic enteritis (NE) challenge. Treatments were as follows: (T1) unchallenged group fed with corn-soybean meal (CSM) without NE challenge and additives (NC); (T2) group fed with CSM and challenged with NE without any additives (PC); (T3) PC group supplemented with 20 mg cLFchimera/kg diet (AMP); (T4) PC group supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/kg diet (antibiotic). Birds were sampled for villi morphology, ileal microbiota, and jejunal gene expression of cytokines, tight junctions proteins, and mucin. Results showed that AMP ameliorated NE-related intestinal lesions, reduced mortality, and rehabilitated jejunal villi morphology in NE challenged birds. While the antibiotic non-selectively reduced the count of bacteria, AMP restored microflora balance in the ileum of challenged birds. cLFchimera regulated the expression of cytokines, junctional proteins, and mucin transcripts in the jejunum of NE challenged birds. In conclusion, cLFchimera can be a reliable candidate to substitute growth promoter antibiotics, while more research is required to unveil the exact mode of action of this synthetic peptide.
Collapse
|
46
|
Lasso Peptide Microcin J25 Effectively Enhances Gut Barrier Function and Modulates Inflammatory Response in an Enterotoxigenic Escherichia coli-Challenged Mouse Model. Int J Mol Sci 2020; 21:ijms21186500. [PMID: 32899529 PMCID: PMC7555725 DOI: 10.3390/ijms21186500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial resistance leads to severe public health and safety issues worldwide. Alternatives to antibiotics are currently needed. A promising lasso peptide, microcin J25 (MccJ25), is considered to be the best potential substitute for antibiotics to treat pathogen infection, including enterotoxigenic Escherichia coli (ETEC). This study evaluated the efficacy of MccJ25 in the prevention of ETEC infection. Forty-five female BALB/c mice of clean grade (aged seven weeks, approximately 16.15 g) were randomly divided into three experimental groups as follows: (i) control group (uninfected); (ii) ETEC infection group; (iii) MccJ25 + ETEC group. Fifteen mice per group in five cages, three mice/cage. MccJ25 conferred effective protection against ETEC-induced body weight loss, decrease in rectal temperature and increase in diarrhea scores in mice. Moreover, in ETEC-challenged mice model, MccJ25 significantly improved intestinal morphology, decreased intestinal histopathological scores and attenuated intestinal inflammation by decreasing proinflammatory cytokines and intestinal permeability, including reducing serum diamine oxidase and D-lactate levels. MccJ25 enhanced epithelial barrier function by increasing occludin expression in the colon and claudin-1 expression in the jejunum, ultimately improving intestinal health of host. MccJ25 was further found to alleviate gut inflammatory responses by decreasing inflammatory cytokine production and expression via the activation of the mitogen-activated protein kinase and nuclear factor κB signaling pathways. Taken together, the results indicated that MccJ25 protects against ETEC-induced intestinal injury and intestinal inflammatory responses, suggesting the potential application of MccJ25 as an excellent antimicrobial or anti-inflammation agent against pathogen infections.
Collapse
|
47
|
Antibacterial, Cytotoxicity and Mechanism of the Antimicrobial Peptide KR-32 in Weaning Piglets. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Blyth GAD, Connors L, Fodor C, Cobo ER. The Network of Colonic Host Defense Peptides as an Innate Immune Defense Against Enteropathogenic Bacteria. Front Immunol 2020; 11:965. [PMID: 32508838 PMCID: PMC7251035 DOI: 10.3389/fimmu.2020.00965] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Host defense peptides, abundantly secreted by colonic epithelial cells and leukocytes, are proposed to be critical components of an innate immune response in the colon against enteropathogenic bacteria, including Shigella spp., Salmonella spp., Clostridium difficile, and attaching and effacing Escherichia coli and Citrobacter rodentium. These short cationic peptides are bactericidal against both Gram-positive and -negative enteric pathogens, but may also exert killing effects on intestinal luminal microbiota. Simultaneously, these peptides modulate numerous cellular responses crucial for gut defenses, including leukocyte chemotaxis and migration, wound healing, cytokine production, cell proliferation, and pathogen sensing. This review discusses recent advances in our understanding of expression, mechanisms of action and microbicidal and immunomodulatory functions of major colonic host defense peptides, namely cathelicidins, β-defensins, and members of the Regenerating islet-derived protein III (RegIII) and Resistin-like molecule (RELM) families. In a theoretical framework where these peptides work synergistically, aspects of pathogenesis of infectious colitis reviewed herein uncover roles of host defense peptides aimed to promote epithelial defenses and prevent pathogen colonization, mediated through a combination of direct antimicrobial function and fine-tuning of host immune response and inflammation. This interactive host defense peptide network may decode how the intestinal immune system functions to quickly clear infections, restore homeostasis and avoid damaging inflammation associated with pathogen persistence during infectious colitis. This information is of interest in development of host defense peptides (either alone or in combination with reduced doses of antibiotics) as antimicrobial and immunomodulatory therapeutics for controlling infectious colitis.
