1
|
Lagou MK, Argyris DG, Vodopyanov S, Gunther-Cummins L, Hardas A, Poutahidis T, Panorias C, DesMarais S, Entenberg C, Carpenter RS, Guzik H, Nishku X, Churaman J, Maryanovich M, DesMarais V, Macaluso FP, Karagiannis GS. Morphometric Analysis of the Thymic Epithelial Cell (TEC) Network Using Integrated and Orthogonal Digital Pathology Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584509. [PMID: 38559037 PMCID: PMC10979902 DOI: 10.1101/2024.03.11.584509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Dimitrios G Argyris
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Stepan Vodopyanov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Leslie Gunther-Cummins
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Alexandros Hardas
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, United Kingdom
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Panorias
- Division of Statistics and Operational Research, Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia DesMarais
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Conner Entenberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hillary Guzik
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Xheni Nishku
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Joseph Churaman
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Vera DesMarais
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Frank P Macaluso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| |
Collapse
|
2
|
Caruso B, Weeder BR, Thompson RF, Moran AE. PD-1 Limits IL-2 Production and Thymic Regulatory T Cell Development. Immunohorizons 2024; 8:281-294. [PMID: 38551395 PMCID: PMC10985057 DOI: 10.4049/immunohorizons.2300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 04/02/2024] Open
Abstract
Inhibitory proteins, such as programmed cell death protein 1 (PD-1), have been studied extensively in peripheral T cell responses to foreign Ags, self-Ags, and neoantigens. Notably, these proteins are first expressed during T cell development in the thymus. Reports suggest that PD-1 limits regulatory T cell (Treg) development, but the mechanism by which PD-1 exerts this function remains unknown. The present study expands the evaluation of murine PD-1 and its ligands in the thymus, demonstrating that some of the highest expressers of PD-1 and programmed death-ligand 1 are agonist selected cells. Surprisingly, we reveal a selective role for PD-1 in regulating the developmental niche only for Tregs because other agonist selected cell populations, such as NK T cells, remain unchanged. We also ruled out PD-1 as a regulator of proliferation or cell death of agonist selected Tregs and further demonstrated that PD-1-deficient Tregs have reduced TCR signaling. Unexpectedly, the data suggest that PD-1-deficient thymocytes produce elevated levels of IL-2, a Treg niche-limiting cytokine. Collectively, these data suggest a novel role for PD-1 in regulating IL-2 production and the concurrent agonist selection of murine thymic Tregs. This observation has implications for the use of checkpoint blockade in the context of cancer and infection.
Collapse
Affiliation(s)
- Breanna Caruso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Benjamin R. Weeder
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
| | - Reid F. Thompson
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR
- Veterans Affairs Portland Health Care System, Portland,OR
| | - Amy E. Moran
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| |
Collapse
|
3
|
Filipp D, Manning J, Petrusová J. Extrathymic AIRE-Expressing Cells: A Historical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:33-49. [PMID: 38467971 DOI: 10.1007/978-981-99-9781-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Petrusová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Paganelli R, Di Lizia M, D'Urbano M, Gatta A, Paganelli A, Amerio P, Parronchi P. Insights from a Case of Good's Syndrome (Immunodeficiency with Thymoma). Biomedicines 2023; 11:1605. [PMID: 37371700 DOI: 10.3390/biomedicines11061605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Immunodeficiency with thymoma was described by R.A. Good in 1954 and is also named after him. The syndrome is characterized by hypogammaglobulinemia associated with thymoma and recurrent infections, bacterial but also viral, fungal and parasitic. Autoimmune diseases, mainly pure red cell aplasia, other hematological disorders and erosive lichen planus are a common finding. We describe here a typical case exhibiting all these clinical features and report a detailed immunophenotypic assessment, as well as the positivity for autoantibodies against three cytokines (IFN-alpha, IL-6 and GM-CSF), which may add to known immune abnormalities. A review of the published literature, based on case series and immunological studies, offers some hints on the still unsolved issues of this rare condition.
Collapse
Affiliation(s)
- Roberto Paganelli
- Department of Medicine and Sciences of Aging, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Internal Medicine, School of Medicine, UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Michela Di Lizia
- Allergology ASL Teramo, Hospital of Giulianova, 64021 Giulianova, Italy
| | - Marika D'Urbano
- Laboratory Unit, Hospital S. Annunziata, 67039 Sulmona, Italy
| | - Alessia Gatta
- Allergology Service, ASL Chieti, 66100 Chieti, Italy
| | - Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, University of Modena-Reggio Emilia, 41121 Modena, Italy
| | - Paolo Amerio
- Department of Medicine and Sciences of Aging, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Parronchi
- Department of Experimental Medicine, University of Florence, 50121 Florence, Italy
| |
Collapse
|
5
|
In vitro and in vivo functions of T cells produced in complemented thymi of chimeric mice generated by blastocyst complementation. Sci Rep 2022; 12:3242. [PMID: 35217706 PMCID: PMC8881621 DOI: 10.1038/s41598-022-07159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Blastocyst complementation is an intriguing way of generating humanized animals for organ preparation in regenerative medicine and establishing novel models for drug development. Confirming that complemented organs and cells work normally in chimeric animals is critical to demonstrating the feasibility of blastocyst complementation. Here, we generated thymus-complemented chimeric mice, assessed the efficacy of anti-PD-L1 antibody in tumor-bearing chimeric mice, and then investigated T-cell function. Thymus-complemented chimeric mice were generated by injecting C57BL/6 (B6) embryonic stem cells into Foxn1nu/nu morulae or blastocysts. Flow cytometry data showed that the chimeric mouse thymic epithelial cells (TECs) were derived from the B6 cells. T cells appeared outside the thymi. Single-cell RNA-sequencing analysis revealed that the TEC gene-expression profile was comparable to that in B6 mice. Splenic T cells of chimeric mice responded very well to anti-CD3 stimulation in vitro; CD4+ and CD8+ T cells proliferated and produced IFNγ, IL-2, and granzyme B, as in B6 mice. Anti-PD-L1 antibody treatment inhibited MC38 tumor growth in chimeric mice. Moreover, in the chimeras, anti-PD-L1 antibody restored T-cell activation by significantly decreasing PD-1 expression on T cells and increasing IFNγ-producing T cells in the draining lymph nodes and tumors. T cells produced by complemented thymi thus functioned normally in vitro and in vivo. To successfully generate humanized animals by blastocyst complementation, both verification of the function and gene expression profiling of complemented organs/cells in interspecific chimeras will be important in the near future.
Collapse
|
6
|
Kaiser C, Bradu A, Gamble N, Caldwell JA, Koh AS. AIRE in context: Leveraging chromatin plasticity to trigger ectopic gene expression. Immunol Rev 2022; 305:59-76. [PMID: 34545959 PMCID: PMC9250823 DOI: 10.1111/imr.13026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
The emergence of antigen receptor diversity in clonotypic lymphocytes drove the evolution of a novel gene, Aire, that enabled the adaptive immune system to discriminate foreign invaders from self-constituents. AIRE functions in the epithelial cells of the thymus to express genes highly restricted to alternative cell lineages. This somatic plasticity facilitates the selection of a balanced repertoire of T cells that protects the host from harmful self-reactive clones, yet maintains a wide range of affinities for virtually any foreign antigen. Here, we review the latest understanding of AIRE's molecular actions with a focus on its interplay with chromatin. We argue that AIRE is a multi-valent chromatin effector that acts late in the transcription cycle to modulate the activity of previously poised non-coding regulatory elements of tissue-specific genes. We postulate a role for chromatin instability-caused in part by ATP-dependent chromatin remodeling-that variably sets the scope of the accessible landscape on which AIRE can act. We highlight AIRE's intrinsic repressive function and its relevance in providing feedback control. We synthesize these recent advances into a putative model for the mechanistic modes by which AIRE triggers ectopic transcription for immune repertoire selection.
