1
|
Danielsen AK, Massarenti L, Minculescu L, Jensen PØ, Hansen PR, Holmstrup P, Damgaard C, Nielsen CH. Cytokine responses of CD4+ T cells and NKT cells to periodontitis-associated bacteria in individuals with or without periodontitis. J Periodontal Res 2024. [PMID: 38962877 DOI: 10.1111/jre.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
AIM Periodontitis is an inflammatory disease driven by opportunistic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum, where T-cell and NKT-cell responses to these bacteria in patients with periodontitis grade B or C are not fully elucidated. The objective is to determine if exaggerated proinflammatory Th-cell responses to periodontitis-associated bacteria, but not commensal bacteria, is a characteristic of increased periodontitis grade. METHODS Mononuclear cells from patients with periodontitis grade C (n = 26) or grade B (n = 33) and healthy controls (HCs; n = 26) were stimulated with P. gingivalis, F. nucleatum or the commensal bacteria, Staphylococcus epidermidis and Cutibacterium acnes. Cytokine production by different T-cell populations and FOXP3-expression by regulatory T cells were assessed by flow cytometry. RESULTS Compared to HCs, grade C patients had decreased frequencies of interleukin (IL)-10-producing CD4+ T cells before stimulation (p = .02) and increased frequencies of IFN-y-producing CD4+ T cells after stimulation with P. gingivalis (p = .0019). Grade B patients had decreased frequencies of FOXP3+ CD4+ T cells before (p = .030) before and after stimulation with anti-CD2/anti-CD3/anti-CD28-loaded beads (p = .047), P. gingivalis (p = .013) and S. epidermidis (p = .018). Clinical attachment loss correlated with the frequencies of IFN-y-producing Th1 cells in P. gingivalis- and F. nucleatum-stimulated cultures in grade B patients (p = .023 and p = .048, respectively) and with the frequencies of Th17 cells in P. gingivalis-stimulated cultures (p = .0062) in grade C patients. Patients with periodontitis grade C or grade B showed lower frequencies of IL-10-producing NKT cells than HCs in unstimulated cultures (p = .0043 and p = .027 respectively). CONCLUSIONS Both periodontitis groups showed decreased frequencies of immunoregulatory T-cell and NKT cell subsets at baseline. Clinical attachment loss correlated with P. gingivalis-induced Th17-responses in grade C patients and with Th1-responses in grade B patients when cells were stimulated with P. gingivalis, supporting that dysregulated pro-inflammatory T-cell responses to periodontitis-associated bacteria contribute to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Anne Katrine Danielsen
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laura Massarenti
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lia Minculescu
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Holmstrup
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
2
|
Junxian L, Mehrabanian M, Mivehchi H, Banakar M, Etajuri EA. The homeostasis and therapeutic applications of innate and adaptive immune cells in periodontitis. Oral Dis 2023; 29:2552-2564. [PMID: 36004490 DOI: 10.1111/odi.14360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Periodontitis (PD) is one of the most common dental disorders. This chronic oral inflammation is caused by complicated interrelations between bacterial infections, dysregulated immune reactions, and environmental risk factors. A dysregulated immune response can lead to inflammatory bone resorption by allowing the recruitment of pro-inflammatory immune cells to the periodontal tissues. SUBJECTS The recruitment of innate and adaptive immune cells in PD initiates the acute and following chronic inflammatory processes. The inflamed tissues, on the other hand, can be restored if the anti-inflammatory lineages are predominantly established in the periodontal tissues. Therefore, we aimed to review the published literature to provide an overview of the existing knowledge about the role of immune cells in PD, as well as their possible therapeutic applications. RESULTS Experimental studies showed that drugs/systems that negatively regulate inflammatory cells in the body, as well as interventions aimed at increasing the number of anti-inflammatory cells such as Tregs and Bregs, can both help in the healing process of PD. CONCLUSION Targeting immune cells or their positive/negative manipulations has been demonstrated to be an effective therapeutic method. However, to use this sort of immunotherapy in humans, further pre-clinical investigations, as well as randomized clinical trials, are required.
Collapse
Affiliation(s)
- Li Junxian
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Mojtaba Mehrabanian
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Hassan Mivehchi
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Morteza Banakar
- Saveetha Dental College, Chennai, India
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Malaya, Malaysia
| |
Collapse
|
3
|
Ptasiewicz M, Bębnowska D, Małkowska P, Sierawska O, Poniewierska-Baran A, Hrynkiewicz R, Niedźwiedzka-Rystwej P, Grywalska E, Chałas R. Immunoglobulin Disorders and the Oral Cavity: A Narrative Review. J Clin Med 2022; 11:jcm11164873. [PMID: 36013115 PMCID: PMC9409910 DOI: 10.3390/jcm11164873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The oral mucosa is a mechanical barrier against the penetration and colonization of microorganisms. Oral homeostasis is maintained by congenital and adaptive systems in conjunction with normal oral flora and an intact oral mucosa. Components contributing to the defense of the oral cavity include the salivary glands, innate antimicrobial proteins of saliva, plasma proteins, circulating white blood cells, keratinocyte products of the oral mucosa, and gingival crevicular fluid. General disturbances in the level of immunoglobulins in the human body may be manifested as pathological lesions in the oral mucosa. Symptoms of immunoglobulin-related general diseases such as mucous membrane pemphigoid (MMP), pemphigus vulgaris (PV), linear IgA bullous dermatosis (LABD), Epidermolysis Bullosa Aquisita (EBA), and Hyper-IgE syndrome (HIES) may appear in the oral cavity. In this review, authors present selected diseases associated with immunoglobulins in which the lesions appear in the oral cavity. Early detection and treatment of autoimmune diseases, sometimes showing a severe evolution (e.g., PV), allow the control of their dissemination and involvement of skin or other body organs. Immunoglobulin disorders with oral manifestations are not common, but knowledge, differentiation and diagnosis are essential for proper treatment.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Paulina Małkowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | | | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Zou J, Zeng Z, Xie W, Zeng Z. Immunotherapy with regulatory T and B cells in periodontitis. Int Immunopharmacol 2022; 109:108797. [PMID: 35487085 DOI: 10.1016/j.intimp.2022.108797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023]
Abstract
Periodontitis (PD), also known as gum disease, is a condition causing inflammatory bone resorption and tooth loss. Regulatory T cells (Tregs) and regulatory B cells (Bregs) are vital in controlling the immune response and hence play a role in infections and peripheral tolerance adjustment. These cells have immunosuppressive and tissue-repairing capabilities that are important for periodontal health; however, in inflammatory circumstances, Tregs may become unstable and dysfunctional, accelerating tissue deterioration. In recent years, Regulatory cell-mediated immunotherapy has been shown to be effective in many inflammatory diseases. Considering the roles of Tregs and Bregs in shaping immune responses, this study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the role of regulatory T and B cells, as well as their therapeutic applications in PD.
Collapse
Affiliation(s)
- Juan Zou
- Department of stomatology, Maternal and Child Health Centre, Ganzhou, Jiangxi 341000, China
| | - Zijun Zeng
- Anesthesia surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Wen Xie
- Health Management Center, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Zhimei Zeng
- The First Affiliated Hospital of Gannan Medical College Dental Department Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
5
|
Hathaway-Schrader JD, Aartun JD, Poulides NA, Kuhn MB, McCormick BE, Chew ME, Huang E, Darveau RP, Westwater C, Novince CM. Commensal oral microbiota induces osteoimmunomodulatory effects separate from systemic microbiome in mice. JCI Insight 2022; 7:140738. [PMID: 35077397 PMCID: PMC8876522 DOI: 10.1172/jci.insight.140738] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Commensal microbes critically regulate skeletal homeostasis, yet the impact of specific microbiota communities on osteoimmune response mechanisms is unknown. To discern osteoimmunomodulatory effects imparted by the commensal oral microbiota that are distinct from the systemic microbiota, osteoimmunology studies were performed in both alveolar bone and nonoral skeletal sites of specific pathogen–free (SPF) versus germ-free (GF) mice and SPF mice subjected to saline versus chlorhexidine oral rinses. SPF versus GF mice had reduced cortical/trabecular bone and an enhanced pro-osteoclastic phenotype in alveolar bone. TLR signaling and Th17 cells that have known pro-osteoclastic actions were increased in alveolar BM, but not long BM, of SPF versus GF mice. MHC II antigen presentation genes and activated DCs and CD4+ T cells were elevated in alveolar BM, but not long BM, of SPF versus GF mice. These findings were substantiated by in vitro allostimulation studies demonstrating increased activated DCs derived from alveolar BM, but not long BM, of SPF versus GF mice. Chlorhexidine antiseptic rinse depleted the oral, but not gut, bacteriome in SPF mice. Findings from saline- versus chlorhexidine-treated SPF mice corroborated outcomes from SPF versus GF mice, which reveals that the commensal oral microbiota imparts osteoimmunomodulatory effects separate from the systemic microbiome.
