1
|
Park SC, Wiest MJ, Yan V, Wong PT, Schotsaert M. Induction of protective immune responses at respiratory mucosal sites. Hum Vaccin Immunother 2024; 20:2368288. [PMID: 38953250 PMCID: PMC11221474 DOI: 10.1080/21645515.2024.2368288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Many pathogens enter the host through mucosal sites. Thus, interfering with pathogen entry through local neutralization at mucosal sites therefore is an effective strategy for preventing disease. Mucosally administered vaccines have the potential to induce protective immune responses at mucosal sites. This manuscript delves into some of the latest developments in mucosal vaccination, particularly focusing on advancements in adjuvant technologies and the role of these adjuvants in enhancing vaccine efficacy against respiratory pathogens. It highlights the anatomical and immunological complexities of the respiratory mucosal immune system, emphasizing the significance of mucosal secretory IgA and tissue-resident memory T cells in local immune responses. We further discuss the differences between immune responses induced through traditional parenteral vaccination approaches vs. mucosal administration strategies, and explore the protective advantages offered by immunization through mucosal routes.
Collapse
Affiliation(s)
- Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Wiest
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Silvestre D, Moreno G, Argüelles MH, Tomás Fariña J, Biedma ME, Peri Ibáñez ES, Mandile MG, Glikmann G, Rumbo M, Castello AA, Temprana CF. Display of FliC131 on the Surface of Lactococcus lactis as a Strategy to Increase its Adjuvanticity for Mucosal Immunization. J Pharm Sci 2024; 113:1794-1803. [PMID: 38522753 DOI: 10.1016/j.xphs.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Research on innovative mucosal adjuvants is essential to develop new vaccines for safe mucosal application. In this work, we propose the development of a Lactococcus lactis that expresses a variant of flagellin on its surface (FliC131*), to increase the adjuvanticity of the living cell and cell wall-derived particles (CWDP). We optimized the expression of FliC131*, and confirmed its identity and localization by Western blot and flow cytometry. We also generated CWDP containing FliC131* (CDWP-FliC131*) and evaluated their storage stability. Lastly, we measured the human TLR5 stimulating activity in vitro and assessed the adjuvanticity in vivo using ovalbumin (OVA) as a model antigen. As a result, we generated L. lactis/pCWA-FliC131*, that expresses and displays FliC131* on its surface, obtained the corresponding CWDP-FliC131*, and showed that both activated hTLR5 in vitro in a dose-dependent manner. Furthermore, CWDP-FliC131* retained this biological activity after being lyophilized and stored for a year. Finally, intranasal immunization of mice with OVA plus live L. lactis/pCWA-FliC131* or CWDP-FliC131* induced OVA-specific IgG and IgA in serum, intestinal lavages, and bronchoalveolar lavages. Our work demonstrates the potential of this recombinant L. lactis with an enhanced adjuvant effect, prompting its further evaluation for the design of novel mucosal vaccines.
Collapse
Affiliation(s)
- Dalila Silvestre
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Griselda Moreno
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLP-CONICET), Boulevard 120 1489, La Plata, 1900, Argentina
| | - Marcelo H Argüelles
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina
| | - Julieta Tomás Fariña
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Marina E Biedma
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLP-CONICET), Boulevard 120 1489, La Plata, 1900, Argentina
| | - Estefanía S Peri Ibáñez
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Marcelo G Mandile
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLP-CONICET), Boulevard 120 1489, La Plata, 1900, Argentina
| | - Alejandro A Castello
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Av. Calchaquí 6200, Florencio Varela, 1888, Buenos Aires, Argentina
| | - C Facundo Temprana
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, 1876, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina.
| |
Collapse
|
3
|
Terhüja M, Siddappa M, Lamichhane P, Meshram CD, Snider TA, Ritchey JW, Oomens AGP. Intranasal Vaccination with a Respiratory-Syncytial-Virus-Based Virus-like Particle Displaying the G Protein Conserved Region Induces Severe Weight Loss and Pathology upon Challenge with Wildtype Respiratory Syncytial Virus. Viruses 2024; 16:843. [PMID: 38932136 PMCID: PMC11209524 DOI: 10.3390/v16060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory tract disease worldwide, and a pediatric vaccine is not available. We generated a filamentous RSV-based virus-like particle (VLP) that presents the central conserved region of the attachment protein G. This was achieved by co-expressing the matrix protein, phosphoprotein, nucleoprotein, and a hybrid fusion protein in which the F ectodomain was replaced with the G central region (GCR). The latter is relatively conserved and contains a receptor binding site and hence is a logical vaccine target. The immunogenicity and efficacy of the resulting VLP, termed VLP-GCR, were examined in mice using intranasal application without adjuvant. VLP-GCR induced substantial anti-N antibody levels but very low anti-G antibody levels, even after three vaccinations. In contrast, a VLP presenting prefusion-stabilized fusion (preF) protein instead of GCR induced both high anti-F and anti-nucleoprotein antibody levels, suggesting that our GCR antigen was poorly immunogenic. Challenge of VLP-GCR-vaccinated mice caused increased weight loss and lung pathology, and both VLPs induced mucus in the lungs. Thus, neither VLP is suitable as a vaccine for RSV-naive individuals. However, VLP-preF enhanced the proportion of preF antibodies and could serve as a multi-antigen mucosal booster vaccine in the RSV-experienced population.
Collapse
Affiliation(s)
- Megolhubino Terhüja
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Manjunath Siddappa
- Department of Veterinary Sciences and Animal Husbandry, Chitradurga 577502, Karnataka, India
| | - Pramila Lamichhane
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy, Immunology, and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chetan D. Meshram
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Timothy A. Snider
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| | - Antonius G. P. Oomens
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA (J.W.R.)
| |
Collapse
|
4
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Zhang Y, Wu Y, Peng C, Li Z, Wang G, Wang H, Yu L, Wang F. Both recombinant Bacillus subtilis Expressing PCV2d Cap protein and PCV2d-VLPs can stimulate strong protective immune responses in mice. Heliyon 2023; 9:e22941. [PMID: 38058449 PMCID: PMC10696252 DOI: 10.1016/j.heliyon.2023.e22941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is one of the most serious pathogens in pig herds worldwide. The Capsid protein (Cap), a structural protein of PCV2, is involved in the host's immune response; it induces neutralizing-antibody production and has good immunogenicity. The main PCV2 subtype currently prevalent in the Chinese pig herd is PCV2d. In this study, We constructed a recombinant Bacillus subtilis (B. subtilis) capable of secreting Cap protein, named pHT43-Cap/B. subtilis; we concentrated the supernatant of the recombinant bacteria and observed virus-like particles (VLPs) of PCV2d formed by Cap protein under transmission electron microscopy, named PCV2d-VLPs. The immunocompetence of the pHT43-Cap/B. subtilis and PCV2d-VLPs were then assessed by oral administration and by intramuscular injection into mice, respectively. The results showed that the levels of PCV2d-Cap protein-specific IgG in the serum and of PCV2d-Cap protein-specific sIgA in the small intestinal fluid of pHT43-Cap/B. subtilis immunized mice were elevated compared to the control group, both of them highly significant (p < 0.01), and the corresponding serum-specific IgG antibodies were effective in neutralizing PCV2d virulence. The virus load in the liver of the immunized mice was significantly lower than that in the control group (p < 0.01), as was the virus load in the spleen and lungs of the immunized mice (p < 0.05). In addition, the serum levels of PCV2d-Cap-specific IgG in mice immunized with PCV2d-VLPs by intramuscular injection were significantly elevated compared to the control group (p < 0.05), and the viral load in all tissues was significantly lower in immunized mice (p < 0.05). In conclusion, the recombinant bacterium pHT43-Cap/B. subtilis can induce effective mucosal and humoral immunity in mice, PCV2d-VLPs can induce humoral immunity in mice, and both vaccines have good immunogenicity; these results provide a theoretical and material basis for the development of a new vaccine against PCV2d.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yao Wu
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
- Aquaculture Research Lab, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
- Aquaculture Research Lab, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| |
Collapse
|
6
|
|
7
|
Yuki Y, Harada N, Sawada SI, Uchida Y, Nakahashi-Ouchida R, Mori H, Yamanoue T, Machita T, Kanazawa M, Fukumoto D, Ohba H, Miyazaki T, Akiyoshi K, Fujihashi K, Kiyono H. Biodistribution assessment of cationic pullulan nanogel, a nasal vaccine delivery system, in mice and non-human primates. Vaccine 2023:S0264-410X(23)00754-5. [PMID: 37385890 DOI: 10.1016/j.vaccine.2023.06.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Cationic cholesteryl-group-bearing pullulan nanogel (cCHP-nanogel) is an effective drug-delivery system for nasal vaccines. However, cCHP-nanogel-based nasal vaccines might access the central nervous system due to its close proximity via the olfactory bulb in the nasal cavity. Using real-time quantitative tracking of the nanogel-based nasal botulinum neurotoxin and pneumococcal vaccines, we previously confirmed the lack of deposition of vaccine antigen in the cerebrum or olfactory bulbs of mice and non-human primates (NHPs), rhesus macaques. Here, we used positron emission tomography to investigate the biodistribution of the drug-delivery system itself, cCHP-nanogel after mice and NHPs were nasally administered with 18F-labeled cCHP nanogel. The results generated by the PET analysis of rhesus macaques were consistent with the direct counting of radioactivity due to 18F or 111In in dissected mouse tissues. Thus, no depositions of cCHP-nanogel were noted in the cerebrum, olfactory bulbs, or eyes of both species after nasal administration of the radiolabeled cCHP-nanogel compound. Our findings confirm the safe biodistribution of the cCHP-nanogel-based nasal vaccine delivery system in mice and NHPs.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; HanaVax Inc, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Yohei Uchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | | | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K, Shizuoka, Japan
| | | | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; HanaVax Inc, Tokyo, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine (cMAV) Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
8
|
Rhee JH, Khim K, Puth S, Choi Y, Lee SE. Deimmunization of flagellin adjuvant for clinical application. Curr Opin Virol 2023; 60:101330. [PMID: 37084463 DOI: 10.1016/j.coviro.2023.101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5. D2/D3 domains, located in the central region and exposed to the outside surface of flagellar filament, are heterogeneous across bacterial species and highly immunogenic. Taking advantage of TLR5- and NLRC4-stimulating activities, flagellin has been actively developed as a vaccine adjuvant and immunotherapeutic. Because of its immunogenicity, there exist worries concerning diminished efficacy and possible reactogenicity after repeated administration. Deimmunization of flagellin derivatives while preserving the TLR5/NLRC4-mediated immunomodulatory activity should be the most reasonable option for clinical application. This review describes strategies and current achievements in flagellin deimmunization.
