1
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
2
|
Hu Y, Huang J, Wang S, Sun X, Wang X, Yu H. Deciphering Autoimmune Diseases: Unveiling the Diagnostic, Therapeutic, and Prognostic Potential of Immune Repertoire Sequencing. Inflammation 2024:10.1007/s10753-024-02079-2. [PMID: 38914737 DOI: 10.1007/s10753-024-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
Autoimmune diseases (AIDs) are immune system disorders where the body exhibits an immune response to its own antigens, causing damage to its own tissues and organs. The pathogenesis of AIDs is incompletely understood. However, recent advances in immune repertoire sequencing (IR-seq) technology have opened-up a new avenue to study the IR. These studies have revealed the prevalence in IR alterations, potentially inducing AIDs by disrupting immune tolerance and thereby contributing to our comprehension of AIDs. IR-seq harbors significant potential for the clinical diagnosis, personalized treatment, and prognosis of AIDs. This article reviews the application and progress of IR-seq in diseases, such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes, to enhance our understanding of the pathogenesis of AIDs and offer valuable references for the diagnosis and treatment of AIDs.
Collapse
Affiliation(s)
- Yuelin Hu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shuqing Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
| |
Collapse
|
3
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, Fernandes RA, Gomez AM, Nadj GS, Bartley CM, Schubert RD, Hawes IA, Vazquez SE, Iyer M, Zuchero JB, Teegen B, Dunn JE, Lock CB, Kipp LB, Cotham VC, Ueberheide BM, Aftab BT, Anderson MS, DeRisi JL, Wilson MR, Bashford-Rogers RJ, Platten M, Garcia KC, Steinman L, Robinson WH. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022; 603:321-327. [PMID: 35073561 PMCID: PMC9382663 DOI: 10.1038/s41586-022-04432-7] [Citation(s) in RCA: 390] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.
Collapse
Affiliation(s)
- Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States,Department of Neurology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,Department of Neurology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - R. Camille Brewer
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Peggy P. Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Jae-Seung Moon
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Daniel Fernandez
- Stanford ChEM-H Institute, Macromolecular Structure Knowledge Center, 290 Jane Stanford Way, Stanford, CA 94305, United States
| | - Ricardo A. Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Alejandro M. Gomez
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Gabriel-Stefan Nadj
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Christopher M. Bartley
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, United States,Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Ryan D. Schubert
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Isobel A. Hawes
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Sara E. Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, United States
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welsh Road, Stanford, CA, United States
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welsh Road, Stanford, CA, United States
| | - Bianca Teegen
- Institute of Experimental Immunology, Euroimmun AG, Seekamp 31, 23560 Lübeck, Germany
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Christopher B. Lock
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Stanford, CA, United States
| | - Victoria C. Cotham
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, and NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, 430 East 29th St, New York, NY, 10016, United States
| | - Beatrix M. Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, and NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, 430 East 29th St, New York, NY, 10016, United States
| | - Blake T. Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, 611 Gateway Blvd South San Francisco, CA 94080, United States
| | - Mark S. Anderson
- Department of Medicine, Diabetes Center, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, United States
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, United States,Chan Zuckerberg Biohub, University of California San Francisco, 499 Illinois Street, San Francisco, CA 94158, United States
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Ln San Francisco, CA 94158, San Francisco, United States
| | - Rachael J.M. Bashford-Rogers
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, United Kingdom
| | - Michael Platten
- Department of Neurology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany,Department of Neurology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Beckman Center for Molecular Medicine, 279 Campus Drive, Stanford, CA 94305, United States
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States, and the Geriatric Research, Education, and Clinical Centers (GRECC), VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States,Corresponding Author: William H. Robinson, Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, United States,
| |
Collapse
|
5
|
Lindeman I, Polak J, Qiao S, Holmøy T, Høglund RA, Vartdal F, Berg‐Hansen P, Sollid LM, Lossius A. Stereotyped B‐cell responses are linked to IgG constant region polymorphisms in multiple sclerosis. Eur J Immunol 2022; 52:550-565. [DOI: 10.1002/eji.202149576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ida Lindeman
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Justyna Polak
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Shuo‐Wang Qiao
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Trygve Holmøy
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Neurology Institute of Clinical Medicine University of Oslo Norway
| | - Rune A. Høglund
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Neurology Institute of Clinical Medicine University of Oslo Norway
| | - Frode Vartdal
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Pål Berg‐Hansen
- Department of Neurology Oslo University Hospital Oslo Norway
| | - Ludvig M. Sollid
- Department of Immunology Oslo University Hospital Oslo Norway
- Department of Immunology Institute of Clinical Medicine University of Oslo Norway
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
| | - Andreas Lossius
- K.G. Jebsen Coeliac Disease Research Centre University of Oslo Norway
- Department of Neurology Akershus University Hospital Lørenskog Norway
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Norway
| |
Collapse
|
6
|
Läderach F, Münz C. Epstein Barr Virus Exploits Genetic Susceptibility to Increase Multiple Sclerosis Risk. Microorganisms 2021; 9:2191. [PMID: 34835317 PMCID: PMC8625064 DOI: 10.3390/microorganisms9112191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) for which both genetic and environmental risk factors have been identified. The strongest synergy among them exists between the MHC class II haplotype and infection with the Epstein Barr virus (EBV), especially symptomatic primary EBV infection (infectious mononucleosis) and elevated EBV-specific antibodies. In this review, we will summarize the epidemiological evidence that EBV infection is a prerequisite for MS development, describe altered EBV specific immune responses in MS patients, and speculate about possible pathogenic mechanisms for the synergy between EBV infection and the MS-associated MHC class II haplotype. We will also discuss how at least one of these mechanisms might explain the recent success of B cell-depleting therapies for MS. While a better mechanistic understanding of the role of EBV infection and its immune control during MS pathogenesis is required and calls for the development of innovative experimental systems to test the proposed mechanisms, therapies targeting EBV-infected B cells are already starting to be explored in MS patients.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; or
| |
Collapse
|
7
|
Next Generation Sequencing of Cerebrospinal Fluid B Cell Repertoires in Multiple Sclerosis and Other Neuro-Inflammatory Diseases-A Comprehensive Review. Diagnostics (Basel) 2021; 11:diagnostics11101871. [PMID: 34679570 PMCID: PMC8534365 DOI: 10.3390/diagnostics11101871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
During the last few decades, the role of B cells has been well established and redefined in neuro-inflammatory diseases, including multiple sclerosis and autoantibody-associated diseases. In particular, B cell maturation and trafficking across the blood–brain barrier (BBB) has recently been deciphered with the development of next-generation sequencing (NGS) approaches, which allow the assessment of representative cerebrospinal fluid (CSF) and peripheral blood B cell repertoires. In this review, we perform literature research focusing on NGS studies that allow further insights into B cell pathophysiology during neuro-inflammation. Besides the analysis of CSF B cells, the paralleled assessment of peripheral blood B cell repertoire provides deep insights into not only the CSF compartment, but also in B cell trafficking patterns across the BBB. In multiple sclerosis, CSF-specific B cell maturation, in combination with a bidirectional exchange of B cells across the BBB, is consistently detectable. These data suggest that B cells most likely encounter antigen(s) within the CSF and migrate across the BBB, with further maturation also taking place in the periphery. Autoantibody-mediated diseases, such as neuromyelitis optica spectrum disorder and LGI1 / NMDAR encephalitis, also show features of a CSF-specific B cell maturation and clonal connectivity with peripheral blood. In conclusion, these data suggest an intense exchange of B cells across the BBB, possibly feeding autoimmune circuits. Further developments in sequencing technologies will help to dissect the exact pathophysiologic mechanisms of B cells during neuro-inflammation.
