1
|
Fehringer M, Vogl T. Molecular mimicry in the pathogenesis of autoimmune rheumatic diseases. J Transl Autoimmun 2025; 10:100269. [PMID: 39877080 PMCID: PMC11773492 DOI: 10.1016/j.jtauto.2025.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Autoimmune rheumatic diseases (ARDs) are a heterogeneous group of conditions characterized by excessive and misdirected immune responses against the body's own musculoskeletal tissues. Their exact aetiology remains unclear, with genetic, demographic, behavioural and environmental factors implicated in disease onset. One prominent hypothesis for the initial breach of immune tolerance (leading to autoimmunity) is molecular mimicry, which describes structural or sequence similarities between human and microbial proteins (mimotopes). This similarity can lead to cross-reactive antibodies and T-cell receptors, resulting in an immune response against autoantigens. Both commensal microbes in the human microbiome and pathogens can trigger molecular mimicry, thereby potentially contributing to the onset of ARDs. In this review, we focus on the role of molecular mimicry in the onset of rheumatoid arthritis and systemic lupus erythematosus. Moreover, implications of molecular mimicry are also briefly discussed for ankylosing spondylitis, systemic sclerosis and myositis.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| |
Collapse
|
2
|
Liu G, Wu J, Wang Y, Xu Y, Xu C, Fang G, Li X, Chen J. The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis. Bioengineering (Basel) 2025; 12:58. [PMID: 39851332 PMCID: PMC11761566 DOI: 10.3390/bioengineering12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
GRP78/BiP, a stress-induced protein and autoantigen in rheumatoid arthritis (RA), exhibits different expressions in various biological fluids and tissues, including blood, synovial fluid (SF), and synovium, all of which are pertinent to the disease activity and progression of RA; however, there is a scarcity of data linking both intracellular and extracellular GRP78/Bip to disease activity and progression of RA. This study was undertaken to investigate the differential expression of GRP78/Bip in blood, SF, and synovium, and to determine their association with disease activity and progression of RA. Patients with RA, osteoarthritis (OA), and traumatic meniscal injury (TMI) without radiographic OA were consecutively recruited for the study. Among patients with RA, six different subgroups were established based on their disease activity and progression. Disease activity was measured using the DAS28 (Disease activity scores in 28 joints) criterion, while disease progression was evaluated using the Steinbrocker classification grade. The levels of GRP78/Bip, TNF-α, and IL-10 were significantly elevated in the serum, SF, and synovium of patients with RA when compared to both the control (CON, TMI Patients) and the inflammation control (iCON, OA Patients) groups (p < 0.05). In terms of disease activity status, as opposed to remission status in RA, the levels of GRP78/Bip, TNF-α, and IL-10 were all elevated in serum and synovium (p < 0.05). However, GRP78/Bip and IL-10 levels were found to be reduced in SF, while TNF-α levels remained elevated. With respect to disease progression in RA, GRP78/Bip levels exhibited a positive correlation with both the stage of RA and the levels of TNF-α and IL-10 in serum and synovium. Nonetheless, a negative correlation was observed between GRP78/Bip levels and the stage of RA in SF, while positive correlations with the levels of TNF-α and IL-10 persisted. The differential expression of GRP78/Bip in blood, SF, and synovium indicated that the potential role and function of GRP78/Bip might vary depending on its specific location within these biological fluids and tissues. The presence of intracellular and extracellular GRP78/Bip was associated with disease activity and progression of RA, suggesting the involvement of GRP78/Bip in the pathogenesis and development of this debilitating autoimmune disorder, as well as its potential as a biomarker for monitoring disease activity and progression of RA.
Collapse
Affiliation(s)
- Guoyin Liu
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianping Wu
- Department of Obstetrics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Yongqiang Wang
- Department of Rehabilitation, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Yuansheng Xu
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
| | - Chun Xu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Guilin Fang
- Department of Rheumatology, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Xin Li
- Department of Orthopedics, Central Military Commission Joint Logistics Support Force 904th Hospital, Wuxi 214044, China
| | - Jianmin Chen
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (Y.X.)
| |
Collapse
|
3
|
Zhang W, Cao X. Unfolded protein responses in T cell immunity. Front Immunol 2025; 15:1515715. [PMID: 39845962 PMCID: PMC11750696 DOI: 10.3389/fimmu.2024.1515715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are integral to T cell biology, influencing immune responses and associated diseases. This review explores the interplay between the UPR and T cell immunity, highlighting the role of these cellular processes in T cell activation, differentiation, and function. The UPR, mediated by IRE1, PERK, and ATF6, is crucial for maintaining ER homeostasis and supporting T cell survival under stress. However, the precise mechanisms by which ER stress and the UPR regulate T cell-mediated immunity remain incompletely understood. Emerging evidence suggests that the UPR may be a potential therapeutic target for diseases characterized by T cell dysfunction, such as autoimmune disorders and cancer. Further research is needed to elucidate the complex interactions between ER stress, the UPR, and T cell immunity to develop novel therapeutic strategies for T cell-associated diseases.