Collapse
Affiliation(s)
- Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Koemchhoy Khim
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
9
|
Li L, Wilkins JV, Esmaeili AR, Rahman N, Golshahi L. In Vitro Comparison of Local Nasal Vaccine Delivery and Correlation with Device Spray Performance. Pharm Res 2023; 40:537-550. [PMID: 36536098 DOI: 10.1007/s11095-022-03452-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE This study is the first vaccine candidate in vitro investigation with a focus on finding a correlation between the spray characteristics and the delivery efficiency of the local deposition in the nasal airways of infants under 24 months using various intranasal devices. METHODS In vitro tests were developed to measure the spray characteristics of four intranasal delivery devices and how they regionally deliver a candidate vaccine formulation matrix in five nasal airway replicas (3 to 24 months). The correlation between the spray performance, geometric parameters, and delivery efficiency were assessed. RESULTS All four devices performed consistently in terms of spray characteristics and were capable of delivering a high percentage of the candidate vaccine to the target areas, with a minimum delivery efficiency of 80%. Moreover, the delivery efficiency was affected by either the spray droplet size distribution or the distance between the nozzle tip and the internal nasal valve. Correlations between the spray performance and the in vitro local dose deposition were established. CONCLUSION The infant nasal model tests can be complementary to device spray performance evaluation. In the absence of in vivo correlations, they can also facilitate the process of new product development by estimating delivery a priori.
Collapse
Affiliation(s)
- Lillian Li
- Vaccine CMC Development & Supply, Sanofi, Toronto, Room 121, Building 95, Sanofi, 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, USA.
| | - John V Wilkins
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Room 1083, 800 E. Leigh St, Richmond, VA, 23298, USA
| | - Amir R Esmaeili
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Room 1083, 800 E. Leigh St, Richmond, VA, 23298, USA
| | - Nausheen Rahman
- Vaccine CMC Development & Supply, Sanofi, Toronto, Room 121, Building 95, Sanofi, 1755 Steeles Avenue West, Toronto, ON, M2R 3T4, USA
| | - Laleh Golshahi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Room 1083, 800 E. Leigh St, Richmond, VA, 23298, USA.
| |
Collapse
|
10
|
Nakahashi-Ouchida R, Fujihashi K, Kurashima Y, Yuki Y, Kiyono H. Nasal vaccines: solutions for respiratory infectious diseases. Trends Mol Med 2023; 29:124-140. [PMID: 36435633 DOI: 10.1016/j.molmed.2022.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
Nasal vaccines induce pathogen-specific dual protective immunity at mucosal surfaces and systemically throughout the body. Consequently, nasal vaccines both prevent pathogen invasion and reduce disease severity. Because of these features, nasal vaccines are considered to be a next-generation tool for preventing respiratory infectious diseases, including COVID-19. However, nasal vaccines must overcome key safety concerns given the anatomic proximity of the central nervous system (CNS) via the olfactory bulbs which lie next to the nasal cavity. This review summarizes current efforts to develop safe and effective nasal vaccines and delivery systems, as well as their clinical applications for the prevention of respiratory infections. We also discuss various concerns regarding the safety of nasal vaccines and introduce a system for evaluating them.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yosuke Kurashima
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Chiba University-University of California San Diego (CU-UCSD) Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; HanaVax Inc., Tokyo, Japan
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Japan; Future Mucosal Vaccine Research and Development Synergy Institute, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan; Chiba University-University of California San Diego (CU-UCSD) Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA; Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| |
Collapse
|
11
|
Effectiveness and safety of injectable human papilloma virus vaccine administered as eyedrops. Vaccine 2023; 41:92-100. [PMID: 36402660 DOI: 10.1016/j.vaccine.2022.09.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Mucosal vaccines have the advantages of ease of administration and the induction of strong mucosal immunity and a systemic immune response. Recently, the eye mucosa has been shown to be an effective and safe alternative vaccination route against influenza, Toxoplasma gondii infection, and hemolytic uremic syndrome in mice. In this study, we showed that the commercially available human papilloma virus (HPV) vaccine, Cervarix, induced significant immune reactions in terms of anti-HPV antigen (Ag)-specific immunoglobulin G (IgG) and IgA antibody production following eyedrop (ED) vaccination in mice. The HPV ED vaccines (EDV) provoked no signs of inflammation within 24 h, as indicated by the inflammatory cytokine mRNA levels and infiltration of mononuclear cells in inoculation sites. Moreover, the morphology of the cornea and retina and intraocular pressure of mice did not change after the HPV EDV. The functions of photoreceptor cells, including rod and cone cells, were normal following the HPV EDV inoculation in mice. These results suggest that Cervarix EDV could be a potent, safe, and effective mucosal vaccine against HPV-associated cancers.
Collapse
|
12
|
Tsai CJY, Loh JMS, Fujihashi K, Kiyono H. Mucosal vaccination: onward and upward. Expert Rev Vaccines 2023; 22:885-899. [PMID: 37817433 DOI: 10.1080/14760584.2023.2268724] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION The unique mucosal immune system allows the generation of robust protective immune responses at the front line of pathogen encounters. The needle-free delivery route and cold chain-free logistic requirements also provide additional advantages in ease and economy. However, the development of mucosal vaccines faces several challenges, and only a handful of mucosal vaccines are currently licensed. These vaccines are all in the form of live attenuated or inactivated whole organisms, whereas no subunit-based mucosal vaccine is available. AREAS COVERED The selection of antigen, delivery vehicle, route and adjuvants for mucosal vaccination are highly important. This is particularly crucial for subunit vaccines, as they often fail to elicit strong immune responses. Emerging research is providing new insights into the biological and immunological uniqueness of mucosal tissues. However, many aspects of the mucosal immunology still await to be investigated. EXPERT OPINION This article provides an overview of the current understanding of mucosal vaccination and discusses the remaining knowledge gaps. We emphasize that because of the potential benefits mucosal vaccines can bring from the biomedical, social and economic standpoints, the unmet goal to achieve mucosal vaccine success is worth the effort.