Collapse
|
8
|
Abstract
Since the initial observation of increased immunoglobulin concentrations in the cerebrospinal fluid of multiple sclerosis (MS) patients in the 1940s, B cells have been considered to participate in the pathology of MS through the production of autoantibodies reactive against central nervous system antigens. However, it is now recognized that B cells contribute to MS relapses via antibody-independent activities, including the presentation of antigens to T cells and the release of pro-inflammatory cytokines. In addition, the recent identification of B cell-rich follicle-like structures in the meninges of progressive MS patients suggests that the pathogenic roles of B cells also exist at the progressive phase of this disease. Recently, large-scale clinical trials have demonstrated the efficacy of B-cell depletion therapy using anti-CD20 antibodies in relapsing as well as primary progressive MS. B-cell depletion therapy has become an essential treatment option for MS based on its unique benefit to risk balance in relapsing MS, and because it is the only drug that has been shown to be effective in primary progressive MS to date.
Collapse
Affiliation(s)
- Yusei Miyazaki
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| |
Collapse
|
9
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat Rev Neurol 2021; 17:399-414. [PMID: 34075251 DOI: 10.1038/s41582-021-00498-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence indicates the involvement of B cells in the pathogenesis of multiple sclerosis (MS), but their precise roles are unclear. In this Review, we provide an overview of the development and physiological functions of B cells and the main mechanisms through which B cells are thought to contribute to CNS autoimmunity. In MS, abnormalities of B cell function include pro-inflammatory cytokine production, defective B cell regulatory function and the formation of tertiary lymphoid-like structures in the CNS, which are the likely source of abnormal immunoglobulin production detectable in the cerebrospinal fluid. We also consider the hypothesis that Epstein-Barr virus (EBV) is involved in the B cell overactivation that leads to inflammatory injury to the CNS in MS. We also review the immunological effects - with a focus on the effects on B cell subsets - of several successful therapeutic approaches in MS, including agents that selectively deplete B cells (rituximab, ocrelizumab and ofatumumab), agents that less specifically deplete lymphocytes (alemtuzumab and cladribine) and autologous haematopoietic stem cell transplantation, in which the immune system is unselectively ablated and reconstituted. We consider the insights that these effects on B cell populations provide and their potential to further our understanding and targeting of B cells in MS.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Miriam Mattoscio
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.,Department of Neurology, University of Verona, Verona, Italy
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
11
|
Rolfes L, Pawlitzki M, Pfeuffer S, Huntemann N, Wiendl H, Ruck T, Meuth SG. Failed, Interrupted, or Inconclusive Trials on Immunomodulatory Treatment Strategies in Multiple Sclerosis: Update 2015-2020. BioDrugs 2021; 34:587-610. [PMID: 32785877 PMCID: PMC7519896 DOI: 10.1007/s40259-020-00435-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, multiple sclerosis (MS) treatment has experienced vast changes resulting from major advances in disease-modifying therapies (DMT). Looking at the overall number of studies, investigations with therapeutic advantages and encouraging results are exceeded by studies of promising compounds that failed due to either negative or inconclusive results or have been interrupted for other reasons. Importantly, these failed clinical trials are informative experiments that can help us to understand the pathophysiological mechanisms underlying MS. In several trials, concepts taken from experimental models were not translatable to humans, although they did not lack a well-considered pathophysiological rationale. The lessons learned from these discrepancies may benefit future studies and reduce the risks for patients. This review summarizes trials on MS since 2015 that have either failed or have been interrupted for various reasons. We identify potential causes of failure or inconclusiveness, looking at the path from basic animal experiments to clinical trials, and discuss the implications for our current view on MS pathogenesis, clinical practice, and future study designs. We focus on anti-inflammatory treatment strategies, without including studies on already approved and effective DMT. Clinical trials addressing neuroprotective and alternative treatment strategies are presented in a separate article.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Marc Pawlitzki
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Steffen Pfeuffer
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Niklas Huntemann
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
12
|
Wu M, Zhao M, Wu H, Lu Q. Immune repertoire: Revealing the "real-time" adaptive immune response in autoimmune diseases. Autoimmunity 2021; 54:61-75. [PMID: 33650440 DOI: 10.1080/08916934.2021.1887149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The diversity of the immune repertoire (IR) enables the human immune system to distinguish multifarious antigens (Ags) that humans may encounter throughout life. At the same time, bias or abnormalities in the IR also pay a contribution to the pathogenesis of autoimmune diseases. Rapid advancements in high-throughput sequencing (HTS) technology have ushered in a new era of immune studies, revealing novel molecules and pathways that might result in autoimmunity. In the field of IR, HTS can monitor the immune response status and identify disease-specific immune repertoires. In this review, we summarize updated progress on the mechanisms of the IR and current related studies on four autoimmune diseases, particularly focusing on systemic lupus erythematosus (SLE). These autoimmune diseases can exhibit slightly or significantly skewed IRs and provide novel insights that inform our comprehending of disease pathogenesis and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Meiyu Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Tan WJ, Wang MM, Ricciardi-Castagnoli P, Chan ASY, Lim TS. Cytologic and Molecular Diagnostics for Vitreoretinal Lymphoma: Current Approaches and Emerging Single-Cell Analyses. Front Mol Biosci 2021; 7:611017. [PMID: 33505989 PMCID: PMC7832476 DOI: 10.3389/fmolb.2020.611017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Vitreoretinal lymphoma (VRL) is a rare ocular malignancy that manifests as diffuse large B-cell lymphoma. Early and accurate diagnosis is essential to prevent mistreatment and to reduce the high morbidity and mortality associated with VRL. The disease can be diagnosed using various methods, including cytology, immunohistochemistry, cytokine analysis, flow cytometry, and molecular analysis of bulk vitreous aspirates. Despite these options, VRL diagnosis remains challenging, as samples are often confounded by low cellularity, the presence of debris and non-target immunoreactive cells, and poor cytological preservation. As such, VRL diagnostic accuracy is limited by both false-positive and false-negative outcomes. Missed or inappropriate diagnosis may cause delays in treatment, which can have life-threatening consequences for patients with VRL. In this review, we summarize current knowledge and the diagnostic modalities used for VRL diagnosis. We also highlight several emerging molecular techniques, including high-resolution single cell-based analyses, which may enable more comprehensive and precise VRL diagnoses.
