1
|
Oakes A, Liu Y, Dubielecka PM. Complement or Insult: the emerging link between complement cascade deficiencies and pathology of myeloid malignancies. J Leukoc Biol 2024:qiae130. [PMID: 38836653 DOI: 10.1093/jleuko/qiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The complement cascade is an ancient and highly conserved arm of the immune system. The accumulating evidence highlights elevated activity of the complement cascade in cancer microenvironment and emphasizes its effects on the immune, cancer and cancer stroma cells, pointing to a role in inflammation-mediated etiology of neoplasms. The role the cascade plays in development, progression and relapse of solid tumors is increasingly recognized, however its role in hematological malignancies, especially those of myeloid origin, has not been thoroughly assessed and remains obscure. As the role of inflammation and autoimmunity in development of myeloid malignancies is becoming recognized, in this review we focus on summarizing the links that have been identified so far for complement cascade involvement in the pathobiology of myeloid malignancies. Complement deficiencies are primary immunodeficiencies that cause an array of clinical outcomes including an increased risk of a range of infectious as well as local or systemic inflammatory and thrombotic conditions. Here, we discuss the impact that deficiencies in complement cascade initiators, mid- and terminal- components and inhibitors have on the biology of myeloid neoplasms. The emergent conclusions indicate that the links between complement cascade, inflammatory signaling and the homeostasis of hematopoietic system exist, and efforts should continue to detail the mechanistic involvement of complement cascade in the development and progression of myeloid cancers.
Collapse
Affiliation(s)
- Alissa Oakes
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI
- Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI
- Therapeutic Sciences Graduate program, Brown University, Providence, RI
| | - Yuchen Liu
- University of Maryland, Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Patrycja M Dubielecka
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI
- Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI
- Therapeutic Sciences Graduate program, Brown University, Providence, RI
- Legorreta Cancer Center, Brown University, Providence, RI
| |
Collapse
|
2
|
Kleer JS, Skattum L, Dubler D, Fischer I, Zgraggen A, Mundwiler E, Kim MJ, Trendelenburg M. Complement C1s deficiency in a male Caucasian patient with systemic lupus erythematosus: a case report. Front Immunol 2024; 14:1257525. [PMID: 38469558 PMCID: PMC10925646 DOI: 10.3389/fimmu.2023.1257525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 03/13/2024] Open
Abstract
Deficiencies of the early complement components of the classical pathway (CP) are well-documented in association with systemic lupus erythematosus (SLE) or SLE-like syndromes and severe pyogenic infections. Among these, complete C1s deficiency has been reported in nine cases so far. Here, we describe a 34-year-old male patient who presented with severe, recurrent infections since childhood, including meningitides with pneumococci and meningococci, erysipelas, subcutaneous abscess, and recurrent infections of the upper airways. The patient also exhibited adult-onset SLE, meeting 7/11 of the ACR criteria and 34 of the 2019 EULAR/ACR classification criteria, along with class IV-G (A) proliferative lupus nephritis (LN). A screening of the complement cascade showed immeasurably low CH50, while the alternative pathway (AP) function was normal. Subsequent determination of complement components revealed undetectable C1s with low levels of C1r and C1q, normal C3, and slightly elevated C4 and C2 concentrations. The patient had no anti-C1q antibodies. Renal biopsy showed class IV-G (A) LN with complement C1q positivity along the glomerular basement membranes (GBMs) and weak deposition of IgG, IgM, and complement C3 and C4 in the mesangium and GBM. In an ELISA-based functional assay determining C4d deposition, the patient's absent complement activity was fully restored by adding C1s. The genome of the patient was analyzed by whole genome sequencing showing two truncating variants in the C1S gene. One mutation was located at nucleotide 514 in exon 5, caused by a nucleotide substitution from G to T, resulting in a nonsense mutation from Gly172 (p.Gly172*). The other mutation was located at nucleotide 750 in exon 7, where C was replaced by a G, resulting in a nonsense mutation from Tyr250 (p.Tyr250*). Both mutations create a premature stop codon and have not previously been reported in the literature. These genetic findings, combined with the absence of C1s in the circulation, strongly suggest a compound heterozygote C1s deficiency in our patient, without additional defect within the complement cascade. As in a previous C1s deficiency case, the patient responded well to rituximab. The present case highlights unanswered questions regarding the CP's role in SLE etiopathogenesis.
Collapse
Affiliation(s)
- Jessica S. Kleer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| | - Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, and Clinical Immunology and Transfusion Medicine, Region Skåne, Lund, Sweden
| | - Denise Dubler
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ingeborg Fischer
- Division of Pathology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Armin Zgraggen
- Division of Rheumatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Esther Mundwiler
- Division of Laboratory Medicine, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Min Jeong Kim
- Division of Nephrology , Cantonal Hospital Aarau, Aarau, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
3
|
Alshekaili J, Nasr I, Al-Rawahi M, Ansari Z, Al Rahbi N, Al Balushi H, Al Zadjali S, Al Kindi M, Al-Maawali A, Cook MC. A homozygous loss-of-function C1S mutation is associated with Kikuchi-Fujimoto disease. Clin Immunol 2023; 252:109646. [PMID: 37209807 DOI: 10.1016/j.clim.2023.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Kikuchi-Fujimoto disease (KFD) is a self-limited inflammatory disease of unknown pathogenesis. Familial cases have been described and defects in classical complement components C1q and C4 have been identified in some patients. MATERIAL AND METHODS We describe genetic and immune investigations of a 16 years old Omani male, a product of consanguineous marriage, who presented with typical clinical and histological features of KFD. RESULTS We identified a novel homozygous single base deletion in C1S (c.330del; p. Phe110LeufsTer23) resulting in a defect in the classical complement pathway. The patient was negative for all serological markers of SLE. In contrast, two female siblings (also homozygous for the C1S mutation), one has autoimmune thyroid disease (Hashimoto thyroiditis) and a positive ANA and the other sibling has serology consistent with SLE. CONCLUSION We report the first association between C1s deficiency and KFD.