Collapse
Affiliation(s)
- Jessica D. Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Pediatrics-Division of Endocrinology, College of Medicine, and
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | | | | | - Megan B. Kuhn
- Department of Oral Health Sciences, College of Dental Medicine
| | | | - Michael E. Chew
- Department of Oral Health Sciences, College of Dental Medicine
| | - Emily Huang
- Department of Oral Health Sciences, College of Dental Medicine
| | - Richard P. Darveau
- Department of Periodontics, School of Dentistry, and
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Microbiology and Immunology, Hollings Cancer Center, MUSC, Charleston, South Carolina, USA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Pediatrics-Division of Endocrinology, College of Medicine, and
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| |
Collapse
|
6
|
Swanson BA, Carson MD, Hathaway-Schrader JD, Warner AJ, Kirkpatrick JE, Corker A, Alekseyenko AV, Westwater C, Aguirre JI, Novince CM. Antimicrobial-induced oral dysbiosis exacerbates naturally occurring alveolar bone loss. FASEB J 2021; 35:e22015. [PMID: 34699641 PMCID: PMC8732259 DOI: 10.1096/fj.202101169r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
Periodontitis-mediated alveolar bone loss is caused by dysbiotic shifts in the commensal oral microbiota that upregulate proinflammatory osteoimmune responses. The study purpose was to determine whether antimicrobial-induced disruption of the commensal microbiota has deleterious effects on alveolar bone. We administered an antibiotic cocktail, minocycline, or vehicle-control to sex-matched C57BL/6T mice from age 6- to 12 weeks. Antibiotic cocktail and minocycline had catabolic effects on alveolar bone in specific-pathogen-free (SPF) mice. We then administered minocycline or vehicle-control to male mice reared under SPF and germ-free conditions, and we subjected minocycline-treated SPF mice to chlorhexidine oral antiseptic rinses. Alveolar bone loss was greater in vehicle-treated SPF versus germ-free mice, demonstrating that the commensal microbiota drives naturally occurring alveolar bone loss. Minocycline- versus vehicle-treated germ-free mice had similar alveolar bone loss outcomes, implying that antimicrobial-driven alveolar bone loss is microbiota dependent. Minocycline induced phylum-level shifts in the oral bacteriome and exacerbated naturally occurring alveolar bone loss in SPF mice. Chlorhexidine further disrupted the oral bacteriome and worsened alveolar bone loss in minocycline-treated SPF mice, validating that antimicrobial-induced oral dysbiosis has deleterious effects on alveolar bone. Minocycline enhanced osteoclast size and interface with alveolar bone in SPF mice. Neutrophils and plasmacytoid dendritic cells were upregulated in cervical lymph nodes of minocycline-treated SPF mice. Paralleling the upregulated proinflammatory innate immune cells, minocycline therapy increased TH 1 and TH 17 cells that have known pro-osteoclastic actions in the alveolar bone. This report reveals that antimicrobial perturbation of the commensal microbiota induces a proinflammatory oral dysbiotic state that exacerbates naturally occurring alveolar bone loss.
Collapse
Affiliation(s)
- Brooks A. Swanson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Matthew D. Carson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jessica D. Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amy J. Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joy E. Kirkpatrick
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexa Corker
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander V. Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - J. Ignacio Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Kaur K, Vaziri S, Romero-Reyes M, Paranjpe A, Jewett A. Phenotypic and Functional Alterations of Immune Effectors in Periodontitis; A Multifactorial and Complex Oral Disease. J Clin Med 2021; 10:jcm10040875. [PMID: 33672708 PMCID: PMC7924323 DOI: 10.3390/jcm10040875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Survival and function of immune subsets in the oral blood, peripheral blood and gingival tissues of patients with periodontal disease and healthy controls were assessed. NK and CD8 + T cells within the oral blood mononuclear cells (OBMCs) expressed significantly higher levels of CD69 in patients with periodontal disease compared to those from healthy controls. Similarly, TNF-α release was higher from oral blood of patients with periodontal disease when compared to healthy controls. Increased activation induced cell death of peripheral blood mononuclear cells (PBMCs) but not OBMCs from patients with periodontal disease was observed when compared to those from healthy individuals. Unlike those from healthy individuals, OBMC-derived supernatants from periodontitis patients exhibited decreased ability to induce secretion of IFN-γ by allogeneic healthy PBMCs treated with IL-2, while they triggered significant levels of TNF-α, IL-1β and IL-6 by untreated PBMCs. Interaction of PBMCs, or NK cells with intact or NFκB knock down oral epithelial cells in the presence of a periodontal pathogen, F. nucleatum, significantly induced a number of pro-inflammatory cytokines including IFN-γ. These studies indicated that the relative numbers of immune subsets obtained from peripheral blood may not represent the composition of the immune cells in the oral environment, and that orally-derived immune effectors may differ in survival and function from those of peripheral blood.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
| | - Shahram Vaziri
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201, USA;
| | - Avina Paranjpe
- Department of Endodontics, University of Washington, Seattle, DC 98195, USA;
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-206-3970; Fax: +1-310-794-7109
| |
Collapse
|
9
|
Rezende TMB, Ribeiro Sobrinho AP, Vieira LQ, Sousa MGDC, Kawai T. Mineral trioxide aggregate (MTA) inhibits osteoclastogenesis and osteoclast activation through calcium and aluminum activities. Clin Oral Investig 2020; 25:1805-1814. [PMID: 32789653 DOI: 10.1007/s00784-020-03483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the effect(s) of mineral trioxide aggregate (MTA) on in vitro RANKL-mediated osteoclast-dependent bone resorption events and the influence of Ca2+ and Al3+ on the osteoclastogenesis inhibition by MTA. MATERIALS AND METHODS Two types of osteoclast precursors, RAW 264.7 (RAW) cell line or bone marrow cells (obtained from BALB/c mice and stimulated with recombinant (r) macrophage colony stimulation factor (M-CSF), were stimulated with or without recombinant (r) activator of nuclear kappa B ligand (RANKL), in the presence or absence of MTA for 6 to 8 days. White Angelus MTA and Bios MTA (Angelus, Londrina, Paraná, Brazil) were prepared and inserted into capillary tubes (direct contact surface = 0.50 mm2 and 0.01 mm2). Influence of MTA on these types of osteoclast precursors was measured by the number of differentiated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (RAW and bone marrow cells), TRAP enzyme activity (RAW cells), cathepsin K gene expression (RAW cells), and resorptive pit formation (RAW cells) by mature osteoclasts. Besides, RAW cells were also stimulated with Ca2+ and Al3+ to evaluate the influence of these ions on MTA anti-osteoclastogenic potential. RESULTS In bone marrow and RAW cells, the number of TRAP-positive mature osteoclast cells induced by rRANKL was significantly inhibited by the presence of MTA compared with control rRANKL stimulation without MTA (p < 0.05), along with the reduction of TRAP enzyme activity (p < 0.05) and the low expression of cathepsin K gene (p < 0.05). In contrast, to control mature osteoclasts, the resorption area on dentin was significantly decreased for mature osteoclasts incubated with MTA (p < 0.05). rRANKL-stimulated RAW cells treated with Ca2+ and Al3+ decreased the number of osteoclasts cells. Besides, the aluminum oxide was the dominant suppressor of the osteoclastogenesis process. CONCLUSIONS MTA significantly suppressed RANKL-mediated osteoclastogenesis and osteoclast activity and, therefore, appears able to suppress bone resorption events in periapical lesions. This process might be related to Ca2+ and Al3+ activities. CLINICAL RELEVANCE MTA is an important worldwidely acknowleged biomaterial. The knowledge about its molecular activities on osteoclasts might contribute to improving the understanding of its clinical efficacy.