Collapse
Affiliation(s)
- Wei Jian Tan
- A. Menarini Biomarkers Singapore Pte. Ltd., Singapore, Singapore
| | - Mona Meng Wang
- Translational Ophthalmic Pathology Platform, Singapore Eye Research Institute, Singapore, Singapore
| | | | - Anita Sook Yee Chan
- Translational Ophthalmic Pathology Platform, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| | - Tong Seng Lim
- A. Menarini Biomarkers Singapore Pte. Ltd., Singapore, Singapore
| |
Collapse
|
14
|
Chunder R, Schropp V, Kuerten S. B Cells in Multiple Sclerosis and Virus-Induced Neuroinflammation. Front Neurol 2020; 11:591894. [PMID: 33224101 PMCID: PMC7670072 DOI: 10.3389/fneur.2020.591894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation can be defined as an inflammatory response within the central nervous system (CNS) mediated by a complex crosstalk between CNS-resident and infiltrating immune cells from the periphery. Triggers for neuroinflammation not only include pathogens, trauma and toxic metabolites, but also autoimmune diseases such as neuromyelitis optica spectrum disorders and multiple sclerosis (MS) where the inflammatory response is recognized as a disease-escalating factor. B cells are not considered as the first responders of neuroinflammation, yet they have recently gained focus as a key component involved in the disease pathogenesis of several neuroinflammatory disorders like MS. Traditionally, the prime focus of the role of B cells in any disease, including neuroinflammatory diseases, was their ability to produce antibodies. While that may indeed be an important contribution of B cells in mediating disease pathogenesis, several lines of recent evidence indicate that B cells are multifunctional players during an inflammatory response, including their ability to present antigens and produce an array of cytokines. Moreover, interaction between B cells and other cellular components of the immune system or nervous system can either promote or dampen neuroinflammation depending on the disease. Given that the interest in B cells in neuroinflammation is relatively new, the precise roles that they play in the pathophysiology and progression of different neuroinflammatory disorders have not yet been well-elucidated. Furthermore, the possibility that they might change their function during the course of neuroinflammation adds another level of complexity and the puzzle remains incomplete. Indeed, advancing our knowledge on the role of B cells in neuroinflammation would also allow us to tackle these disorders better. Here, we review the available literature to explore the relationship between autoimmune and infectious neuroinflammation with a focus on the involvement of B cells in MS and viral infections of the CNS.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Verena Schropp
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
15
|
Milo R. Ofatumumab – A Potential Subcutaneous B-cell Therapy for Relapsing Multiple Sclerosis. ACTA ACUST UNITED AC 2020. [DOI: 10.17925/enr.2020.15.1.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Cortini A, Bembich S, Marson L, Cocco E, Edomi P. Identification of novel non-myelin biomarkers in multiple sclerosis using an improved phage-display approach. PLoS One 2019; 14:e0226162. [PMID: 31805175 PMCID: PMC6894809 DOI: 10.1371/journal.pone.0226162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Although the etiology of multiple sclerosis is not yet understood, it is accepted that its pathogenesis involves both autoimmune and neurodegenerative processes, in which the role of autoreactive T-cells has been elucidated. Instead, the contribution of humoral response is still unclear, even if the presence of intrathecal antibodies and B-cells follicle-like structures in meninges of patients has been demonstrated. Several myelin and non-myelin antigens have been identified, but none has been validated as humoral biomarker. In particular autoantibodies against myelin proteins have been found also in healthy individuals, whereas non-myelin antigens have been implicated in neurodegenerative phase of the disease. To provide further putative autoantigens of multiple sclerosis, we investigated the antigen specificity of immunoglobulins present both in sera and in cerebrospinal fluid of patients using phage display technology in a new improved format. A human brain cDNA phage display library was constructed and enriched for open-read-frame fragments. This library was selected against pooled and purified immunoglobulins from cerebrospinal fluid and sera of multiple sclerosis patients. The antigen library was also screened against an antibody scFv library obtained from RNA of B cells purified from the cerebrospinal fluid of two relapsing remitting patients. From all biopanning a complex of 14 antigens were identified; in particular, one of these antigens, corresponding to DDX24 protein, was present in all selections. The ability of more frequently isolated antigens to discriminate between sera from patients with multiple sclerosis or other neurological diseases was investigated. The more promising novel candidate autoantigens were DDX24 and TCERG1. Both are implicated in RNA modification and regulation which can be altered in neurodegenerative processes. Therefore, we propose that they could be a marker of a particular disease activity state.
Collapse
Affiliation(s)
- Andrea Cortini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara Bembich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lorena Marson
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, University of Cagliari/ATS Sardegna, Cagliari, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- * E-mail:
| |
Collapse
|
17
|
B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019; 20:728-745. [DOI: 10.1038/s41583-019-0233-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
|
18
|
Rolfes L, Pfeuffer S, Ruck T, Melzer N, Pawlitzki M, Heming M, Brand M, Wiendl H, Meuth SG. Therapeutic Apheresis in Acute Relapsing Multiple Sclerosis: Current Evidence and Unmet Needs-A Systematic Review. J Clin Med 2019; 8:jcm8101623. [PMID: 31590282 PMCID: PMC6832170 DOI: 10.3390/jcm8101623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is the most abundant inflammatory demyelinating disorder of the central nervous system. Despite recent advances in its long-term immunomodulatory treatment, MS patients still suffer from relapses, significantly contributing to disability accrual. In recent years, apheresis procedures such as therapeutic plasma exchange (TPE) and immunoadsorption (IA) have been recognized as two options for treating MS relapses, that do not respond to standard treatment with corticosteroids. TPE is already incorporated in most international guidelines, although evidence for its use resulted mostly from either case series or small unblinded and/or non-randomized trials. Data on IA are still sparse, but several studies indicate comparable efficacy between both apheresis procedures. This article gives an overview of the published evidence on TPE and IA in the treatment of acute relapses in MS. Further, we outline current evidence regarding individual outcome predictors, describe technical details of apheresis procedures, and discuss apheresis treatment in children and during pregnancy.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Marcus Brand
- Department of Internal Medicine D, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
19
|
Rahmanzadeh R, Brück W, Minagar A, Sahraian MA. Multiple sclerosis pathogenesis: missing pieces of an old puzzle. Rev Neurosci 2019; 30:67-83. [PMID: 29883325 DOI: 10.1515/revneuro-2018-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/30/2018] [Indexed: 11/15/2022]
Abstract
Traditionally, multiple sclerosis (MS) was considered to be a CD4 T cell-mediated CNS autoimmunity, compatible with experimental autoimmune encephalitis model, which can be characterized by focal lesions in the white matter. However, studies of recent decades revealed several missing pieces of MS puzzle and showed that MS pathogenesis is more complex than the traditional view and may include the following: a primary degenerative process (e.g. oligodendroglial pathology), generalized abnormality of normal-appearing brain tissue, pronounced gray matter pathology, involvement of innate immunity, and CD8 T cells and B cells. Here, we review these findings and discuss their implications in MS pathogenesis.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Department of Neurology, Sina Hospital, 1136746911 Tehran, Iran
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, D-37075 Göttingen, Germany
| | - Alireza Minagar
- Department of Neurology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Department of Neurology, Sina Hospital, 1136746911 Tehran, Iran.,Iranian Center for Neurological Research, Neuroscience Institute, Tehran University of Medical Science, 1136746890 Tehran, Iran
| |
Collapse
|
20
|