Collapse
Affiliation(s)
- Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Riaz M, Rasool G, Yousaf R, Fatima H, Munir N, Ejaz H. Anti-Rheumatic potential of biological DMARDS and protagonistic role of bio-markers in early detection and management of rheumatoid arthritis. Innate Immun 2025; 31:17534259251324820. [PMID: 40091354 PMCID: PMC11912179 DOI: 10.1177/17534259251324820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily affects the synovial joint linings, resulting in progressive disability, increased mortality, and considerable economic costs. Early treatment with disease-modifying antirheumatic medications (DMARDs) can significantly improve the overall outlook for people with RA. Contemporary pharmaceutical interventions, encompassing standard, biological, and emerging small molecule disease- modifying anti-rheumatic medications continue to be the cornerstone of RA management, with substantial advancements made in the pursuit of achieving remission from the disease and preventing joint deformities. Nevertheless, a substantial segment of individuals with RA do not experience a satisfactory response to existing treatments, underscoring the pressing need for novel therapeutic options. Biologic DMARDs are among the therapy choices. Non-tumor necrosis factor inhibitors (Non-TNFi) such as abatacept, rituximab, tocilizumab, and sarilumab are examples, as are anti-tumor necrosis factor (TNF) medications such as infliximab, adalimumab, etanercept, golimumab, and certolizumab pegol. More recent biomarkers have emerged and showed usefulness in the early detection of RA. These biomarkers, often referred to simply as "biomarkers", are quantifiable indicators of normal or pathologic processes, and they can also gauge treatment response. The assessment of RA treatment response typically combines patient-reported outcomes, physical evaluations, and laboratory findings, as there isn't a single biomarker that has proven sufficient for measuring disease activity. This review explores the usage of biologic DMARDs as a therapeutic approach for RA, as well as the biomarkers typically used for RA early diagnosis, prognosis prediction, and disease activity evaluation.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ruhamah Yousaf
- Department of Health Professional Technologies, The University of Lahore, Lahore, Pakistan
| | - Hina Fatima
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
5
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
6
|
Hall C, Pleasance J, Hickman O, Kirkham B, Panayi GS, Eggleton P, Corrigall VM. The Biologic IRL201805 Alters Immune Tolerance Leading to Prolonged Pharmacodynamics and Efficacy in Rheumatoid Arthritis Patients. Int J Mol Sci 2024; 25:4394. [PMID: 38673979 PMCID: PMC11049849 DOI: 10.3390/ijms25084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
A homologue of binding immunoglobulin protein/BiP-IRL201805 alters the function of immune cells in pre-clinical in vivo and in vitro studies. The aim of the study was to select biomarkers that clearly delineate between RA patients who respond to IRL201805 and placebo patients and reveal the immunological mode of action of IRL201805 driving the extended pharmacodynamics observed in responding patients. Biomarkers that distinguished between responding patients and placebo patients included downregulation of serum interferon-γ and IL-1β; upregulation of anti-inflammatory mediators, serum soluble CTLA-4, and intracellular monocyte expression of IDO; and sustained increased CD39 expression on CD3+CD4+CD25hi CD127lo regulatory T cells. In the responding patients, selected biomarkers verified that the therapeutic effect could be continuous for at least 12 weeks post-infusion. In secondary co-culture, pre-infusion PBMCs cultured 1:1 with autologous PBMCs, isolated at later time-points during the trial, showed significantly inhibited IL-6 and IL-1β production upon anti-CD3/CD28 stimulation demonstrating IRL201805 alters the function of immune cells leading to prolonged pharmacodynamics confirmed by biomarker differences. IRL201805 may be the first of a new class of biologic drug providing long-term drug-free therapy in RA.
Collapse
Affiliation(s)
- Christopher Hall
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Jill Pleasance
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Oliver Hickman
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Bruce Kirkham
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Gabriel S. Panayi
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | | | - Valerie M. Corrigall
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
- Revolo Biotherapeutics, London SE1 9AP, UK
| |
Collapse
|
7
|
Eggleton P, De Alba J, Weinreich M, Calias P, Foulkes R, Corrigall VM. The therapeutic mavericks: Potent immunomodulating chaperones capable of treating human diseases. J Cell Mol Med 2023; 27:322-339. [PMID: 36651415 PMCID: PMC9889696 DOI: 10.1111/jcmm.17669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an 'eat-me' signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.
Collapse
Affiliation(s)
- Paul Eggleton
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,University of Exeter Medical SchoolExeterUK
| | | | | | | | | | - Valerie M. Corrigall
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,Centre for Inflammation Biology and Cancer Immunology, King's College London, New Hunts HouseGuy' HospitalLondonUK
| |
Collapse
|
8
|
Potential to Eradicate Cancer Stemness by Targeting Cell Surface GRP78. Biomolecules 2022; 12:biom12070941. [PMID: 35883497 PMCID: PMC9313351 DOI: 10.3390/biom12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells. This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
Collapse
|
9
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
10
|
Payandeh Z, Pirpour Tazehkand A, Azargoonjahromi A, Almasi F, Alagheband Bahrami A. The Role of Cell Organelles in Rheumatoid Arthritis with Focus on Exosomes. Biol Proced Online 2021; 23:20. [PMID: 34736402 PMCID: PMC8567674 DOI: 10.1186/s12575-021-00158-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Auto-immune diseases involved at least 25% of the population in wealthy countries. Several factors including genetic, epigenetic, and environmental elements are implicated in development of Rheumatoid Arthritis as an autoimmune disease. Autoantibodies cause synovial inflammation and arthritis, if left untreated or being under continual external stimulation, could result in chronic inflammation, joint injury, and disability. T- and B-cells, signaling molecules, proinflammatory mediators, and synovium-specific targets are among the new therapeutic targets. Exosomes could be employed as therapeutic vectors in the treatment of autoimmune diseases. Herein, the role of cell organelle particularly exosomes in Rheumatoid Arthritis had discussed and some therapeutic applications of exosome highlighted.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Zhou X, Yang M, Lv Y, Li H, Wu S, Min J, Shen G, He Y, Lei P. Adoptive transfer of GRP78-treated dendritic cells alleviates insulitis in NOD mice. J Leukoc Biol 2021; 110:1023-1031. [PMID: 34643294 DOI: 10.1002/jlb.3ma0921-219rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) has extracellular, anti-inflammatory properties that can aid resolving inflammation. It has been established previously that GRP78 induced myeloid CD11c+ cell differentiation into distinct tolerogenic cells. This tolerance induction makes GRP78 a potential therapeutic agent for transplanted allogeneic grafts and autoimmune diseases, such as type 1 diabetes. In this research, it is revealed that rmGRP78-treated NOD mice bone marrow-derived CD11c+ cells (GRP78-DCs) highly expressed B7-H4 but down-regulated CD86 and CD40, and retained a tolerogenic signature even after stimulation by LPS. In the assessment of in vivo therapeutic efficacy after the adoptive transfer of GRP78-DCs into NOD mice, fluorescent imaging analyses revealed that the transfer specifically homed in inflamed pancreases, promoting β-cell survival and alleviating insulitis in NOD mice. The adoptive transfer of GRP78-DCs also helped reduce Th1, Th17, and CTL, suppressing inflammatory cytokine production in vivo. The findings suggest that adoptive GRP78-DC transfer is critical to resolving inflammation in NOD mice and may have relevance in a clinical setting.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muyang Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
13
|
Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci Rep 2021; 11:7825. [PMID: 33837229 PMCID: PMC8035148 DOI: 10.1038/s41598-021-87153-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) is out of the question. Yet, recent drawbacks have resulted in a strategic shift towards the application of MSC-derived cell-free products such as extracellular vesicles (EVs). Recent reports revealed that functional properties of MSCs, including EV secretion patterns, correlate with microenvironmental cues. These findings highlight the urgent need for defining the optimal circumstances for EV preparation. Considering the limitations of primary cells, we employed immortalized cells as an alternative source to prepare therapeutically sufficient EV numbers. Herein, the effects of different conditional environments are explored on human TERT-immortalized MSCs (hTERT-MSCs). The latter were transduced to overexpress IDO1, PTGS2, and TGF-β1 transgenes either alone or in combination, and their immunomodulatory properties were analyzed thereafter. Likewise, EVs derived from these various MSCs were extensively characterized. hTERT-MSCs-IDO1 exerted superior inhibitory effects on lymphocytes, significantly more than hTERT-MSCs-IFN-γ. As such, IDO1 overexpression promoted the immunomodulatory properties of such enriched EVs. Considering the limitations of cell therapy like tumor formation and possible immune responses in the host, the results presented herein might be considered as a feasible model for the induction of immunomodulation in off-the-shelf and cell-free therapeutics, especially for autoimmune diseases.