Collapse
Affiliation(s)
- Taia Maria Berto Rezende
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil. .,Curso de Odontologia, Universidade Católica de Brasília, Brasília, DF, Brazil. .,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| | - Antônio Paulino Ribeiro Sobrinho
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, NOVA Southeastern University, Fort Lauderdale, FL, USA.,Cell Therapy Institute, Center for Collaborative Research, NOVA Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
10
|
Gu Y, Han X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int J Mol Sci 2020; 21:ijms21093329. [PMID: 32397173 PMCID: PMC7247565 DOI: 10.3390/ijms21093329] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is known to be initiated by periodontal microbiota derived from biofilm formation. The microbial dysbiotic changes in the biofilm trigger the host immune and inflammatory responses that can be both beneficial for the protection of the host from infection, and detrimental to the host, causing tissue destruction. During this process, recognition of Pathogen-Associated Molecular Patterns (PAMPs) by the host Pattern Recognition Receptors (PRRs) such as Toll-like receptors (TLRs) play an essential role in the host–microbe interaction and the subsequent innate as well as adaptive responses. If persistent, the adverse interaction triggered by the host immune response to the microorganisms associated with periodontal biofilms is a direct cause of periodontal inflammation and bone loss. A large number of T and B lymphocytes are infiltrated in the diseased gingival tissues, which can secrete inflammatory mediators and activate the osteolytic pathways, promoting periodontal inflammation and bone resorption. On the other hand, there is evidence showing that immune regulatory T and B cells are present in the diseased tissue and can be induced for the enhancement of their anti-inflammatory effects. Changes and distribution of the T/B lymphocytes phenotype seem to be a key determinant of the periodontal disease outcome, as the functional activities of these cells not only shape up the overall immune response pattern, but may directly regulate the osteoimmunological balance. Therefore, interventional strategies targeting TLR signaling and immune regulatory T/B cells may be a promising approach to rebalance the immune response and alleviate bone loss in periodontal disease. In this review, we will examine the etiological role of TLR signaling and immune cell osteoclastogenic activity in the pathogenesis of periodontitis. More importantly, the protective effects of immune regulatory lymphocytes, particularly the activation and functional role of IL-10 expressing regulatory B cells, will be discussed.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
11
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
12
|
Gooty JR, Kannam D, Guntakala VR, Palaparthi R. Distribution of Dendritic Cells and Langerhans Cells in Peri-implant Mucosa. Contemp Clin Dent 2019; 9:548-553. [PMID: 31772461 PMCID: PMC6868637 DOI: 10.4103/ccd.ccd_688_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Peri-implant diseases leading to the failure of dental implants is concern in the field of dentistry. Difference in immune response around peri-implant tissues with healthy tissue might be responsible for the hidden cause of peri-implant diseases. Hence, in the current study, the dispersion of the dendritic cell (DC) subpopulations and Langerhans cells (LCs) was evaluated in healthy peri-implant mucosa (HPIM) and healthy mucosa (HM) to know the imbalance in immune homeostasis. Subjects and Methods A total of 15 nonsmoker participants were selected for the study. First sample of the HM was obtained before the implant placement (Group I) and second sample of peri-implant mucosa was obtained at the time of placement of the gingival former (Group II). Immunochemistry was used to quantify DCs and LCs in the samples. Statistical Analysis Used To analyze the distribution of cells in the epithelium and lamina propria, Wilcoxon matched pairs test was used. Results Mean numbers of CD1a (LCs) in the epithelium and lamina propria of Group I and Group II were 25.2 ± 6.41 and 27.47 ± 10.26 and 19.27 ± 7.27 and 12.46 ± 3.04, respectively. Mean numbers of factor XIIIa (DCs) in the epithelium and lamina propria in Group I and Group II were 30.37 ± 5.42 and 86.93 ± 13.99 and 50.47 ± 7.27 and 124.33 ± 10.27, respectively. Statistically significant differences in the number of cells in the epithelium and lamina propria of Group I and Group II were noted (P = 0.001 and P = 0.001). Conclusions CD1a-positive LCs were more in the epithelium rather than lamina propria in Group II. Higher numbers of factor XIIIa-positive DCs were observed in the lamina propria than epithelium in Group I and II.
Collapse
Affiliation(s)
- Jagadish Reddy Gooty
- Department of Periodontology and Oral Implantology, Kamineni Institute of Dental Sciences, Narketpally, Hyderabad, Telangana, India
| | - Deepthi Kannam
- Consultant Periodontist and Implantologist, Hyderabad, Telangana, India
| | - Vikram Reddy Guntakala
- Department of Periodontology and Oral Implantology, Kamineni Institute of Dental Sciences, Narketpally, Hyderabad, Telangana, India
| | - Rajababu Palaparthi
- Department of Periodontology and Oral Implantology, Kamineni Institute of Dental Sciences, Narketpally, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Messer JG, La S, Kipp DE, Castillo EJ, Yarrow JF, Jorgensen M, Wnek RD, Kimmel DB, Aguirre JI. Diet-induced Generalized Periodontitis in Lewis Rats. Comp Med 2019; 69:384-400. [PMID: 31575381 DOI: 10.30802/aalas-cm-18-000113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periodontitis is an important public health concern worldwide. Because rodents from the genus Rattus are resistant to spontaneous periodontitis, experimental periodontitis must be initiated by mechanical procedures and interventions. Due to their exacerbated Th1 response and imbalanced Th17 regulatory T-cell responses, Lewis rats are highly susceptible to inducible inflammatory and autoimmune diseases. We hypothesized that feeding Lewis rats a diet high in sucrose and casein (HSC) would alter the oral microenvironment and induce inflammation and the development of periodontitis lesions without mechanical intervention. A baseline group (BSL, n = 8) was euthanized at age 6 wk. Beginning at 6 wk of age, 2 groups of Lewis rats were fed standard (STD, n = 12) or HSC (n = 20) chow and euthanized at 29 wk of age. We evaluated the degree of periodontitis through histology and μCT of maxillae and mandibles. The HSC-induced inflammatory response of periodontal tissues was assessed by using immunohistochemistry. Gene expression analysis of inflammatory cytokines associated with Th1 and Th17 responses, innate immunity cytokines, and tissue damage in response to bacteria were assessed also. The potential systemic effects of HSC diet were evaluated by assessing body composition and bone densitometry endpoints; serum leptin and insulin concentrations; and gene expression of inflammatory cytokines in the liver. Placing Lewis rats on HSC diet for 24 wk induced a host Th1-immune response in periodontal tissues and mild to moderate, generalized periodontitis characterized by inflammatory cell infiltration (predominantly T cells and macrophages), osteoclast resorption of alveolar bone, and hyperplasia and migration of the gingival epithelium. HSC-fed Lewis rats developed periodontitis without mechanical intervention in the oral cavity and in the absence of any noteworthy metabolic abnormalities. Consequently, the rat model we described here may be a promising approach for modeling mild to moderate periodontitis that is similar in presentation to the human disease.
Collapse
Affiliation(s)
- Jonathan G Messer
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Stephanie La
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, North Carolina
| | - Deborah E Kipp
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, North Carolina
| | - Evelyn J Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Joshua F Yarrow
- Department of Research Service, Veterans Affairs Medical Center, North Florida-South Georgia Veteran Health System, Gainesville, Florida
| | - Marda Jorgensen
- Department of Pediatrics, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Florida, Gainesville, Florida
| | - Russell D Wnek
- Department of Research Service, Veterans Affairs Medical Center, North Florida-South Georgia Veteran Health System, Gainesville, Florida
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - José Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, Florida;,
| |
Collapse
|
14
|
The impact of Aggregatibacter actinomycetemcomitans biofilm-derived effectors following antimicrobial photodynamic therapy on cytokine production in human gingival fibroblasts. Photodiagnosis Photodyn Ther 2019; 27:1-6. [PMID: 31125769 DOI: 10.1016/j.pdpdt.2019.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) is an effective adjunctive therapeutic modality for the treatment of local infections, including periodontitis and peri-implantitis. After receiving aPDT, microbial cells in the biofilm structure may produce and/ or release soluble biofilm-derived effectors (BDEs), which may affect the biology of the host cells in the community context of their surrounding microenvironment. Given the fact that no study has investigated the role of BDEs following aPDT in the pathogenesis of infectious diseases, the aim of the current study was to determine the effect of BDEs of Aggregatibacter actinomycetemcomitans following exposure to sub-lethal doses of indocyanine green (ICG)-aPDT on human gingival fibroblasts (HGFs) in terms of cytokines produced. MATERIALS AND METHODS In this study, we evaluated the effect of biofilm-conditioned medium (BCM) resulting from the treatment of A. actinomycetemcomitans biofilm with a sub-lethal dose of aPDT on cytokines production, including IL-6, IL-8, CXCL10, TGF-β, and bFGF of HGFs using enzyme-linked immunoassays (ELISA). The sensitivity of cytokines to BDEs was determined by micro-titer plates. RESULTS The maximal sub-lethal dose of ICG-PDT was 20.15 μM/mL ICG at a fluence of 31.2 J/cm2. The BCM of ICG-PDT-treated viable A. actinomycetemcomitans significantly reduced IL-6, IL-8, and CXCL10 levels compared to the BCM of untreated viable A. actinomycetemcomitans (78-, 93-, and 61.6-fold reduction, respectively; all P < 0.01). TGF-β and bFGF were strongly induced by BCM of ICG-PDT treated viable A. actinomycetemcomitans (by 57.7 and 36.1 folds, respectively; both P < 0.05). The BCM of untreated viable A. actinomycetemcomitans degraded most of the CxCL10, TGF-β and bFGF (58.8, 61.5, and 71.6%, respectively) in 24 h, while it degraded 9.3% of IL-6 and 15.1% of IL-8 after 24 h. CONCLUSION The results of the current study revealed that a sub-lethal dose of ICG-aPDT through the effect of BCM on HGFs could not only significantly reduce the production of pro-inflammatory cytokines but also promoted their role in periodontal regeneration due to increasing the bFGF level. Altogether, ICG-aPDT, with it's antimicrobial effects reduces inflammation and induces of tissue regeneration resulting from BCM, can be considered an efficient adjunctive therapeutic method for the treatment of local infections.