DiSano KD, Royce DB, Gilli F, Pachner AR. Central Nervous System Inflammatory Aggregates in the Theiler's Virus Model of Progressive Multiple Sclerosis. Front Immunol 2019; 10:1821. [PMID: 31428102 PMCID: PMC6687912 DOI: 10.3389/fimmu.2019.01821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent central nervous system (CNS) inflammation, as seen in chronic infections or inflammatory demyelinating diseases such as Multiple Sclerosis (MS), results in the accumulation of various B cell subsets in the CNS, including naïve, activated, memory B cells (Bmem), and antibody secreting cells (ASC). However, factors driving heterogeneous B cell subset accumulation and antibody (Ab) production in the CNS compartment, including the contribution of ectopic lymphoid follicles (ELF), during chronic CNS inflammation remain unclear and is a major gap in our understanding of neuroinflammation. We sought to address this gap using the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of progressive MS. In this model, injection of the virus into susceptible mouse strains results in a persistent infection associated with demyelination and progressive disability. During chronic infection, the predominant B cell phenotypes accumulating in the CNS were isotype-switched B cells, including Bmem and ASC with naïve/early activated and transitional B cells present at low frequencies. B cell accumulation in the CNS during chronic TMEV-IDD coincided with intrathecal Ab synthesis in the cerebrospinal fluid (CSF). Mature and isotype-switched B cells predominately localized to the meninges and perivascular space, with IgG isotype-switched B cells frequently accumulating in the parenchymal space. Both mature and isotype-switched B cells and T cells occupied meningeal and perivascular spaces, with minimal evidence for spatial organization typical of ELF mimicking secondary lymphoid organs (SLO). Moreover, immunohistological analysis of immune cell aggregates revealed a lack of SLO-like ELF features, such as cell proliferation, cell death, and germinal center B cell markers. Nonetheless, flow cytometric assessment of B cells within the CNS showed enhanced expression of activation markers, including moderate upregulation of GL7 and expression of the costimulatory molecule CD80. B cell-related chemokines and trophic factors, including APRIL, BAFF, CXCL9, CXCL10, CCL19, and CXCL13, were elevated in the CNS. These results indicate that localization of heterogeneous B cell populations, including activated and isotype-switched B cell phenotypes, to the CNS and intrathecal Ab (ItAb) synthesis can occur independently of SLO-like follicles during chronic inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Darlene B Royce
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Andrew R Pachner
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| |
Collapse
|
21
|
|
22
|
Abstract
Increasing evidence suggests that B cells contribute both to the regulation of normal autoimmunity and to the pathogenesis of immune mediated diseases, including multiple sclerosis (MS). B cells in MS are skewed toward a pro-inflammatory profile, and contribute to MS pathogenesis by antibody production, antigen presentation, T cells stimulation and activation, driving autoproliferation of brain-homing autoreactive CD4+ T cells, production of pro-inflammatory cytokines, and formation of ectopic meningeal germinal centers that drive cortical pathology and contribute to neurological disability. The recent interest in the key role of B cells in MS has been evoked by the profound anti-inflammatory effects of rituximab, a chimeric monoclonal antibody (mAb) targeting the B cell surface marker CD20, observed in relapsing-remitting MS. This has been reaffirmed by clinical trials with less immunogenic and more potent B cell-depleting mAbs targeting CD20 – ocrelizumab, ofatumumab and ublituximab. Ocrelizumab is also the first disease-modifying drug that has shown efficacy in primary-progressive MS, and is currently approved for both indications. Another promising approach is the inhibition of Bruton's tyrosine kinase, a key enzyme that mediates B cell activation and survival, by agents such as evobrutinib. On the other hand, targeting B cell cytokines with the fusion protein atacicept increased MS activity, highlighting the complex and not fully understood role of B cells and humoral immunity in MS. Finally, all other approved therapies for MS, some of which have been designed to target T cells, have some effects on the frequency, phenotype, or homing of B cells, which may contribute to their therapeutic activity.
Collapse
Affiliation(s)
- Ron Milo
- Ron Milo, Department of Neurology, Barzilai Medical Center, Ha-Histadrut St 2, Ashkelon 7308604, Israel,
| |
Collapse
|
23
|
Osherov M, Milo R. B Cell-based Therapies for Multiple Sclerosis. EMERGING DRUGS AND TARGETS FOR MULTIPLE SCLEROSIS 2019. [DOI: 10.1039/9781788016070-00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The traditional view of multiple sclerosis (MS) as a T cell mediated autoimmune disease of the central nervous system (CNS) has evolved into a concept of an immune-mediated disease where complex bi-directional interactions between T cells, B cells and myeloid cells underlie and shape CNS-directed autoimmunity. B cells are now recognized as major contributors to the pathogenesis of MS, largely due to increased understanding of their biology and the profound anti-inflammatory effects demonstrated by B cell depletion in MS. In this chapter we discuss the fundamental roles B cells play in the pathogenesis of MS and review current and future therapeutic strategies targeting B cells in MS, including B cell depletion with various monoclonal antibodies (mAbs) against the B cell surface markers CD20 and CD19, anti-B cell cytokine therapies, blocking Bruton's tyrosine kinase (BTK) in B cells, and various immunomodulatory and immunosuppressive effects exerted on B cells by virtually all other approved therapies for MS.
Collapse
Affiliation(s)
- Michael Osherov
- Department of Neurology, Barzilai University Medical Center 2 Hahistadrut St. Ashkelon 7830604 Israel
| | - Ron Milo
- Department of Neurology, Barzilai University Medical Center 2 Hahistadrut St. Ashkelon 7830604 Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|
24
|
Milo R. Therapies for multiple sclerosis targeting B cells. Croat Med J 2019; 60:87-98. [PMID: 31044580 PMCID: PMC6509632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/14/2019] [Indexed: 10/12/2023] Open
Abstract
Increasing evidence suggests that B cells contribute both to the regulation of normal autoimmunity and to the pathogenesis of immune mediated diseases, including multiple sclerosis (MS). B cells in MS are skewed toward a pro-inflammatory profile, and contribute to MS pathogenesis by antibody production, antigen presentation, T cells stimulation and activation, driving autoproliferation of brain-homing autoreactive CD4+ T cells, production of pro-inflammatory cytokines, and formation of ectopic meningeal germinal centers that drive cortical pathology and contribute to neurological disability. The recent interest in the key role of B cells in MS has been evoked by the profound anti-inflammatory effects of rituximab, a chimeric monoclonal antibody (mAb) targeting the B cell surface marker CD20, observed in relapsing-remitting MS. This has been reaffirmed by clinical trials with less immunogenic and more potent B cell-depleting mAbs targeting CD20 - ocrelizumab, ofatumumab and ublituximab. Ocrelizumab is also the first disease-modifying drug that has shown efficacy in primary-progressive MS, and is currently approved for both indications. Another promising approach is the inhibition of Bruton's tyrosine kinase, a key enzyme that mediates B cell activation and survival, by agents such as evobrutinib. On the other hand, targeting B cell cytokines with the fusion protein atacicept increased MS activity, highlighting the complex and not fully understood role of B cells and humoral immunity in MS. Finally, all other approved therapies for MS, some of which have been designed to target T cells, have some effects on the frequency, phenotype, or homing of B cells, which may contribute to their therapeutic activity.
Collapse
Affiliation(s)
- Ron Milo
- Ron Milo, Department of Neurology, Barzilai Medical Center, Ha-Histadrut St 2, Ashkelon 7308604, Israel,
| |
Collapse
|
25
|
Voo VTF, O'Brien T, Butzkueven H, Monif M. The role of vitamin D and P2X7R in multiple sclerosis. J Neuroimmunol 2019; 330:159-169. [PMID: 30908981 DOI: 10.1016/j.jneuroim.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is characterized by neuroinflammatory infiltrates and central nervous system demyelination. In the neuroinflammatory foci of MS there is increased expression of a purinergic receptor, P2X7R. Although implicated in the neuroinflammation, the exact role of P2X7R in the context of MS is unclear and forms the basis of this review. In this review, we also introduce the immunopathologies and inflammatory processes in MS, with a focus on P2X7R and the possible immunomodulatory role of vitamin D deficiency in this setting.
Collapse
Affiliation(s)
- Veronica Tsin Fong Voo
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia
| | - Terence O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia
| | | | - Mastura Monif
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia.
| |
Collapse
|
26
|
Abstract
B cells play a vital function in multiple sclerosis (MS) pathogenesis through an array of effector functions. All currently approved MS disease-modifying therapies alter the frequency, phenotype, or homing of B cells in one way or another. The importance of this mechanism of action has been reinforced with the successful development and clinical testing of B-cell-depleting monoclonal antibodies that target the CD20 surface antigen. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, was approved by the Food and Drug Administration (FDA) in March 2017 after pivotal trials showed dramatic reductions in inflammatory disease activity in relapsing MS as well as lessening of disability progression in primary progressive MS. These and other clinical studies place B cells at the center of the inflammatory cascade in MS and provide a launching point for development of therapies that target selective pathogenic B-cell populations.