Collapse
Affiliation(s)
- Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Noah Gamble
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jason A. Caldwell
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Andrew S. Koh
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2022; 305:43-58. [PMID: 34750841 PMCID: PMC8766885 DOI: 10.1111/imr.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The thymus is required for the development of both adaptive and innate-like T cell subsets. There is keen interest in manipulating thymic function for therapeutic purposes in circumstances of autoimmunity, immunodeficiency, and for purposes of immunotherapy. Within the thymus, thymic epithelial cells play essential roles in directing T cell development. Several transcription factors are known to be essential for thymic epithelial cell development and function, and a few transcription factors have been studied in considerable detail. However, the role of many other transcription factors is less well understood. Further, it is likely that roles exist for other transcription factors not yet known to be important in thymic epithelial cells. Recent progress in understanding of thymic epithelial cell heterogeneity has provided some new insight into transcriptional requirements in subtypes of thymic epithelial cells. However, it is unknown whether progenitors of thymic epithelial cells exist in the adult thymus, and consequently, developmental relationships linking putative precursors with differentiated cell types are poorly understood. While we do not presently possess a clear understanding of stage-specific requirements for transcription factors in thymic epithelial cells, new single-cell transcriptomic and epigenomic technologies should enable rapid progress in this field. Here, we review our current knowledge of transcription factors involved in the development, maintenance, and function of thymic epithelial cells, and the mechanisms by which they act.
Collapse
Affiliation(s)
- Gustavo Ulises Martinez-Ruíz
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Abigail Morales-Sánchez
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Dong J, Warner LM, Lin LL, Chen MC, O'Connell RM, Lu LF. miR-155 promotes T reg cell development by safeguarding medullary thymic epithelial cell maturation. J Exp Med 2021; 218:211514. [PMID: 33125052 PMCID: PMC7608066 DOI: 10.1084/jem.20192423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
During thymocyte development, medullary thymic epithelial cells (mTECs) provide appropriate instructive cues in the thymic microenvironment for not only negative selection but also the generation of regulatory T (T reg) cells. Here, we identify that miR-155, a microRNA whose expression in T reg cells has previously been shown to be crucial for their development and homeostasis, also contributes to thymic T reg (tT reg) cell differentiation by promoting mTEC maturation. Mechanistically, we show that RANKL stimulation induces expression of miR-155 to safeguard the thymic medulla through targeting multiple known and previously uncharacterized molecules within the TGFβ signaling pathway, which is recognized for its role in restricting the maturation and expansion of mTECs. Our work uncovers a miR-155–TGFβ axis in the thymic medulla to determine mTEC maturity and, consequently, the quantity of tT reg cells and suggests that miR-155 ensures proper tT reg cell development in both cell-intrinsic and -extrinsic manners.
Collapse
Affiliation(s)
- Jiayi Dong
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Lindsey M Warner
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Ling-Li Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Ryan M O'Connell
- Huntsman Cancer Institute and the Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| |
Collapse
|
9
|
Hähnlein JS, Nadafi R, de Jong TA, Semmelink JF, Remmerswaal EBM, Safy M, van Lienden KP, Maas M, Gerlag DM, Tak PP, Mebius RE, Wähämaa H, Catrina AI, G. M. van Baarsen L. Human Lymph Node Stromal Cells Have the Machinery to Regulate Peripheral Tolerance during Health and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21165713. [PMID: 32784936 PMCID: PMC7460812 DOI: 10.3390/ijms21165713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In rheumatoid arthritis (RA) the cause for loss of tolerance and anti-citrullinated protein antibody (ACPA) production remains unidentified. Mouse studies showed that lymph node stromal cells (LNSCs) maintain peripheral tolerance through presentation of peripheral tissue antigens (PTAs). We hypothesize that dysregulation of peripheral tolerance mechanisms in human LNSCs might underlie pathogenesis of RA. METHOD Lymph node (LN) needle biopsies were obtained from 24 RA patients, 23 individuals positive for RA-associated autoantibodies but without clinical disease (RA-risk individuals), and 14 seronegative healthy individuals. Ex vivo human LNs from non-RA individuals were used to directly analyze stromal cells. Molecules involved in antigen presentation and immune modulation were measured in LNSCs upon interferon γ (IFNγ) stimulation (n = 15). RESULTS Citrullinated targets of ACPAs were detected in human LN tissue and in cultured LNSCs. Human LNSCs express several PTAs, transcription factors autoimmune regulator (AIRE) and deformed epidermal autoregulatory factor 1 (DEAF1), and molecules involved in citrullination, antigen presentation, and immunomodulation. Overall, no clear differences between donor groups were observed with exception of a slightly lower induction of human leukocyte antigen-DR (HLA-DR) and programmed cell death 1 ligand (PD-L1) molecules in LNSCs from RA patients. CONCLUSION Human LNSCs have the machinery to regulate peripheral tolerance making them an attractive target to exploit in tolerance induction and maintenance.
Collapse
Affiliation(s)
- Janine S. Hähnlein
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Reza Nadafi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (R.N.); (R.E.M.)
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tineke A. de Jong
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Johanna F. Semmelink
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Ester B. M. Remmerswaal
- Renal Transplant Unit, Division of Internal Medicine and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Mary Safy
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
| | - Krijn P. van Lienden
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Mario Maas
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Danielle M. Gerlag
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
| | - Paul P. Tak
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Kintai Therapeutics, Cambridge, MA 02140, USA
- Internal Medicine, Cambridge University, Cambridge, CB2 1TN, UK
- Rheumatology, Ghent University, 9000 Ghent, Belgium
| | - Reina E. Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (R.N.); (R.E.M.)
| | - Heidi Wähämaa
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, 17176 Stockholm, Sweden; (H.W.); (A.I.C.)
| | - Anca I. Catrina
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, 17176 Stockholm, Sweden; (H.W.); (A.I.C.)
| | - Lisa G. M. van Baarsen
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
10
|
Eshima K, Misawa K, Ohashi C, Noma H, Iwabuchi K. NF-κB-inducing kinase contributes to normal development of cortical thymic epithelial cells: its possible role in shaping a proper T-cell repertoire. Immunology 2020; 160:198-208. [PMID: 32145062 PMCID: PMC7218659 DOI: 10.1111/imm.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/13/2023] Open
Abstract
Nuclear factor (NF)-κB-inducing kinase (NIK) is known to be a critical regulator of multiple aspects of the immune response. Although the role of NIK in the development of medullary thymic epithelial cells (mTECs) has been well documented, the impact of NIK on the differentiation and function of cortical thymic epithelial cells (cTECs) remains ambiguous. To investigate the possible involvement of NIK in cTEC differentiation, we have compared the gene expression and function of cTECs from a NIK-mutant mouse, alymphoplasia (aly/aly) with those of cTECs from wild-type (WT) mice. Flow cytometric analyses revealed that expression levels of MHC class II, but not MHC class I or other TEC markers, were higher in aly/aly cells than in WT cells. Notably, the proportion of MHC class IIhi+ cTECs was elevated in aly/aly mice. We also demonstrated that expression of Ccl5 mRNA in the MHC class IIhi+ subset of aly/aly cTECs was decreased compared with that in WT cells, implying an abnormal pattern of gene expression in aly/aly cTECs. Analyses of bone marrow chimera using aly/aly or aly/+ mice as hosts suggested that Vβ usage and CD5 expression on WT T-cells were altered when they matured in aly/aly thymi. These results collectively indicate that NIK may be involved in controlling the function of cTEC in selecting a proper T-cell repertoire.