Collapse
|
14
|
Wenzel TJ, Kwong E, Bajwa E, Klegeris A. Resolution-Associated Molecular Patterns (RAMPs) as Endogenous Regulators of Glia Functions in Neuroinflammatory Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:483-494. [DOI: 10.2174/1871527319666200702143719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Glial cells, including microglia and astrocytes, facilitate the survival and health of all cells
within the Central Nervous System (CNS) by secreting a range of growth factors and contributing to
tissue and synaptic remodeling. Microglia and astrocytes can also secrete cytotoxins in response to
specific stimuli, such as exogenous Pathogen-Associated Molecular Patterns (PAMPs), or endogenous
Damage-Associated Molecular Patterns (DAMPs). Excessive cytotoxic secretions can induce the death
of neurons and contribute to the progression of neurodegenerative disorders, such as Alzheimer’s disease
(AD). The transition between various activation states of glia, which include beneficial and detrimental
modes, is regulated by endogenous molecules that include DAMPs, cytokines, neurotransmitters,
and bioactive lipids, as well as a diverse group of mediators sometimes collectively referred to as
Resolution-Associated Molecular Patterns (RAMPs). RAMPs are released by damaged or dying CNS
cells into the extracellular space where they can induce signals in autocrine and paracrine fashions by
interacting with glial cell receptors. While the complete range of their effects on glia has not been described
yet, it is believed that their overall function is to inhibit adverse CNS inflammatory responses,
facilitate tissue remodeling and cellular debris removal. This article summarizes the available evidence
implicating the following RAMPs in CNS physiological processes and neurodegenerative diseases:
cardiolipin (CL), prothymosin α (ProTα), binding immunoglobulin protein (BiP), heat shock protein
(HSP) 10, HSP 27, and αB-crystallin. Studies on the molecular mechanisms engaged by RAMPs could
identify novel glial targets for development of therapeutic agents that effectively slow down neuroinflammatory
disorders including AD.
Collapse
Affiliation(s)
- Tyler J. Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Evan Kwong
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
15
|
Loaiza CD, Duhan N, Lister M, Kaundal R. In silico prediction of host-pathogen protein interactions in melioidosis pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets. Brief Bioinform 2020; 22:5842243. [PMID: 32444871 DOI: 10.1093/bib/bbz162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
The aerobic, Gram-negative motile bacillus, Burkholderia pseudomallei is a facultative intracellular bacterium causing melioidosis, a critical disease of public health importance, which is widely endemic in the tropics and subtropical regions of the world. Melioidosis is associated with high case fatality rates in animals and humans; even with treatment, its mortality is 20-50%. It also infects plants and is designated as a biothreat agent. B. pseudomallei is pathogenic due to its ability to invade, resist factors in serum and survive intracellularly. Despite its importance, to date only a few effector proteins have been functionally characterized, and there is not much information regarding the host-pathogen protein-protein interactions (PPI) of this system, which are important to studying infection mechanisms and thereby develop prevention measures. We explored two computational approaches, the homology-based interolog and the domain-based method, to predict genome-scale host-pathogen interactions (HPIs) between two different strains of B. pseudomallei (prototypical, and highly virulent) and human. In total, 76 335 common HPIs (between the two strains) were predicted involving 8264 human and 1753 B. pseudomallei proteins. Among the unique PPIs, 14 131 non-redundant HPIs were found to be unique between the prototypical strain and human, compared to 3043 non-redundant HPIs between the highly virulent strain and human. The protein hubs analysis showed that most B. pseudomallei proteins formed a hub with human dnaK complex proteins associated with tuberculosis, a disease similar in symptoms to melioidosis. In addition, drug-binding and carbohydrate-binding mechanisms were found overrepresented within the host-pathogen network, and metabolic pathways were frequently activated according to the pathway enrichment. Subcellular localization analysis showed that most of the pathogen proteins are targeting human proteins inside cytoplasm and nucleus. We also discovered the host targets of the drug-related pathogen proteins and proteins that form T3SS and T6SS in B. pseudomallei. Additionally, a comparison between the unique PPI patterns present in the prototypical and highly virulent strains was performed. The current study is the first report on developing a genome-scale host-pathogen protein interaction networks between the human and B. pseudomallei, a critical biothreat agent. We have identified novel virulence factors and their interacting partners in the human proteome. These PPIs can be further validated by high-throughput experiments and may give new insights on how B. pseudomallei interacts with its host, which will help medical researchers in developing better prevention measures.