Collapse
Affiliation(s)
- Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman.
| | - Iman Nasr
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Mohammed Al-Rawahi
- Department of Hematology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Zainab Ansari
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | | | - Hamed Al Balushi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Shoaib Al Zadjali
- Department of Hematology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Almundher Al-Maawali
- Genetics Department, Sultan QaboosUniversity Hospital, Sultan Qaboos University, Muscat, Oman
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia; Department of Medicine, University of Cambridge, United Kingdom; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia.
| |
Collapse
|
4
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Charbit-Henrion F, Haas M, Chaussade S, Cellier C, Cerf-Bensussan N, Malamut G, Khater S, Khiat A, Cording S, Parlato M, Dragon-Durey MA, Beuvon F, Brousse N, Terris B, Picard C, Fusaro M, Rieux-Laucat F, Stolzenberg MC, Jannot AS, Mathian A, Allez M, Malphettes M, Fieschi C, Aubourg A, Zallot C, Roblin X, Abitbol V, Belle A, Wils P, Cheminant M, Matysiak-Budnik T, Vuitton L, Pouderoux P, Abramowitz L, Castelle M, Suarez F, Hermine O, Ruemmele F, Mouthon L. Genetic Diagnosis Guides Treatment of Autoimmune Enteropathy. Clin Gastroenterol Hepatol 2023; 21:1368-1371.e2. [PMID: 35944833 PMCID: PMC10165659 DOI: 10.1016/j.cgh.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Fabienne Charbit-Henrion
- Université Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Paris, France; Department of Molecular Genetics, AP-HP, Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Manon Haas
- Université Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Paris, France; Department of Gastroenterology, AP-HP, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Stanislas Chaussade
- Department of Gastroenterology, AP-HP, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Christophe Cellier
- Department of Gastroenterology, AP-HP, Centre-Université Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Paris, France.
| | - Georgia Malamut
- Université Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Paris, France; Department of Gastroenterology, AP-HP, Centre-Université Paris Cité, Hôpital Cochin, Paris, France.
| | - Sherine Khater
- Department of Immunology, AP-HP, Centre-Université Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Anis Khiat
- Université de Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Paris, France
| | - Sascha Cording
- Université de Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Paris, France
| | - Marianna Parlato
- Université de Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Paris, France
| | - Marie-Agnès Dragon-Durey
- Department of Immunology, AP-HP, Centre-Université Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Frédéric Beuvon
- Department of Pathology, AP-HP, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Nicole Brousse
- Department of Pathology AP-HP, Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Benoît Terris
- Department of Pathology, AP-HP, Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| | - Capucine Picard
- Study Center of Primary Immunodeficiency, AP-HP, Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Mathieu Fusaro
- Study Center of Primary Immunodeficiency, AP-HP, Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, INSERM UMR1163 and Imagine Institute, Immunogenetics of Pediatric Autoimmune Diseases, Paris, France
| | - Marie-Claude Stolzenberg
- Université de Paris, INSERM UMR1163 and Imagine Institute, Immunogenetics of Pediatric Autoimmune Diseases, Paris, France
| | - Anne-Sophie Jannot
- Department of Clinical Investigation and Clinical Epidemiology, AP-HP-Centre-Université Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Matthieu Allez
- Department of Gastroenterology, AP-HP, Nord-Université Paris Cité, Hôpital Saint Louis, Paris, France
| | - Marion Malphettes
- Department of Clinical Immunology, AP-HP, Nord-Université Paris Cité, Hôpital Saint Louis, Paris, France
| | - Claire Fieschi
- Department of Clinical Immunology, AP-HP, Nord-Université Paris Cité, Hôpital Saint Louis, Paris, France
| | | | - Camille Zallot
- Department of Gastroenterology, CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Xavier Roblin
- Department of Gastroenterology, CHU de Saint Etienne, Saint Etienne, France
| | - Vered Abitbol
- Department of Gastroenterology, AP-HP. Centre- Université de Paris, Hôpital Cochin, Paris, France
| | - Arthur Belle
- Department of Gastroenterology, AP-HP, Centre- Université de Paris, Hôpital Cochin, Paris, France
| | - Pauline Wils
- Department of Gastroenterology, CHRU de Lille, Lille, France
| | - Morgane Cheminant
- Department of Haematology, AP-HP, Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Lucine Vuitton
- Department of Gastroenterology, CHRU de Besançon, Hôpital Jean Minjoz, Besançon, France
| | - Philippe Pouderoux
- Department of Gastroenterology, CHRU de Nîmes, Hôpital universitaire Carémeau, Nîmes, France
| | - Laurent Abramowitz
- Department of Gastroenterology, AP-HP, Nord-Université Paris Cité, Hôpital Bichat, Paris, France
| | - Martin Castelle
- Department of Pediatric Immunology and Hematology, AP-HP, Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Felipe Suarez
- Department of Haematology, AP-HP. Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Olivier Hermine
- Department of Haematology, AP-HP, Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Frank Ruemmele
- Université de Paris Cité, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity and Department of Paediatric Gastroenterology, AP-HP-Centre-Université Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - Luc Mouthon
- Service de Médecine Interne, Centre de Référence Maladies Autoimmunes Systémiques Rares d'Ile de France, AP-HP-Centre-Université Paris Cité, Hôpital Cochin, Paris, France
| |
Collapse
|
6
|
Lorvellec M, Chouquet A, Koch J, Bally I, Signor L, Vigne J, Dalonneau F, Thielens NM, Rabilloud T, Dalzon B, Rossi V, Gaboriaud C. HMGB1 cleavage by complement C1s and its potent anti-inflammatory product. Front Immunol 2023; 14:1151731. [PMID: 37180096 PMCID: PMC10169756 DOI: 10.3389/fimmu.2023.1151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Complement C1s association with the pathogenesis of several diseases cannot be simply explained only by considering its main role in activating the classical complement pathway. This suggests that non-canonical functions are to be deciphered for this protease. Here the focus is on C1s cleavage of HMGB1 as an auxiliary target. HMGB1 is a chromatin non-histone nuclear protein, which exerts in fact multiple functions depending on its location and its post-translational modifications. In the extracellular compartment, HMGB1 can amplify immune and inflammatory responses to danger associated molecular patterns, in health and disease. Among possible regulatory mechanisms, proteolytic processing could be highly relevant for HMGB1 functional modulation. The unique properties of HMGB1 cleavage by C1s are analyzed in details. For example, C1s cannot cleave the HMGB1 A-box fragment, which has been described in the literature as an inhibitor/antagonist of HMGB1. By mass spectrometry, C1s cleavage was experimentally identified to occur after lysine on position 65, 128 and 172 in HMGB1. Compared to previously identified C1s cleavage sites, the ones identified here are uncommon, and their analysis suggests that local conformational changes are required before cleavage at certain positions. This is in line with the observation that HMGB1 cleavage by C1s is far slower when compared to human neutrophil elastase. Recombinant expression of cleavage fragments and site-directed mutagenesis were used to confirm these results and to explore how the output of C1s cleavage on HMGB1 is finely modulated by the molecular environment. Furthermore, knowing the antagonist effect of the isolated recombinant A-box subdomain in several pathophysiological contexts, we wondered if C1s cleavage could generate natural antagonist fragments. As a functional readout, IL-6 secretion following moderate LPS activation of RAW264.7 macrophage was investigated, using LPS alone or in complex with HMGB1 or some recombinant fragments. This study revealed that a N-terminal fragment released by C1s cleavage bears stronger antagonist properties as compared to the A-box, which was not expected. We discuss how this fragment could provide a potent brake for the inflammatory process, opening the way to dampen inflammation.