Collapse
Affiliation(s)
- Joseph J Sabatino
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Scott S Zamvil
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Stephen L Hauser
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| |
Collapse
|
27
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
28
|
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018; 19:696-707. [PMID: 29925992 DOI: 10.1038/s41590-018-0135-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
There is growing recognition that B cell contributions to normal immune responses extend well beyond their potential to become antibody-producing cells, including roles at the innate-adaptive interface and their potential to modulate the responses of other immune cells such as T cells and myeloid cells. These B cell functions can have both pathogenic and protective effects in the context of central nervous system (CNS) inflammation. Here, we review recent advances in the field of multiple sclerosis (MS), which has traditionally been viewed as primarily a T cell-mediated disease, and we consider antibody-dependent and, particularly, emerging antibody-independent functions of B cells that may be relevant in both the peripheral and CNS disease compartments.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Rahmanzadeh R, Weber MS, Brück W, Navardi S, Sahraian MA. B cells in multiple sclerosis therapy-A comprehensive review. Acta Neurol Scand 2018; 137:544-556. [PMID: 29512131 DOI: 10.1111/ane.12915] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
For decades, B cells were ignored in multiple sclerosis (MS) pathogenesis, and the disease was always regarded as a T cell-mediated disorder. Recent evidence shows that there is an antigen-driven B-cell response in the central nervous system of patients with MS, and memory B cells/plasma cells are detectable in MS lesions. The striking efficacy of B cell-depleting therapies in reducing the inflammatory activity of the disease highlights that B cells may play more pathogenetic roles than expected. B cells express several unique characteristic markers on their surface, for example, CD19, CD20 molecules, that provide selective targets for monoclonal antibodies. In this respect, several B cell-targeted therapies emerged, including anti-CD20 antibodies (rituximab, ocrelizumab, and ofatumumab), anti-CD19 antibody (inebilizumab), and agents targeting the BAFF/APRIL signaling pathway (atacicept, belimumab, and LY2127399). In this review, we discuss, in detail, the immunobiology of B cells and their protective and destructive roles in MS pathogenesis. In the second part, we list the completed and ongoing clinical trials investigating the safety and efficacy of B cell-related monoclonal antibodies in MS.
Collapse
Affiliation(s)
- R. Rahmanzadeh
- MS Research Center; Neuroscience Institute; Tehran University of Medical Science; Tehran Iran
| | - M. S. Weber
- Institute of Neuropathology; University Medical Center; Göttingen Germany
- Department of Neurology; University Medical Center; Göttingen Germany
| | - W. Brück
- Institute of Neuropathology; University Medical Center; Göttingen Germany
- Department of Neurology; University Medical Center; Göttingen Germany
| | - S. Navardi
- MS Research Center; Neuroscience Institute; Tehran University of Medical Science; Tehran Iran
| | - M. A. Sahraian
- MS Research Center; Neuroscience Institute; Tehran University of Medical Science; Tehran Iran
- Iranian Center for Neurological Research; Neuroscience Institute; Tehran University of Medical Science; Tehran Iran
| |
Collapse
|
30
|
Londoño AC, Mora CA. Role of CXCL13 in the formation of the meningeal tertiary lymphoid organ in multiple sclerosis. F1000Res 2018; 7:514. [PMID: 30345018 PMCID: PMC6171727 DOI: 10.12688/f1000research.14556.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 11/25/2022] Open
Abstract
Immunomodulatory therapies available for the treatment of patients with multiple sclerosis (MS) accomplish control and neutralization of peripheral immune cells involved in the activity of the disease cascade but their spectrum of action in the intrathecal space and brain tissue is limited, taking into consideration the persistence of oligoclonal bands and the variation of clones of lymphoid cells throughout the disease span. In animal models of experimental autoimmune encephalomyelitis (EAE), the presence of CXCL13 has been associated with disease activity and the blockade of this chemokine could work as a potential complementary therapeutic strategy in patients with MS in order to postpone disease progression. The development of therapeutic alternatives with ability to modify the intrathecal inflammatory activity of the meningeal tertiary lymphoid organ to ameliorate neurodegeneration is mandatory.
Collapse
Affiliation(s)
- Ana C Londoño
- Instituto Neurológico de Colombia-INDEC, Medellín, Colombia
| | - Carlos A Mora
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, 20007, USA
| |
Collapse
|
31
|
Londoño AC, Mora CA. Role of CXCL13 in the formation of the meningeal tertiary lymphoid organ in multiple sclerosis. F1000Res 2018; 7:514. [PMID: 30345018 DOI: 10.12688/f1000research.14556.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
Immunomodulatory therapies available for the treatment of patients with multiple sclerosis (MS) accomplish control and neutralization of peripheral immune cells involved in the activity of the disease cascade but their spectrum of action in the intrathecal space and brain tissue is limited, taking into consideration the persistence of oligoclonal bands and the variation of clones of lymphoid cells throughout the disease span. In animal models of experimental autoimmune encephalomyelitis (EAE), the presence of CXCL13 has been associated with disease activity and the blockade of this chemokine could work as a potential complementary therapeutic strategy in patients with MS in order to postpone disease progression. The development of therapeutic alternatives with ability to modify the intrathecal inflammatory activity of the meningeal tertiary lymphoid organ to ameliorate neurodegeneration is mandatory.
Collapse
Affiliation(s)
- Ana C Londoño
- Instituto Neurológico de Colombia-INDEC, Medellín, Colombia
| | - Carlos A Mora
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, 20007, USA
| |
Collapse
|
32
|
Bashford-Rogers RJM, Smith KGC, Thomas DC. Antibody repertoire analysis in polygenic autoimmune diseases. Immunology 2018; 155:3-17. [PMID: 29574826 PMCID: PMC6099162 DOI: 10.1111/imm.12927] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
High-throughput sequencing of the DNA/RNA encoding antibody heavy- and light-chains is rapidly transforming the field of adaptive immunity. It can address key questions, including: (i) how the B-cell repertoire differs in health and disease; and (ii) if it does differ, the point(s) in B-cell development at which this occurs. The advent of technologies, such as whole-genome sequencing, offers the chance to link abnormalities in the B-cell antibody repertoire to specific genomic variants and polymorphisms. Here, we discuss the current research using B-cell antibody repertoire sequencing in three polygenic autoimmune diseases where there is good evidence for a pathological role for B-cells, namely systemic lupus erythematosus, multiple sclerosis and rheumatoid arthritis. These autoimmune diseases exhibit significantly skewed B-cell receptor repertoires compared with healthy controls. Interestingly, some common repertoire defects are shared between diseases, such as elevated IGHV4-34 gene usage. B-cell clones have effectively been characterized and tracked between different tissues and blood in autoimmune disease. It has been hypothesized that these differences may signify differences in B-cell tolerance; however, the mechanisms and implications of these defects are not clear.