Collapse
Affiliation(s)
- Cristian D Loaiza
- Center for Integrated BioSystems/Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, USA
| | - Naveen Duhan
- Center for Integrated BioSystems/Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, USA
| | - Matthew Lister
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, USA
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
16
|
KDEL Receptors Are Differentially Regulated to Maintain the ER Proteome under Calcium Deficiency. Cell Rep 2019; 25:1829-1840.e6. [PMID: 30428351 DOI: 10.1016/j.celrep.2018.10.055] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Retention of critical endoplasmic reticulum (ER) luminal proteins needed to carry out diverse functions (e.g., protein synthesis and folding, lipid metabolism) is mediated through a carboxy-terminal ER retention sequence (ERS) and its interaction with KDEL receptors. Here, we demonstrate that depleting ER calcium causes mass departure of ERS-containing proteins from cells by overwhelming KDEL receptors. In addition, we provide evidence that KDELR2 and KDELR3, but not KDELR1, are unfolded protein response (UPR) genes upregulated as an adaptive response to counteract the loss of ERS-containing proteins, suggesting previously unknown isoform-specific functions of the KDEL receptors. Overall, our findings establish that decreases in ER calcium change the composition of the ER luminal proteome and secretome, which can impact cellular functions and cell viability. The redistribution of the ER proteome from inside the cell to the outside has implications for dissecting the complex relationship of ER homeostasis with diverse disease pathologies.
Collapse
|
17
|
Brooks-Worrell BM, Palmer JP. Setting the Stage for Islet Autoimmunity in Type 2 Diabetes: Obesity-Associated Chronic Systemic Inflammation and Endoplasmic Reticulum (ER) Stress. Diabetes Care 2019; 42:2338-2346. [PMID: 31748213 PMCID: PMC7364670 DOI: 10.2337/dc19-0475] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Islet autoimmunity has been identified as a component of both type 1 (T1D) and type 2 (T2D) diabetes, but the pathway through which islet autoimmunity develops in T1D and T2D may be different. Acknowledging the presence of islet autoimmunity in the pathophysiology of T2D, a historically nonautoimmune metabolic disease, would pave the way for important changes in classifications of and therapeutic options for T2D. In order to fully appreciate the importance of islet autoimmunity in T2D, the underlying mechanisms for immune system activation need to be explored. In this review, we focus on the potential origin of immune system activation (innate and adaptive) leading to the development of islet autoimmunity in T2D.
Collapse
Affiliation(s)
- Barbara M Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA .,Department of Medicine, DVA Puget Sound Health Care System, Seattle, WA
| | - Jerry P Palmer
- Department of Medicine, University of Washington, Seattle, WA.,Department of Medicine, DVA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
18
|
Zaiss MM, Hall C, McGowan NWA, Babb R, Devlia V, Lucas S, Meghji S, Henderson B, Bozec A, Schett G, David JP, Panayi GS, Grigoriadis AE, Corrigall VM. Binding Immunoglobulin Protein (BIP) Inhibits TNF-α-Induced Osteoclast Differentiation and Systemic Bone Loss in an Erosive Arthritis Model. ACR Open Rheumatol 2019; 1:382-393. [PMID: 31777818 PMCID: PMC6857990 DOI: 10.1002/acr2.11060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective The association between inflammation and dysregulated bone remodeling is apparent in rheumatoid arthritis and is recapitulated in the human tumor necrosis factor transgenic (hTNFtg) mouse model. We investigated whether extracellular binding immunoglobulin protein (BiP) would protect the hTNFtg mouse from both inflammatory arthritis as well as extensive systemic bone loss and whether BiP had direct antiosteoclast properties in vitro. Methods hTNFtg mice received a single intraperitoneal administration of BiP at onset of arthritis. Clinical disease parameters were measured weekly. Bone analysis was performed by microcomputed tomography and histomorphometry. Mouse bone marrow macrophage and human peripheral blood monocyte precursors were used to study the direct effect of BiP on osteoclast differentiation and function in vitro. Monocyte and osteoclast signaling was analyzed by Western blotting, flow cytometry, and imaging flow cytometry. Results BiP-treated mice showed reduced inflammation and cartilage destruction, and histomorphometric analysis revealed a decrease in osteoclast number with protection from systemic bone loss. Abrogation of osteoclast function was also observed in an ex vivo murine calvarial model. BiP inhibited differentiation of osteoclast precursors and prevented bone resorption by mature osteoclasts in vitro. BiP also induced downregulation of CD115/c-Fms and Receptor Activator of NF-κB (RANK) messenger RNA and protein, causing reduced phosphorylation of the p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1/2 and p38, with suppression of essential osteoclast transcription factors, c-Fos and NFATc1. BiP directly inhibited TNF-α- or Receptor Activator of NF-κB Ligand (RANKL)-induced NF-κB nuclear translocation in THP-1 monocytic cells and preosteoclasts by the canonical and noncanonical pathways. Conclusion BiP combines an anti-inflammatory function with antiosteoclast activity, which establishes it as a potential novel therapeutic for inflammatory disorders associated with bone loss.
Collapse
Affiliation(s)
- Mario M Zaiss
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | | | | | | | | | - Sébastien Lucas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Sajeda Meghji
- UCL-Eastman Dental Institute University College London London UK
| | - Brian Henderson
- UCL-Eastman Dental Institute University College London London UK
| | - Aline Bozec
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Georg Schett
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Jean-Pierre David
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany, and Institute of Osteology and Biomechanics (IOBM) University Medical Center Hamburg-Eppendorf Hamburg Germany
| | | | | | | |
Collapse
|
19
|
Ahmadiany M, Alavi-Samani M, Hashemi Z, Moosavi MA, Rahmati M. The Increased RNase Activity of IRE1α in PBMCs from Patients with Rheumatoid Arthritis. Adv Pharm Bull 2019; 9:505-509. [PMID: 31592115 PMCID: PMC6773928 DOI: 10.15171/apb.2019.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: Despite recent advances in the diagnosis and treatment of rheumatoid arthritis (RA), this
inflammatory disease remains a challenge to patients and physicians. Recent evidence highlights
the contribution of endoplasmic reticulum (ER) stress in the pathogenesis and treatment of RA.
Herein, we study the expression of the ER stress sensor inositol-requiring enzyme 1α (IRE1α),
as well as XBP1 splicing and the regulated IRE1-dependent decay (RIDD), in peripheral blood
mononuclear cells (PBMCs) from patients with RA compared with healthy controls.
Methods: The PBMCs from blood samples of RA patients and healthy volunteers were isolated
by a density gradient centrifugation method using Ficoll. The gene expression levels of
GRP78/
Bip, IRE1, XBP1s, micro-RNAs (miRNAs)
were evaluated by real-time PCR.