Collapse
Affiliation(s)
- Catherine J Y Tsai
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
13
|
Boyaka PN, Fujihashi K. Immunology of Mucosal Surfaces. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
14
|
Dhama K, Dhawan M, Tiwari R, Emran TB, Mitra S, Rabaan AA, Alhumaid S, Alawi ZA, Al Mutair A. COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges. Hum Vaccin Immunother 2022; 18:2045853. [PMID: 35258416 PMCID: PMC8935456 DOI: 10.1080/21645515.2022.2045853] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Multiple vaccines have recently been developed, and almost all the countries are presently vaccinating their population to tackle the COVID-19 pandemic. Most of the COVID-19 vaccines in use are administered via intramuscular (IM) injection, eliciting protective humor and cellular immunity. COVID-19 intranasal (IN) vaccines are also being developed that have shown promising ability to induce a significant amount of antibody-mediated immune response and a robust cell-mediated immunity as well as hold the added ability to stimulate protective mucosal immunity along with the additional advantage of the ease of administration as compared to IM injected vaccines. By inducing secretory IgA antibody responses specifically in the nasal compartment, the intranasal SARS-CoV-2 vaccine can prevent virus infection, replication, shedding, and disease development, as well as possibly limits virus transmission. This article highlights the current progress, advantages, prospects, and challenges in developing intranasal COVID-19 vaccines for countering the ongoing pandemic.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| |
Collapse
|
15
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
16
|
Chang E, Kobayashi R, Hagiwara-Hamano M, Kurita-Ochiai T, Komiya M. Sublingual immunization with recombinant GroEL plus CpG-ODN inhibits Porphyromonas gingivalis-induced inflammation and alveolar bone loss. Mol Oral Microbiol 2021; 37:31-41. [PMID: 34921516 DOI: 10.1111/omi.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
It has been reported that GroEL, a heat shock protein (HSP) produced by the representative periodontopathogenic bacterium, Porphyromonas gingivalis, induces inflammation-induced osteoclastogenesis and promotes alveolar bone resorption. In this study, we demonstrated the efficacy of a mucosal vaccine targeting GroEL against bone resorption induced by P. gingivalis. Female BALB/c mice received sublingual CpG oligodeoxynucleotide as an adjuvant with recombinant GroEL (rGroEL) prior to P. gingivalis exposure. Animals were euthanized 30 days after P. gingivalis inoculation. Sublingual immunization (SLI) with rGroEL elicited significant rGroEL-specific serum immunoglobulin (Ig)G and salivary IgA antibody (Ab) responses, and these responses were sustained for approximately 1 year. Interestingly, 10-fold more GroEL-specific IgA Ab-producing cells were detected in the submandibular glands (SMGs) than in the spleen. Antigen (Ag)-specific cells isolated from the spleen and SMGs induced significantly higher levels of IFN-γ expression after Ag restimulation in vitro. Flow cytometry illustrated that the frequency of CD11b+ dendritic cells with enhanced expression of CD80, CD86, CD40, and major histocompatibility complex II molecules was significantly increased in the SMGs. Furthermore, SLI with rGroEL significantly suppressed P. gingivalis-induced alveolar bone resorption and P. gingivalis-stimulated tumor necrosis factor-α, interleukin-6, and HSP60 expression in the gingiva. These findings suggest that SLI with rGroEL and CpG oligodeoxynucleotide is a beneficial strategy for preventing periodontal disease, mainly by presenting Ags in the oral region and inducing antibody production in the mucosal and systemic systems.
Collapse
Affiliation(s)
- Emily Chang
- Department of Oral Surgery, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Ryoki Kobayashi
- Department of Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Mio Hagiwara-Hamano
- Department of Oral Surgery, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Tomoko Kurita-Ochiai
- Department of Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Masamichi Komiya
- Department of Oral Surgery, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
17
|
Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Front Immunol 2021; 12:768397. [PMID: 34925337 PMCID: PMC8675580 DOI: 10.3389/fimmu.2021.768397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Approximately 9 out of 10 adults have some form of periodontal disease, an infection-induced inflammatory disease of the tooth-supporting tissues. The initial form, gingivitis, often remains asymptomatic, but this can evolve into periodontitis, which is typically associated with halitosis, oral pain or discomfort, and tooth loss. Furthermore, periodontitis may contribute to systemic disorders like cardiovascular disease and type 2 diabetes mellitus. Control options remain nonspecific, time-consuming, and costly; largely relying on the removal of dental plaque and calculus by mechanical debridement. However, while dental plaque bacteria trigger periodontal disease, it is the host-specific inflammatory response that acts as main driver of tissue destruction and disease progression. Therefore, periodontal disease control should aim to alter the host's inflammatory response as well as to reduce the bacterial triggers. Vaccines may provide a potent adjunct to mechanical debridement for periodontal disease prevention and treatment. However, the immunopathogenic complexity and polymicrobial aspect of PD appear to complicate the development of periodontal vaccines. Moreover, a successful periodontal vaccine should induce protective immunity in the oral cavity, which proves difficult with traditional vaccination methods. Recent advances in mucosal vaccination may bridge the gap in periodontal vaccine development. In this review, we offer a comprehensive overview of mucosal vaccination strategies to induce protective immunity in the oral cavity for periodontal disease control. Furthermore, we highlight the need for additional research with appropriate and clinically relevant animal models. Finally, we discuss several opportunities in periodontal vaccine development such as multivalency, vaccine formulations, and delivery systems.
Collapse
Affiliation(s)
- Victor Vaernewyck
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
- Veterinary Institute for Regenerative Cures (VIRC) School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
18
|
Lee JS, Yoon S, Han SJ, Kim ED, Kim J, Shin HS, Seo KY. Eyedrop vaccination: an immunization route with promises for effective responses to pandemics. Expert Rev Vaccines 2021; 21:91-101. [PMID: 34788181 DOI: 10.1080/14760584.2022.2008246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mucosal vaccines have several advantages over parenteral vaccines. They induce both systemic and mucosal antigen-specific immune responses, allow easy administration, and bypass the need for trained medical personnel. AREAS COVERED Eye mucosa is a novel route of mucosal vaccine administration. Eyedrop vaccination induces systemic and mucosal immune responses similar to other forms of mucosal vaccines such as oral and intranasal vaccines. EXPERT OPINION Eyedrop vaccines are free of serious adverse side effects like the infiltration of CNS by pathogens. Studies over the years have shown promising results for eye drop vaccines against infectious agents like the influenza virus, Salmonella typhi, and Escherichia coli in animal models. Such efficacy and safety of eyedrop vaccination enable the application of eyedrop vaccines against other infectious diseases as well as chronic diseases. In this review of published literature, we examine the mechanism, efficacy, and safety of eyedrop vaccines and contemplate their role in times of a pandemic.
Collapse
Affiliation(s)
- Jihei Sara Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangchul Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Department of Medical Humanities and Social Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Do Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Hae-Sol Shin
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Korea Mouse Sensory Phenotyping Center (Kmspc), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Korea Mouse Sensory Phenotyping Center (Kmspc), Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
20
|
Bhuiyan MSA, Amin Z, Rodrigues KF, Saallah S, Shaarani SM, Sarker S, Siddiquee S. Infectious Bronchitis Virus (Gammacoronavirus) in Poultry Farming: Vaccination, Immune Response and Measures for Mitigation. Vet Sci 2021; 8:273. [PMID: 34822646 PMCID: PMC8623603 DOI: 10.3390/vetsci8110273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia;
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| |
Collapse
|
21
|
Hsieh MS, Hsu CW, Tu LL, Chai KM, Yu LL, Wu CC, Chen MY, Chiang CY, Liu SJ, Liao CL, Chen HW. Intranasal Vaccination With Recombinant Antigen-FLIPr Fusion Protein Alone Induces Long-Lasting Systemic Antibody Responses and Broad T Cell Responses. Front Immunol 2021; 12:751883. [PMID: 34707615 PMCID: PMC8543008 DOI: 10.3389/fimmu.2021.751883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
A simple formulation is urgently needed for mucosal vaccine development. We employed formyl peptide receptor-like 1 inhibitory protein (FLIPr), an FcγR antagonist secreted by Staphylococcus aureus, as a vector to target ovalbumin (OVA) to dendritic cells (DCs) via intranasal administration. Our results demonstrate that intranasal administration of recombinant OVA-FLIPr fusion protein (rOVA-FLIPr) alone efficiently delivers OVA to DCs in nasal lymphoid tissue. Subsequently, OVA-specific IgG and IgA antibodies in the circulatory system and IgA antibodies in mucosal tissue were detected. Importantly, activation of OVA-specific CD4+ and CD8+ T cells and induction of a broad-spectrum cytokine secretion profile were detected after intranasal administration of rOVA-FLIPr alone in immunocompetent C57BL/6 mice. Furthermore, we employed immunodeficient AG129 mice as a Zika virus infection model and demonstrated that intranasal administration of recombinant Zika virus envelope protein domain III-FLIPr fusion protein induced protective immune responses against the Zika virus. These results suggest that antigen-FLIPr fusion protein alone via intranasal administration can be applied to mucosal vaccine development.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ling-Ling Tu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Lu Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiao-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Dubois V, Locht C. Mucosal Immunization Against Pertussis: Lessons From the Past and Perspectives. Front Immunol 2021; 12:701285. [PMID: 34211481 PMCID: PMC8239240 DOI: 10.3389/fimmu.2021.701285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Background Current vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis. Objectives In this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized. Method The PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety. Results While over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials. Conclusion Three vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.