Collapse
Affiliation(s)
| | | | - David C Thomas
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Etemadifar M, Salari M, Mirmosayyeb O, Serati M, Nikkhah R, Askari M, Fayyazi E. Efficacy and safety of rituximab in neuromyelitis optica: Review of evidence. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:18. [PMID: 28458709 PMCID: PMC5367207 DOI: 10.4103/1735-1995.200275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune inflammatory disease of the central nervous system with preferential involvement in the optic nerve and spinal cord with a widespread spectrum of clinical features; multiple therapeutic agents have been used with different results. Recent evidence points to B-cell-mediated humoral immunity in the pathogenesis of NMO. Rituximab targets the CD20 antigen on B-cells. Treatment leads to profound B-cell depletion, principally over an antibody-dependent cell cytotoxicity mechanism. The aim of our study was to review clinical trials to elucidate the impact of rituximab on the relapse rate, Expanded Disability Status Scale (EDSS), and progression of disability in NMO. We performed a comprehensive review of all studies that evaluated clinical and paraclinical effects of rituximab on NMO. MEDLINE-PubMed, Web of Sciences, EMBASE, and Cochrane databases up to June 2016 included in our searches. In addition, reference lists from articles identified by search as well as a key review article to identify additional articles included in the study. Rituximab targets the CD20 antigen on B-cells and decreases attack frequency and severity in patients with NMO; however, it does not remove attacks, even when modifying treatment to achieve B-cell depletion. Most of the investigations revealed that EDSS significantly in all patients with rituximab treatment will be decreased after treatment with rituximab. No new or enlarged lesions or pathological gadolinium enhancement was observed in serial brain and spinal cord magnetic resonance imaging, except for those observed concomitantly with clinical relapses and the median length of spinal cord lesions was significantly reduced after therapy. Rituximab targets the CD20 antigen and decreases attack frequency and severity in patients with NMO.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehri Salari
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Serati
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roham Nikkhah
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhde Askari
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emad Fayyazi
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Feng JJ, Ontaneda D. Treating primary-progressive multiple sclerosis: potential of ocrelizumab and review of B-cell therapies. Degener Neurol Neuromuscul Dis 2017; 7:31-45. [PMID: 30050376 PMCID: PMC6053100 DOI: 10.2147/dnnd.s100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) therapy has evolved rapidly with an increased availability of several immunomodulating therapies over the past two decades. Disease-modifying therapies have proven to be effective in treating relapse-remitting MS (RRMS). However, clinical trials involving some of the same agents for secondary-progressive and primary-progressive MS (SPMS and PPMS) have been largely negative. The pathogenesis of progressive MS remains unclear, but B-cells may play a significant role in chronic compartmentalized inflammation, likely contributing to disease progression. Biologics targeted at B-cells, such as rituximab, are effective in treating RRMS. Ocrelizumab is a humanized monoclonal antibody to CD20+ B-cells that has shown positive results in PPMS with a significant reduction in disease progression. This review aims to discuss in detail the involvement of B-cells in MS pathogenesis, current progress of currently available and investigational biologics, with focus on ocrelizumab, and future prospects for B-cell therapy in PPMS.
Collapse
Affiliation(s)
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA,
| |
Collapse
|
35
|
Rivas JR, Ireland SJ, Chkheidze R, Rounds WH, Lim J, Johnson J, Ramirez DMO, Ligocki AJ, Chen D, Guzman AA, Woodhall M, Wilson PC, Meffre E, White C, Greenberg BM, Waters P, Cowell LG, Stowe AM, Monson NL. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol 2017; 133:43-60. [PMID: 27730299 DOI: 10.1007/s00401-016-1627-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/24/2022]
Abstract
Plasmablasts are a highly differentiated, antibody secreting B cell subset whose prevalence correlates with disease activity in Multiple Sclerosis (MS). For most patients experiencing partial transverse myelitis (PTM), plasmablasts are elevated in the blood at the first clinical presentation of disease (known as a clinically isolated syndrome or CIS). In this study we found that many of these peripheral plasmablasts are autoreactive and recognize primarily gray matter targets in brain tissue. These plasmablasts express antibodies that over-utilize immunoglobulin heavy chain V-region subgroup 4 (VH4) genes, and the highly mutated VH4+ plasmablast antibodies recognize intracellular antigens of neurons and astrocytes. Most of the autoreactive, highly mutated VH4+ plasmablast antibodies recognize only a portion of cortical neurons, indicating that the response may be specific to neuronal subgroups or layers. Furthermore, CIS-PTM patients with this plasmablast response also exhibit modest reactivity toward neuroantigens in the plasma IgG antibody pool. Taken together, these data indicate that expanded VH4+ peripheral plasmablasts in early MS patients recognize brain gray matter antigens. Peripheral plasmablasts may be participating in the autoimmune response associated with MS, and provide an interesting avenue for investigating the expansion of autoreactive B cells at the time of the first documented clinical event.
Collapse
Affiliation(s)
- Jacqueline R Rivas
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Sara J Ireland
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Rati Chkheidze
- Department of Pathology, UT Southwestern, Dallas, TX, USA
| | - William H Rounds
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Joseph Lim
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Jordan Johnson
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Denise M O Ramirez
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Ann J Ligocki
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Ding Chen
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Alyssa A Guzman
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Mark Woodhall
- Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patrick C Wilson
- Department of Biomedical Sciences, University of Chicago, Chicago, IL, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Charles White
- Department of Pathology, UT Southwestern, Dallas, TX, USA
| | | | - Patrick Waters
- Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lindsay G Cowell
- Department of Clinical Science, UT Southwestern, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA.
- Department of Immunology, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
36
|
Vitaliti G, Tabatabaie O, Matin N, Ledda C, Pavone P, Lubrano R, Serra A, Di Mauro P, Cocuzza S, Falsaperla R. The usefulness of immunotherapy in pediatric neurodegenerative disorders: A systematic review of literature data. Hum Vaccin Immunother 2016; 11:2749-63. [PMID: 26266339 DOI: 10.1080/21645515.2015.1061161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immunotherapeutic strategies to treat neurodegenerative disorders have inspired the scientific community. The aim of our review is to address the translational aspects of neuroimmunology to describe the efficacy of immunotherapy in the treatment of pediatric neurodegenerative disorders. In the studies we analyzed IVIG were found to be efficient in the treatment of post-streptococcal neurodegenerative disorders, even if in PANDAS, plasma-exchange (PE) showed a higher efficiency. IVIG were also successfully used in ADEM and Guillan-Barré syndrome. In Sydenham Chorea the use of methylprednisolone was found in most cases as efficient as IVIG, while in Tourette's Syndrome, Colecoxib was successfully used in one patient. Pediatric Multiple Sclerosis seems to respond better to immunosuppressant agents (Mitoxantrone, Cyclophosphamide, Natalizumab), as well as Neuromyelitis optica (Rituximab, Mycofenolate). The importance of this review relies in the attempt to draw standardized guidelines for immunotherapy in pediatric neurodegeneratve disorders.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- a Acute and Emergency Paediatric and General Paediatric Operative Unit; Policlinico-Vittorio Emanuele Hospital; University of Catania ; Catania , Italy
| | | | - Nassim Matin
- b School of Medicine; Tehran University of Medical Sciences ; Tehran , Iran
| | - Caterina Ledda
- c Hygiene and Public Health; Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia"; University of Catania ; Catania , Italy
| | - Piero Pavone
- a Acute and Emergency Paediatric and General Paediatric Operative Unit; Policlinico-Vittorio Emanuele Hospital; University of Catania ; Catania , Italy
| | - Riccardo Lubrano
- d Pediatric Department ; Pediatric Nephrology Operative Unit of the Sapienza University of Rome ; Rome , Italy
| | - Agostino Serra
- e ENT Department G.F. Ingrassia ; Policlinico-Vittorio Emanuele University Hospital; University of Catania ; Catania , Italy
| | - Paola Di Mauro
- e ENT Department G.F. Ingrassia ; Policlinico-Vittorio Emanuele University Hospital; University of Catania ; Catania , Italy
| | - Salvatore Cocuzza
- e ENT Department G.F. Ingrassia ; Policlinico-Vittorio Emanuele University Hospital; University of Catania ; Catania , Italy
| | - Raffaele Falsaperla
- a Acute and Emergency Paediatric and General Paediatric Operative Unit; Policlinico-Vittorio Emanuele Hospital; University of Catania ; Catania , Italy
| |
Collapse
|
37
|
Nakamura M, Araki M, Yamamura T. [Plasmablast in the pathology of multiple sclerosis]. ACTA ACUST UNITED AC 2016; 38:403-11. [PMID: 26725862 DOI: 10.2177/jsci.38.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting oligodendrocyte in the central nervous system and involves heterogeneous pathology that yields considerable nonresponders to the first line therapy interferon (IFN)-β. However, determinants for this clinical efficacy have not been elucidated. Interestingly, an MS-like autoimmune disease neuromyelitis optica (NMO) is exclusively resistant to this therapy and mediated by IL-6-dependnet PBs via producing a disease-specific autoantibody against aquaporin 4 (AQP4) on astrocyte. Therefore, we assumed that IFN-β-nonresponsive patients with MS may have the similar B-cell abnormality and found an expansion of circulating PBs in these nonresponders. In addition, these PBs exhibited an IL-6-dependent survival in vitro like those in NMO. Clinical features of such "PB-high" patients were consistent with antoantibody-mediated pathology. Thus, we are administering anti-IL-6 receptor blocking antibody tocilizumab to these intractable patients with MS to achieve precision medicine for MS.