Results: The expression of GRP78, IRE1, and XBP1s were increased in PBMCs of RA patients
compared with healthy controls. We further show that the RIDD targets (miRNA-17, -34a, -96,
and -125b) were downregulated in RA samples.
Conclusion: This study can expand our knowledge on the importance of RNase activity of
IRE1α in RA and may offer new potentials for developing novel diagnostic and/or therapeutic
biomarkers.
Collapse
Affiliation(s)
- Mahdieh Ahmadiany
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biochemistry, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
| | - Mahshid Alavi-Samani
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biochemistry, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
| | - Zahra Hashemi
- Department of Rheumatology, Imam Hossein Teaching Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran P.O Box 14965/161, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
21
|
Apostolou E, Moustardas P, Iwawaki T, Tzioufas AG, Spyrou G. Ablation of the Chaperone Protein ERdj5 Results in a Sjögren's Syndrome-Like Phenotype in Mice, Consistent With an Upregulated Unfolded Protein Response in Human Patients. Front Immunol 2019; 10:506. [PMID: 30967862 PMCID: PMC6438897 DOI: 10.3389/fimmu.2019.00506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: Sjögren's syndrome (SS) is a chronic autoimmune disorder that affects mainly the exocrine glands. Endoplasmic reticulum (ER) stress proteins have been suggested to participate in autoimmune and inflammatory responses, either acting as autoantigens, or by modulating factors of inflammation. The chaperone protein ERdj5 is an ER-resident disulfide reductase, required for the translocation of misfolded proteins during ER-associated protein degradation. In this study we investigated the role of ERdj5 in the salivary glands (SGs), in association with inflammation and autoimmunity. Methods:In situ expression of ERdj5 and XBP1 activation were studied immunohistochemically in minor SG tissues from primary SS patients and non-SS sicca-complaining controls. We used the mouse model of ERdj5 ablation and characterized its features: Histopathological, serological (antinuclear antibodies and cytokine levels), and functional (saliva flow rate). Results: ERdj5 was highly expressed in the minor SGs of SS patients, with stain intensity correlated to inflammatory lesion severity and anti-SSA/Ro positivity. Moreover, SS patients demonstrated higher XBP1 activation within the SGs. Remarkably, ablation of ERdj5 in mice conveyed many of the cardinal features of SS, like spontaneous inflammation in SGs with infiltrating T and B lymphocytes, distinct cytokine signature, excessive cell death, reduced saliva flow, and production of anti-SSA/Ro and anti-SSB/La autoantibodies. Notably, these features were more pronounced in female mice. Conclusions: Our findings suggest a critical connection between the function of the ER chaperone protein ERdj5 and autoimmune inflammatory responses in the SGs and provide evidence for a new, potent animal model of SS.
Collapse
Affiliation(s)
- Eirini Apostolou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academic Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Moustardas
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academic Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Giannis Spyrou
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Rahman S, Archana A, Jan AT, Dutta D, Shankar A, Kim J, Minakshi R. Molecular Insights Into the Relationship Between Autoimmune Thyroid Diseases and Breast Cancer: A Critical Perspective on Autoimmunity and ER Stress. Front Immunol 2019; 10:344. [PMID: 30881358 PMCID: PMC6405522 DOI: 10.3389/fimmu.2019.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of immune components leading to the corruption of immune homeostasis where thyroid autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes) leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in AITDs consistently associate with ER function due to which disturbances in the ER protein homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of AITD has been well-documented. Thyroglobulin being the major target of autoantibodies in most of the AITDs is because of its unusual processing in the ER. Autoimmune disorders display a conglomeration of ER stress-induced UPR activated molecules. Several epidemiological data highlight the preponderance of AITDs in women as well as its concurrence with breast cancer. Both being an active glandular system displaying endocrine activity, thyroid as well as breast tissue show various commonalities in the expression pattern of heterogenous molecules that not only participate in the normal functioning but at the same time share the blame during disease establishment. Studies on the development and progression of breast carcinoma display a deranged and uncontrolled immune response, which is meticulously exploited during tumor metastasis. The molecular crosstalks between AITDs and breast tumor microenvironment rely on active participation of immune cells. The induction of ER stress by Tunicamycin advocates to provide a model for cancer therapy by intervening glycosylation. Therefore, this review attempts to showcase the molecules that are involved in feeding up the relationship between breast carcinoma and AITDs.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, India
| | - Abhishek Shankar
- Department of Preventive Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| |
Collapse
|
23
|
Abstract
Connective tissue diseases (CTDs), also known as systemic autoimmune diseases, involve a variety of autoantibodies against cellular components. An important factor regarding these autoantibodies is that each antibody is exclusively related to a certain clinical feature of the disease type, which may prove useful in clinical practice. Thus far, more than 100 types of autoantibodies have been found in CTDs, and most of their target antigens have been identified. Many of these autoantigens are enzymes or regulators involved in important cellular functions, such as gene replication, transcription, repair/recombination, RNA processing, and protein synthesis, as well as proteins that form complexes with RNA and DNA. This article reviews the autoantibodies for each CTD, along with an assessment of their clinical significance, and provides suggestions regarding their utilization for clinical practice.