Collapse
Affiliation(s)
- Marie Lorvellec
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Anne Chouquet
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jonas Koch
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Isabelle Bally
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Luca Signor
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jeanne Vigne
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Fabien Dalonneau
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Nicole M. Thielens
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, University Grenoble Alpes, CNRS UMR 5249, CEA, IRIG-LCBM, Grenoble, France
| | - Bastien Dalzon
- Chemistry and Biology of Metals, University Grenoble Alpes, CNRS UMR 5249, CEA, IRIG-LCBM, Grenoble, France
| | - Véronique Rossi
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Christine Gaboriaud
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| |
Collapse
|
7
|
Ye J, Yang P, Yang Y, Xia S. Complement C1s as a diagnostic marker and therapeutic target: Progress and propective. Front Immunol 2022; 13:1015128. [PMID: 36275687 PMCID: PMC9582509 DOI: 10.3389/fimmu.2022.1015128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The molecules of the complement system connect the effectors of innate and adaptive immunity and play critical roles in maintaining homeostasis. Among them, the C1 complex, composed of C1q, C1r, and C1s (C1qr2s2), is the initiator of the classical complement activation pathway. While deficiency of C1s is associated with early-onset systemic lupus erythematosus and increased susceptibility to bacteria infections, the gain-of- function variants of C1r and C1s may lead to periodontal Ehlers Danlos syndrome. As C1s is activated under various pathological conditions and associated with inflammation, autoimmunity, and cancer development, it is becoming an informative biomarker for the diagnosis and treatment of a variety of diseases. Thus, more sensitive and convenient methods for assessing the level as well as activity of C1s in clinic samples are highly desirable. Meanwhile, a number of small molecules, peptides, and monoclonal antibodies targeting C1s have been developed. Some of them are being evaluated in clinical trials and one of the antibodies has been approved by US FDA for the treatment of cold agglutinin disease, an autoimmune hemolytic anemia. In this review, we will summarize the biological properties of C1s, its association with development and diagnosis of diseases, and recent progress in developing drugs targeting C1s. These progress illustrate that the C1s molecule is an effective biomarker and promising drug target.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Sheng Xia,
| |
Collapse
|
8
|
Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules 2022; 12:biom12050737. [PMID: 35625664 PMCID: PMC9138980 DOI: 10.3390/biom12050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Collapse
|
9
|
Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022; 13:869720. [PMID: 35572583 PMCID: PMC9095977 DOI: 10.3389/fimmu.2022.869720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Our immune system responds to infectious (PAMPs) and tissue damage (DAMPs) signals. The complement system and alarmin High-Mobility Group Box 1 (HMGB1) are two powerful soluble actors of human host defense and immune surveillance. These systems involve molecular cascades and amplification loops for their signaling or activation. Initially activated as alarm raising systems, their function can be finally switched towards inflammation resolution, where they sustain immune maturation and orchestrate repair mechanisms, opening the way back to homeostasis. However, when getting out of control, these defense systems can become deleterious and trigger serious cellular and tissue damage. Therefore, they can be considered as double-edged swords. The close interaction between the complement and HMGB1 pathways is described here, as well as their traditional and non-canonical roles, their functioning at different locations and their independent and collective impact in different systems both in health and disease. Starting from these systems and interplay at the molecular level (when elucidated), we then provide disease examples to better illustrate the signs and consequences of their roles and interaction, highlighting their importance and possible vicious circles in alarm raising and inflammation, both individually or in combination. Although this integrated view may open new therapeutic strategies, future challenges have to be faced because of the remaining unknowns regarding the molecular mechanisms underlying the fragile molecular balance which can drift towards disease or return to homeostasis, as briefly discussed at the end.
Collapse
Affiliation(s)
| | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratoire d’Immunologie, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
10
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Yang H, Yang YL, Li GQ, Yu Q, Yang J. Identifications of immune-responsive genes for adaptative traits by comparative transcriptome analysis of spleen tissue from Kazakh and Suffolk sheep. Sci Rep 2021; 11:3157. [PMID: 33542475 PMCID: PMC7862382 DOI: 10.1038/s41598-021-82878-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Aridity and heat are significant environmental stressors that affect sheep adaptation and adaptability, thus influencing immunity, growth, reproduction, production performance, and profitability. The aim of this study was to profile mRNA expression levels in the spleen of indigenous Kazakh sheep breed for comparative analysis with the exotic Suffolk breed. Spleen histomorphology was observed in indigenous Kazakh sheep and exotic Suffolk sheep raised in Xinjiang China. Transcriptome sequencing of spleen tissue from the two breeds were performed via Illumina high-throughput sequencing technology and validated by RT-qPCR. Blood cytokine and IgG levels differed between the two breeds and IgG and IL-1β were significantly higher in Kazakh sheep than in Suffolk sheep (p < 0.05), though spleen tissue morphology was the same. A total of 52.04 Gb clean reads were obtained and the clean reads were assembled into 67,271 unigenes using bioinformatics analysis. Profiling analysis of differential gene expression showed that 1158 differentially expressed genes were found when comparing Suffolk with Kazakh sheep, including 246 up-regulated genes and 912 down-regulated genes. Utilizing gene ontology annotation and pathway analysis, 21 immune- responsive genes were identified as spleen-specific genes associated with adaptive traits and were significantly enriched in hematopoietic cell lineage, natural killer cell-mediated cytotoxicity, complement and coagulation cascades, and in the intestinal immune network for IgA production. Four pathways and up-regulated genes associated with immune responses in indigenous sheep played indispensable and promoting roles in arid and hot environments. Overall, this study provides valuable transcriptome data on the immunological mechanisms related to adaptive traits in indigenous and exotic sheep and offers a foundation for research into adaptive evolution.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Yong-Lin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Guo-Qing Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
12
|
Abstract
Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
13
|
El Sissy C, Rosain J, Vieira-Martins P, Bordereau P, Gruber A, Devriese M, de Pontual L, Taha MK, Fieschi C, Picard C, Frémeaux-Bacchi V. Clinical and Genetic Spectrum of a Large Cohort With Total and Sub-total Complement Deficiencies. Front Immunol 2019; 10:1936. [PMID: 31440263 PMCID: PMC6694794 DOI: 10.3389/fimmu.2019.01936] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 01/11/2023] Open
Abstract
The complement system is crucial for defense against pathogens and the removal of dying cells or immune complexes. Thus, clinical indications for possible complete complement deficiencies include, among others, recurrent mild or serious bacterial infections as well as autoimmune diseases (AID). The diagnostic approach includes functional activity measurements of the classical (CH50) and alternative pathway (AP50) and the determination of the C3 and C4 levels, followed by the quantitative analysis of individual components or regulators. When biochemical analysis reveals the causal abnormality of the complement deficiency (CD), molecular mechanisms remains frequently undetermined. Here, using direct sequencing analysis of the coding region we report the pathogenic variants spectrum that underlie the total or subtotal complement deficiency in 212 patients. We identified 107 different hemizygous, homozygous, or compound heterozygous pathogenic variants in 14 complement genes [C1Qβ (n = 1), C1r (n = 3), C1s (n = 2), C2 (n = 12), C3 (n = 5), C5 (n = 12), C6 (n = 9), C7 (n = 17), C8 β (n = 7), C9 (n = 3), CFH (n = 7), CFI (n = 18), CFP (n = 10), CFD (n = 2)]. Molecular analysis identified 17 recurrent pathogenic variants in 6 genes (C2, CFH, C5, C6, C7, and C8). More than half of the pathogenic variants identified in unrelated patients were also found in healthy controls from the same geographic area. Our study confirms the strong association of meningococcal infections with terminal pathway deficiency and highlights the risk of pneumococcal and auto-immune diseases in the classical and alternative pathways. Results from this large genetic investigation provide evidence of a restricted number of molecular mechanisms leading to complement deficiency and describe the clinical potential adverse events of anti-complement therapy.