Collapse
Affiliation(s)
- Masakazu Nakamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP)
| | | | | |
Collapse
|
38
|
Detection of intrathecal immunoglobulin G synthesis by capillary isoelectric focusing immunoassay in oligoclonal band negative multiple sclerosis. J Neurol 2016; 263:954-960. [DOI: 10.1007/s00415-016-8094-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/24/2023]
|
39
|
Wootla B, Watzlawik JO, Stavropoulos N, Wittenberg NJ, Dasari H, Abdelrahim MA, Henley JR, Oh SH, Warrington AE, Rodriguez M. Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis. Expert Opin Biol Ther 2016; 16:827-839. [PMID: 26914737 DOI: 10.1517/14712598.2016.1158809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. AREAS COVERED Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. EXPERT OPINION Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Nikolaos Stavropoulos
- Department of General Medicine, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Simkova 870, Hradec Kralove 1, 500 38, Czech Republic
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA.,Department of Biomedical Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA
| | - Harika Dasari
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Murtada A Abdelrahim
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA.,Department of Biomedical Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Lossius A, Johansen JN, Vartdal F, Holmøy T. High-throughput sequencing of immune repertoires in multiple sclerosis. Ann Clin Transl Neurol 2016; 3:295-306. [PMID: 27081660 PMCID: PMC4818741 DOI: 10.1002/acn3.295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022] Open
Abstract
T cells and B cells are crucial in the initiation and maintenance of multiple sclerosis (MS), and the activation of these cells is believed to be mediated through specific recognition of antigens by the T‐ and B‐cell receptors. The antigen receptors are highly polymorphic due to recombination (T‐ and B‐cell receptors) and mutation (B‐cell receptors) of the encoding genes, which can therefore be used as fingerprints to track individual T‐ and B‐cell clones. Such studies can shed light on mechanisms driving the immune responses and provide new insights into the pathogenesis. Here, we summarize studies that have explored the T‐ and B‐cell receptor repertoires using earlier methodological approaches, and we focus on how high‐throughput sequencing has provided new knowledge by surveying the immune repertoires in MS in even greater detail and with unprecedented depth.
Collapse
Affiliation(s)
- Andreas Lossius
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Department of Neurology Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Jorunn N Johansen
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway
| | - Frode Vartdal
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine University of Oslo Oslo Norway; Department of Neurology Akershus University Hospital Lørenskog Norway
| |
Collapse
|
41
|
Sellebjerg F, Cadavid D, Steiner D, Villar LM, Reynolds R, Mikol D. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis. Ther Adv Neurol Disord 2016; 9:31-43. [PMID: 26788129 DOI: 10.1177/1756285615615257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing-remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood-brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial.
Collapse
Affiliation(s)
- Finn Sellebjerg
- Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Luisa Maria Villar
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramón y Cajal for Biomedical Research, Madrid, Spain
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
42
|
Michel L, Touil H, Pikor NB, Gommerman JL, Prat A, Bar-Or A. B Cells in the Multiple Sclerosis Central Nervous System: Trafficking and Contribution to CNS-Compartmentalized Inflammation. Front Immunol 2015; 6:636. [PMID: 26732544 PMCID: PMC4689808 DOI: 10.3389/fimmu.2015.00636] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Clinical trial results of peripheral B cell depletion indicate abnormal proinflammatory B cell properties, and particularly antibody-independent functions, contribute to relapsing MS disease activity. However, potential roles of B cells in progressive forms of disease continue to be debated. Prior work indicates that presence of B cells is fostered within the inflamed MS central nervous system (CNS) environment, and that B cell-rich immune cell collections may be present within the meninges of patients. A potential association is reported between such meningeal immune cell collections and the subpial pattern of cortical injury that is now considered important in progressive disease. Elucidating the characteristics of B cells that populate the MS CNS, how they traffic into the CNS and how they may contribute to progressive forms of the disease has become of considerable interest. Here, we will review characteristics of human B cells identified within distinct CNS subcompartments of patients with MS, including the cerebrospinal fluid, parenchymal lesions, and meninges, as well as the relationship between B cell populations identified in these subcompartments and the periphery. We will further describe the different barriers of the CNS and the possible mechanisms of migration of B cells across these barriers. Finally, we will consider the range of human B cell responses (including potential for antibody production, cytokine secretion, and antigen presentation) that may contribute to propagating inflammation and injury cascades thought to underlie MS progression.
Collapse
Affiliation(s)
- Laure Michel
- Département de Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montréal, QC , Canada
| | - Hanane Touil
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University , Montréal, QC , Canada
| | - Natalia B Pikor
- Department of Immunology, University of Toronto , Toronto, ON , Canada
| | | | - Alexandre Prat
- Département de Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montréal, QC , Canada
| | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Experimental Therapeutics Program, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
43
|
Rounds WH, Salinas EA, Wilks TB, Levin MK, Ligocki AJ, Ionete C, Pardo CA, Vernino S, Greenberg BM, Bigwood DW, Eastman EM, Cowell LG, Monson NL. MSPrecise: A molecular diagnostic test for multiple sclerosis using next generation sequencing. Gene 2015; 572:191-7. [PMID: 26172868 PMCID: PMC4702260 DOI: 10.1016/j.gene.2015.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/11/2015] [Accepted: 07/03/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND We have previously demonstrated that cerebrospinal fluid-derived B cells from early relapsing-remitting multiple sclerosis (RRMS) patients that express a VH4 gene accumulate specific replacement mutations. These mutations can be quantified as a score that identifies such patients as having or likely to convert to RRMS. Furthermore, we showed that next generation sequencing is an efficient method for obtaining the sequencing information required by this mutation scoring tool, originally developed using the less clinically viable single-cell Sanger sequencing. OBJECTIVE To determine the accuracy of MSPrecise, the diagnostic test that identifies the presence of the RRMS-enriched mutation pattern from patient cerebrospinal fluid B cells. METHODS Cerebrospinal fluid cell pellets were obtained from RRMS and other neurological disease (OND) patient cohorts. VH4 gene segments were amplified, sequenced by next generation sequencing and analyzed for mutation score. RESULTS The diagnostic test showed a sensitivity of 75% on the RRMS cohort and a specificity of 88% on the OND cohort. The accuracy of the test in identifying RRMS patients or patients that will develop RRMS is 84%. CONCLUSION MSPrecise exhibits good performance in identifying patients with RRMS irrespective of time with RRMS.