Collapse
Affiliation(s)
- Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
24
|
Lang E, Pozdeev VI, Shinde PV, Xu HC, Sundaram B, Zhuang Y, Poschmann G, Huang J, Stühler K, Pandyra AA, Keitel V, Häussinger D, Lang KS, Lang PA. Cholestasis induced liver pathology results in dysfunctional immune responses after arenavirus infection. Sci Rep 2018; 8:12179. [PMID: 30111770 PMCID: PMC6093869 DOI: 10.1038/s41598-018-30627-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Immune responses are critical for defense against pathogens. However, prolonged viral infection can result in defective T cell immunity, leading to chronic viral infection. We studied immune activation in response to arenavirus infection during cholestasis using bile duct ligation (BDL). We monitored T cell responses, virus load and liver pathology markers after infection with lymphocytic choriomeningitis virus (LCMV). BDL mice failed to induce protective anti-viral immunity against LCMV and consequently exhibited chronic viral infection. BDL mice exhibited reduced anti-viral T cell immunity as well as reduced type 1 interferon production early after LCMV infection. Consistently, the presence of serum from BDL mice reduced the responsiveness of dendritic cell (DC) and T cell cultures when compared to Sham controls. Following fractionation and mass spectrometry analyses of sera, we identified several serum factors to be upregulated following BDL including bilirubin, bile acids, 78 kDa Glucose regulated protein (GRP78) and liver enzymes. Bilirubin and GRP78 were capable of inhibiting DC and T cell activation. In this work, we demonstrate that liver damage mediated by cholestasis results in defective immune induction following arenavirus infection.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Vitaly I Pozdeev
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Laboratory of Oncolytic-Virus-Immuno-Therapeutics (LOVIT), German Cancer Research Center (DKFZ), Im Neunheimer Feld 242, 69120, Heidelberg, Germany.,Laboratory of Oncolytic-Virus-Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), 84, rue Val Fleuri, L-1526, Strassen, Luxembourg
| | - Prashant V Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Balamurugan Sundaram
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jun Huang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Medical Faculty, Duesseldorf, Germany.,Institute for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse. 55, Essen, 45147, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
25
|
Junjappa RP, Patil P, Bhattarai KR, Kim HR, Chae HJ. IRE1α Implications in Endoplasmic Reticulum Stress-Mediated Development and Pathogenesis of Autoimmune Diseases. Front Immunol 2018; 9:1289. [PMID: 29928282 PMCID: PMC5997832 DOI: 10.3389/fimmu.2018.01289] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) is the most prominent and evolutionarily conserved endoplasmic reticulum (ER) membrane protein. This transduces the signal of misfolded protein accumulation in the ER, named as ER stress, to the nucleus as “unfolded protein response (UPR).” The ER stress-mediated IRE1α signaling pathway arbitrates the yin and yang of cell life. IRE1α has been implicated in several physiological as well as pathological conditions, including immune disorders. Autoimmune diseases are caused by abnormal immune responses that develop due to genetic mutations and several environmental factors, including infections and chemicals. These factors dysregulate the cell immune reactions, such as cytokine secretion, antigen presentation, and autoantigen generation. However, the mechanisms involved, in which these factors induce the onset of autoimmune diseases, are remaining unknown. Considering that these environmental factors also induce the UPR, which is expected to have significant role in secretory cells and immune cells. The role of the major UPR molecule, IRE1α, in causing immune responses is well identified, but its role in inducing autoimmunity and the pathogenesis of autoimmune diseases has not been clearly elucidated. Hence, a better understanding of the role of IRE1α and its regulatory mechanisms in causing autoimmune diseases could help to identify and develop the appropriate therapeutic strategies. In this review, we mainly center the discussion on the molecular mechanisms of IRE1α in the pathophysiology of autoimmune diseases.
Collapse
Affiliation(s)
- Raghu Patil Junjappa
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| | - Prakash Patil
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| | - Hyung-Ryong Kim
- Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
26
|
Rahmati M, Moosavi MA, McDermott MF. ER Stress: A Therapeutic Target in Rheumatoid Arthritis? Trends Pharmacol Sci 2018; 39:610-623. [PMID: 29691058 DOI: 10.1016/j.tips.2018.03.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Diverse physiological and pathological conditions that impact on protein folding of the endoplasmic reticulum (ER) cause ER stress. The unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway are activated to cope with ER stress. In rheumatoid arthritis (RA), inflammation and ER stress work in parallel by driving inflammatory cells to release cytokines that induce chronic ER stress pathways. This chronic ER stress may contribute to the pathogenesis of RA through synoviocyte proliferation and proinflammatory cytokine production. Therefore, ER stress pathways and their constituent elements are attractive targets for RA drug development. In this review, we integrate current knowledge of the contribution of ER stress to the overall pathogenesis of RA, and suggest some therapeutic implications of these discoveries.
Collapse
Affiliation(s)
- Marveh Rahmati
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran; These authors contributed equally to this work.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran; These authors contributed equally to this work
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| |
Collapse
|
27
|
GRP78 protects CHO cells from ribosylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:629-637. [DOI: 10.1016/j.bbamcr.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
|
28
|
Miyagawa-Hayashino A, Yoshifuji H, Kitagori K, Ito S, Oku T, Hirayama Y, Salah A, Nakajima T, Kiso K, Yamada N, Haga H, Tsuruyama T. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther 2018; 20:13. [PMID: 29382365 PMCID: PMC5791339 DOI: 10.1186/s13075-018-1511-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which dysregulation of B cells has been recognized. Here, we searched for potential biomarkers of SLE using liquid chromatography-tandem mass spectrometry (LC-MS). Methods Lymph nodes from SLE patients and controls were analyzed by LC-MS. To validate the identified molecules, immunoblotting and immunohistochemistry were performed and B cells from SLE patients were analyzed by quantitative RT-PCR. B-cell subsets from NZB/W F1 mice, which exhibit autoimmune disease resembling human SLE, were analyzed by flow cytometry. Endoplasmic reticulum (ER) stress was induced by tunicamycin and the serum concentration of anti-dsDNA antibodies was determined by ELISA. TUNEL methods and immunoblotting were used to assess the effect of tunicamycin. Results MZB1, which comprises part of a B-cell-specific ER chaperone complex and is a key player in antibody secretion, was one of the differentially expressed proteins identified by LC-MS and confirmed by immunoblotting. Immunohistochemically, larger numbers of MZB1+ cells were located mainly in interfollicular areas and scattered in germinal centers in specimens from SLE patients compared with those from controls. MZB1 colocalized with CD138+ plasma cells and IRTA1+ marginal zone B cells. MZB1 mRNA was increased by 2.1-fold in B cells of SLE patients with active disease (SLE Disease Activity Index 2000 ≥ 6) compared with controls. In aged NZB/W F1 mice, splenic marginal zone B cells and plasma cells showed elevated MZB1 levels. Tunicamycin induced apoptosis of MZB1+ cells in target organs, resulting in decreased serum anti-dsDNA antibody levels. Additionally, MZB1+ cells were increased in synovial tissue specimens from patients with rheumatoid arthritis. Conclusions MZB1 may be a potential therapeutic target in excessive antibody-secreting cells in SLE. Electronic supplementary material The online version of this article (10.1186/s13075-018-1511-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aya Miyagawa-Hayashino
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan. .,Present address: Department of Clinical Pathology, Kansai Medical University, Osaka, Japan.