Collapse
Affiliation(s)
- Carine El Sissy
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Jérémie Rosain
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Paula Vieira-Martins
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Pauline Bordereau
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Aurélia Gruber
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Magali Devriese
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Loïc de Pontual
- Pediatrics Department, Jean Verdier Hospital, Assistance Publique des Hôpitaux de Paris, Paris 13 University, Bondy, France
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infection and National Reference Center for Meningococci, Pasteur Institut, Paris, France
| | - Claire Fieschi
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Inserm U1126, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | - Capucine Picard
- Paris University, INSERM UMR1163, Imagine Institute, Paris, France.,Study Center for Primary Immunodeficiencies (AP-HP), Hôpital Necker-Enfants maladies Hospital, Paris, France
| | - Véronique Frémeaux-Bacchi
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie, Hôpital Européen Georges-Pompidou, Paris, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Complement and Diseases Team, Paris, France
| |
Collapse
|
14
|
Franco A, Zhang L, Matkovich SJ, Kovacs A, Dorn GW. G-protein receptor kinases 2, 5 and 6 redundantly modulate Smoothened-GATA transcriptional crosstalk in fetal mouse hearts. J Mol Cell Cardiol 2018; 121:60-68. [PMID: 29969579 PMCID: PMC6178805 DOI: 10.1016/j.yjmcc.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
G-protein receptor kinases (GRKs) regulate adult hearts by modulating inotropic, chronotropic and hypertrophic signaling of 7-transmembrane spanning neurohormone receptors. GRK-mediated desensitization and downregulation of β-adrenergic receptors has been implicated in adult heart failure; GRKs are therefore a promising therapeutic target. However, germ-line (but not cardiomyocyte-specific) GRK2 deletion provoked lethal fetal heart defects, suggesting an unexplained role for GRKs in heart development. Here we undertook to better understand the consequences of GRK deficiency on fetal heart development by creating mice and cultured murine embryonic fibroblasts (MEFs) having floxed GRK2 and GRK5 alleles on the GRK6 null background; simultaneous conditional deletion of these 3 GRK genes was achieved using Nkx2-5 Cre or adenoviral Cre, respectively. Phenotypes were related to GRK-modulated gene expression using whole-transcriptome RNA sequencing, RT-qPCR, and luciferase reporter assays. In cultured MEFs the atypical 7-transmembrane spanning protein and GRK2 substrate Smoothened (Smo) stimulated Gli-mediated transcriptional activity, which was interrupted by deleting GRK2/5/6. Mice with Nkx2-5 Cre mediated GRK2/5/6 ablation died between E15.5 and E16.5, whereas mice expressing any one of these 3 GRKs (i.e. GRK2/5, GRK2/6 or GRK5/6 deleted) were developmentally normal. GRK2/5/6 triple null mice at E14.5 exhibited left and right heart blood intermixing through single atrioventricular valves or large membranous ventricular septal defects. Hedgehog and GATA pathway gene expression promoted by Smo/Gli was suppressed in GRK2/5/6 deficient fetal hearts and MEFs. These data indicate that GRK2, GRK5 and GRK6 redundantly modulate Smo-GATA crosstalk in fetal mouse hearts, orchestrating transcriptional pathways previously linked to clinical and experimental atrioventricular canal defects. GRK modulation of Smo reflects convergence of conventional neurohormonal signaling and transcriptional regulation pathways, comprising an unanticipated mechanism for spatiotemporal orchestration of developmental gene expression in the heart.
Collapse
Affiliation(s)
- Antonietta Franco
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| | - Lihong Zhang
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Scot J Matkovich
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Attila Kovacs
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
15
|
Batu ED, Koşukcu C, Taşkıran E, Sahin S, Akman S, Sözeri B, Ünsal E, Bilginer Y, Kasapcopur O, Alikaşifoğlu M, Ozen S. Whole Exome Sequencing in Early-onset Systemic Lupus Erythematosus. J Rheumatol 2018; 45:1671-1679. [PMID: 30008451 DOI: 10.3899/jrheum.171358] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Objective.Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder. Early-onset, familial, and/or syndromic SLE may reveal monogenic pathologies. The aim of this study was to examine genetic associations in patients with early-onset or familial SLE.Methods.We enrolled 7 SLE cases (from different families) with disease onset ≤ 5 years of age and family history consistent with an autosomal recessive inheritance. Whole exome sequencing (WES) was performed in 6 index cases. Suspected variants were confirmed by Sanger sequencing. We did not perform WES in 1 patient who had features similar to the first 3 cases; only the exons of C1QA, C1QB, and C1QC were screened with Sanger sequencing.Results.We demonstrated 2 novel and 3 previously reported variants in genes associated with SLE: a homozygous non-sense alteration (c.622C>T/p.Gln208Ter) in C1QA in 2 patients; homozygous non-sense alteration (c.79C>T/p.Gln27Ter) in C1QC in 1 (novel variant); homozygous missense alteration (c.100G>A/p.Gly34Arg) in C1QC in 1; homozygous missense alteration (c.1945G>C/p.Ala649Pro) in C1S in 1 (novel variant); and homozygous frameshift alteration (c.289_290delAC/p.Thr97Ilefs*2) in DNASE1L3 in 1 patient. Further, in 1 patient, we determined a strong candidate variant in HDAC7 (histone decetylase 7).Conclusion.Five patients had homozygous alterations in genes coding early complement proteins. This may lead to decreased clearance of apoptotic bodies. One patient had DNASE1L3 variant, which functions in the clearance of self-antigens. In 1 patient, we determined a novel gene that may be important in SLE pathogenesis. We suggest that monogenic causes/associations should be sought in early-onset and/or familial SLE.