Collapse
Affiliation(s)
- Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
23
|
Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: Synergistic or alternative to intramuscular vaccines? Int J Pharm 2021; 603:120686. [PMID: 33964339 PMCID: PMC8099545 DOI: 10.1016/j.ijpharm.2021.120686] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
It is striking that all marketed SARS-CoV-2 vaccines are developed for intramuscular administration designed to produce humoral and cell mediated immune responses, preventing viremia and the COVID-19 syndrome. They have a high degree of efficacy in humans (70-95%) depending on the type of vaccine. However, little protection is provided against viral replication and shedding in the upper airways due to the lack of a local sIgA immune response, indicating a risk of transmission of virus from vaccinated individuals. A range of novel nasal COVID-19 vaccines are in development and preclinical results in non-human primates have shown a promising prevention of replication and shedding of virus due to the induction of mucosal immune response (sIgA) in upper and lower respiratory tracts as well as robust systemic and humoral immune responses. Whether these results will translate to humans remains to be clarified. An IM prime followed by an IN booster vaccination would likely result in a better well-rounded immune response, including prevention (or strong reduction) in viral replication in the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Lisbeth Illum
- IDentity, 19 Cavendish Crescent North, The Park, Nottingham, NG71BA, United Kingdom.
| |
Collapse
|
24
|
Henrique C, Falcão MAP, De Araújo Pimenta L, Maleski ALA, Lima C, Mitsunari T, Sampaio SC, Lopes-Ferreira M, Piazza RMF. Heat-Labile Toxin from Enterotoxigenic Escherichia coli Causes Systemic Impairment in Zebrafish Model. Toxins (Basel) 2021; 13:419. [PMID: 34204819 PMCID: PMC8231604 DOI: 10.3390/toxins13060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Heat-labile toxin I (LT-I), produced by strains of enterotoxigenic Escherichia coli (ETEC), causes profuse watery diarrhea in humans. Different in vitro and in vivo models have already elucidated the mechanism of action of this toxin; however, their use does not always allow for more specific studies on how the LT-I toxin acts in systemic tracts and intestinal cell lines. In the present work, zebrafish (Danio rerio) and human intestinal cells (Caco-2) were used as models to study the toxin LT-I. Caco-2 cells were used, in the 62nd passage, at different cell concentrations. LT-I was conjugated to FITC to visualize its transport in cells, as well as microinjected into the caudal vein of zebrafish larvae, in order to investigate its effects on survival, systemic traffic, and morphological formation. The internalization of LT-I was visualized in 3 × 104 Caco-2 cells, being associated with the cell membrane and nucleus. The systemic traffic of LT-I in zebrafish larvae showed its presence in the cardiac cavity, yolk, and regions of the intestine, as demonstrated by cardiac edema (100%), the absence of a swimming bladder (100%), and yolk edema (80%), in addition to growth limitation in the larvae, compared to the control group. There was a reduction in heart rate during the assessment of larval survival kinetics, demonstrating the cardiotoxic effect of LT-I. Thus, in this study, we provide essential new depictions of the features of LT-I.
Collapse
Affiliation(s)
- Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (C.H.); (T.M.)
| | - Maria Alice Pimentel Falcão
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | - Luciana De Araújo Pimenta
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.D.A.P.); (S.C.S.)
| | - Adolfo Luís Almeida Maleski
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | - Carla Lima
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | - Thais Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (C.H.); (T.M.)
| | - Sandra Coccuzzo Sampaio
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.D.A.P.); (S.C.S.)
| | - Mônica Lopes-Ferreira
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (M.A.P.F.); (A.L.A.M.); (C.L.)
| | | |
Collapse
|
25
|
Nakahashi-Ouchida R, Uchida Y, Yuki Y, Katakai Y, Yamanoue T, Ogawa H, Munesue Y, Nakano N, Hanari K, Miyazaki T, Saito Y, Umemoto S, Sawada SI, Mukerji R, Briles DE, Yasutomi Y, Akiyoshi K, Kiyono H. A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci. Vaccine 2021; 39:3353-3364. [PMID: 34016473 DOI: 10.1016/j.vaccine.2021.04.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Current polysaccharide-based pneumococcal vaccines are effective but not compatible with all serotypes of Streptococcus pneumoniae. We previously developed an adjuvant-free cationic nanogel nasal vaccine containing pneumococcal surface protein A (PspA), which is expressed on the surfaces of all pneumococcal serotypes. Here, to address the sequence diversity of PspA proteins, we formulated a cationic nanogel-based trivalent pneumococcal nasal vaccine and demonstrated the vaccine's immunogenicity and protective efficacy in macaques by using a newly developed nasal spray device applicable to humans. Nasal vaccination of macaques with cationic cholesteryl pullulan nanogel (cCHP)-trivalent PspA vaccine effectively induced PspA-specific IgGs that bound to pneumococcal surfaces and triggered complement C3 deposition. The immunized macaques were protected from pneumococcal intratracheal challenge through both inhibition of lung inflammation and a dramatic reduction in the numbers of bacteria in the lungs. These results demonstrated that the cCHP-trivalent PspA vaccine is an effective candidate vaccine against pneumococcal infections.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; HanaVax Inc., Tokyo 103-0012, Japan
| | - Yuko Katakai
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiromi Ogawa
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Yoshiko Munesue
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Nozomi Nakano
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Kouji Hanari
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | | | - Yuki Saito
- Toko Yakuhin Kogyo Co., Ltd., 930-0211, Japan
| | - Shingo Umemoto
- Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Faculty of Medicine, Department of Otorhinolaryngology and Head and Neck Surgery, Oita University, Oita 879-5593, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Reshmi Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, United States
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, United States
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; HanaVax Inc., Tokyo 103-0012, Japan; Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan; CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0063, United States.
| |
Collapse
|
26
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Gogoi H, Mansouri S, Jin L. The Age of Cyclic Dinucleotide Vaccine Adjuvants. Vaccines (Basel) 2020; 8:E453. [PMID: 32823563 PMCID: PMC7563944 DOI: 10.3390/vaccines8030453] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
As prophylactic vaccine adjuvants for infectious diseases, cyclic dinucleotides (CDNs) induce safe, potent, long-lasting humoral and cellular memory responses in the systemic and mucosal compartments. As therapeutic cancer vaccine adjuvants, CDNs induce potent anti-tumor immunity, including cytotoxic T cells and NK cells activation that achieve durable regression in multiple mouse models of tumors. Clinical trials are ongoing to fulfill the promise of CDNs (ClinicalTrials.gov: NCT02675439, NCT03010176, NCT03172936, and NCT03937141). However, in October 2018, the first clinical data with Merck's CDN MK-1454 showed zero activity as a monotherapy in patients with solid tumors or lymphomas (NCT03010176). Lately, the clinical trial from Aduro's CDN ADU-S100 monotherapy was also disappointing (NCT03172936). The emerging hurdle in CDN vaccine development calls for a timely re-evaluation of our understanding on CDN vaccine adjuvants. Here, we review the status of CDN vaccine adjuvant research, including their superior adjuvant activities, in vivo mode of action, and confounding factors that affect their efficacy in humans. Lastly, we discuss the strategies to overcome the hurdle and advance promising CDN adjuvants in humans.
Collapse
Affiliation(s)
| | | | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (H.G.); (S.M.)
| |
Collapse
|
28
|
Lan H, Suzuki H, Nagatake T, Hosomi K, Ikegami K, Setou M, Kunisawa J. Impaired mucociliary motility enhances antigen-specific nasal IgA immune responses to a cholera toxin-based nasal vaccine. Int Immunol 2020; 32:559-568. [PMID: 32347929 PMCID: PMC9262165 DOI: 10.1093/intimm/dxaa029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
Nasal mucosal tissues are equipped with physical barriers, mucus and cilia, on their surface. The mucus layer captures inhaled materials, and the cilia remove the inhaled materials from the epithelial layer by asymmetrical beating. The effect of nasal physical barriers on the vaccine efficacy remains to be investigated. Tubulin tyrosine ligase-like family, member 1 (Ttll1) is an essential enzyme for appropriate movement of the cilia on respiratory epithelium, and its deficiency (Ttll1-KO) leads to mucus accumulation in the nasal cavity. Here, when mice were intra-nasally immunized with pneumococcal surface protein A (PspA, as vaccine antigen) together with cholera toxin (CT, as mucosal adjuvant), Ttll1-KO mice showed higher levels of PspA-specific IgA in the nasal wash and increased numbers of PspA-specific IgA-producing plasma cells in the nasal passages when compared with Ttll1 hetero (He) mice. Mucus removal by N-acetylcysteine did not affect the enhanced immune responses in Ttll1-KO mice versus Ttll1-He mice. Immunohistological and flow cytometry analyses revealed that retention time of PspA in the nasal cavity in Ttll1-KO mice was longer than that in Ttll1-He mice. Consistently, uptake of PspA by dendritic cells was higher in the nasopharynx-associated lymphoid tissue (NALT) of Ttll1-KO mice than that of Ttll1-He mice. These results indicate that the ciliary function of removing vaccine antigen from the NALT epithelial layer is a critical determinant of the efficacy of nasal vaccine.