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kitagori
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Bio Frontier Platform, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuma Oku
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Research Portfolio & Science, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Yoshitaka Hirayama
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Research Portfolio & Science, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Adeeb Salah
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Toshiki Nakajima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaori Kiso
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norishige Yamada
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Nakken B, Papp G, Bosnes V, Zeher M, Nagy G, Szodoray P. Biomarkers for rheumatoid arthritis: From molecular processes to diagnostic applications-current concepts and future perspectives. Immunol Lett 2017; 189:13-18. [DOI: 10.1016/j.imlet.2017.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
30
|
Sun P, Wang W, Chen L, Li N, Meng X, Bian J, Yang J, Wang X, Zhu W, Ming L. Diagnostic value of autoantibodies combined detection for rheumatoid arthritis. J Clin Lab Anal 2017; 31:e22086. [PMID: 27800636 PMCID: PMC6816999 DOI: 10.1002/jcla.22086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/05/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic, inflammatory and autoimmune disease, there are many autoantibodies produced during disease progression in the patients' serum, and this work is to select a best detection scheme for RA diagnosis. METHODS Autoantibody levels including rheumatoid factor (RF), anti-cyclic citrullinated peptide (CCP), mutated citrullinated vimentin (MCV), anti-keratin antibodies(AKA), anti-perinuclear factor (APF), and Ig heavy chain binding protein (BIP), were measured, and the sensitivity, specificity, predictive values, accuracy, and Youden's index of different combining forms were all calculated in RA patients, disease, and healthy control group. The differences in the positive rates of the three groups were compared between any two of them. RESULTS Generally speaking, the sensitivity of the autoantibodies detected in parallel combination was higher than that in tandem, which was more specific. The sensitivity of anti-MCV and RF calculated in parallel (87.61%) was obviously better than that of anyone autoantibody (P<.05), and only increased slightly even if more autoantibodies were tested in parallel (P>.05). The specificity of anti-CCP and BIP measured in tandem (95.92%) was obviously higher than that of anyone autoantibody (P<.05). While increasing the detected number of autoantibody from two kinds to three or more, the specificity was improved insignificantly (P>.05). CONCLUSION Anti-BIP and CCP antibodies detected in tandem combination can obtain higher specificity, and have good clinical value for the differential diagnosis of RA.
Collapse
Affiliation(s)
- Pingping Sun
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Wanhai Wang
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Ling Chen
- Laboratory of Jiangyou People's HospitalSichuanChina
| | - Nan Li
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Xianchun Meng
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Jing Bian
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Jingjing Yang
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Xu'na Wang
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Weitao Zhu
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| | - Liang Ming
- Laboratory of the First Affiliated Hospital of Zhengzhou UniversityHenanChina
| |
Collapse
|
31
|
Kollipara L, Buchkremer S, Coraspe JAG, Hathazi D, Senderek J, Weis J, Zahedi RP, Roos A. In-depth phenotyping of lymphoblastoid cells suggests selective cellular vulnerability in Marinesco-Sjögren syndrome. Oncotarget 2017; 8:68493-68516. [PMID: 28978133 PMCID: PMC5620273 DOI: 10.18632/oncotarget.19663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/28/2017] [Indexed: 12/18/2022] Open
Abstract
SIL1 is a ubiquitous protein of the Endoplasmic Reticulum (ER) acting as a co-chaperone for the ER-resident chaperone, BiP. Recessive mutations of the corresponding gene lead to vulnerability of skeletal muscle and central nervous system in man (Marinesco-Sjögren syndrome; MSS) and mouse. However, it is still unclear how loss of ubiquitous SIL1 leads to selective vulnerability of the nervous system and skeletal muscle whereas other cells and organs are protected from clinical manifestations. In this study we aimed to disentangle proteins participating in selective vulnerability of SIL1-deficient cells and tissues: morphological examination of MSS patient-derived lymphoblastoid cells revealed altered organelle structures (ER, nucleus and mitochondria) thus showing subclinical vulnerability. To correlate structural perturbations with biochemical changes and to identify proteins potentially preventing phenotypical manifestation, proteomic studies have been carried out. Results of proteomic profiling are in line with the morphological findings and show affection of nuclear, mitochondrial and cytoskeletal proteins as well as of such responsible for cellular viability. Moreover, expression patterns of proteins known to be involved in neuromuscular disorders or in development and function of the nervous system were altered. Paradigmatic findings were confirmed by immunohistochemistry of splenic lymphocytes and the cerebellum of SIL1-deficient mice. Ataxin-10, identified with increased abundance in our proteome profile, is necessary for the neuronal survival but also controls muscle fiber apoptosis, thus declaring this protein as a plausible candidate for selective tissue vulnerability. Our combined results provide first insights into the molecular causes of selective cell and tissue vulnerability defining the MSS phenotype.
Collapse
Affiliation(s)
- Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, University Hospital Aachen, RWTH Aachen, 5274 Aachen, Germany
| | | | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany
| | - Jan Senderek
- Friedrich-Baur-Institute, Medical Faculty, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital Aachen, RWTH Aachen, 5274 Aachen, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany.,Institute of Neuropathology, University Hospital Aachen, RWTH Aachen, 5274 Aachen, Germany.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
32
|
Abstract
A broad definition of preconditioning is "the preparation for a subsequent action." Mounting evidence demonstrates that novel remote preconditioning paradigms, in which protective stimuli experienced locally can capacitate systemic tolerance and enhanced cell viability upon exposure to ensuing cellular insults, have been largely successful in the field of cardiovascular ischemia/reperfusion injury. To ensure successful protective preconditioning, some models (including the uterus) have been demonstrated to activate the unfolded protein response (UPR), which is a cellular stress response controlled at the level of the endoplasmic reticulum. However, in the context of remote preconditioning, activation of these intracellular molecular pathways must result in the extracellular transmission of adaptive signals to remote targets. In our recently published manuscript, we have described the activation of the UPR in the pregnant uterine myocyte to be associated with increased uterine myocyte quiescence and normal gestational length. We hypothesize that ubiquitous uterine gestational stresses experienced in every pregnancy, which have been demonstrated in other systems to activate the UPR, may induce a robust paracrine dissemination of a uterine secretome, for example, glucose-regulated protein 78, with preconditioning-like properties. Furthermore, we speculate that the gestational stress-induced uterine secretome acts to promote both local and systemic tolerance to the ensuing gestational insults, allowing for the maintenance of uterine quiescence. In this context, preterm labor may be the result of a pregnant uterus experiencing a stress it cannot accommodate or when it is unable to host an appropriate UPR resulting in insufficient preconditioning and a diminished local and systemic capacity to tolerate pregnancy-dependent increases in normal gestational stress. This is highly attractive from a clinical viewpoint as we ultimately aim to identify local and systemic adaptations that may serve as preconditioning stimuli for use as a strategy to restore appropriate preconditioning profiles to prolong uterine quiescence in pregnancy.