Collapse
|
15
|
Carnosic Acid Inhibits CXCR3 Ligands Production in IL-27-Stimulated Human Oral Epithelial Cells. Inflammation 2019; 42:1311-1316. [DOI: 10.1007/s10753-019-00991-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Valerio MS, Kirkwood KL. Sexual Dimorphism in Immunity to Oral Bacterial Diseases: Intersection of Neutrophil and Osteoclast Pathobiology. J Dent Res 2018; 97:1416-1423. [PMID: 30205018 DOI: 10.1177/0022034518798825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sex is a biological variable that affects immune responses to bacterial and other types of infectious agents. Males and females are known to have differential oral bacterial disease burden in periodontal and endodontic disease. Understanding that there is a contribution from both sex and gender to these oral diseases, we discuss in this review recent sex-based findings that provide a pathobiological basis for differences observed between males and females. Sexual dimorphism of immune responses with respect to neutrophil trafficking and osteoclast differentiation and formation is presented as a plausible mechanism to explain the sexual differences. We also emphasize that sex, as a biological variable, should be considered in these types of oral immunologic studies.
Collapse
Affiliation(s)
- M S Valerio
- 1 Extremity Trauma and Amputation Center of Excellence, Walter Reed National Military Medical Center, Department of Defense and Department of Veterans Affairs, Bethesda, MD, USA
| | - K L Kirkwood
- 2 Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.,3 Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
17
|
Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. Honokiol and Magnolol Inhibit CXCL10 and CXCL11 Production in IL-27-Stimulated Human Oral Epithelial Cells. Inflammation 2018; 41:2110-2115. [DOI: 10.1007/s10753-018-0854-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Ishii T, Ruiz-Torruella M, Ikeda A, Shindo S, Movila A, Mawardi H, Albassam A, Kayal RA, Al-Dharrab AA, Egashira K, Wisitrasameewong W, Yamamoto K, Mira AI, Sueishi K, Han X, Taubman MA, Miyamoto T, Kawai T. OC-STAMP promotes osteoclast fusion for pathogenic bone resorption in periodontitis via up-regulation of permissive fusogen CD9. FASEB J 2018. [PMID: 29533736 DOI: 10.1096/fj.201701424r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell fusion-mediated formation of multinuclear osteoclasts (OCs) plays a key role in bone resorption. It is reported that 2 unique OC-specific fusogens [ i.e., OC-stimulatory transmembrane protein (OC-STAMP) and dendritic cell-specific transmembrane protein (DC-STAMP)], and permissive fusogen CD9, are involved in OC fusion. In contrast to DC-STAMP-knockout (KO) mice, which show the osteopetrotic phenotype, OC-STAMP-KO mice show no difference in systemic bone mineral density. Nonetheless, according to the ligature-induced periodontitis model, significantly lower level of bone resorption was found in OC-STAMP-KO mice compared to WT mice. Anti-OC-STAMP-neutralizing mAb down-modulated in vitro: 1) the emergence of large multinuclear tartrate-resistant acid phosphatase-positive cells, 2) pit formation, and 3) mRNA and protein expression of CD9, but not DC-STAMP, in receptor activator of NF-κB ligand (RANKL)-stimulated OC precursor cells (OCps). While anti-DC-STAMP-mAb also down-regulated RANKL-induced osteoclastogenesis in vitro, it had no effect on CD9 expression. In our mouse model, systemic administration of anti-OC-STAMP-mAb suppressed the expression of CD9 mRNA, but not DC-STAMP mRNA, in periodontal tissue, along with diminished alveolar bone loss and reduced emergence of CD9+ OCps and tartrate-resistant acid phosphatase-positive multinuclear OCs. The present study demonstrated that OC-STAMP partners CD9 to promote periodontal bone destruction by up-regulation of fusion during osteoclastogenesis, suggesting that anti-OC-STAMP-mAb may lead to the development of a novel therapeutic regimen for periodontitis.-Ishii, T., Ruiz-Torruella, M., Ikeda, A., Shindo, S., Movila, A., Mawardi, H., Albassam, A., Kayal, R. A., Al-Dharrab, A. A., Egashira, K., Wisitrasameewong, W., Yamamoto, K., Mira, A. I., Sueishi, K., Han, X., Taubman, M. A., Miyamoto, T., Kawai, T. OC-STAMP promotes osteoclast fusion for pathogenic bone resorption in periodontitis via up-regulation of permissive fusogen CD9.
Collapse
Affiliation(s)
- Takenobu Ishii
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA.,Orthodontics, Tokyo Dental College, Tokyo, Japan
| | - Montserrat Ruiz-Torruella
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Atsushi Ikeda
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Satoru Shindo
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Alexandru Movila
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hani Mawardi
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Albassam
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rayyan A Kayal
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Kenji Egashira
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA.,Research and Development Headquarters, Lion Corporation, Odawara, Japan
| | | | - Kenta Yamamoto
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Abdulghani I Mira
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA.,Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Martin A Taubman
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan; and
| | - Toshihisa Kawai
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
19
|
Valverde P, Kawai T, Taubman MA. Potassium Channel-blockers as Therapeutic Agents to Interfere with Bone Resorption of Periodontal Disease. J Dent Res 2016; 84:488-99. [PMID: 15914584 DOI: 10.1177/154405910508400603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inflammatory lesions of periodontal disease contain all the cellular components, including abundant activated/memory T- and B-cells, necessary to control immunological interactive networks and to accelerate bone resorption by RANKL-dependent and -independent mechanisms. Blockade of RANKL function has been shown to ameliorate periodontal bone resorption and other osteopenic disorders without affecting inflammation. Development of therapies aimed at decreasing the expression of RANKL and pro-inflammatory cytokines by T-cells constitutes a promising strategy to ameliorate not only bone resorption, but also inflammation. Several reports have demonstrated that the potassium channels Kv1.3 and IKCa1, through the use of selective blockers, play important roles in T-cell-mediated events, including T-cell proliferation and the production of pro-inflammatory cytokines. More recently, a potassium channel-blocker for Kv1.3 has been shown to down-regulate bone resorption by decreasing the ratio of RANKL-to-OPG expression by memory-activated T-cells. In this article, we first summarize the mechanisms by which chronically activated/memory T-cells, in concert with B-cells and macrophages, trigger inflammatory bone resorption. Then, we describe the main structural and functional characteristics of potassium channels Kv1.3 and IKCa1 in some of the cells implicated in periodontal disease progression. Finally, this review elucidates some recent advances in the use of potassium channel-blockers of Kv1.3 and IKCa1 to ameliorate the clinical signs or side-effects of several immunological disorders and to decrease inflammatory bone resorption in periodontal disease. ABBREVIATIONS: AICD, activation-induced cell death; APC, antigen-presenting cells; B(K), large conductance; CRAC, calcium release-activated calcium channels; DC, dendritic cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IFN-γ, interferon-γ; IP3, inositol (1,4,5)-triphosphate; (K)ir, inward rectifier; JNK, c-Jun N-terminal kinase; I(K), intermediate conductance; LPS, lipopolysaccharide; L, ligand; MCSF, macrophage colony-stimulating factor; MHC, major histocompatibility complex; NFAT, nuclear factor of activated T-cells; RANK, receptor activator of nuclear factor-κB; TCM, central memory T-cells; TEM, effector memory T-cells; TNF, tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand; OPG, osteoprotegerin; Omp29, 29-kDa outer membrane protein; PKC, protein kinase C; PLC, phospholipase C; RT-PCR, reverse-transcriptase polymerase chain-reaction; S(K), small conductance; TCR, T-cell receptor; and (K)v, voltage-gated.