Collapse
Affiliation(s)
- Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Ikegami
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Kobe University, Hyogo, Japan
- Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Moseman EA, Blanchard AC, Nayak D, McGavern DB. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci Immunol 2020; 5:eabb1817. [PMID: 32503876 PMCID: PMC7416530 DOI: 10.1126/sciimmunol.abb1817] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The neuroepithelium is a nasal barrier surface populated by olfactory sensory neurons that detect odorants in the airway and convey this information directly to the brain via axon fibers. This barrier surface is especially vulnerable to infection, yet respiratory infections rarely cause fatal encephalitis, suggesting a highly evolved immunological defense. Here, using a mouse model, we sought to understand the mechanism by which innate and adaptive immune cells thwart neuroinvasion by vesicular stomatitis virus (VSV), a potentially lethal virus that uses olfactory sensory neurons to enter the brain after nasal infection. Fate-mapping studies demonstrated that infected central nervous system (CNS) neurons were cleared noncytolytically, yet specific deletion of major histocompatibility complex class I (MHC I) from these neurons unexpectedly had no effect on viral control. Intravital imaging studies of calcium signaling in virus-specific CD8+ T cells revealed instead that brain-resident microglia were the relevant source of viral peptide-MHC I complexes. Microglia were not infected by the virus but were found to cross-present antigen after acquisition from adjacent neurons. Microglia depletion interfered with T cell calcium signaling and antiviral control in the brain after nasal infection. Collectively, these data demonstrate that microglia provide a front-line defense against a neuroinvasive nasal infection by cross-presenting antigen to antiviral T cells that noncytolytically cleanse neurons. Disruptions in this innate defense likely render the brain susceptible to neurotropic viruses like VSV that attempt to enter the CNS via the nose.
Collapse
Affiliation(s)
- E Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Alexa C Blanchard
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Hajam IA, Senevirathne A, Hewawaduge C, Kim J, Lee JH. Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet Res 2020; 51:37. [PMID: 32143695 PMCID: PMC7060564 DOI: 10.1186/s13567-020-00762-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022] Open
Abstract
Chitosan nanoparticles (CNPs) represent an efficient vaccination tool to deliver immunogenic antigens to the antigen-presenting cells (APCs), which subsequently stimulate protective immune responses against infectious diseases. Herein, we prepared CNPs encapsulating mRNA molecules followed by surface coating with conserved H9N2 HA2 and M2e influenza proteins. We demonstrated that CNPs efficiently delivered mRNA molecules into APCs and had effectively penetrated the mucosal barrier to reach to the immune initiation sites. To investigate the potential of CNPs delivering influenza antigens to stimulate protective immunity, we intranasally vaccinated chickens with empty CNPs, CNPs delivering HA2 and M2e in both mRNA and protein formats (CNPs + RNA + Pr) or CNPs delivering antigens in protein format only (CNPs + Pr). Our results demonstrated that chickens vaccinated with CNPs + RNA + Pr elicited significantly (p < 0.05) higher systemic IgG, mucosal IgA antibody responses and cellular immune responses compared to the CNPs + Pr vaccinated group. Consequently, upon challenge with either H7N9 or H9N2 avian influenza viruses (AIVs), efficient protection, in the context of viral load and lung pathology, was observed in chickens vaccinated with CNPs + RNA + Pr than CNPs + Pr vaccinated group. In conclusion, we show that HA2 and M2e antigens elicited a broad spectrum of protection against AIVs and incorporation of mRNAs in vaccine formulation is an effective strategy to induce superior immune responses.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Chamit Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jehyoung Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
31
|
Abstract
Mucosal surfaces are the interface between the host’s internal milieu and the external environment, and they have dual functions, serving as physical barriers to foreign antigens and as accepting sites for vital materials. Mucosal vaccines are more favored to prevent mucosal infections from the portal of entry. Although mucosal vaccination has many advantages, licensed mucosal vaccines are scarce. The most widely studied mucosal routes are oral and intranasal. Licensed oral and intranasal vaccines are composed mostly of whole cell killed or live attenuated microorganisms serving as both delivery systems and built-in adjuvants. Future mucosal vaccines should be made with more purified antigen components, which will be relatively less immunogenic. To induce robust protective immune responses against well-purified vaccine antigens, an effective mucosal delivery system is an essential requisite. Recent developments in biomaterials and nanotechnology have enabled many innovative mucosal vaccine trials. For oral vaccination, the vaccine delivery system should be able to stably carry antigens and adjuvants and resist harsh physicochemical conditions in the stomach and intestinal tract. Besides many nano/microcarrier tools generated by using natural and chemical materials, the development of oral vaccine delivery systems using food materials should be more robustly researched to expand vaccine coverage of gastrointestinal infections in developing countries. For intranasal vaccination, the vaccine delivery system should survive the very active mucociliary clearance mechanisms and prove safety because of the anatomical location of nasal cavity separated by a thin barrier. Future mucosal vaccine carriers, regardless of administration routes, should have certain common characteristics. They should maintain stability in given environments, be mucoadhesive, and have the ability to target specific tissues and cells.
Collapse
|
32
|
Komati S, Swain S, Rao MEB, Jena BR, Dasi V. Mucoadhesive Multiparticulate Drug Delivery Systems: An Extensive Review of Patents. Adv Pharm Bull 2019; 9:521-538. [PMID: 31857957 PMCID: PMC6912179 DOI: 10.15171/apb.2019.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/09/2022] Open
Abstract
Innovations in pharmaceutical research are striving for designing newer drug therapies to eradicate deadly diseases. Strategies for such inventions always flourish with keys and objectives of minimal adverse effects and effective treatment. Recent trends in pharmaceutical technology specify that mucoadhesive drug delivery system is particularly appropriate than oral control release, for getting local systematic delivery of drugs in GIT for an extended interval of time at a predetermined rate. However, it is somehow expensive and unpleasant sensation for some patients, but still it is needful for getting short enzymatic activity, simple administration without pain and evasion of fast pass metabolism. Usually the vehicles employed in drug delivery of mucoadhesive system have a significant impact that draws further attention to potential benefits like improved bioavailability of therapeutic agents, extensive drug residence time at the site of administration and a comparatively faster drug uptake into the systemic circulation. The drug release from mucoadhesive multiparticulates is contingent on several types of factors comprising carrier need to produce the multiparticles and quantity of medication drug contained in them. Mucoadhesion is characterized by selected theories and mechanisms. Various strategies emergent in mucoadhesive multiparticulate drug delivery system (MMDDS) by in-vitro as well as ex-vivo description and characterization are also critically discussed. Apart from these, the primary focus during this review is to highlight current patents, clinical status, and regulatory policy for enhancement of mucoadhesive multi-particulate drug delivery system in the present scenario.