Collapse
Affiliation(s)
- Koji Eshima
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Kana Misawa
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Chihiro Ohashi
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Haruka Noma
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Kazuya Iwabuchi
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| |
Collapse
|
11
|
Nguyen CTK, Sawangarun W, Mandasari M, Morita KI, Harada H, Kayamori K, Yamaguchi A, Sakamoto K. AIRE is induced in oral squamous cell carcinoma and promotes cancer gene expression. PLoS One 2020; 15:e0222689. [PMID: 32012175 PMCID: PMC6996854 DOI: 10.1371/journal.pone.0222689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator that is primarily expressed in medullary epithelial cells, where it induces tissue-specific antigen expression. Under pathological conditions, AIRE expression is induced in epidermal cells and promotes skin tumor development. This study aimed to clarify the role of AIRE in the pathogenesis of oral squamous cell carcinoma (OSCC). AIRE expression was evaluated in six OSCC cell lines and in OSCC tissue specimens. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was elevated in 293A cells stably expressing AIRE, and conversely, was decreased in AIRE-knockout HSC3 OSCC cells when compared to the respective controls. Upregulation of STAT1, and ICAM in OSCC cells was confirmed in tissue specimens by immunohistochemistry. We provide evidence that AIRE exerts transcriptional control in cooperation with ETS1. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was increased in 293A cells upon Ets1 transfection, and coexpression of AIRE further increased the expression of these proteins. AIRE coprecipitated with ETS1 in a modified immunoprecipitation assay using formaldehyde crosslinking. Chromatin immunoprecipitation and quantitative PCR analysis revealed that promoter fragments of STAT1, ICAM1, CXCL10, and MMP9 were enriched in the AIRE precipitates. These results indicate that AIRE is induced in OSCC and supports cancer-related gene expression in cooperation with ETS1. This is a novel function of AIRE in extrathymic tissues under the pathological condition.
Collapse
Affiliation(s)
- Chi Thi Kim Nguyen
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanlada Sawangarun
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masita Mandasari
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Yang MG, Sun L, Han J, Zheng C, Liang H, Zhu J, Jin T. Biological characteristics of transcription factor RelB in different immune cell types: implications for the treatment of multiple sclerosis. Mol Brain 2019; 12:115. [PMID: 31881915 PMCID: PMC6935142 DOI: 10.1186/s13041-019-0532-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Transcription factor RelB is a member of the nuclear factror-kappa B (NF-κB) family, which plays a crucial role in mediating immune responses. Plenty of studies have demonstrated that RelB actively contributes to lymphoid organ development, dendritic cells maturation and function and T cells differentiation, as well as B cell development and survival. RelB deficiency may cause a variety of immunological disorders in both mice and humans. Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system which involves a board of immune cell populations. Thereby, RelB may exert an impact on MS by modulating the functions of dendritic cells and the differentiation of T cells and B cells. Despite intensive research, the role of RelB in MS and its animal model, experimental autoimmune encephalomyelitis, is still unclear. Herein, we give an overview of the biological characters of RelB, summarize the updated knowledge regarding the role of RelB in different cell types that contribute to MS pathogenesis and discuss the potential RelB-targeted therapeutic implications for MS.
Collapse
Affiliation(s)
- Meng-Ge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.,Present address: Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Hudong Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
14
|
Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. Immunity 2019; 51:930-948.e6. [PMID: 31604687 DOI: 10.1016/j.immuni.2019.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Siyuan Hou
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Hui Shi
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China.
| |
Collapse
|
15
|
Sobacchi C, Menale C, Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front Immunol 2019; 10:629. [PMID: 30984193 PMCID: PMC6450200 DOI: 10.3389/fimmu.2019.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically changed the scenario of bone biology by providing the functional and biochemical proof that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel, two independent studies reported the identification of mouse RANKL on activated T cells and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line. After these seminal findings, accumulating data indicated RANKL and RANK not only as essential players for the development and activation of osteoclasts, but also for the correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of the central tolerance process by which self-reactive T cells are eliminated while regulatory T cells are generated. In light of the RANKL-RANK multi-task function, an antibody targeting this pathway, denosumab, is now commonly used in the therapy of bone loss diseases including chronic inflammatory bone disorders and osteolytic bone metastases; furthermore, preclinical data support the therapeutic application of denosumab in the framework of a broader spectrum of tumors. Here, we discuss advances in cellular and molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and the extent to which its inhibition or augmentation can be translated in the clinical arena.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Ciro Menale
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Abstract
This review briefly describes the last decades of experimental work on the thymus. Given the histological complexity of this organ, the multiple embryological origins of its cellular components and its role in carefully regulating T lymphocyte maturation and function, methods to dissect and understand this complexity have been developed through the years. The possibility to study ex vivo the thymus organ function has been achieved by developing Fetal Thymus Organ Cultures (FTOC). Subsequently, the combination of organ disaggregation and reaggregation in vitro represented by Reaggregate Thymus Organ cultures (RTOC) allowed mixing cellular components from different genetic backgrounds. Moreover, RTOC allowed dissecting the different stromal and hematological components to study the interactions between Major Histocompatibility Complex (MHC) molecules and the T-cell receptors during thymocytes selection. In more recent years, prospective isolation of stromal cells and thymocytes at different stages of development made it possible to explore and elucidate the molecular and cellular players in both the developing and adult thymus. Finally, the appearance of novel cell sources such as embryonic stem (ES) cells and more recently induced pluripotent stem (iPS) cells has opened new scenarios in modelling thymus development and regeneration strategies. Most of the work described was carried out in rodents and the current challenge is to develop equivalent or even more informative assays and tools in entirely human model systems.
Collapse
|
17
|
Kasahara K, Fukunaga Y, Igura S, Andoh R, Saito T, Suzuki I, Kanemitsu H, Suzuki D, Goto K, Nakamura D, Mochizuki M, Yasuda M, Inoue R, Tamura K, Nagatani M. Background data on NOD/Shi-scid IL-2Rγ null mice (NOG mice). J Toxicol Sci 2018; 42:689-705. [PMID: 29142168 DOI: 10.2131/jts.42.689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To obtain background data of NOD/Shi-scid IL-2Rγnull (NOG) mice, severely immunedeficient mice, a total of 120 animals were examined at 7, 26 and 52 weeks-old (20 mice/sex/group). The survival rate at 52 weeks-old was 95% (19/20) in both sexes. Clinically, circling behavior in one direction along the cage wall was observed in males after 8 weeks and females after 47 weeks-old, and hunchback position was found in males after 32 weeks-old. Hematologically, lymphocyte count markedly decreased at all ages, while white blood cell count increased in several mice at 52 weeks-old. Blood chemistry results revealed high values of aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase in some females at 26 weeks-old, without any related histological change. Histologically, lymphoid hypoplasia characterized by severe lymphocyte depletion with poorly developed tissue architectures was observed. In addition, spongiotic change in the nerve tissue was observed in both sexes at 7 and 26 weeks-old, and intracytoplasmic materials known as tubular aggregates in the skeletal muscles were found in males terminated at 26 and 52 weeks-old and in females at 52 weeks-old. Malignant lymphoma was found in one female euthanized at 20 weeks-old. Further, small intestinal adenoma, hepatocellular adenoma, leukemia, cerebral lipomatous hamartoma, Harderian gland adenoma and uterine polyp were also observed, and their incidences were low except for that of uterine polyp. This study provided detailed background data on NOG mice up to 52 weeks-old and provided information on appropriate use of NOG mice in the various research fields.