Collapse
|
16
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
17
|
C1r/C1s deficiency is insufficient to induce murine systemic lupus erythematosus. Genes Immun 2018; 20:121-130. [PMID: 29550838 DOI: 10.1038/s41435-018-0020-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 11/08/2022]
Abstract
C1s deficiency is strongly associated with the development of human systemic lupus erythematosus (SLE); however, the mechanisms by which C1s deficiency contributes to the development of SLE have not yet been elucidated in detail. Using ICR-derived-glomerulonephritis (ICGN) mouse strain that develops SLE and very weakly expresses C1s in the liver, we investigated the protective roles of C1s against SLE. A genetic sequence analysis revealed complete deletion of the C1s1 gene, a mouse homolog of the human C1s gene, with partial deletion of the C1ra and C1rb genes in the ICGN strain. This deletion led to the absence of C1r/C1s and a low level of C1q in the circulation. In order to investigate whether the C1r/C1s deficiency induces SLE, we produced a congenic mouse strain by introducing the deletion region of ICGN into the C57BL/6 strain. Congenic mice exhibited no C1r/C1s and a low level of C1q in the circulation, but did not have any autoimmune defects. These results suggest that C1r/C1s deficiency is not sufficient to drive murine SLE and also that other predisposing genes exist in ICGN mice.
Collapse
|
18
|
Vignesh P, Rawat A, Sharma M, Singh S. Complement in autoimmune diseases. Clin Chim Acta 2017; 465:123-130. [PMID: 28040558 DOI: 10.1016/j.cca.2016.12.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022]
|
19
|
Segal Y, Dahan S, Calabrò M, Kanduc D, Shoenfeld Y. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol Res 2017; 65:564-571. [DOI: 10.1007/s12026-016-8890-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Nanthapisal S, Omoyinmi E, Murphy C, Standing A, Eisenhut M, Eleftheriou D, Brogan PA. Early-Onset Juvenile SLE Associated With a Novel Mutation in Protein Kinase C δ. Pediatrics 2017; 139:peds.2016-0781. [PMID: 28003329 DOI: 10.1542/peds.2016-0781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 11/24/2022] Open
Abstract
Juvenile systemic lupus erythematosus (jSLE) is rare before 5 years of age. Monogenic causes are suspected in cases of very early onset jSLE particularly in the context of a family history and/or consanguinity. We performed whole-exome sequencing and homozygosity mapping in the siblings presented with early-onset jSLE. A novel homozygous missense mutation in protein kinase C delta (c.1294G>T; p.Gly432Trp) was identified in both patients. One patient showed a marked clinical response and resolution inflammation with rituximab therapy. This report demonstrates the clinical importance of identifying monogenic causes of rare disease to provide a definitive diagnosis, help rationalize treatment, and facilitate genetic counseling.
Collapse
Affiliation(s)
- Sira Nanthapisal
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom;
| | - Ebun Omoyinmi
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Claire Murphy
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Ariane Standing
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Despina Eleftheriou
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Paul A Brogan
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| |
Collapse
|
21
|
Proteolytic inactivation of nuclear alarmin high-mobility group box 1 by complement protease C1s during apoptosis. Cell Death Discov 2016; 2:16069. [PMID: 27648302 PMCID: PMC5018544 DOI: 10.1038/cddiscovery.2016.69] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023] Open
Abstract
Effective clearance of apoptotic cells by phagocytes prevents the release of intracellular alarmins and manifestation of autoimmunity. This prompt efferocytosis is complemented by intracellular proteolytic degradation that occurs within the apoptotic cells and in the efferosome of the phagocytes. Although the role of extracellular proteases in apoptotic cells clearance is unknown, the strong association of congenital C1s deficiency with Systemic Lupus Erythematosus highlights the protective nature that this extracellular protease has against autoimmunity. The archetypical role of serine protease C1s as the catalytic arm of C1 complex (C1qC1r2C1s2) involve in the propagation of the classical complement pathway could not provide the biological basis for this association. However, a recent observation of the ability of C1 complex to cleave a spectrum of intracellular cryptic targets exposed during apoptosis provides a valuable insight to the underlying protective mechanism. High-mobility group box 1 (HMGB1), an intracellular alarmin that is capable of inducing the formation of antinuclear autoantibodies and causes lupus-like conditions in mice, is identified as a novel potential target by bioinformatics analysis. This is verified experimentally with C1s, both in its purified and physiological form as C1 complex, cleaving HMGB1 into defined fragments of 19 and 12 kDa. This cleavage diminishes HMGB1 ability to enhance lipopolysaccharide mediated pro-inflammatory cytokines production from monocytes, macrophages and dendritic cells. Further mass spectrometric analysis of the C1 complex treated apoptotic cellular proteins demonstrated additional C1s substrates and revealed the complementary role of C1s in apoptotic cells clearance through the proteolytic cleavage of intracellular alarmins and autoantigens. C1 complex may have evolved as, besides the bacteriolytic arm of antibodies in which it activates the complement cascade, a tissue renewal mechanism that reduces the immunogenicity of apoptotic tissue debris and decreases the likelihood of autoimmunity.
Collapse
|
22
|
Lintner KE, Wu YL, Yang Y, Spencer CH, Hauptmann G, Hebert LA, Atkinson JP, Yu CY. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases. Front Immunol 2016; 7:36. [PMID: 26913032 PMCID: PMC4753731 DOI: 10.3389/fimmu.2016.00036] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 01/06/2023] Open
Abstract
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases.