Collapse
Affiliation(s)
- Someshwar Komati
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| | - Suryakanta Swain
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Muddana Eswara Bhanoji Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Khodasinghi, Berhampur-760 010, Ganjam, Odisha, India
| | - Bikash Ranjan Jena
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Vishali Dasi
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| |
Collapse
|
33
|
Nagasawa Y, Kiku Y, Sugawara K, Hirose A, Kai C, Kitano N, Takahashi T, Nochi T, Aso H, Sawada SI, Akiyoshi K, Hayashi T. Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet Res 2019; 15:286. [PMID: 31399125 PMCID: PMC6688226 DOI: 10.1186/s12917-019-2025-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bovine mastitis caused by Staphylococcus aureus (S. aureus) is extremely difficult to control and new methods for its prevention and management are required. Nasal vaccines may prevent initial bovine mastitis infection caused by S. aureus. However, limited information is available regarding induction of mucosal immune response through nasal immunization with antigen and its suppression of S. aureus multiplication during bovine mastitis. This study sought to investigate whether induction of immunoglobulin A (IgA) in milk by nasal immunization could suppress multiplication of S. aureus in the bovine udder. Results Nasal immunization with formalin-killed S. aureus conjugated with a cationic cholesteryl-group-bearing pullulan-nanogel was performed. Anti-S. aureus-specific IgA antibodies were significantly more abundant in the milk of immunized cows than in non-immunized animals (P < 0.05). S. aureus counts in the quarter were negative in both non-immunized and nasal-immunized cows 1 week after mock infusion. In S. aureus-infused quarters, S. aureus multiplication was significantly suppressed in immunized compared with non-immunized cows (P < 0.05). Furthermore, a significant negative correlation was found between S. aureus-specific IgA antibodies and S. aureus counts in infused quarters of both non-immunized and nasal-immunized cows (r = − 0.811, P < 0.01). Conclusion In conclusion, the present study demonstrates that S. aureus-specific IgA antibodies in milk successfully suppressed the multiplication of S. aureus in infected bovine udders. Although the exact mechanism explaining such suppressive effect remains to be elucidated, nasal vaccines that can induce humoral immunity may help prevent initial infection with S. aureus and the onset of bovine mastitis. Electronic supplementary material The online version of this article (10.1186/s12917-019-2025-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuya Nagasawa
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Yoshio Kiku
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Kazue Sugawara
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Aya Hirose
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Chiaki Kai
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Nana Kitano
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Toshihiko Takahashi
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomohito Hayashi
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
34
|
Mucosal immune responses induced by oral administration recombinant Bacillus subtilis expressing the COE antigen of PEDV in newborn piglets. Biosci Rep 2019; 39:BSR20182028. [PMID: 30808716 PMCID: PMC6418403 DOI: 10.1042/bsr20182028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious disease in newborn piglets and causes substantial economic losses in the world. PED virus (PEDV) spreads by fecal–oral contact and can be prevented by oral immunization. Therefore, it is necessary to develop an effective oral vaccine against PEDV infection. Currently, Bacillus subtilis as recombinant vaccine carrier has been used for antigen delivery and proved well in immune effect and safety. The present study evaluated the immunogenicity of recombinant Bacillus subtilis (B. subtilis-RC) in piglets via oral administration. After oral immunization in piglets, B. subtilis-RC significantly increased the local mucosal immune responses. Oral administration with B. subtilis-RC significantly improved the level of specific mucosal immunoglobulin A (IgA) antibodies against PEDV infection, through enlarging the area of Peyer’s patches (PPs) and increasing the number of ileum IgA+ secreting (SIgA) cells. In the meantime, B. subtilis-RC remarkably increased the number of intraepithelial lymphocytes (IELs). We also observed that oral administration of B. subtilis-RC significantly increased CD3+T lymphocytes’ numbers and up-regulated the ratio of CD4+/CD8+ T cells. Furthermore, high titers of specific serum immunoglobulin G (IgG) revealed satisfactory systemic immune response against PEDV infection. In summary, our study demonstrated that oral administration of B. subtilis-RC could trigger a high level of local and systemic immune responses and would be a promising candidate vaccine against PEDV infection in piglets.
Collapse
|
35
|
Creighton RL, Woodrow KA. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv Healthc Mater 2019; 8:e1801180. [PMID: 30537400 PMCID: PMC6476557 DOI: 10.1002/adhm.201801180] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The oral mucosa is a minimally invasive and immunologically rich site that is underutilized for vaccination due to physiological and immunological barriers. To develop effective oral mucosal vaccines, key questions regarding vaccine residence time, uptake, adjuvant formulation, dose, and delivery location must be answered. However, currently available dosage forms are insufficient to address all these questions. An ideal oral mucosal vaccine delivery system would improve both residence time and epithelial permeation while enabling efficient delivery of physicochemically diverse vaccine formulations. Microneedles have demonstrated these capabilities for dermal vaccine delivery. Additionally, microneedles enable precise control over delivery properties like depth, uniformity, and dosing, making them an ideal tool to study oral mucosal vaccination. Select studies have demonstrated the feasibility of microneedle-mediated oral mucosal vaccination, but they have only begun to explore the broad functionality of microneedles. This review describes the physiological and immunological challenges related to oral mucosal vaccine delivery and provides specific examples of how microneedles can be used to address these challenges. It summarizes and compares the few existing oral mucosal microneedle vaccine studies and offers a perspective for the future of the field.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
36
|
|
37
|
Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting T RM cells. Mucosal Immunol 2018; 11:1763-1776. [PMID: 30127384 DOI: 10.1038/s41385-018-0080-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 02/04/2023]
Abstract
Current acellular pertussis (aP) vaccines induce strong antibody and Th2 responses but fail to protect against nasal colonization and transmission of Bordetella pertussis. Furthermore, immunity wanes rapidly after immunization. We have developed a novel adjuvant combination (called LP-GMP), comprising c-di-GMP, an intracellular receptor stimulator of interferon genes (STING) agonist, and LP1569, a TLR2 agonist from B. pertussis, which synergistically induces production of IFN-β, IL-12 and IL-23, and maturation of dendritic cells. Parenteral immunization of mice with an experimental aP vaccine formulated with LP-GMP promoted Th1 and Th17 responses and conferred protection against lung infection with B. pertussis. Intranasal immunization with the same aP vaccine-induced potent B. pertussis-specific Th17 responses and IL-17-secreting respiratory tissue-resident memory (TRM) CD4 T cells, and conferred a high level of protection against nasal colonization as well as lung infection, which was sustained for at least 10 months. Furthermore, long-term protection against nasal colonization with B. pertussis correlated with the number of IL-17-secreting TRM cells in nasal tissue. Our study has identified an approach for inducing IL-17-secreting TRM cells that sustain sterilizing immunity against nasal colonization of mice with B. pertussis, and could form the basis of a third generation pertussis vaccine for humans.
Collapse
|
38
|
Xu J, Li S, Wang X, Liu J, Shan P, Zhou Y, Zhao J, Wang Z, Xu C, Chen M, Chen Z, Zhao K, Qu D. Systemic and mucosal humoral immune responses induced by the JY-adjuvanted nasal spray H7N9 vaccine in mice. Emerg Microbes Infect 2018; 7:140. [PMID: 30076293 PMCID: PMC6076272 DOI: 10.1038/s41426-018-0133-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Since the first case of human avian influenza A (H7N9) virus infection in 2013, five H7N9 epidemics have occurred in China, all of which caused severe diseases, including pneumonia and acute respiratory distress syndrome, and the fatality rates of these epidemics were as high as 30-40%. To control the prevalence of H7N9 influenza, an effective vaccine is urgently needed. In the present study, we used chitosan and recombinant human interleukin-2 as an adjuvant (JY) to promote the systemic and mucosal immune responses induced by the H7N9 vaccine. Mice were immunized intranasally with the inactivated split influenza A (H7N9) virus (A/Shanghai/02/2013) vaccine with or without JY. The hemagglutination inhibition (HI) titers of mice immunized with the JY-adjuvanted vaccine were significantly higher than those of mice immunized with the vaccine without adjuvant (21.11 ± 9.58 vs. 5.04 ± 3, P < 0.05). The JY-adjuvanted H7N9 nasal spray vaccine induced higher HI titers (8 ± 0.82 vs. 6.7 ± 0.67, P = 0.0035) than those did the poly (I:C)-adjuvanted H7N9 vaccine or the LTB-adjuvanted H7N9 vaccine (8 ± 0.82 vs. 6.9 ± 0.88, P = 0.0186). The optimal immunization regimen for the nasal spray H7N9 vaccine was determined to be a 21-day interval between the primary immunization and booster, with a dose of 4.5 μg hemagglutinin per mouse. The immunogenicities of the nasal spray H7N9 vaccine and intramuscular vaccine (containing only the inactivated split virus) were compared in mice. Two doses of the nasal spray H7N9 vaccine induced higher titers of HI (6.7 ± 0.67 vs. 5.3 ± 1.16, P = 0.004) and anti-HA IgG in sera (19.26 ± 0.67 vs. 13.97 ± 0.82, P < 0.0001) and of anti-HA sIgA (7.13 ± 2.54 vs. 0, P = 0.0000) in bronchoalveolar lavage fluid (BALF) than one dose of intramuscular H7N9 vaccine 3 weeks after the last immunization. However, when we immunized the mice with two doses of both vaccines separately, the nasal spray H7N9 vaccine induced higher titers of anti-HA IgG (19.26 ± 0.67 vs. 17.56 ± 0.57, P < 0.0001) and anti-HA sIgA (7.13 ± 2.54 vs. 4.02 ± 0.33, P = 0.0026) than did the intramuscular H7N9 vaccine, and there was no difference in HI titer between the two groups (P = 0.3745). This finding indicates that the JY-adjuvanted nasal spray H7N9 vaccine induced not only the systemic immune response but also a local mucosal response, which may improve the efficacy of H7N9 influenza prevention through respiratory tract transmission.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/immunology
- Female
- Humans
- Immunity, Humoral
- Immunity, Mucosal
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Nasal Sprays
- Vaccination
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China
- China National Vaccine and Serum Institute, Beijing, China
| | - Shuxiang Li
- China National Vaccine and Serum Institute, Beijing, China
| | - Xinyi Wang
- China National Vaccine and Serum Institute, Beijing, China
| | - Jing Liu
- China National Vaccine and Serum Institute, Beijing, China
| | - Pu Shan
- China National Vaccine and Serum Institute, Beijing, China
| | - Ya Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhao
- Beijing JDK Bio-Tech Institute, Beijing, China
| | - Zhibiao Wang
- China National Vaccine and Serum Institute, Beijing, China
| | - Cui Xu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Meili Chen
- Beijing Bio-Institute Biological Products Co., Ltd., Beijing, China
| | - Ze Chen
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Kai Zhao
- China National Vaccine and Serum Institute, Beijing, China.