Collapse
Affiliation(s)
| | | | - Saori Igura
- BoZo Research Center Inc., Tsukuba Research Institute
| | - Rie Andoh
- BoZo Research Center Inc., Gotemba Research Institute
| | - Tsubasa Saito
- BoZo Research Center Inc., Gotemba Research Institute
| | - Isamu Suzuki
- BoZo Research Center Inc., Gotemba Research Institute
| | | | | | - Ken Goto
- BoZo Research Center Inc., Gotemba Research Institute
| | | | | | | | - Ryo Inoue
- Central Institute for Experimental Animals
| | | | | |
Collapse
|
18
|
James KD, Jenkinson WE, Anderson G. T-cell egress from the thymus: Should I stay or should I go? J Leukoc Biol 2018; 104:275-284. [PMID: 29485734 PMCID: PMC6174998 DOI: 10.1002/jlb.1mr1217-496r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
T‐cells bearing the αβTCR play a vital role in defending the host against foreign pathogens and malignant transformation of self. Importantly, T‐cells are required to remain tolerant to the host's own cells and tissues in order to prevent self‐reactive responses that can lead to autoimmune disease. T‐cells achieve the capacity for self/nonself discrimination by undergoing a highly selective and rigorous developmental program during their maturation in the thymus. This organ is unique in its ability to support a program of T‐cell development that ensures the establishment of a functionally diverse αβTCR repertoire within the peripheral T‐cell pool. The thymus achieves this by virtue of specialized stromal microenvironments that contain heterogeneous cell types, whose organization and function underpins their ability to educate, support, and screen different thymocyte subsets through various stages of development. These stages range from the entry of early T‐cell progenitors into the thymus, through to the positive and negative selection of the αβTCR repertoire. The importance of the thymus medulla as a site for T‐cell tolerance and the exit of newly generated T‐cells into the periphery is well established. In this review, we summarize current knowledge on the developmental pathways that take place during αβT‐cell development in the thymus. In addition, we focus on the mechanisms that regulate thymic egress and contribute to the seeding of peripheral tissues with newly selected self‐tolerant αβT‐cells. Review on thymic microenvironments regulation of thymocyte maturation and egress of mature self‐tolerant T cells.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
20
|
Li Z, Zhang S, Wan Y, Cai M, Wang W, Zhu Y, Li Z, Hu Y, Wang H, Chen H, Cui L, Zhang X, Zhang J, He W. MicroRNA-146a Overexpression Impairs the Positive Selection during T Cell Development. Front Immunol 2018; 8:2006. [PMID: 29410664 PMCID: PMC5787067 DOI: 10.3389/fimmu.2017.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/26/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs play crucial roles in modulating immune system. miR-146a, a potent feedback suppressor of NF-κB signaling, was shown to limit the innate immune response and myelopoiesis in a knockout mouse model. Here, we observed high lymphopoiesis demonstrated as mild splenomegaly and severe lymphadenopathy in a miR-146a transgenic mouse model. Overexpression of miR-146a resulted in enhanced proliferation and reduced apoptosis of T cells. More activated CD4+ T cells or effector memory T cells were observed in transgenic mice even under physiological conditions. Importantly, as one of the key steps to generate central tolerance, the positive selection of thymocytes is impaired in transgenic mice, resulting in more CD4+CD8+ double-positive thymocytes but fewer CD4+CD8− and CD4−CD8+ single-positive thymocytes. The maturation of selected CD4−CD8+ thymocytes was also impaired, leading to more severe loss of CD4−CD8+ than CD4+CD8− thymocytes in thymus of transgenic mice. Gene expression profiling analysis identified nine positive selection-associated genes, which were downregulated in transgenic mice, including genes encoding major histocompatibility complex class I/II molecules, IL-7 receptor α chain, and Gimap4, whose downregulation may contribute to the impairment of positive selection. Gimap4 was verified as a novel target of miR-146a. These findings further extend our understanding of the function of miR-146a in T cell biology and identify a novel regulatory mechanism underlying the positive selection during T cell development.
Collapse
Affiliation(s)
- Zinan Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Siya Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Menghua Cai
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Weiqing Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union College, Beijing, China
| | - Yuli Zhu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Zhen Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
21
|
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8:1898. [PMID: 29312356 PMCID: PMC5743904 DOI: 10.3389/fimmu.2017.01898] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Aas IB, Austbø L, Falk K, Hordvik I, Koppang EO. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:247-254. [PMID: 28655579 DOI: 10.1016/j.dci.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression.
Collapse
Affiliation(s)
- Ida Bergva Aas
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lars Austbø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Ivar Hordvik
- Department of Biology, High Technology Centre, University of Bergen, 5006 Bergen, Norway
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
23
|
Abstract
The association between thymoma and autoimmunity is well known. Besides myasthenia gravis, which is found in 15 to 20% of patients with thymoma, other autoimmune diseases have been reported: erythroblastopenia, systemic lupus erythematosus, inflammatory myopathies, thyroid disorders, Isaac's syndrome or Good's syndrome. More anecdotally, Morvan's syndrome, limbic encephalitis, other autoimmune cytopenias, autoimmune hepatitis, and bullous skin diseases (pemphigus, lichen) have been reported. Autoimmune diseases occur most often before thymectomy, but they can be discovered at the time of surgery or later. Two situations require the systematic investigation of a thymoma: the occurrence of myasthenia gravis or autoimmune erythroblastopenia. Nevertheless, the late onset of systemic lupus erythematosus or the association of several autoimmune manifestations should lead to look for a thymoma. Neither the characteristics of the patients nor the pathological data can predict the occurrence of an autoimmune disease after thymectomy. Thus, thymectomy usefulness in the course of the autoimmune disease, except myasthenia gravis, has not been demonstrated. This seems to indicate the preponderant role of self-reactive T lymphocytes distributed in the peripheral immune system prior to surgery. Given the high infectious morbidity in patients with thymoma, immunoglobulin replacement therapy should be considered in patients with hypogammaglobulinemia who receive immunosuppressive therapy, even in the absence of prior infection.
Collapse
|
24
|
Conteduca G, Fenoglio D, Parodi A, Battaglia F, Kalli F, Negrini S, Tardito S, Ferrera F, Salis A, Millo E, Pasquale G, Barra G, Damonte G, Indiveri F, Ferrone S, Filaci G. AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma. Oncotarget 2016; 7:60872-60884. [PMID: 27563821 PMCID: PMC5308622 DOI: 10.18632/oncotarget.11506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains.The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p < 0.05). Vaccination against MAGEB2 induced higher frequency of MAGEB2-specific CTL and exerted higher protective effect against melanoma development in mice bearing the CC AIRE genotype than in those bearing the TT one (p < 0.05). These findings show that allelic variants of one AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma.
Collapse
Affiliation(s)
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino – IST, Genoa, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Florinda Battaglia
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Francesca Kalli
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Simone Negrini
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Samuele Tardito
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Francesca Ferrera
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Annalisa Salis
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Enrico Millo
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Giuseppe Pasquale
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Giusi Barra
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Gianluca Damonte
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Francesco Indiveri
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino – IST, Genoa, Italy
| |
Collapse
|
25
|
Soumya V, Padmanabhan RA, Titus S, Laloraya M. Murine uterine decidualization is a novel function of autoimmune regulator-beyond immune tolerance. Am J Reprod Immunol 2016; 76:224-34. [PMID: 27432359 DOI: 10.1111/aji.12538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2023] Open
Abstract
PROBLEM Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED, APS-1) patients characterized by Aire (autoimmune regulator) mutations and Aire homozygous knockouts (Aire(-/-) ) exhibit infertility. It is not clear as to what contributes to infertility in the above. METHOD OF STUDY This study investigates the expression of "AIRE in the uterus" and its contribution to early pregnancy of mice by using quantitative real-time PCR analysis, immunohistochemistry, Western blotting, and in vivo Aire silencing experiments. RESULTS Aire (Isoform 1a) is expressed in the uterus during the "window of implantation" and decidualization. In vivo Aire silencing interfered with formation of implantation sites and stromal cell transformation by regulating bone morphogenetic protein-2,4 (Bmp2, Bmp4), homeobox A10 (Hoxa10), and insulin-like growth factor-binding protein 1(Igfbp1) leading to pregnancy failure. CONCLUSION Our consolidated results on extrathymic uterine expression of AIRE during early pregnancy and decidualization and impaired fertility on in vivo silencing are suggestive of its importance in pregnancy via a role beyond immune tolerance.