Collapse
Affiliation(s)
- Katherine E Lintner
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yee Ling Wu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yan Yang
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Charles H Spencer
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Georges Hauptmann
- Laboratoire d'Immuno-Rhumatologie Moleculaire, INSERM UMR_S 1109, LabEx Transplantex, Faculté de Médecine, Université de Strasbourg , Strasbourg , France
| | - Lee A Hebert
- Division of Nephrology, College of Medicine, The Ohio State University , Columbus, OH , USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine , St. Louis, MO , USA
| | - C Yung Yu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| |
Collapse
|
23
|
Arooj M, Sakkiah S, Cao GP, Kim S, Arulalapperumal V, Lee KW. Finding off-targets, biological pathways, and target diseases for chymase inhibitors via structure-based systems biology approach. Proteins 2015; 83:1209-24. [DOI: 10.1002/prot.24677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Mahreen Arooj
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute (CHIRI); Curtin University Australia
| | - Sugunadevi Sakkiah
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Guang Ping Cao
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Venkatesh Arulalapperumal
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program); Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU); 501 Jinju-daero Gazha-dong Jinju 660-701 Republic of Korea
| |
Collapse
|
24
|
Tamura K, Uchio-Yamada K, Manabe N, Noto T, Hirota R, Unami A, Matsumoto M, Miyamae Y. Gene expression analysis detected a low expression level of C1s gene in ICR-derived glomerulonephritis (ICGN) mice. Nephron Clin Pract 2013; 123:34-45. [PMID: 23989031 DOI: 10.1159/000354057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND ICR-derived glomerulonephritis (ICGN) strain is a novel inbred strain of mice with a hereditary nephrotic syndrome. Deletion mutation of tensin 2 (Tns2), a focal adhesion molecule, has been suggested to be responsible for nephrotic syndrome in ICGN mice; however, the existence of other associative factors has been suggested. METHODS AND RESULTS To identify additional associative factors and to better understand the onset mechanism of nephrotic syndrome in ICGN mice, we conducted a comprehensive gene expression analysis using DNA microarray. Immune-related pathways were markedly altered in ICGN mice kidney as compared with ICR mice. Furthermore, the gene expression level of complement component 1, s subcomponent (C1s), whose human homologue has been reported to associate with lupus nephritis, was markedly low in ICGN mouse kidney. Real-time quantitative reverse transcription-polymerase chain reaction confirmed a low expression level of C1s in ICGN mouse liver where the C1s protein is mainly synthesized. A high serum level of anti-dsDNA antibody and deposits of immune complexes were also detected in ICGN mice by enzyme-linked immunosorbent assay and immunohistochemical analyses, respectively. CONCLUSION Our results suggest that the immune system, especially the complement system, is associated with nephrotic syndrome in ICGN mice. We identified a low expression level of C1s gene as an additional associative factor for nephrotic syndrome in ICGN mice. Further studies are needed to elucidate the role of the complement system in the onset of nephrotic syndrome in ICGN mice.
Collapse
Affiliation(s)
- Kotaro Tamura
- Drug Safety Research Laboratories, Astellas Pharma Inc., Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Giles BM, Boackle SA. Linking complement and anti-dsDNA antibodies in the pathogenesis of systemic lupus erythematosus. Immunol Res 2013; 55:10-21. [PMID: 22941560 DOI: 10.1007/s12026-012-8345-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus is a severe autoimmune disease that affects multiple organ systems resulting in diverse symptoms and outcomes. It is characterized by antibody production to a variety of self-antigens, but it is specifically associated with those against anti-dsDNA. Anti-dsDNA antibodies are present before the onset of clinical disease and are associated with severe manifestations of lupus such as glomerulonephritis. Their levels fluctuate with changes in disease activity and, in combination with the levels of complement proteins C3 and C4, are strong indicators of disease flare and treatment response in patients with lupus. The decreased complement levels that are noted during flares of lupus activity are believed to be secondary to increased autoantibody production and immune complex formation that results in tissue damage; however, recent data suggest that complement activation can also drive development of these pathogenic autoantibodies. This review will explore the various roles of complement in the development and pathogenesis of anti-dsDNA antibodies.
Collapse
Affiliation(s)
- Brendan M Giles
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
26
|
Ornstein BW, Atkinson JP, Densen P. The complement system in pediatric systemic lupus erythematosus, atypical hemolytic uremic syndrome, and complocentric membranoglomerulopathies. Curr Opin Rheumatol 2013; 24:522-9. [PMID: 22810363 DOI: 10.1097/bor.0b013e328356896b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the recent advances in complement biology and the evolving understanding of these contributions to the pathophysiology and treatment of predominantly pediatric disease syndromes. RECENT FINDINGS Identification of lupus patients with complete deficiencies of one of the plasma complement proteins enabled the field to move beyond the notion of complement as a laboratory curiosity. Clinical investigation of the manifestations observed in deficient patients has further defined the biology of the system in normal individuals. Definition of the assembly of the C3 convertases, particularly that of the alternative pathway and its regulation, has led to the appreciation that the complement system includes membrane inhibitors that are every bit as important as those in plasma. The exploration of disease states in which significant complement deposition occurs has moved the field away from consideration of this finding as a bystander effect. Dissection of these syndromes has led to the unanticipated finding of a central role for function-altering mutations in the complement proteins that form or regulate the alternative pathway C3 convertase and has opened the door to new therapeutic approaches. The disease states discussed in the review - pediatric systemic lupus erythematosus, atypical hemolytic uremic syndrome, and the complocentric membranoglomerulopathies - illustrate this evolutionary history of complement biology. SUMMARY This review emphasizes that both the lack of classical pathway complement activation and excessive activation of the alternative pathway contribute to distinct disease pathogenesis, and emphasizes the critical importance of homeostatic regulation, in both plasma and in tissues, of the system as a whole.
Collapse
Affiliation(s)
- Bradley W Ornstein
- Division of Infectious Diseases and Rheumatology, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
27
|
Wu YL, Brookshire BP, Verani RR, Arnett FC, Yu CY. Clinical presentations and molecular basis of complement C1r deficiency in a male African-American patient with systemic lupus erythematosus. Lupus 2011; 20:1126-34. [PMID: 21784777 DOI: 10.1177/0961203311404914] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homozygous deficiencies of early components for complement activation are among the strongest genetic risk factors for human systemic lupus erythematosus (SLE). Eleven cases of C1r deficiency are documented but this is the first report on the molecular basis of C1r deficiency. The proband is an African-American male who developed SLE at 3 months of age. He had a discoid lupus rash and diffuse proliferative glomerulonephritis. Serum complement analysis of the patient showed zero CH50 activity, undetectable C1r, and reduced levels of C1s, but highly elevated levels of complement C4, C2, and C1-inhibitor. The coding regions of the mutant C1R gene with 11 exons located at chromosome 12p13 were polymerase chain reaction (PCR)-amplified and sequenced to completion. DNA sequencing revealed a homozygous C→T mutation at nucleotide-6392 in exon 10 of the C1R gene, resulting in a nonsense mutation from Arg-380 (R380X). The patient's clinically normal mother was heterozygous for this mutation. A sequence-specific primer (SSP) PCR coupled with StuI-restriction fragment length polymorphism (RFLP) was developed to detect the novel mutation. Screening of 209 African-American SLE patients suggested that the R380X mutation is a rare causal variant. Mutations leading to early complement component deficiencies in SLE are mostly private variants with large effects.