Collapse
Affiliation(s)
- P Valverde
- Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA.
| | | | | |
Collapse
|
20
|
Teng YTA. Protective and Destructive Immunity in the Periodontium: Part 2—T-cell-mediated Immunity in the Periodontium. J Dent Res 2016; 85:209-19. [PMID: 16498066 DOI: 10.1177/154405910608500302] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Based on the results of recent research in the field and Part 1 of this article (in this issue), the present paper will discuss the protective and destructive aspects of the T-cell-mediated adaptive immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) osteoimmunology and periodontal disease; (ii) some molecular techniques developed and applied to identify critical microbial virulence factors or antigens associated with host immunity (with Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species); and (iii) summarizing the identified virulence factors/antigens associated with periodontal immunity. Thus, further understanding of the molecular mechanisms of the host’s T-cell-mediated immune responses and the critical microbial antigens related to disease pathogenesis will facilitate the development of novel therapeutics or protocols for future periodontal treatments. Abbreviations used in the paper are as follows: A. actinomycetemcomitans ( Aa), Actinobacillus actinomycetemcomitans; Ab, antibody; DC, dendritic cells; mAb, monoclonal antibody; pAb, polyclonal antibody; OC, osteoclast; PAMP, pathogen-associated molecular patterns; P. gingivalis ( Pg), Porphyromonas gingivalis; RANK, receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TCR, T-cell-receptors; TLR, Toll-like receptors.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
21
|
Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in Oral Inflammatory Diseases: Apical Periodontitis and Periodontal Disease. J Dent Res 2016; 86:306-19. [PMID: 17384024 DOI: 10.1177/154405910708600403] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The inflammatory oral diseases are characterized by the persistent migration of polymorphonuclear leukocytes, monocytes, lymphocytes, plasma and mast cells, and osteoblasts and osteoclasts. In the last decade, there has been a great interest in the mediators responsible for the selective recruitment and activation of these cell types at inflammatory sites. Of these mediators, the chemokines have received particular attention in recent years. Chemokine messages are decoded by specific receptors that initiate signal transduction events, leading to a multitude of cellular responses, including chemotaxis and activation of inflammatory and bone cells. However, little is known about their role in the pathogenesis of inflammatory oral diseases. The purpose of this review is to summarize the findings regarding the role of chemokines in periapical and periodontal tissue inflammation, and the integration, into experimental models, of the information about the role of chemokines in human diseases.
Collapse
Affiliation(s)
- T A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Olsen I, Taubman MA, Singhrao SK. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer's disease. J Oral Microbiol 2016; 8:33029. [PMID: 27882863 PMCID: PMC5122233 DOI: 10.3402/jom.v8.33029] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1)-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg) imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1), and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors, P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Martin A Taubman
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| | - Sim K Singhrao
- Dementia & Neurodegeneration Research Group, School of Dentistry, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
23
|
Calcitriol Suppressed Inflammatory Reactions in IL-1β-Stimulated Human Periodontal Ligament Cells. Inflammation 2016; 38:2252-8. [PMID: 26156812 DOI: 10.1007/s10753-015-0209-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vitamin D has important roles on control of calcium and phosphate levels in the body. However, the role of vitamin D on the pathogenesis of periodontal disease is still uncertain. Therefore, we examined the effect of the hormonal form of vitamin D, calcitriol, on inflammatory responses of human periodontal ligament cells (HPDLC). We detected vitamin D receptor expression in non-stimulated HPDLC. Calcitriol inhibited interleukin (IL)-6, IL-8, CC chemokine ligand (CCL) 20, CXC chemokine ligand (CXCL) 10, and matrix metalloproteinase (MMP)-3 release from IL-1β-stimulated HPDLC. Tissue inhibitor of metalloproteinase (TIMP)-1 production did not change by calcitriol. Moreover, we found c-jun N-terminal kinase (JNK) phosphorylation and IκB-α degradation in IL-1β-stimulated HPDLC were inhibited by calcitriol, and JNK and nuclear factor (NF)-κB inhibitors could decrease IL-6, IL-8, CCL20, CXCL10, and MMP-3 productions in IL-1β-treated HPDLC. These findings suggest that vitamin D could modulate inflammatory response in periodontal tissues.
Collapse
|
24
|
Abstract
The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD.
Collapse
Affiliation(s)
- Kevin A Tompkins
- a Research Unit of Mineralized Tissue, Faculty of Dentistry , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
25
|
Gaffen SL, Herzberg MC, Taubman MA, Van Dyke TE. Recent advances in host defense mechanisms/therapies against oral infectious diseases and consequences for systemic disease. Adv Dent Res 2016; 26:30-7. [PMID: 24736702 DOI: 10.1177/0022034514525778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate and adaptive immune systems are both crucial to oral disease mechanisms and their impact on systemic health status. Greater understanding of these interrelationships will yield opportunities to identify new therapeutic targets to modulate disease processes and/or increase host resistance to infectious or inflammatory insult. The topics addressed reflect the latest advances in our knowledge of the role of innate and adaptive immune systems and inflammatory mechanisms in infectious diseases affecting the oral cavity, including periodontitis and candidiasis. In addition, several potential links with systemic inflammatory conditions, such as cardiovascular disease, are explored. The findings elucidate some of the defense mechanisms utilized by host tissues, including the role of IL-17 in providing immunity to oral candidiasis, the antimicrobial defense of mucosal epithelial cells, and the pro-resolution effects of the natural inflammatory regulators, proresolvins and lipoxins. They also describe the role of immune cells in mediating pathologic bone resorption in periodontal disease. These insights highlight the potential for therapeutic benefit of immunomodulatory interventions that bolster or modulate host defense mechanisms in both oral and systemic disease. Among the promising new therapeutic approaches discussed here are epithelial cell gene therapy, passive immunization against immune cell targets, and the use of proresolvin agents.
Collapse
Affiliation(s)
- S L Gaffen
- Department of Medicine, University of Pittsburgh, Division of Rheumatology & Clinical Immunology, S702 BST, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
26
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
27
|
Taubman MA, Smith DJ. Mucosal Vaccines for Dental Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Jackson LK, Johnson DB, Sosman JA, Murphy BA, Epstein JB. Oral health in oncology: impact of immunotherapy. Support Care Cancer 2014; 23:1-3. [PMID: 25216852 DOI: 10.1007/s00520-014-2434-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Leanne K Jackson
- Department of Medicine, Vanderbilt University, Nashville, TN, USA,
| | | | | | | | | |
Collapse
|
29
|
Shih YS, Fu E, Fu MM, Lin FG, Chiu HC, Shen EC, Chiang CY. Association of CCL5 and CCR5 gene polymorphisms with periodontitis in Taiwanese. J Periodontol 2014; 85:1596-602. [PMID: 25119558 DOI: 10.1902/jop.2014.130651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND It has been suggested that genetic factors may predispose individuals to periodontal diseases. The present case-control study aims to test whether the -403 single nucleotide polymorphism of chemokine ligand 5 (CCL5-403) and the 32-bp deletion of CCR5 (CCR5Δ32) polymorphisms are associated with susceptibility to chronic and aggressive periodontitis. METHODS Taiwanese participants (N = 213) were grouped into control group (CG), generalized aggressive periodontitis (GAgP), or chronic periodontitis (CP) groups. DNA samples were obtained from peripheral blood. CCL5-403, evaluated by polymerase chain reaction-restriction fragment length polymorphism, and CCR5Δ32, evaluated by polymerase chain reaction, were compared among the three groups. RESULTS There was a significant association between type of periodontitis and having allele A or G in the CCL5-403 polymorphism. GAgP patients were 3.7 times more likely than CP patients and 2.0 times more likely than CG patients to have allele A, instead of allele G, in CCL5-403. GAgP patients were 3.1 times more likely than CG patients to have AG versus GG genotype. GAgP patients were also 5.0 and 19.8 times more likely than CP patients to have AG and AA genotypes, respectively, compared to GG. For the CCR5Δ32 polymorphism, no association was found between the type of periodontitis and having different genotype or allele distributions among GAgP, CP, or CG patients. CONCLUSION The single nucleotide polymorphism of CCL5-403 G substitution by A may play a role in AgP; however, the CCR5Δ32 polymorphism may not.
Collapse
Affiliation(s)
- Yo-Seng Shih
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhu M, Belkina AC, DeFuria J, Carr JD, Van Dyke TE, Gyurko R, Nikolajczyk BS. B cells promote obesity-associated periodontitis and oral pathogen-associated inflammation. J Leukoc Biol 2014; 96:349-57. [PMID: 24782490 DOI: 10.1189/jlb.4a0214-095r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Individuals with T2D and PD suffer significantly from the ability of one disease to intensify the other. Disease-associated inflammation is one mechanism thought to fuel this pathogenic feed-forward loop. Several lines of evidence indicate that proinflammatory B cells promote T2D and PD; thus, B cells are top candidates for a cell type that predisposes PD in T2D. To test directly the role of B cells in T2D-associated PD, we compared outcomes from oral Porphyromonas gingivalis challenge of lean WT or B cell-null mice with outcomes from mice that were obese and insulin-resistant before challenge. Obese WT mice responded to oral P. gingivalis challenge with significant periodontal bone loss, whereas obese B cell-null mice were protected completely from PD. By contrast, lean WT and B cell-null mice suffer similar periodontal bone loss in response to oral pathogen. B cells from obese/insulin-resistant hosts also support oral osteoclastogenesis and both oral and systemic production of inflammatory cytokines, including pro-osteoclastogenic TNF-α and MIP-2, an ortholog of human IL-8. B cells furthermore impact AT inflammation in obese, P. gingivalis-infected hosts. Taken together, these data show that fundamentally different mechanisms regulate PD in lean and obese hosts, with B cells able to promote PD only if the hosts are "primed" by obesity. These results justify more intense analysis of obesity-associated changes in B cells that predispose PD in human T2D.