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Mohammadzadeh M, Pourakbari B, Mahmoudi S, Keshtkar A, Habibi-Anbouhi M, Mamishi S. Efficacy of whole-cell pneumococcal vaccine in mice: A systematic review and meta-analysis. Microb Pathog 2018; 122:122-129. [PMID: 29908308 DOI: 10.1016/j.micpath.2018.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/14/2018] [Accepted: 06/13/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Despite the fact that pneumococcal conjugate vaccines (PCVs) have significantly reduced the rate of invasive pneumococcal diseases through the use of vaccine serotypes, infection with Streptococcus pneumoniae remains a major public health hazard. Serotype-independent vaccines that are economically viable species of common protein antigens such as whole-cell vaccines (WCVs) are needed. Considering the ongoing debate about the effectiveness of WCVs, a systematic literature review and meta-analysis was carried out to determine the efficacy of WCVs against colonization in mice. MATERIAL AND METHODS A systematic review was undertaken of published studies on the protection (colonized/uncolonized) of whole cell pneumococcal vaccine in mice. The search terms used were "whole cell vaccine" and "Streptococcus pneumoniae" in PubMed, Google Scholar, Embase, Web of Science and Scopus engines. Data was extracted from original publications and a meta-analysis was performed on studies divided into sub-groups by the number of inoculations, type of sample, type of adjuvant, time of sampling, design of study and quality of study. RESULTS Ten eligible articles published from 2000 to 2016 were included in this review. The meta-analysis was performed on eight out of 10 studies and demonstrated that the estimated pooled risk ratios (RRs) for comparison of colonization between the vaccinated and unvaccinated mice for outcomes 1 and 2 were 0.18 and 0.24, respectively. Lower RRs were observed in sub-groups that were inoculated with vaccines three times, those using cholera toxin (CT) adjuvants and those obtained as tracheal specimens from the mice. CONCLUSIONS The best protocol for use of a WCV is its application with CT adjuvant administered intranasally in three inoculations at doses of 10⁸ CFU. Further studies performed under similar conditions to obtain accurate results on the effectiveness of this vaccine are recommended.
Collapse
Affiliation(s)
- Mona Mohammadzadeh
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Babak Pourakbari
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shima Mahmoudi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pediatric Infectious Disease, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Abstract
Most pathogens gain access to the human body and initiate systemic infections through mucosal sites. A large number of currently marketed licensed vaccines are parenterally administered; they generate strong systemic immunity but not mucosal immunity. Nasal vaccination is an appealing strategy for the induction of mucosal-specific immunity; however, its development is mostly challenged by several factors, such as inefficient antigen uptake, its rapid mucociliary clearance, size-restricted permeation across epithelial barriers and absence of safe human mucosal adjuvants. Therefore, a safer mucosal-adjuvanting strategy or efficient mucosal delivery platform is much warranted. This review summarizes challenges and the rationale for nasal vaccine development with a special focus on the use of nanoparticles based on polymers and lipids for mucosal vaccine delivery.
Collapse
|
41
|
Mucosal and systemic immune response to sublingual or intranasal immunization with phosphorylcholine. Auris Nasus Larynx 2018; 45:273-280. [DOI: 10.1016/j.anl.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/25/2016] [Accepted: 04/12/2017] [Indexed: 11/21/2022]
|
42
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
43
|
LT adjuvant modulates epitope specificity and improves the efficacy of murine antibodies elicited by sublingual vaccination with the N-terminal domain of Streptococcus mutans P1. Vaccine 2017; 35:7273-7282. [PMID: 29146379 DOI: 10.1016/j.vaccine.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
In this study, we evaluated the immunogenicity, protective efficacy and peptide-based immune signatures of antibodies raised in mice after sublingual immunization with a recombinant form of the P1 (aka AgI/II, PAc) adhesin (P139-512) of Streptococcus mutans, a major etiological agent of dental caries. Sublingual administration of P139-512 in combination with the mucosal adjuvant LTK4R (a derivative of heat-labile LT toxin) induced strong and long-lasting systemic and mucosal immune responses. Incorporation of the adjuvant resulted in an enhancement of the anti-adhesive and anti-colonization activity against S. mutans as evaluated both under in vitro and in vivo conditions. Incorporation of the adjuvant to the vaccine formulation also changed the epitope specificity of the induced antibodies as determined by immunological signatures of sera collected from vaccinated mice. Use of a peptide microarray library led to the identification of peptide targets recognized by antibodies in serum samples with enhanced anti-adhesive effects. Altogether, the results presented herein showed that the sublingual administration of a P1-based subunit vaccine represents a promising approach for the prevention of dental caries caused by S. mutans. In addition, the present study disclosed the role of adjuvants on the epitope specificity and functionality of antibodies raised by subunit vaccines.
Collapse
|
44
|
Martin TL, Jee J, Kim E, Steiner HE, Cormet-Boyaka E, Boyaka PN. Sublingual targeting of STING with 3'3'-cGAMP promotes systemic and mucosal immunity against anthrax toxins. Vaccine 2017; 35:2511-2519. [PMID: 28343781 DOI: 10.1016/j.vaccine.2017.02.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
Anthrax is caused by Bacillus anthracis, a zoonotic bacterial pathogen affecting humans and livestock worldwide. The current human anthrax vaccine, anthrax vaccine adsorbed (AVA), is an injected vaccine with a cumbersome administration schedule and fails to promote mucosal immunity. Bacterial enterotoxins, which stimulate production of the cyclic nucleotide cAMP are effective experimental mucosal vaccine adjuvants, but their inherent toxicity has precluded their use in humans. We investigated whether cyclic dinucleotides that target Stimulator of Interferon Gamma Genes (STING) in mammalian cells could represent an alternative to bacterial enterotoxins as adjuvant for sublingual immunization and promotion of mucosal immunity and secretory IgA responses in addition to systemic immunity. We found that sublingual immunization of mice with Bacillus anthracis protective antigen (PA) and the STING ligand 3'3'-cGAMP promotes PA-specific serum IgG Ab responses of the same magnitude as those induced after immunization with PA and the experimental adjuvant cholera toxin (CT). Interestingly, this STING ligand also promoted serum anti-PA IgA and IgA-producing cells in the bone marrow. Furthermore, the saliva of mice immunized with the STING ligand exhibited similar levels of PA-specific IgA Abs as groups immunized with CT as adjuvant. The adjuvant activity of 3'3'-cGAMP was associated with mixed Th1, Th2, and Th17 responses. This STING ligand also induced rapid IFN-β and IL-10 responses in sublingual tissues and cervical lymph nodes, and TGF-β responses in the cervical lymph nodes, which could contribute to promoting IgA responses after sublingual immunization.