Collapse
Affiliation(s)
- Y L Wu
- Center for Molecular and Human Genetics, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
28
|
Skattum L, van Deuren M, van der Poll T, Truedsson L. Complement deficiency states and associated infections. Mol Immunol 2011; 48:1643-55. [PMID: 21624663 DOI: 10.1016/j.molimm.2011.05.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
A major function of the immune system is to protect the host from microbial infections. The complement system plays important roles in both the innate and the adaptive immune defense and also acts as a bridge between these arms of immunity. This is obvious from complement deficiencies which in varying degree, depending on which factor is missing, are associated with increased infection susceptibility and also increased risk for other, mainly autoimmune diseases. Genetically determined deficiencies are described for almost all complement proteins but the consequences show a wide variation. Here the genetic defects and molecular abnormalities in complement deficient persons, related clinically relevant infections and the options for prevention and therapy are reviewed. The roles of complement in host defense against common infections are also discussed.
Collapse
Affiliation(s)
- Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
29
|
Abstract
In this review we address the main cutaneous manifestations and diseases associated with deficiencies in components of the complement system. The first part is devoted to hereditary angioedema, in which acute, sometimes life-threatening recurrent attacks of acute swelling, usually associated with gastrointestinal symptoms, occur. It is related to a structural or functional deficiency of C1 esterase inhibitor. Patients usually have lowered C4 levels, and diagnosis relies on determination of antigenic and/or functional C1 inhibitor level. The second part focuses on lupus erythematosus, as deficiencies in early components of the complement system, such as C1q, C1r, C1s, C2 or C4, are the strongest known disease susceptibility genes for the development of human systemic lupus erythematosus. Severe infections early in life and marked photosensitivity in a patient with lupus erythematosus are clues to an underlying complement deficiency. The genetic background and the clinical associations of the different components of the complement system will be detailed. Lupus (2010) 19, 1096—1106.
Collapse
Affiliation(s)
- D. Lipsker
- Faculté de Médecine, Université de Strasbourg, Clinique Dermatologique, France, ,
| | - G. Hauptmann
- Institut d'Immunologie, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Kallel-Sellami M, Laadhar L, Zerzeri Y, Makni S. Complement deficiency and systemic lupus erythematosus: consensus and dilemma. Expert Rev Clin Immunol 2010; 4:629-37. [PMID: 20476965 DOI: 10.1586/1744666x.4.5.629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The involvement of the complement system in the pathogenesis of autoimmune diseases is a matter of debate. However, the link between complement abnormalities and systemic lupus erythematosus (SLE) is well established and widely described. Homozygous and/or heterozygous complement-component deficiencies of the classical pathway (C1q, C1r, C1s, C4A, C4B and C2) are causally associated with susceptibility to the development of SLE. Although the severity of the disease and the strength of the association are heterogeneous for deficiencies of these proteins, they commonly cause peculiar SLE syndromes with an early age of onset, a susceptibility to bacterial infections and negative anti-dsDNA antibodies. In this review, we highlight the available data on complement deficiency and SLE with a focus on deficiencies in classical complement pathway components. We also discuss the paradox of the link between complement deficiency and lupus. The complement system acts as a 'friend' through the clearance of immune complexes and apoptotic cells, which explains the close association between complement deficiency and lupus. It also acts as an 'enemy' by participating in the effector inflammatory phase of the autoimmune response. Understanding the importance of complement deficiencies should provide novel targets for therapeutic interventions in the modulation of the immune response.
Collapse
|
31
|
Bienaimé F, Quartier P, Dragon-Durey MA, Frémeaux-Bacchi V, Bader-Meunier B, Patey N, Salomon R, Noël LH. Lupus nephritis associated with complete C1s deficiency efficiently treated with rituximab: A case report. Arthritis Care Res (Hoboken) 2010; 62:1346-50. [DOI: 10.1002/acr.20163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Abstract
The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system.
Collapse
Affiliation(s)
- H David Pettigrew
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California 95616, USA
| | | | | |
Collapse
|
33
|
Abe K, Endo Y, Nakazawa N, Kanno K, Okubo M, Hoshino T, Fujita T. Unique Phenotypes of C1s Deficiency and Abnormality Caused by Two Compound Heterozygosities in a Japanese Family. THE JOURNAL OF IMMUNOLOGY 2009; 182:1681-8. [DOI: 10.4049/jimmunol.182.3.1681] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Primary Immunodeficiencies. PEDIATRIC ALLERGY, ASTHMA AND IMMUNOLOGY 2008. [PMCID: PMC7121684 DOI: 10.1007/978-3-540-33395-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Primary immunodeficiencies (PIDs), once considered to be very rare, are now increasingly recognized because of growing knowledge in the immunological field and the availability of more sophisticated diagnostic techniques and therapeutic modalities [161]. However in a database of >120,000 inpatients of a general hospital for conditions suggestive of ID 59 patients were tested, and an undiagnosed PID was found in 17 (29%) of the subjects tested [107]. The publication of the first case of agammaglobulinemia by Bruton in 1952 [60] demonstrated that the PID diagnosis is first done in the laboratory. However, PIDs require specialized immunological centers for diagnosis and management [33]. A large body of epidemiological evidence supports the hypothesis of the existence of a close etiopathogenetic relation between PID and atopy [73]. In particular, an elevated frequency of asthma, food allergy (FA), atopic dermatitis and enteric pathologies can be found in various PIDs. In addition we will discuss another subject that is certainly of interest: the pseudo-immunodepressed child with recurrent respiratory infections (RRIs), an event that often requires medical intervention and that very often leads to the suspicion that it involves antibody deficiencies [149].
Collapse
|
35
|
Amano MT, Ferriani VPL, Florido MPC, Reis ES, Delcolli MIMV, Azzolini AECS, Assis-Pandochi AI, Sjöholm AG, Farah CS, Jensenius JC, Isaac L. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene. Mol Immunol 2007; 45:1693-702. [PMID: 18062908 DOI: 10.1016/j.molimm.2007.09.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/25/2022]
Abstract
Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of C1r has been observed to occur concomitantly with deficiency in C1s and 9 out of 15 reported cases presented systemic lupus erythematosus (SLE). Here, we describe a family in which all four children are deficient in C1s but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children's sera. C1s was undetectable, while in the parents' sera it was lower than in the normal controls. The levels of C1r observed in the siblings and parents sera were lower than in the control, while the concentrations of other complement proteins (C3, C4, MBL and MASP-2) were normal in all family members. Impairment of C1s synthesis was observed in the patients' fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the C1s cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of C1s mRNA transcripts in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3' splice site within intron 1 which increases the size of exon 2 by 87 nucleotides.