Collapse
Affiliation(s)
- Min Zhu
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Anna C Belkina
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jason DeFuria
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jordan D Carr
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA; and
| | - Robert Gyurko
- Department of Periodontology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA;
| |
Collapse
|
31
|
Scannapieco FA. Oral biology in middle age: a history of the University at Buffalo Oral Biology PhD Program. J Dent Res 2014; 93:433-6. [PMID: 24736556 DOI: 10.1177/0022034514525783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In 1960, the first Department of Oral Biology in the United States dedicated to the conduct of research, graduate biomedical research education, and the provision of basic oral science education for the DDS curriculum was established at the University at Buffalo. In 1963, the Department organized the first PhD Program in Oral Biology in the United States. This PhD program has produced a large cadre of oral health researchers, many of whom have gone on to make major contributions to dental research and education. This article provides a brief history of the program, the context within which the program was organized and developed, and a description of some of the many faculty, students, and fellows associated with the program. Additionally, to celebrate the 50th anniversary of this program, a symposium, entitled "The Oral Microbiome, Immunity and Chronic Disease", was held on June 12-14, 2013, in Buffalo, New York. The proceedings are published online in Advances in Dental Research (2014, Vol. 26).
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York Foster Hall, Buffalo, NY 14214, USA
| |
Collapse
|
32
|
Okui T, Aoki-Nonaka Y, Nakajima T, Yamazaki K. The Role of Distinct T Cell Subsets in Periodontitis—Studies from Humans and Rodent Models. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40496-014-0013-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Soboku K, Kikuchi T, Fujita S, Takeda H, Naruse K, Matsubara T, Noguchi T. Altered Gene Expression in Gingival Tissues and Enhanced Bone Loss in Rats With Diabetes With Experimental Periodontitis. J Periodontol 2014; 85:455-64. [DOI: 10.1902/jop.2013.120705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
RANKL expression in periodontal disease: where does RANKL come from? BIOMED RESEARCH INTERNATIONAL 2014; 2014:731039. [PMID: 24719884 PMCID: PMC3955606 DOI: 10.1155/2014/731039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
Periodontitis is an inflammatory disease characterized by periodontal pocket formation and alveolar bone resorption. Periodontal bone resorption is induced by osteoclasts and receptor activator of nuclear factor-κB ligand (RANKL) which is an essential and central regulator of osteoclast development and osteoclast function. Therefore, RANKL plays a critical role in periodontal bone resorption. In this review, we have summarized the sources of RANKL in periodontal disease and explored which factors may regulate RANKL expression in this disease.
Collapse
|
35
|
Tsilingaridis G, Yucel-Lindberg T, Concha Quezada H, Modéer T. The relationship between matrix metalloproteinases (MMP-3, -8, -9) in serum and peripheral lymphocytes (CD8+ , CD56+ ) in Down syndrome children with gingivitis. J Periodontal Res 2013; 49:742-50. [PMID: 24372339 DOI: 10.1111/jre.12157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Altered immune response may be a major contributor to periodontal disease in Down syndrome. This study investigated the relationship between peripheral lymphocytes and matrix metalloproteinases (MMPs) in serum in Down syndrome children with gingivitis. MATERIAL AND METHODS Children with Down syndrome (n = 10) and healthy controls (n = 10) were clinically and radiographically examined during dental treatment under general anaesthesia. Peripheral blood and gingival crevicular fluid were collected from each subject and concentrations were determined: serum MMP-2, -3, -8 and -9; serum tissue inhibitors of metalloproteinases (TIMP) -1, -2 and -3; and gingival crevicular fluid. Leukocytes were isolated from peripheral blood and the relative amounts (%) of the various cell phenotypes were analysed using flow cytometry. In addition, peripheral blood cells were treated with Porphyromonas gingivalis lipopolysaccharide and levels of MMPs and TIMPs measured. RESULTS Concentrations of MMP-3, MMP-8 and TIMP-1 in serum were significantly higher (p < 0.05) in the Down syndrome group compared to the controls. When peripheral blood leukocytes were cultured in the presence or absence of P. gingivalis lipopolysaccharide, MMP-8 levels were significantly (p < 0.05) higher in the Down syndrome group compared to controls. Children with Down syndrome exhibited significant positive correlations between CD8(+) T cells and MMP-8 (r = 0.630; p = 0.050), between CD8(+) T cells and MMP-9 (r = 0.648; p = 0.043), and between CD56(+) NK cells and MMP-3 (r = 0.828; p = 0.003) compared to controls. CONCLUSIONS The positive relationship of serum MMP-3, -8 and -9 with immune cells in children with Down syndrome may facilitate migration of CD8(+) T cells and CD56(+) NK cells into the periodontal tissue, which may contribute to the increased degradation of periodontal tissue in individuals with Down syndrome.
Collapse
Affiliation(s)
- G Tsilingaridis
- Division of Paediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Paediatric Dentistry, Eastmaninstitutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
36
|
Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc Natl Acad Sci U S A 2013; 110:18525-30. [PMID: 24167272 DOI: 10.1073/pnas.1302829110] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hallmark of periodontal disease is the progressive destruction of gingival soft tissue and alveolar bone, which is initiated by inflammation in response to an invasive and persistent bacterial insult. In recent years, it has become apparent that this tissue destruction is associated with a decrease in local regulatory processes, including a decrease of forkhead box P3-expressing regulatory lymphocytes. Accordingly, we developed a controlled release system capable of generating a steady release of a known chemoattractant for regulatory lymphocytes, C-C motif chemokine ligand 22 (CCL22), composed of a degradable polymer with a proven track record of clinical translation, poly(lactic-co-glycolic) acid. We have previously shown that this sustained presentation of CCL22 from a point source effectively recruits regulatory T cells (Tregs) to the site of injection. Following administration of the Treg-recruiting formulation to the gingivae in murine experimental periodontitis, we observed increases in hallmark Treg-associated anti-inflammatory molecules, a decrease of proinflammatory cytokines, and a marked reduction in alveolar bone resorption. Furthermore, application of the Treg-recruiting formulation (fabricated with human CCL22) in ligature-induced periodontitis in beagle dogs leads to reduced clinical measures of inflammation and less alveolar bone loss under severe inflammatory conditions in the presence of a diverse periodontopathogen milieu.
Collapse
|
37
|
Kayal RA. The role of osteoimmunology in periodontal disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:639368. [PMID: 24151615 PMCID: PMC3789307 DOI: 10.1155/2013/639368] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/26/2022]
Abstract
Periodontal disease is a pathological condition that involves inflammation of the tooth supporting structures. It occurs in response to the presence of bacterial plaque on the tooth structure. The host defense system, including innate and adaptive immunity, is responsible for combating the pathologic bacteria invading the periodontal tissue. Failure to eradicate the invading pathogens will result in a continuous state of inflammation where inflammatory cells such as lymphocytes, PMNs, and macrophages will continue to produce inflammatory mediators in an effort to destroy the invaders. Unfortunately, these inflammatory mediators have a deleterious effect on the host tissue as well as foreign microbes. One of the effects of these mediators on the host is the induction of matrix degradation and bone resorption through activation of proteases and other inflammatory mediators that activate osteoclasts.
Collapse
Affiliation(s)
- Rayyan A. Kayal
- Department of Oral Basic and Clinical Science, King Abdulaziz University Faculty of Dentistry, P.O. Box 3738, Jeddah 21481, Saudi Arabia
| |
Collapse
|
38
|
Manrique P, Freire MO, Chen C, Zadeh HH, Young M, Suci P. Perturbation of the indigenous rat oral microbiome by ciprofloxacin dosing. Mol Oral Microbiol 2013; 28:404-14. [PMID: 23844936 DOI: 10.1111/omi.12033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 11/28/2022]
Abstract
Mucosal surfaces such as the gut, vagina and oral cavity are colonized by microbiota that are an integral component of the healthy ecosystem. Recent molecular techniques make it feasible to correlate antimicrobial dosing levels with changes in microbiome composition. The objective of this study was to characterize the rat oral plaque microbiome composition at doses of ciprofloxacin that were considerably above and below nominal in vitro minimal inhibitory concentrations of a variety of gram-positive oral commensal bacteria. We exposed the oral cavities of rats to relatively low (0.1 μg ml(-1) ) and high (20 μg ml(-1)) doses of ciprofloxacin in the drinking water over a 3-day period. Plaque microbiota were characterized using 454 pyrosequencing. The rat indigenous community was dominated by the genera Rothia (74.4%) and Streptococcus (4.7%). Dosing at 0.1 μg ml(-1) was associated with changes in Rothia and Streptococcus species that were not significant, whereas dosing at 20 μg ml(-1) caused a pronounced (significant) reduction in the relative abundance of the Streptococcus genus. Taxonomic independent analysis indicated that the perturbation in the overall community structure attributed to dosing with ciprofloxacin at either the low or high dose was relatively low. The results suggest that it is feasible to use an antimicrobial dosing regimen to selectively target a specific subset of a mucosal microbiome for elimination with minimal perturbation of the entire community.