Collapse
Affiliation(s)
- Tara L Martin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Junbae Jee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Haley E Steiner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
45
|
Ren ST, Zhang XM, Sun PF, Sun LJ, Guo X, Tian T, Zhang J, Guo QY, Li X, Guo LJ, Che J, Wang B, Zhang H. Intranasal Immunization Using Mannatide as a Novel Adjuvant for an Inactivated Influenza Vaccine and Its Adjuvant Effect Compared with MF59. PLoS One 2017; 12:e0169501. [PMID: 28052136 PMCID: PMC5215226 DOI: 10.1371/journal.pone.0169501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Intranasal vaccination is more potent than parenteral injection for the prevention of influenza. However, because the poor efficiency of antigen uptake across the nasal mucosa is a key issue, immunostimulatory adjuvants are essential for intranasal vaccines. The immunomodulator mannatide or polyactin (PA) has been used for the clinical treatment of impaired immunity in China, but its adjuvant effect on an inactivated trivalent influenza vaccine (ITIV) via intranasal vaccination is unclear. To explore the adjuvant effect of PA, an inactivated trivalent influenza virus with or without PA or MF59 was instilled intranasally once a week in BALB/c mice. Humoral immunity was assessed by both the ELISA and hemagglutination inhibition (HI) methods using antigen-specific antibodies. Splenic lymphocyte proliferation and the IFN-γ level were measured to evaluate cell-mediated immunity. The post-vaccination serum HI antibody geometric mean titers (GMTs) for the H1N1 and H3N2 strains, antigen-specific serum IgG and IgA GMTs, mucosal SIgA GMT, splenic lymphocyte proliferation, and IFN-γ were significantly increased in the high-dose PA-adjuvanted vaccine group. The seroconversion rate and the mucosal response for the H3N2 strain were significantly elevated after high-dose PA administration. These adjuvant effects of high-dose PA for the influenza vaccine were comparable with those of the MF59 adjuvant, and abnormal signs or pathological changes were not found in the evaluated organs. In conclusion, PA is a novel mucosal adjuvant for intranasal vaccination with the ITIV that has safe and effective mucosal adjuvanticity in mice and successfully induces both serum and mucosal antibody responses and a cell-mediated response.
Collapse
Affiliation(s)
- Shu-Ting Ren
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- * E-mail: (STR); (HZ); (BW)
| | - Xue-Mei Zhang
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Peng-Fei Sun
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Pathology, Xi’an City Center Hospital, Xi’an, China
| | - Li-Juan Sun
- Reagent R&D Dep. Scientific Research Management Center, Capital Bio Technology, Beijing, China
| | - Xue Guo
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Tian Tian
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Qi-Yuan Guo
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Xue Li
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Li-Jun Guo
- Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Jin Che
- Therapeutic Vaccines Engineering Center of Shaanxi Province, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bing Wang
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Therapeutic Vaccines Engineering Center of Shaanxi Province, Xi’an Jiaotong University Health Science Center, Xi’an, China
- * E-mail: (STR); (HZ); (BW)
| | - Hui Zhang
- Department of Pharmacy, Xi’an Medical University Health Science Center, Xi’an, China
- * E-mail: (STR); (HZ); (BW)
| |
Collapse
|
46
|
Sasaki E, Kuramitsu M, Momose H, Kobiyama K, Aoshi T, Yamada H, Ishii KJ, Mizukami T, Hamaguchi I. A novel vaccinological evaluation of intranasal vaccine and adjuvant safety for preclinical tests. Vaccine 2017; 35:821-830. [PMID: 28063707 DOI: 10.1016/j.vaccine.2016.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
Vaccines are administered to healthy humans, including infants, so the safety and efficacy must be very high. Therefore, evaluating vaccine safety in preclinical and clinical studies, according to World Health Organization guidelines, is crucial for vaccine development and clinical use. A change in the route of administration is considered to alter a vaccine's immunogenicity. Several adjuvants have also been developed and approved for use in vaccines. However, the addition of adjuvants to vaccines may cause unwanted immune responses, including facial nerve paralysis and narcolepsy. Therefore, a more accurate and comprehensive strategy must be used to develope next-generation vaccines for ensuring vaccine safety. Previously, we have developed a system with which to evaluate vaccine safety in rats using a systematic vaccinological approach and 20 marker genes. In this study, we developed a safety evaluation system for nasally administered influenza vaccines and adjuvanted influenza vaccines using these marker genes. Expression of these genes increased dose-dependent manner when mice were intranasally administered the toxicity reference vaccine. When the adjuvant CpG K3 or a CpG-K3-combined influenza vaccine was administered intranasally, marker gene expression increased in a CpG-K3-dose-dependent way. A histopathological analysis indicated that marker gene expression correlated with vaccine- or adjuvant-induced phenotypic changes in the lung and nasal mucosa. We believe that the marker genes expression analyses will be useful in preclinical testing, adjuvant development, and selecting the appropriate dose of adjuvant in nasal administration vaccines.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Taiki Aoshi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institutes of Biomedical, Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
47
|
Hajishengallis G, Arce S, Gockel CM, Connell TD, Russell MW. Immunomodulation with Enterotoxins for the Generation of Secretory Immunity or Tolerance: Applications for Oral Infections. J Dent Res 2016; 84:1104-16. [PMID: 16304439 DOI: 10.1177/154405910508401205] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The heat-labile enterotoxins, such as cholera toxin (CT), and the labile toxins types I and II (LT-I and LT-II) of Escherichia coli have been extensively studied for their immunomodulatory properties, which result in the enhancement of immune responses. Despite superficial similarity in structure, in which a toxic A subunit is coupled to a pentameric binding B subunit, different toxins have different immunological properties. Administration of appropriate antigens admixed with or coupled to these toxins by oral, intranasal, or other routes in experimental animals induces mucosal IgA and circulating IgG antibodies that have protective potential against a variety of enteric, respiratory, or genital infections. These include the generation of salivary antibodies that may protect against colonization with mutans streptococci and the development of dental caries. However, exploitation of these adjuvants for human use requires an understanding of their mode of action and the separation of their desirable immunomodulatory properties from their toxicity. Recent findings have revealed that adjuvant action is not critically dependent upon the enzymic activity of the A subunits, and that the isolated B subunits may exert different effects on cells of the immune system than do the intact toxins. Interaction of the toxins with immunocompetent cells is not exclusively dependent upon their conventional ganglioside receptors. Immunomodulatory effects have been observed on dendritic cells, macrophages, CD4+ and CD8+ T-cells, and B-cells. Numerous factors—including the precise form of the toxin adjuvant, properties of the antigen, whether and how they are coupled, route of administration, and species of animal model—affect the outcome, whether this is enhanced humoral and cellular immunity, or specific induced tolerance toward the antigen.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, Immunology, and Parasitology, and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include ease of administration without needles that reduces issues associated with needlestick injuries and disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus should be brought to designing delivery strategies that take into account the broad range of diseases, populations and healthcare delivery settings that stand to benefit from this unique mucosal route.
Collapse
Affiliation(s)
- Helmy Yusuf
- a School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| | - Vicky Kett
- b School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| |
Collapse
|
49
|
Farhadi T, Ovchinnikov RS, Ranjbar MM. In silico designing of some agonists of toll-like receptor 5 as a novel vaccine adjuvant candidates. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-016-0138-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Saito S, Ainai A, Suzuki T, Harada N, Ami Y, Yuki Y, Takeyama H, Kiyono H, Tsukada H, Hasegawa H. The effect of mucoadhesive excipient on the nasal retention time of and the antibody responses induced by an intranasal influenza vaccine. Vaccine 2016; 34:1201-7. [PMID: 26802605 DOI: 10.1016/j.vaccine.2016.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/14/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Recently, we reported that intranasal vaccination of humans with whole inactivated influenza vaccine in the absence of mucosal adjuvant induced neutralizing antibody responses in the serum and nasal mucus. The mucoadhesive excipient carboxy-vinyl polymer (CVP) increases the viscosity and therefore mucoadhesiveness of intranasal medicaments and is an authorized excipient in Japan. In the present study, we analyzed the effect of adding CVP on intranasal whole inactivated influenza vaccine antigen dynamics and antibody responses. METHODS Mice and nonhuman primates (NHPs) were intranasally administered the [(18)F]-radiolabeled vaccine and subjected to positron emission tomography analysis for 6h. Dendritic cells were stimulated in vitro with the vaccine mixed with or without a mucosal adjuvant (Ampligen) and/or CVP, after which the tumor necrosis factor (TNF)-α and interferon (IFN)-β levels in the supernatants were measured. Cynomolgus monkeys were immunized intranasally with the vaccine mixed with Ampligen and/or CVP and their vaccine-specific serum IgG and IgA titers were measured on days 0 and 33. RESULTS The vaccine was retained significantly longer in the nasal cavity of both mice and NHPs when it was delivered with CVP rather than PBS. Accumulation of the radiolabeled vaccine in the central nervous system was not detected in either model regardless of whether CVP was used. CVP only very weakly increased the TNF-α production of vaccine-stimulated dendritic cells. IFN-β production was not observed regardless of the presence or absence of CVP. CVP increased the vaccine-specific IgA antibody responses of the intranasally vaccinated cynomolgus macaques. CONCLUSION CVP increased intranasal retention of whole inactivated influenza vaccine, did not promote antigen redirection to the central nervous system, and improved mucosal antibody responses. The mechanism probably relates to its mucoadhesive properties rather than its ability to directly stimulate the immune system. Intranasal vaccines with CVP may be a promising candidate vaccine formulation for humans.
Collapse
Affiliation(s)
- Shinji Saito
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Norihiro Harada
- PET Center, Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Yasushi Ami
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hideo Tsukada
- PET Center, Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|