Collapse
Affiliation(s)
- Vasanthi Soumya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Renjini A Padmanabhan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shiny Titus
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Malini Laloraya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
26
|
Di Gangi R, Alves da Costa T, Thomé R, Peron G, Burger E, Verinaud L. Paracoccidioides brasiliensis infection promotes thymic disarrangement and premature egress of mature lymphocytes expressing prohibitive TCRs. BMC Infect Dis 2016; 16:209. [PMID: 27189089 PMCID: PMC4869377 DOI: 10.1186/s12879-016-1561-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis, a chronic granulomatous fungal disease caused by Paracoccidioides brasiliensis yeast cells affects mainly rural workers, albeit recently cases in immunosuppressed individuals has been reported. Protective immune response against P. brasiliensis is dependent on the activity of helper T cells especially IFN-γ-producing Th1 cells. It has been proposed that Paracoccidioides brasiliensis is able to modulate the immune response towards a permissive state and that the thymus plays a major role in it. METHODS In this paper, we show that acute infection of BALB/c mice with P. brasiliensis virulent isolate (Pb18) might cause alterations in the thymic environment as well as the prohibitive TCR-expressing T cells in the spleens. RESULTS After seven days of infection, we found yeast cells on the thymic stroma, the thymic epithelial cells (TEC) were altered regarding their spatial-orientation and inflammatory mediators gene expression was increased. Likewise, thymocytes (differentiating T cells) presented higher migratory ability in ex vivo experiments. Notwithstanding, P. brasiliensis-infected mice showed an increased frequency of prohibitive TCR-expressing T cells in the spleens, suggesting that the selection processes that occur in the thymus may be compromised during the acute infection. CONCLUSION In this paper, for the first time, we show that acute infection with Paracoccidioides brasiliensis yeast cells promotes thymic alterations leading to a defective repertoire of peripheral T cells. The data presented here may represent new mechanisms by which P. brasiliensis subverts the immune response towards the chronic infection observed in humans.
Collapse
Affiliation(s)
- Rosaria Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Eva Burger
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil.
| |
Collapse
|
27
|
Nitta T, Suzuki H. Thymic stromal cell subsets for T cell development. Cell Mol Life Sci 2016; 73:1021-37. [PMID: 26825337 PMCID: PMC11108406 DOI: 10.1007/s00018-015-2107-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| |
Collapse
|
28
|
Lomada D, Jain M, Bolner M, Reeh KAG, Kang R, Reddy MC, DiGiovanni J, Richie ER. Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells. PLoS Genet 2016; 12:e1005777. [PMID: 26789196 PMCID: PMC4720390 DOI: 10.1371/journal.pgen.1005777] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis. T cells, an essential component of the immune system, generate protective immune responses against pathogenic organisms and cancer cells. T cells are produced in the thymus, which provides a unique microenvironment required for T cell development. Distinct subsets of thymic epithelial cells (TECs) in the outer cortex and inner medulla provide signals required for the survival and differentiation of immature T cells, referred to as thymocytes. Medullary TECs (mTECs) play a critical role in preventing autoimmunity because they have the unique ability to express peptides found in other organs throughout the body. Presentation of self-peptides to thymocytes causes deletion of cells that express high affinity self-reactive receptors. Numerous studies have established that a major signaling pathway mediated by NFκB family members is indispensable for mTEC development. However, whether other signaling pathways are also required has remained an open question. Here, we use gain- and loss-of-function genetic approaches to demonstrate that another pathway, mediated by Stat3 signaling, plays an important role in mTEC development and homeostasis. We show that constitutive Stat3 activation enhances the survival of immature mTECs and bypasses the requirement for thymocyte-derived signals in medullary region formation. In contrast, Stat3 depletion reduces mTEC cellularity and impairs medullary region formation.
Collapse
Affiliation(s)
- Dakshayani Lomada
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Manju Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Michelle Bolner
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Epigenetics and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences Houston, Texas, United States of America
| | - Kaitlin A. G. Reeh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Epigenetics and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences Houston, Texas, United States of America
| | - Rhea Kang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Madhava C. Reddy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Bernard C, Frih H, Pasquet F, Kerever S, Jamilloux Y, Tronc F, Guibert B, Isaac S, Devouassoux M, Chalabreysse L, Broussolle C, Petiot P, Girard N, Sève P. Thymoma associated with autoimmune diseases: 85 cases and literature review. Autoimmun Rev 2016; 15:82-92. [DOI: 10.1016/j.autrev.2015.09.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/20/2015] [Indexed: 11/30/2022]
|
30
|
|
31
|
Lopes N, Sergé A, Ferrier P, Irla M. Thymic Crosstalk Coordinates Medulla Organization and T-Cell Tolerance Induction. Front Immunol 2015; 6:365. [PMID: 26257733 PMCID: PMC4507079 DOI: 10.3389/fimmu.2015.00365] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022] Open
Abstract
The thymus ensures the generation of a functional and highly diverse T-cell repertoire. The thymic medulla, which is mainly composed of medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), provides a specialized microenvironment dedicated to the establishment of T-cell tolerance. mTECs play a privileged role in this pivotal process by their unique capacity to express a broad range of peripheral self-antigens that are presented to developing T cells. Reciprocally, developing T cells control mTEC differentiation and organization. These bidirectional interactions are commonly referred to as thymic crosstalk. This review focuses on the relative contributions of mTEC and DC subsets to the deletion of autoreactive T cells and the generation of natural regulatory T cells. We also summarize current knowledge regarding how hematopoietic cells conversely control the composition and complex three-dimensional organization of the thymic medulla.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105 , Marseille , France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| |
Collapse
|
32
|
Francipane MG, Lagasse E. Maturation of embryonic tissues in a lymph node: a new approach for bioengineering complex organs. Organogenesis 2015; 10:323-31. [PMID: 25531035 PMCID: PMC4750546 DOI: 10.1080/15476278.2014.995509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Given our recent finding that the lymph node (LN) can serve as an in vivo factory to generate complex structures like liver, pancreas, and thymus, we investigated whether LN could also support early development and maturation from several mid-embryonic (E14.5/15.5) mouse tissues including brain, thymus, lung, stomach, and intestine. Here we observed brain maturation in LN by showing the emergence of astrocytes with well-developed branching processes. Thymus maturation in LN was monitored by changes in host immune cells. Finally, newly terminally differentiated mucus-producing cells were identified in ectopic tissues generated by transplantation of lung, stomach and intestine in LN. Thus, we speculate the LN offers a unique approach to study the intrinsic and extrinsic differentiation potential of cells and tissues during early development, and provides a new site for bioengineering complex body parts.