Collapse
Affiliation(s)
- P Manrique
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
39
|
Terheyden H, Stadlinger B, Sanz M, Garbe AI, Meyle J. Inflammatory reaction - communication of cells. Clin Oral Implants Res 2013; 25:399-407. [DOI: 10.1111/clr.12176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Hendrik Terheyden
- Department of Oral & Maxillofacial Surgery; Red Cross Hospital; Kassel Germany
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery; University of Zürich; Zürich Switzerland
| | - Mariano Sanz
- Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Annette I. Garbe
- Institute of Physiological Chemistry; Dresden University of Technology; Dresden Germany
| | - Jörg Meyle
- Department of Periodontology; University Gießen and Marburg; Giessen Germany
| |
Collapse
|
40
|
Porphyromonas gingivalis infection-associated periodontal bone resorption is dependent on receptor activator of NF-κB ligand. Infect Immun 2013; 81:1502-9. [PMID: 23439308 DOI: 10.1128/iai.00043-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Porphyromonas gingivalis is one of the oral microorganisms associated with human chronic periodontitis. The purpose of this study is to determine the role of the receptor activator of nuclear factor-κB ligand (RANKL) in P. gingivalis infection-associated periodontal bone resorption. Inbred female Rowett rats were infected orally on four consecutive days (days 0 to 3) with 1 × 10(9) P. gingivalis bacteria (strain ATCC 33277). Separate groups of rats also received an injection of anti-RANKL antibody, osteoprotegerin fusion protein (OPG-Fc), or a control fusion protein (L6-Fc) into gingival papillae in addition to P. gingivalis infection. Robust serum IgG and salivary IgA antibody (P < 0.01) and T cell proliferation (P < 0.05) responses to P. gingivalis were detected at day 7 and peaked at day 28 in P. gingivalis-infected rats. Both the concentration of soluble RANKL (sRANKL) in rat gingival tissues (P < 0.01) and periodontal bone resorption (P < 0.05) were significantly elevated at day 28 in the P. gingivalis-infected group compared to levels in the uninfected group. Correspondingly, RANKL-expressing T and B cells in rat gingival tissues were significantly increased at day 28 in the P. gingivalis-infected group compared to the levels in the uninfected group (P < 0.01). Injection of anti-RANKL antibody (P < 0.05) or OPG-Fc (P < 0.01), but not L6-Fc, into rat gingival papillae after P. gingivalis infection resulted in significantly reduced periodontal bone resorption. This study suggests that P. gingivalis infection-associated periodontal bone resorption is RANKL dependent and is accompanied by increased local infiltration of RANKL-expressing T and B cells.
Collapse
|
41
|
Sloan AJ, Lynch CD. Dental tissue repair: novel models for tissue regeneration strategies. Open Dent J 2012; 6:214-9. [PMID: 23308085 PMCID: PMC3540382 DOI: 10.2174/1874210601206010214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/10/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023] Open
Abstract
Studies have shown that dentin matrices contain reservoirs of bioactive molecules capable of directing tissue repair. Elucidating the release mechanisms of such endogenous growth factors will enhance our understanding of dentinpulp regeneration and support the development of novel treatment modalities to enhance dentin repair following trauma and disease. Current clinical practice using new materials which are perceived to maintain pulpal viability require biological evidence to assess their therapeutic benefit and there is a need for better effective methods of assessing therapeutic approaches to improving dentin regeneration at the cellular and tissue level. Experimental modelling of dentin regeneration is hampered by the lack of suitable models. In vivo and in vitro studies have yielded considerable information on the processes taking place, but are limited, due to the cost, ethics and lack of cell/matrix interactions. Novel organotypic models, whereby cells and tissues are cultured in situ may provide a more suitable model system to facilitate dental tissue engineering and regeneration.
Collapse
Affiliation(s)
- Alastair J Sloan
- Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Heath Park, Cardiff, CF15 8AZ, UK ; Mineralised Tissue Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Heath Park Cardiff, CF15 8AZ, UK
| | | |
Collapse
|
42
|
Myneni SR, Settem RP, Connell TD, Keegan AD, Gaffen SL, Sharma A. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:501-9. [PMID: 21632710 PMCID: PMC3119786 DOI: 10.4049/jimmunol.1100683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Periodontal disease (PD) is a chronic inflammation of the tooth-supporting soft tissue and alveolar bone due to infection by a select group of gram-negative microbes, which leads to tooth loss if untreated. Because mice deficient in CD4(+) cells are resistant to infection-induced alveolar bone loss, Th cells have been implicated in bone-destructive processes during PD. However, the extent to which different Th cell subtypes play roles in pathogenesis or host protection remains to be defined and is likely to vary depending on the dominant microorganism involved. By far, Porphyromonas gingivalis is the best-studied periodontal microbe in PD. Although the gram-negative anaerobe Tannerella forsythia is also a vital contributor to periodontal bone loss, almost nothing is known about immune responses to this organism. Previous studies from our laboratory revealed that T. forsythia induces periodontal bone loss in mice and that this bone loss depends on the bacterially expressed BspA protein. In this study, we showed that T. forsythia activates murine APCs primarily through TLR2-dependent signaling via BspA. Furthermore, T. forsythia infection causes a pronounced Th2 bias, evidenced by T cell expression of IL-5, but not IFN-γ or IL-17, in draining lymph nodes. Consistently, deficiencies in TLR2 or STAT6 result in resistance to T. forsythia-induced alveolar bone loss. Thus, TLR2 signaling and Th2 cells play pathogenic roles in T. forsythia-induced alveolar bone destruction.
Collapse
Affiliation(s)
- Srinivas R. Myneni
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| | - Rajendra P. Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| | - Terry D. Connell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY 14214
| | - Achsah D. Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarah L. Gaffen
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214
| |
Collapse
|
43
|
Branco-de-Almeida LS, Kajiya M, Cardoso CR, Silva MJB, Ohta K, Rosalen PL, Franco GCN, Han X, Taubman MA, Kawai T. Selective serotonin reuptake inhibitors attenuate the antigen presentation from dendritic cells to effector T lymphocytes. ACTA ACUST UNITED AC 2011; 62:283-94. [PMID: 21569123 DOI: 10.1111/j.1574-695x.2011.00816.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fluoxetine, one of the selective serotonin reuptake inhibitors (SSRIs), has been found to possess immune modulation effects, in addition to its antidepressant effects. However, it remains unclear whether SSRIs can suppress the antigen-presenting function of dendritic cells (DCs). Therefore, Fluoxetine was applied to a co-culture of Aggregatibacter actinomycetemcomitans (Aa)-reactive T cells (×Aa-T) isolated from Aa-immunized mice and DCs. This resulted in the suppressed proliferation of ×Aa-T stimulated with Aa-antigen presentation by DCs. Specifically, Fluoxetine increased the extracellular 5-hydroxytryptamine (5-HT) in the ×Aa-T/DC co-culture, whereas exogenously applied 5-HT promoted T-cell proliferation in the ×Aa-T/DC co-culture, indicating that Fluoxetine-mediated suppression of ×Aa-T/DC responses cannot be attributed to extracellular 5-HT. Instead, Fluoxetine remarkably suppressed the expression of costimulatory molecule ICOS-L on DCs. Fluoxetine also promoted a greater proportion of CD86(Low) immature DCs than CD86(High) mature DCs, while maintaining the expression levels of CD80, MHC-class-II and PD-L1. These results suggested that Fluoxetine suppressed the ability of DCs to present bacterial antigens to T cells, and the resulting T-cell proliferation, in a SERT/5-HT-independent manner and that diminished expression of ICOS-L on DCs and increase of CD86(Low) immature DCs caused by Fluoxetine might be partially associated with Fluoxetine-mediated suppression of DC/T-cell responses.