Collapse
Affiliation(s)
- William H Rounds
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Salinas
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Mikhail K Levin
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ann J Ligocki
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carolina Ionete
- Department of Neurology, UMass Memorial Medical Center, Worcester, MA, USA
| | - Carlos A Pardo
- Department of Neurology and Neurosurgery, John Hopkins University, Baltimore, MD, USA
| | - Steven Vernino
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Blauth K, Owens GP, Bennett JL. The Ins and Outs of B Cells in Multiple Sclerosis. Front Immunol 2015; 6:565. [PMID: 26594215 PMCID: PMC4633507 DOI: 10.3389/fimmu.2015.00565] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022] Open
Abstract
B cells play a central role in multiple sclerosis (MS) pathology. B and plasma cells may contribute to disease activity through multiple mechanisms: antigen presentation, cytokine secretion, or antibody production. Molecular analyses of B cell populations in MS patients have revealed significant overlaps between peripheral lymphoid and clonally expanded central nervous system (CNS) B cell populations, indicating that B cell trafficking may play a critical role in driving MS exacerbations. In this review, we will assess our current knowledge of the mechanisms and pathways governing B cell migration into the CNS and examine evidence for and against a compartmentalized B cell response driving progressive MS pathology.
Collapse
Affiliation(s)
- Kevin Blauth
- Department of Neurology, University of Colorado Denver , Aurora, CO , USA
| | - Gregory P Owens
- Department of Neurology, University of Colorado Denver , Aurora, CO , USA
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado Denver , Aurora, CO , USA ; Department of Ophthalmology, University of Colorado Denver , Aurora, CO , USA ; Program in Neuroscience, University of Colorado Denver , Aurora, CO , USA
| |
Collapse
|
45
|
Changes in B and T-cell subsets and NMO-IgG/AQP-4 levels after immunoglobulins and rituximab treatment for an acute attack of neuromyelitis optica. NEUROLOGÍA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.nrleng.2013.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, Sundar PD, Telman D, Zhao LZ, Derstine M, Abounasr A, Hauser SL, von Büdingen HC. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2015; 6:248ra106. [PMID: 25100740 DOI: 10.1126/scitranslmed.3008930] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In multiple sclerosis (MS), lymphocyte--in particular B cell--transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27(+)IgD(-) memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts, or CD27(-)IgD(-) B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell-targeting therapeutic strategies and may lead to more targeted approaches.
Collapse
Affiliation(s)
| | | | - Tracy C Kuo
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Marina Sirota
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Shengzhi Wang
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Steven J Pitts
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Purnima D Sundar
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Dilduz Telman
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Lora Z Zhao
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Mia Derstine
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Aya Abounasr
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | | | | |
Collapse
|
47
|
von Büdingen HC, Palanichamy A, Lehmann-Horn K, Michel BA, Zamvil SS. Update on the autoimmune pathology of multiple sclerosis: B-cells as disease-drivers and therapeutic targets. Eur Neurol 2015; 73:238-246. [PMID: 25824054 DOI: 10.1159/000377675] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/01/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Collectively, research on the role of B-cells in the pathogenesis of multiple sclerosis (MS) illustrates how translational medicine has given rise to promising therapeutic approaches for one of the most debilitating chronic neurological diseases in young adults. First described in 1935, the experimental autoimmune/allergic encephalomyelitis model is a key animal model that has provided the foundation for important developments in targeted therapeutics. SUMMARY While additional B-cell therapies for MS are presently being developed by the pharmaceutical industry, much remains to be understood about the role played by B-cells in MS. The goal of this review is to summarize how B-cells may contribute to MS pathogenesis and thereby provide a basis for understanding why B-cell depletion is so effective in the treatment of this disease. Key Messages: B-cells are key players in the pathogenesis of MS, and their depletion via B-cell-targeted therapy ameliorates disease activity. CLINICAL IMPLICATIONS In 2008, data from the first CD20-targeting B-cell depleting therapeutic trials using rituximab in MS were published. Since then, there has been a large body of evidence demonstrating the effectiveness of B-cell depletion mediated via anti-CD20 antibodies. Intense research efforts focusing on the immunopathological relevance of B-cells has gained significant momentum and given rise to a constellation of promising therapeutic agents for this complex B-cell-driven disease, including novel anti-CD20 antibodies, as well as agents targeting CD19 and BAFF-R.
Collapse
|
48
|
Intrathecal IgG synthesis: a resistant and valuable target for future multiple sclerosis treatments. Mult Scler Int 2015; 2015:296184. [PMID: 25653878 PMCID: PMC4306411 DOI: 10.1155/2015/296184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023] Open
Abstract
Intrathecal IgG synthesis is a key biological feature of multiple sclerosis (MS). When acquired early, it persists over time. A growing body of evidence suggests that intrathecal Ig-secreting cells may be pathogenic either by a direct action of toxic IgG or by locally secreting bystander toxic products. Intrathecal IgG synthesis depends on the presence of CNS lymphoid organs, which are strongly linked at anatomical level to cortical subpial lesions and at clinical level to the impairment slope in progressive MS. As a consequence, targeting CNS lymphoid lesions could be a valuable new target in MS, especially during the progressive phase. As intrathecal IgGs are end-products of these lymphoid lesions, intrathecal IgG synthesis may be considered as a specific marker of the persistence of these inflammatory lesions. Here we review the effect upon intrathecal IgG synthesis of all drugs ever used in MS. Except for steroids, all these therapeutic strategies, including rituximab, failed to decrease intrathecal IgG synthesis, with the exception of a questionable incomplete action of natalizumab. Thus, IgG synthesis is a robust marker of persistent intrathecal inflammation and its complete normalization should be one of the goals in future therapeutic strategies.
Collapse
|
49
|
Miyazaki Y, Niino M. Molecular targeted therapy against B cells in multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yusei Miyazaki
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
- Department of Neurology; Hokkaido Medical Center; Sapporo Japan
| | - Masaaki Niino
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
| |
Collapse
|
50
|
Halbgebauer S, Haußmann U, Klafki H, Tumani H, Wiltfang J, Otto M. Capillary isoelectric focusing immunoassay as a new nanoscale approach for the detection of oligoclonal bands. Electrophoresis 2014; 36:355-62. [PMID: 25348366 DOI: 10.1002/elps.201400339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/23/2014] [Accepted: 10/03/2014] [Indexed: 11/10/2022]
Abstract
The detection of oligoclonal bands (OCBs) in cerebrospinal fluid is an indicator of intrathecal synthesis of immunoglobulins which is a neurochemical sign of chronic inflammatory brain diseases. Intrathecally synthesized IgGs are typically observed in patients with multiple sclerosis. The current standard protocol for the detection of OCBs is IEF on agarose or polyacrylamide gels followed by immunoblotting or silver staining. These methods are time consuming, show substantial interlaboratory variation and cannot be used in a high throughput-approach. We have developed a new nanoscale method for the detection of OCBs based on automated capillary IEF followed by immunological detection. Evidence for intrathecal IgG synthesis was found in all tested patients (n = 27) with multiple sclerosis, even in two subjects who did not have oligoclonal bands according to standard methods. The test specificity was at 97.5% (n = 19). Our findings indicate that the novel OCB-CIEF-immunoassay is suitable for the rapid and highly sensitive detection of OCBs in clinical samples. Furthermore, the method allows for a higher sample throughput than the current standard methods.
Collapse
|