Collapse
Key Words
- 21wEcT, 21-week ectopic thymus
- 2D, 2-dimensional
- 3D, 3-dimensional
- 3wEcI, 3-week ectopic intestine
- 3wEcL, 3-week ectopic lung
- 3wEcS, 3-week ectopic stomach
- 6wEcT, 6-week ectopic thymus
- AdT, adult thymus
- Aire, autoimmune regulator
- CgA, chromogranin A
- E14.5/15.5, embryonic day 14.5 to 15.5
- ECM, extracellular matrix
- ER-TR7, reticular fibroblasts and reticular fibers
- EmI, embryonic intestine
- EmL, embryonic lung
- EmS, embryonic stomach
- EmT, embryonic thymus
- EpCAM1, epithelial cell adhesion molecule 1
- FACS, fluorescence-activated cell sorting
- FAH, fumarylacetoacetate hydrolase
- GFAPδ, glial fibrillary acid protein delta
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- K5, keratin 5
- K8, keratin 8
- LN, lymph node
- MAP-2, Microtubule-associated protein 2
- bioreactor
- cTEC, cortical thymic epithelial cell
- chimerism
- development
- lymph node
- mTEC, medullary thymic epithelial cell
- mTOR, mammalian target of rapamycin
- terminal differentiation
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- a McGowan Institute for Regenerative Medicine; Department of Pathology ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | |
Collapse
|
33
|
Loewendorf AI, Csete M, Flake A. Immunological considerations in in utero hematopoetic stem cell transplantation (IUHCT). Front Pharmacol 2015; 5:282. [PMID: 25610396 PMCID: PMC4285014 DOI: 10.3389/fphar.2014.00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
In utero hematopoietic stem cell transplantation (IUHCT) is an attractive approach and a potentially curative surgery for several congenital hematopoietic diseases. In practice, this application has succeeded only in the context of Severe Combined Immunodeficiency Disorders. Here, we review potential immunological hurdles for the long-term establishment of chimerism and discuss relevant models and findings from both postnatal hematopoietic stem cell transplantation and IUHCT.
Collapse
Affiliation(s)
- Andrea I Loewendorf
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Marie Csete
- Chief Scientific Officer, The Huntington Medical Research Institutes Pasadena, CA, USA
| | - Alan Flake
- The Children's Hospital of Philadelphia, Children's Institute of Surgical Science Philadelphia, PA, USA
| |
Collapse
|
34
|
A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla. Nat Immunol 2014; 15:554-61. [DOI: 10.1038/ni.2869] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
|
35
|
Kemp EH, Habibullah M, Kluger N, Ranki A, Sandhu HK, Krohn KJE, Weetman AP. Prevalence and clinical associations of calcium-sensing receptor and NALP5 autoantibodies in Finnish APECED patients. J Clin Endocrinol Metab 2014; 99:1064-71. [PMID: 24423312 DOI: 10.1210/jc.2013-3723] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Previous studies have identified the calcium-sensing receptor (CaSR) and NALP5 as parathyroid autoantibody targets in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). However, although NALP5 antibodies have been associated with the occurrence of hypoparathyroidism (HP) in APECED, it is unclear whether CaSR antibodies are a specific or sensitive marker for APECED-associated HP. OBJECTIVE The objective of the study was to identify associations between the presence of CaSR and NALP5 antibodies and the disease manifestations and demographic characteristics of Finnish APECED patients. DESIGN, SUBJECTS, AND METHODS This was a case-control study including 44 APECED patients and 38 age- and sex-matched healthy controls. Antibodies against the CaSR and NALP5 were detected using immunoprecipitation assays and radioligand binding assays, respectively. RESULTS CaSR and NALP5 antibodies were detected in 16 of 44 (36%) and 13 of 44 (30%) patients, respectively. No statistically significant associations were found between the presence of CaSR or NALP5 antibodies and the disease manifestations of APECED including HP (P > .05). For the diagnosis of HP, CaSR and NALP5 antibodies had specificities of 83% and 50%, respectively, and sensitivities of 39% and 26%, respectively. A significant association between both a shorter APECED and HP duration (<10 y) and positivity for CaSR antibodies was noted (P = .019 and P = .0061, respectively). CONCLUSION Neither CaSR nor NALP5 antibodies were found to be specific or sensitive markers for HP in APECED. Further investigations are required to determine the exact role of the autoimmune response against the CaSR and NALP5 in the pathogenesis of this autoimmune syndrome.
Collapse
Affiliation(s)
- E Helen Kemp
- Department of Human Metabolism (E.H.K., M.H., H.K.S., A.P.W.), The Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom; Department of Dermatology, Allergology, and Venereology (N.K., A.R.), Institute of Clinical Medicine, University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland; and Clinical Research Institute (K.J.E.K.), HUCH Ltd, 00029 HUS Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Dynamic control of β1 integrin adhesion by the plexinD1-sema3E axis. Proc Natl Acad Sci U S A 2013; 111:379-84. [PMID: 24344262 DOI: 10.1073/pnas.1314209111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plexins and semaphorins comprise a large family of receptor-ligand pairs controlling cell guidance in nervous, immune, and vascular systems. How plexin regulation of neurite outgrowth, lymphoid trafficking, and vascular endothelial cell branching is linked to integrin function, central to most directed movement, remains unclear. Here we show that on developing thymocytes, plexinD1 controls surface topology of nanometer-scaled β1 integrin adhesion domains in cis, whereas its ligation by sema3E in trans regulates individual β1 integrin catch bonds. Loss of plexinD1 expression reduces β1 integrin clustering, thereby diminishing avidity, whereas sema3E ligation shortens individual integrin bond lifetimes under force to reduce stability. Consequently, both decreased expression of plexinD1 during developmental progression and a thymic medulla-emanating sema3E gradient enhance thymocyte movement toward the medulla, thus enforcing the orchestrated lymphoid trafficking required for effective immune repertoire selection. Our results demonstrate plexin-tunable molecular features of integrin adhesion with broad implications for many cellular processes.
Collapse
|
38
|
Metzger TC, Khan IS, Gardner JM, Mouchess ML, Johannes KP, Krawisz AK, Skrzypczynska KM, Anderson MS. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population. Cell Rep 2013; 5:166-79. [PMID: 24095736 PMCID: PMC3820422 DOI: 10.1016/j.celrep.2013.08.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/25/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022] Open
Abstract
Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire(+) mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire(-) mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance.
Collapse
Affiliation(s)
- Todd C Metzger
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0540, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Akiyama T, Shinzawa M, Qin J, Akiyama N. Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases. Front Immunol 2013; 4:249. [PMID: 23986760 PMCID: PMC3752772 DOI: 10.3389/fimmu.2013.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
Elimination of potential self-reactive T cells in the thymus is crucial for preventing the onset of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expression of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive regulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral tissues. The TNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found to promote the differentiation of AIRE- and TSA-expressing mTECs. Furthermore, activation of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular mechanisms that regulate induction of AIRE and TSA expression and discuss possible contributions of these mechanisms to prevent the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | | | | | | |
Collapse
|
40
|
Ribeiro AR, Rodrigues PM, Meireles C, Di Santo JP, Alves NL. Thymocyte selection regulates the homeostasis of IL-7-expressing thymic cortical epithelial cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1200-9. [PMID: 23794633 DOI: 10.4049/jimmunol.1203042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic epithelial cells (TECs) help orchestrate thymopoiesis, and TEC differentiation relies on bidirectional interactions with thymocytes. Although the molecular mediators that stimulate medullary thymic epithelial cell (mTEC) maturation are partially elucidated, the signals that regulate cortical thymic epithelial cell (cTEC) homeostasis remain elusive. Using IL-7 reporter mice, we show that TECs coexpressing high levels of IL-7 (Il7(YFP+) TECs) reside within a subset of CD205(+)Ly51(+)CD40(low) cTECs that coexpresses Dll4, Ccl25, Ccrl1, Ctsl, Psmb11, and Prss16 and segregates from CD80(+)CD40(high) mTECs expressing Tnfrsf11a, Ctss, and Aire. As the frequency of Il7(YFP+) TECs gradually declines as mTEC development unfolds, we explored the relationship between Il7(YFP+) TECs and mTECs. In thymic organotypic cultures, the thymocyte-induced reduction in Il7(YFP+) TECs dissociates from the receptor activator of NF-κB-mediated differentiation of CD80(+) mTECs. Still, Il7(YFP+) TECs can generate some CD80(+) mTECs in a stepwise differentiation process via YFP(-)Ly51(low)CD80(low) intermediates. Il7(YFP+) TECs are sustained in Rag2(-/-) mice, even following in vivo anti-CD3ε treatment that mimics the process of pre-TCR β-selection of thymocytes to the double positive (DP) stage. Using Marilyn-Rag2(-/-) TCR transgenic, we find that positive selection into the CD4 lineage moderately reduces the frequency of Il7(YFP+) TECs, whereas negative selection provokes a striking loss of Il7(YFP+) TECs. These results imply that the strength of MHC/peptide-TCR interactions between TECs and thymocytes during selection constitutes a novel rheostat that controls the maintenance of IL-7-expressing cTECs.