Collapse
Affiliation(s)
- Mariane T Amano
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1730, CEP 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
Complement is involved in the pathogenesis of systemic lupus erythematosus (SLE) in multiple ways and may act as both friend and foe. Inherited homozygous deficiency of one of the earliest components of the classical pathway is strongly associated with susceptibility to the development of SLE. However, complement is also implicated in the effector inflammatory phase of the autoimmune response that characterizes the disease. A further paradox in the links between complement and SLE is the observation that autoantibodies to some complement proteins, especially to C1q, develop as part of the autoantibody response. In this chapter, the role of the complement system in SLE is reviewed and hypotheses advanced to explain the complex relationships between complement and lupus.
Collapse
Affiliation(s)
- M J Lewis
- Division of Medicine, Faculty of Medicine, Rheumatology Section, Imperial College, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | |
Collapse
|
38
|
Lee-Kirsch MA, Gong M, Schulz H, Rüschendorf F, Stein A, Pfeiffer C, Ballarini A, Gahr M, Hubner N, Linné M. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet 2006; 79:731-7. [PMID: 16960810 PMCID: PMC1592563 DOI: 10.1086/507848] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/19/2006] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus is a prototypic autoimmune disease. Apart from rare monogenic deficiencies of complement factors, where lupuslike disease may occur in association with other autoimmune diseases or high susceptibility to bacterial infections, its etiology is multifactorial in nature. Cutaneous findings are a hallmark of the disease and manifest either alone or in association with internal-organ disease. We describe a novel genodermatosis characterized by painful bluish-red inflammatory papular or nodular lesions in acral locations such as fingers, toes, nose, cheeks, and ears. The lesions sometimes appear plaquelike and tend to ulcerate. Manifestation usually begins in early childhood and is precipitated by cold and wet exposure. Apart from arthralgias, there is no evidence for internal-organ disease or an increased susceptibility to infection. Histological findings include a deep inflammatory infiltrate with perivascular distribution and granular deposits of immunoglobulins and complement along the basement membrane. Some affected individuals show antinuclear antibodies or immune complex formation, whereas cryoglobulins or cold agglutinins are absent. Thus, the findings are consistent with chilblain lupus, a rare form of cutaneous lupus erythematosus. Investigation of a large German kindred with 18 affected members suggests a highly penetrant trait with autosomal dominant inheritance. By single-nucleotide-polymorphism-based genomewide linkage analysis, the locus was mapped to chromosome 3p. Haplotype analysis defined the locus to a 13.8-cM interval with a LOD score of 5.04. This is the first description of a monogenic form of cutaneous lupus erythematosus. Identification of the gene responsible for familial chilblain lupus may shed light on the pathogenesis of common forms of connective-tissue disease such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Min Ae Lee-Kirsch
- Klinik fur Kinder- und Jugendmedizin, Technische Universitat Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The complement system, composed of several plasma and membrane proteins, is an integral part of the innate immune system and plays a role in inflammatory response, destruction of infectious agents, elimination of immune complexes, and control of the specific (adaptive) immune response. Hereditary deficiencies of complement components are relatively rare and associated with susceptibility to a wide variety of clinical diseases. Complement components may be target of antibodies (anti-C1q, factor H, C3 alternative convertase, or C3NeF autoantibodies or anti-C1 inhibitor antibodies) that lead to acquired deficiencies. Testing the complement system is especially necessary in patients with autoimmune diseases, some kidney diseases, recurrent infections (especially meningococcal), and angioedema. Precise clinical descriptions of the phenotypes associated with these deficiencies and their molecular diagnosis are necessary to improve our understanding of the role that the complement system plays in the physiopathological mechanisms of these diseases and to propose the most specific treatment for them.
Collapse
|
40
|
Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 2004; 22:431-56. [PMID: 15032584 DOI: 10.1146/annurev.immunol.22.012703.104549] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complement has both beneficial and deleterious roles in the pathogenesis of systemic lupus erythematosus (SLE). On the one hand, patients with SLE present with decreased complement levels and with complement deposition in inflamed tissues, suggestive of a harmful role of complement in the effector phase of disease. On the other hand, homozygous deficiency of any of the classical pathway proteins is strongly associated with the development of SLE. There are two main hypotheses to explain these observations. The first invokes an important role for complement in the physiological waste-disposal mechanisms of dying cells and immune complexes. The second hypothesis is based around the role of complement in determining the activation thresholds of B and T lymphocytes, with the proposal that complement deficiency causes incomplete maintenance of peripheral tolerance. These two hypotheses are not mutually exclusive. In addition, there is evidence for a contribution from other genetic factors in determining the phenotype of disease in the absence of complement.
Collapse
Affiliation(s)
- Anthony P Manderson
- Rheumatology Section, Division of Medicine, Faculty of Medicine, Imperial College, Hammersmith Campus, London W12 0NN, United Kingdom.
| | | | | |
Collapse
|
41
|
Hoffman WH, Helman SW, Sekul E, Carroll JE, Vega RA. Lambert-Eaton Myasthenic syndrome in a child with an autoimmune phenotype. Am J Med Genet A 2003; 119A:77-80. [PMID: 12707964 DOI: 10.1002/ajmg.a.20022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report on a child with a family history of autoimmune defects, who presented at the age of 3(1/2) years with alopecia and Graves disease. He subsequently developed vitiligo and psoriasis. At 9(1/2) years, he developed an autoimmune form of Lambert-Eaton Myasthenic syndrome (LEMS) with a significant elevation of glutamic acid decarboxylase (GAD) autoantibodies. Shortly thereafter he developed chronic urticaria. HLA associations were present for Graves disease, vitiligo, psoriasis, and IgA deficiency. There was also evidence of autoimmunity involving the pancreatic islet cells and gastric parietal cells.
Collapse
Affiliation(s)
- William H Hoffman
- Section of Pediatric Endocrinology, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Autoimmune hepatitis is as virulent in the elderly as in the young, and initial treatment should be similar. Antiphospholipid antibodies should be sought in all patients with a history of fetal loss or arterial or venous thrombosis. The C282Y mutation in the HFE hemochromatosis gene occurs more commonly in autoimmune hepatitis than in normal subjects, but it is not associated with distinctive features. Children with autoimmune hepatitis may have abnormal cholangiogram results, but the syndrome of autoimmune sclerosing cholangitis does not affect immediate prognosis. Bile duct changes, including destructive cholangitis, can be incidental findings that have no clinical expression or therapeutic consequence. In South America, DRB1*1301 is associated with protracted hepatitis A virus infection which may enhance exposure to hepatic self-antigens in children. Interferon gamma-inducible protein 10 may be an important chemokine that promotes liver damage by attracting activated T cells. Transcripts of Fas ligand are abnormally increased in autoimmune hepatitis, and apoptotic dysfunction may contribute to disease progression. Pregnancy is not contraindicated in autoimmune hepatitis, and cyclosporine may be effective as first-line therapy.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.
| |
Collapse
|