Collapse
|
44
|
Kajiya M, Komatsuzawa H, Papantonakis A, Seki M, Makihira S, Ouhara K, Kusumoto Y, Murakami S, Taubman MA, Kawai T. Aggregatibacter actinomycetemcomitans Omp29 is associated with bacterial entry to gingival epithelial cells by F-actin rearrangement. PLoS One 2011; 6:e18287. [PMID: 21559515 PMCID: PMC3084700 DOI: 10.1371/journal.pone.0018287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 03/02/2011] [Indexed: 01/08/2023] Open
Abstract
The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa) into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29), a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29+/OmpA−E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9) than Omp29−/OmpA−E. coli. While the entry of Aa and Omp29+/OmpA−E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK), a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin) and Rho GTPases inhibitor (EDIN), both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Immunology, Forsyth Institute, Boston, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Hitoshi Komatsuzawa
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Annatoula Papantonakis
- Department of Immunology, Forsyth Institute, Boston, Massachusetts, United States of America
| | - Makoto Seki
- Department of Immunology, Forsyth Institute, Boston, Massachusetts, United States of America
| | - Seicho Makihira
- Department of Immunology, Forsyth Institute, Boston, Massachusetts, United States of America
| | - Kazuhisa Ouhara
- Department of Immunology, Forsyth Institute, Boston, Massachusetts, United States of America
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shinya Murakami
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Martin A. Taubman
- Department of Immunology, Forsyth Institute, Boston, Massachusetts, United States of America
| | - Toshihisa Kawai
- Department of Immunology, Forsyth Institute, Boston, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hosokawa Y, Hosokawa I, Shindo S, Ozaki K, Nakanishi T, Nakae H, Matsuo T. Black tea polyphenol inhibits CXCL10 production in oncostatin M-stimulated human gingival fibroblasts. Int Immunopharmacol 2011; 11:670-4. [PMID: 21255696 DOI: 10.1016/j.intimp.2011.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/08/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
CXC chemokine ligand 10 (CXCL10) plays an important role in the infiltration of Th1 cells and thus in the exacerbation of periodontal disease. Theaflavin-3,3'-digallate (TFDG), polyphenol in black tea, has some beneficial effects but the effect of TFDG on CXCL10 production from human gingival fibroblasts (HGFs) is uncertain. In this study, we investigated the mechanisms by which TFDG may inhibit oncostatin M (OSM)-induced CXCL10 production in human gingival fibroblasts. TFDG prevented OSM-mediated CXCL10 production by HGFs in a dose dependent manner. TFDG significantly inhibited OSM-induced phosphorylation of c-Jun N terminal kinase (JNK), protein kinase B (Akt) (Ser473) that are related to CXCL10 production from OSM-stimulated HGFs. In addition, TFDG suppressed OSM receptor (OSMR) β expression on HGFs. These data provide a novel mechanism where the black tea flavonoid, theaflavin, could provide direct benefits in periodontal disease.
Collapse
Affiliation(s)
- Yoshitaka Hosokawa
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Yanagita M, Kojima Y, Mori K, Yamada S, Murakami S. Osteoinductive and anti-inflammatory effect of royal jelly on periodontal ligament cells. Biomed Res 2011; 32:285-91. [DOI: 10.2220/biomedres.32.285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Antibody to receptor activator of NF-κB ligand ameliorates T cell-mediated periodontal bone resorption. Infect Immun 2010; 79:911-7. [PMID: 21078845 DOI: 10.1128/iai.00944-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Activated T and B lymphocytes in periodontal disease lesions express receptor activator of NF-κB ligand (RANKL), which induces osteoclastic bone resorption. The objective of this study was to evaluate the effects of anti-RANKL antibody on periodontal bone resorption in vitro and in vivo. Aggregatibacter actinomycetemcomitans outer membrane protein 29 (Omp29) and A. actinomycetemcomitans lipopolysaccharide (LPS) were injected into 3 palatal gingival sites, and Omp29-specific T clone cells were transferred into the tail veins of rats. Rabbit anti-RANKL IgG antibody or F(ab')₂ antibody fragments thereof were injected into the palatal sites in each rat (days -1, 1, and 3). Anti-RANKL IgG antibody significantly inhibited soluble RANKL (sRANKL)-induced osteoclastogenesis in vitro, in a dose-dependent manner, but also gave rise to a rat antibody response to rabbit IgG in vivo, with no significant inhibition of periodontal bone resorption detected. Lower doses (1.5 and 0.15 μg/3 sites) of F(ab')₂ antibody were not immunogenic in the context of the experimental model. Periodontal bone resorption was inhibited significantly by injection of the anti-RANKL F(ab')₂ antibody into gingivae. The sRANKL concentrations for the antibody-treated groups were decreased significantly compared to those for the untreated group. Osteoclasts on the alveolar bone surface were also diminished significantly after antibody injection. Gingival sRANKL concentration and bone loss showed a significant correlation with one another in animals receiving anti-RANKL F(ab')₂ antibody. These results suggest that antibody to RANKL can inhibit A. actinomycetemcomitans-specific T cell-induced periodontal bone resorption by blockade and reduction of tissue sRANKL, providing an immunological approach to ameliorate immune cell-mediated periodontal bone resorption.
Collapse
|
48
|
Kajiya M, Giro G, Taubman MA, Han X, Mayer MPA, Kawai T. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease. J Oral Microbiol 2010; 2. [PMID: 21523224 PMCID: PMC3084575 DOI: 10.3402/jom.v2i0.5532] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/14/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022] Open
Abstract
Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, we discuss earlier studies of immune intervention, ultimately leading to the identification of bacteria-reactive lymphocytes as the cellular source of osteoclast-induction factor lymphokine (now called RANKL) in the context of periodontal bone resorption. Next, we consider (1) the effects of periodontal bacteria on RANKL production from a variety of adaptive immune effector cells, as well as fibroblasts, in inflamed periodontal tissue and (2) the bifunctional roles (upregulation vs. downregulation) of LPS produced from periodontal bacteria in a RANKL-induced osteoclast-signal pathway. Future studies in these two areas could lead to new therapeutic approaches for the management of PD by down-modulating RANKL production and/or RANKL-mediated osteoclastogenesis in the context of host immune responses against periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Immunology, The Forsyth Institute, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infect Immun 2010; 78:4560-9. [PMID: 20805334 DOI: 10.1128/iai.00703-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis secretes a serine phosphatase enzyme, SerB, upon contact with gingival epithelial cells in vitro. The SerB protein plays a critical role in internalization and survival of the organism in epithelial cells. SerB is also responsible for the inhibition of interleukin-8 (IL-8) secretion from gingival epithelial cells infected with P. gingivalis. This study examined the ability of a P. gingivalis SerB mutant to colonize the oral cavity and induce gingival inflammation, immune responses, and alveolar bone resorption in a rat model of periodontal disease. Both P. gingivalis ATCC 33277 and an isogenic ΔSerB mutant colonized the oral cavities of rats during the 12-week experimental period. Both of the strains induced significant (P < 0.05) systemic levels of immunoglobulin G (IgG) and isotypes IgG1, IgG2a, and IgG2b, indicating the involvement of both T helper type 1 (Th1) and Th2 responses to infection. Both strains induced significantly (P < 0.05) higher levels of alveolar bone resorption in infected rats than in sham-infected control rats. However, horizontal and interproximal alveolar bone resorption induced by the SerB mutant was significantly (P < 0.05) lower than that induced by the parental strain. Rats infected with the ΔSerB mutant exhibited significantly higher levels of apical migration of the junctional epithelium (P < 0.01) and polymorphonuclear neutrophil (PMN) recruitment (P < 0.001) into the gingival tissues than rats infected with the wild type. In conclusion, in a rat model of periodontal disease, the SerB phosphatase of P. gingivalis is required for maximal alveolar bone resorption, and in the absence of SerB, more PMNs are recruited into the gingival tissues.
Collapse
|
50
|
Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res 2010; 89:1349-63. [PMID: 20739705 DOI: 10.1177/0022034510376402] [Citation(s) in RCA: 476] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Periodontal diseases (PD) are chronic infectious inflammatory diseases characterized by the destruction of tooth-supporting structures, being the presence of periodontopathogens required, but not sufficient, for disease development. As a general rule, host inflammatory mediators have been associated with tissue destruction, while anti-inflammatory mediators counteract and attenuate disease progression. With the discovery of several T-cell subsets bearing distinct immunoregulatory properties, this pro- vs. anti-inflammatory scenario became more complex, and a series of studies has hypothesized protective or destructive roles for Th1, Th2, Th17, and Treg subpopulations of polarized lymphocytes. Interestingly, the "protective vs. destructive" archetype is usually considered in a framework related to tissue destruction and disease progression. However, it is important to remember that periodontal diseases are infectious inflammatory conditions, and recent studies have demonstrated that cytokines (TNF-α and IFN-γ) considered harmful in the context of tissue destruction play important roles in the control of periodontal infection. Therefore, in this review, the state-of-the-art knowledge concerning the protective and destructive roles of host inflammatory immune response will be critically evaluated and discussed from the tissue destruction and control-of-infection viewpoints.
Collapse
Affiliation(s)
- G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, FOB/USP, Al. Octávio Pinheiro Brisola, 9-75 CEP 17012-901, Bauru, SP, Brazil.
| |
Collapse
|