Collapse
Affiliation(s)
- Graham A D Blyth
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam Connors
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristina Fodor
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
49
|
张 汉, 高 杰, 何 肖, 龚 泽, 万 宇, 胡 彤, 李 煜, 曹 虹. [The postbiotic HM0539 from Lactobacillus rhamnosus GG prevents intestinal infection by enterohemorrhagic E. coli O157: H7 in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:211-218. [PMID: 32376527 PMCID: PMC7086141 DOI: 10.12122/j.issn.1673-4254.2020.02.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the protective effect of the novel postbiotic HM0539 from Lactobacillus rhamnosus GG against intestinal infection by enterohemorrhagic E. coli O157: H7. METHODS We performed adhesion and invasion experiments to evaluate whether HM0539 could block E. coli O157: H7 adhesion to HT-29 cells. The expressions of mucin2 and the tight junction proteins ZO-1 and Occludin in HM0539-treated HT-29 cells were analyzed using immunofluorescence assay and Western blotting. Animal experiments were conducted in mice to observe the survival rate and changes in body weight, intestinal morphology and the intestinal barrier function after the challenge and HM0539 treatment. RESULTS HM0539 significantly inhibited the adhesion and invasion of E. coli O157: H7 to HT-29 cells in a dose-dependent manner. HM0539 treatment 4 h prior to E. coli O157: H7 challenge significantly lowered the adhesion and invasion rates of bacteria as compared with the treatment administered at the same time of challenge (P < 0.05). E. coli O157: H7-induced down-regulation of mucin2 and tight junction proteins in HT-29 cells was obviously alleviated by HM0539 treatment of (P < 0.05). In the animal experiment, HM0539 treatment significantly inhibited body weight loss (P < 0.05), alleviated jejunal injury, and inhibited E. coli O157: H7-induced destruction of jejunal goblet cells in the challenged mice (P < 0.05). HM0539 also significantly up-regulated the expression of mucin2 and ZO-1 proteins in the jejunum of E. coli O157:H7-infected mice (P < 0.05). CONCLUSIONS HM0539 not only inhibits the adhesion and invasion of E. coli O157: H7 to HT-29 cells, but also enhances the resistance against E. coli O157: H7 infection in mice by attenuating the destruction of mucin and tight junction proteins.
Collapse
Affiliation(s)
- 汉运 张
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 杰 高
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 肖龙 何
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 泽龙 龚
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 宇 万
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 彤彤 胡
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 煜彬 李
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 虹 曹
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
50
|
Luján JA, Rugeles MT, Taborda NA. Contribution of the Microbiota to Intestinal Homeostasis and its Role in the Pathogenesis of HIV-1 Infection. Curr HIV Res 2020; 17:13-25. [PMID: 30854974 DOI: 10.2174/1570162x17666190311114808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
During HIV infection, massive destruction of CD4+ T cells ensues, preferentially depleting the Th17 subset at the gut-associated lymphoid tissue (GALT), leading to a loss of mucosal integrity and an increase in cell permeability. This process favors microbial translocation between the intestinal lumen and the circulatory system, contributing to persistent immune activation and chronic inflammation characteristic of HIV infection. Thus, the gut microbiota plays an integral role in maintaining the structure and function of the mucosal barrier, a critical factor for immune homeostasis. However, in the context of HIV infection, changes in the gut microbiota have been reported and have been linked to disease progression. Here, we review evidence for the role of the gut microbiota in intestinal homeostasis, its contribution to HIV pathogenesis, as well as its use in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jorge A Luján
- Grupo Inmunovirologia, Facultad de Medicina. Universidad de Antioquia, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina. Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirologia, Facultad de Medicina. Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| |
Collapse
|