Collapse
Affiliation(s)
- Ana R Ribeiro
- Infection and Immunity Unit, CAGE Laboratory, Institute for Molecular and Cellular Biology, University of Porto, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
41
|
Lindmark E, Chen Y, Georgoudaki AM, Dudziak D, Lindh E, Adams WC, Loré K, Winqvist O, Chambers BJ, Karlsson MCI. AIRE expressing marginal zone dendritic cells balances adaptive immunity and T-follicular helper cell recruitment. J Autoimmun 2013; 42:62-70. [PMID: 23265639 DOI: 10.1016/j.jaut.2012.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 01/30/2023]
Abstract
Autoimmune polyendocrine syndrome Type I (APS I) results in multiple endocrine organ destruction and is caused by mutations in the Autoimmune regulator gene (AIRE). In the thymic stroma, cells expressing the AIRE gene dictate T cell education and central tolerance. Although this function is the most studied, AIRE is also expressed in the periphery in DCs and stromal cells. Still, how AIRE regulated transcription modifies cell behaviour in the periphery is largely unknown. Here we show that AIRE is specifically expressed by 33D1(+) DCs and dictates the fate of antibody secreting cell movement within the spleen. We also found that AIRE expressing 33D1(+) DCs expresses self-antigens as exemplified by the hallmark gene insulin. Also, as evidence for a regulatory function, absence of Aire in 33D1(+) DCs led to reduced levels of the chemokine CXCL12 and increased co-stimulatory properties. This resulted in altered activation and recruitment of T-follicular helper cells and germinal centre B cells. The altered balance leads to a change of the early response to a T cell-dependent antigen in Aire(-/-) mice. These findings add to the understanding of how specific DC subtypes regulate the early responses during T cell-dependent antibody responses within the spleen and further define the role of AIRE in the periphery as regulator of self-antigen expression and lymphocyte migration.
Collapse
Affiliation(s)
- Evelina Lindmark
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
For a very long time, we studied the metallophilic macrophages of the rodent thymus and in this review our results on morphological, histochemical, enzymehistochemical, immunohistochemical, ultrastructural and functional features of these cells, as well as the molecular regulation of their development, will be presented. Furthermore, the differences between species will also be discussed and the comparisons with similar/related cell types (metallophilic macrophages in the marginal sinus of the spleen, subcapsular sinus of the lymph nodes and germinal centers of secondary lymphoid follicles) will be made. Metallophilic macrophages are strategically positioned in the thymic cortico-medullary zone and are very likely to be involved in: (i) the metabolism, synthesis and production of bioactive lipids, most likely arachidonic acid metabolites, based on their histochemical and enzymehistochemical features, and (ii) the process of negative selection that occurs in the thymus, based on their ultrastructural features and their reactivity after the application of toxic or immunosuppressive/immunomodulatory agents. Taken together, their phenotypic and functional features strongly suggest that metallophilic macrophages play a significant role in the thymic physiology.
Collapse
|
43
|
Abstract
The development of CD4(+) helper and CD8(+) cytotoxic T-cells expressing the αβ form of the T-cell receptor (αβTCR) takes place in the thymus, a primary lymphoid organ containing distinct cortical and medullary microenvironments. While the cortex represents a site of early T-cell precursor development, and the positive selection of CD4(+)8(+) thymocytes, the thymic medulla plays a key role in tolerance induction, ensuring that thymic emigrants are purged of autoreactive αβTCR specificities. In recent years, advances have been made in understanding the development and function of thymic medullary epithelial cells, most notably the subset defined by expression of the Autoimmune Regulator (Aire) gene. Here, we summarize current knowledge of the developmental mechanisms regulating thymus medulla development, and examine the role of the thymus medulla in recessive (negative selection) and dominant (T-regulatory cell) tolerance.
Collapse
|
44
|
Irla M, Guenot J, Sealy G, Reith W, Imhof BA, Sergé A. Three-dimensional visualization of the mouse thymus organization in health and immunodeficiency. THE JOURNAL OF IMMUNOLOGY 2012; 190:586-96. [PMID: 23248258 DOI: 10.4049/jimmunol.1200119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lymphoid organs exhibit complex structures tightly related to their function. Surprisingly, although the thymic medulla constitutes a specialized microenvironment dedicated to the induction of T cell tolerance, its three-dimensional topology remains largely elusive because it has been studied mainly in two dimensions using thymic sections. To overcome this limitation, we have developed an automated method for full organ reconstruction in three dimensions, allowing visualization of intact mouse lymphoid organs from a collection of immunolabeled slices. We validated full organ reconstruction in three dimensions by reconstructing the well-characterized structure of skin-draining lymph nodes, before revisiting the complex and poorly described corticomedullary organization of the thymus. Wild-type thymi contain ~200 small medullae that are connected to or separated from a major medullary compartment. In contrast, thymi of immunodeficient Rag2(-/-) mice exhibit only ~20 small, unconnected medullary islets. Upon total body irradiation, medullary complexity was partially reduced and then recovered upon bone marrow transplantation. This intricate topology presents fractal properties, resulting in a considerable corticomedullary area. This feature ensures short distances between cortex and medulla, hence efficient thymocyte migration, as assessed by mathematical models. Remarkably, this junction is enriched, particularly in neonates, in medullary thymic epithelial cells expressing the autoimmune regulator. The emergence of a major medullary compartment is induced by CD4(+) thymocytes via CD80/86 and lymphotoxin-α signals. This comprehensive three-dimensional view of the medulla emphasizes a complex topology favoring efficient interactions between developing T cells and autoimmune regulator-positive medullary thymic epithelial cells, a key process for central tolerance induction.
Collapse
Affiliation(s)
- Magali Irla
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Wu G, Hirabayashi K, Sato S, Akiyama N, Akiyama T, Shiota K, Yagi S. DNA methylation profile of Aire-deficient mouse medullary thymic epithelial cells. BMC Immunol 2012; 13:58. [PMID: 23116172 PMCID: PMC3546423 DOI: 10.1186/1471-2172-13-58] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/27/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Medullary thymic epithelial cells (mTECs) are characterized by ectopic expression of self-antigens during the establishment of central tolerance. The autoimmune regulator (Aire), which is specifically expressed in mTECs, is responsible for the expression of a large repertoire of tissue-restricted antigens (TRAs) and plays a role in the development of mTECs. However, Aire-deficient mTECs still express TRAs. Moreover, a subset of mTECs, which are considered to be at a stage of terminal differentiation, exists in the Aire-deficient thymus. The phenotype of a specific cell type in a multicellular organism is governed by the epigenetic regulation system. DNA methylation modification is an important component of this system. Every cell or tissue type displays a DNA methylation profile, consisting of tissue-dependent and differentially methylated regions (T-DMRs), and this profile is involved in cell-type-specific genome usage. The aim of this study was to examine the DNA methylation profile of mTECs by using Aire-deficient mTECs as a model. RESULTS We identified the T-DMRs of mTECs (mTEC-T-DMRs) via genome-wide DNA methylation analysis of Aire(-/-) mTECs by comparison with the liver, brain, thymus, and embryonic stem cells. The hypomethylated mTEC-T-DMRs in Aire(-/-) mTECs were associated with mTEC-specific genes, including Aire, CD80, and Trp63, as well as other genes involved in the RANK signaling pathway. While these mTEC-T-DMRs were also hypomethylated in Aire(+/+) mTECs, they were hypermethylated in control thymic stromal cells. We compared the pattern of DNA methylation levels at a total of 55 mTEC-T-DMRs and adjacent regions and found that the DNA methylation status was similar for Aire(+/+) and Aire(-/-) mTECs but distinct from that of athymic cells and tissues. CONCLUSIONS These results indicate a unique DNA methylation profile that is independent of Aire in mTECs. This profile is distinct from other cell types in the thymic microenvironment and is indicated to be involved in the differentiation of the mTEC lineage.
Collapse
Affiliation(s)
- Guoying Wu
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiji Hirabayashi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shinya Sato
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuko Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Taishin Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kunio Shiota
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences /Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
46
|
Perniola R. Expression of the autoimmune regulator gene and its relevance to the mechanisms of central and peripheral tolerance. Clin Dev Immunol 2012; 2012:207403. [PMID: 23125865 PMCID: PMC3485510 DOI: 10.1155/2012/207403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/26/2012] [Accepted: 09/11/2012] [Indexed: 01/12/2023]
Abstract
The autoimmune polyendocrine syndrome type 1 (APS-1) is a monogenic disease due to pathogenic variants occurring in the autoimmune regulator (AIRE) gene. Its related protein, AIRE, activates the transcription of genes encoding for tissue-specific antigens (TsAgs) in a subset of medullary thymic epithelial cells: the presentation of TsAgs to the maturating thymocytes induces the apoptosis of the autoreactive clones and constitutes the main form of central tolerance. Dysregulation of thymic AIRE expression in genetically transmitted and acquired diseases other than APS-1 may contribute to further forms of autoimmunity. As AIRE and its murine homolog are also expressed in the secondary lymphoid organs, the extent and relevance of AIRE participation in the mechanisms of peripheral tolerance need to be thoroughly defined.
Collapse
Affiliation(s)
- Roberto Perniola
- Neonatal Intensive Care, Department of Pediatrics, V. Fazzi Regional Hospital, Piazza F. Muratore, 73100 Lecce, Italy.
| |
Collapse
|
47
|
Abstract
Myasthenia gravis is an autoimmune disease. An autoantibody directed toward acetylcholine receptor (AChR) causes the destruction of the postsynaptic membrane and a reduction of the number of AChRs at neuromuscular junctions. A very puzzling, but interesting characteristic of myasthenia gravis is that many of the patients have an abnormality in their thymus. Many have a hyperplastic thymus with germinal centers, while others have a thymic tumor. How is the abnormality of the thymus related to myasthenia gravis? This review will summarize the existing evidence and try to find the missing link between the thymus and myasthenia gravis. The review will also comment on two distinct populations of myasthenia gravis patients without thymoma. The autoimmunity found in elderly patients is nonspecific and initiated via a different mechanism from the initiation of myasthenia gravis in younger patients.
Collapse
|
48
|
Akiyama T, Shinzawa M, Akiyama N. TNF receptor family signaling in the development and functions of medullary thymic epithelial cells. Front Immunol 2012; 3:278. [PMID: 22969770 PMCID: PMC3432834 DOI: 10.3389/fimmu.2012.00278] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/16/2012] [Indexed: 11/25/2022] Open
Abstract
Thymic epithelial cells (TECs) provide the microenvironment required for the development of T cells in the thymus. A unique property of medullary thymic epithelial cells (mTECs) is their expression of a wide range of tissue-restricted self-antigens, critically regulated by the nuclear protein AIRE, which contributes to the selection of the self-tolerant T cell repertoire, thereby suppressing the onset of autoimmune diseases. The TNF receptor family (TNFRF) protein receptor activator of NF-κB (RANK), CD40 and lymphotoxin β receptor (LtβR) regulate the development and functions of mTECs. The engagement of these receptors with their specific ligands results in the activation of the NF-κB family of transcription factors. Two NF-κB activation pathways, the classical and non-classical pathways, promote the development of mature mTECs induced by these receptors. Consistently, TNF receptor-associated factor (TRAF6), the signal transducer of the classical pathway, and NF-κB inducing kinase (NIK), the signal transducer of the non-classical pathway, are essential for the development of mature mTECs. This review summarizes the current understanding of how the signaling by the TNF receptor family controls the development and functions of mTEC.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
49
|
Roberts N, White A, Jenkinson W, Turchinovich G, Nakamura K, Withers D, McConnell F, Desanti G, Benezech C, Parnell S, Cunningham A, Paolino M, Penninger JM, Simon AK, Nitta T, Ohigashi I, Takahama Y, Caamano J, Hayday A, Lane P, Jenkinson E, Anderson G. Rank signaling links the development of invariant γδ T cell progenitors and Aire(+) medullary epithelium. Immunity 2012; 36:427-37. [PMID: 22425250 PMCID: PMC3368267 DOI: 10.1016/j.immuni.2012.01.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/15/2011] [Accepted: 01/12/2012] [Indexed: 12/23/2022]
Abstract
The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.
Collapse
Affiliation(s)
- Natalie A. Roberts
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrea J. White
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - William E. Jenkinson
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London, WC2A 3LY, UK
- Peter Gorer Department of Immunobiology, Kings College at Guy's Hospital, London, SE1 9RT, UK
| | - Kyoko Nakamura
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - David R. Withers
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fiona M. McConnell
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Guillaume E. Desanti
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Cecile Benezech
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sonia M. Parnell
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Adam F. Cunningham
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Magdalena Paolino
- IMBA, Institute of Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Josef M. Penninger
- IMBA, Institute of Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Anna Katharina Simon
- Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - Jorge H. Caamano
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Adrian C. Hayday
- London Research Institute, Cancer Research UK, London, WC2A 3LY, UK
- Peter Gorer Department of Immunobiology, Kings College at Guy's Hospital, London, SE1 9RT, UK
| | - Peter J.L. Lane
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eric J. Jenkinson
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
50
|
Dynamics of Lymphocyte Populations during Trypanosoma cruzi Infection: From Thymocyte Depletion to Differential Cell Expansion/Contraction in Peripheral Lymphoid Organs. J Trop Med 2012; 2012:747185. [PMID: 22505943 PMCID: PMC3306984 DOI: 10.1155/2012/747185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/17/2011] [Indexed: 01/05/2023] Open
Abstract
The comprehension of the immune responses in infectious diseases is crucial for developing novel therapeutic strategies. Here, we review current findings on the dynamics of lymphocyte subpopulations following experimental acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. In the thymus, although the negative selection process of the T-cell repertoire remains operational, there is a massive thymocyte depletion and abnormal release of immature CD4+CD8+ cells to peripheral lymphoid organs, where they acquire an activated phenotype similar to activated effector or memory T cells. These cells apparently bypassed the negative selection process, and some of them are potentially autoimmune. In infected animals, an atrophy of mesenteric lymph nodes is also observed, in contrast with the lymphocyte expansion in spleen and subcutaneous lymph nodes, illustrating a complex and organ specific dynamics of lymphocyte subpopulations. Accordingly, T- and B-cell activation is seen in subcutaneous lymph nodes and spleen, but not in mesenteric lymph nodes. Lastly, although the function of peripheral CD4+CD8+ T-cell population remains to be defined in vivo, their presence may contribute to the immunopathological events found in both murine and human Chagas disease.
Collapse
|