Collapse
Affiliation(s)
- Judith Ingles
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Chandrashekara N Kyathanahalli
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Pancharatnam Jeyasuria
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatal Research Initiative Wayne State University School of Medicine, Wane State University, Detroit, MI, USA
| | - Jennifer C Condon
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatal Research Initiative Wayne State University School of Medicine, Wane State University, Detroit, MI, USA
| |
Collapse
|
33
|
HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 2017; 618:14-23. [PMID: 28286085 DOI: 10.1016/j.gene.2017.03.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
The HSPA5 gene encodes the binding immunoglobulin protein (BiP), an Hsp70 family chaperone localized in the ER lumen. As a highly conserved molecular chaperone, BiP assists in a wide range of folding processes via its two structural domains, a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). BiP is also an essential component of the translocation machinery for protein import into the ER, a regulator for Ca2+ homeostasis in the ER, as well as a facilitator of ER-associated protein degradation (ERAD) via retrograde transportation of aberrant proteins across the ER membrane. When unfolded/misfolded proteins in the ER overwhelm the capacity of protein folding machinery, BiP can initiate the unfolded protein response (UPR), decrease unfolded/misfolded protein load, induce autophagy, and crosstalk with apoptosis machinery to assist in the cell survival decision. Post-translational modifications (PTMs) of BiP have been shown to regulate BiP's activity, turnover, and availability upon different extrinsic or intrinsic stimuli. As a master regulator of ER function, BiP is associated with cancer, cardiovascular disease, neurodegenerative disease, and immunological diseases. BiP has been targeted in cancer therapies and shows promise for application in other relevant diseases.
Collapse
|
34
|
Fausther-Bovendo H, Qiu X, McCorrister S, Westmacott G, Sandstrom P, Castilletti C, Di Caro A, Ippolito G, Kobinger GP. Ebola virus infection induces autoimmunity against dsDNA and HSP60. Sci Rep 2017; 7:42147. [PMID: 28181533 PMCID: PMC5299614 DOI: 10.1038/srep42147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 11/15/2022] Open
Abstract
Ebola virus (EBOV) survivors are affected by a variety of serious illnesses of unknown origin for years after viral clearance from the circulation. Identifying the causes of these persistent illnesses is paramount to develop appropriate therapeutic protocols. In this study, using mouse and non-human primates which survived EBOV challenge, ELISA, western blot, mass spectrometry and flow cytometry were used to screen for autoantibodies, identify their main targets, investigate the mechanism behind their induction and monitor autoantibodies accumulation in various tissues. In infected mice and NHP, polyclonal B cell activation and autoantigens secretion induced autoantibodies against dsDNA and heat shock protein 60 as well as antibody accumulation in tissues associated with long-term clinical manifestations in humans. Finally, the presence of these autoantibodies was confirmed in human EBOV survivors. Overall, this study supports the concept that autoimmunity is a causative parameter that contributes to the various illnesses observed in EBOV survivors.
Collapse
Affiliation(s)
- H Fausther-Bovendo
- University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public health Agency of Canada, Winnipeg, Canada
| | - X Qiu
- University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public health Agency of Canada, Winnipeg, Canada
| | - S McCorrister
- JC Wilt Infectious Disease Research Centre, Winnipeg, Canada
| | - G Westmacott
- JC Wilt Infectious Disease Research Centre, Winnipeg, Canada
| | - P Sandstrom
- JC Wilt Infectious Disease Research Centre, Winnipeg, Canada.,National HIV and Retrovirology Laboratory, Ottawa, Canada
| | - C Castilletti
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - A Di Caro
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - G Ippolito
- Lazzaro Spallanzani, National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - G P Kobinger
- National Microbiology Laboratory, Public health Agency of Canada, Winnipeg, Canada.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School 27 of Medicine, Philadelphia, PA, USA.,Laval University, Department of Microbiology and Immunology, Faculty of Medicine, Quebec, Canada
| |
Collapse
|
35
|
Proteomic analysis reveals aberrant expression of CALR and HSPA5 in thyroid tissues of Graves' disease. Clin Biochem 2017; 50:40-45. [DOI: 10.1016/j.clinbiochem.2016.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
|
36
|
Yang M, Zhang F, Qin K, Wu M, Li H, Zhu H, Ning Q, Lei P, Shen G. Glucose-Regulated Protein 78-Induced Myeloid Antigen-Presenting Cells Maintained Tolerogenic Signature upon LPS Stimulation. Front Immunol 2016; 7:552. [PMID: 27990144 PMCID: PMC5131008 DOI: 10.3389/fimmu.2016.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/17/2016] [Indexed: 01/07/2023] Open
Abstract
The 78-kDa glucose-regulated protein (Grp78) is stress-inducible chaperone that mostly reside in the endoplasmic reticulum. Grp78 has been described to be released at times of cellular stress and as having extracellular properties that are anti-inflammatory or favor the resolution of inflammation. As antigen-presenting cells (APCs) play a critical role in both the priming of adaptive immune responses and the induction of self-tolerance, herein, we investigated the effect of Grp78 on the maturation of murine myeloid APCs (CD11c+ cells). Results showed that CD11c+ cells could be bound by AF488-labeled Grp78 and that Grp78 treatment induced a tolerogenic phenotype comparable to immature cells. Furthermore, when exposed to lipopolysaccharide, Grp78-treated CD11c+ cells (DCGrp78) did not adopt a mature dendritic cell phenotype. DCGrp78-primed T cells exhibited reduced proliferation along with a concomitant expansion of CD4+CD25+FoxP3+ cells in pancreaticoduodenal lymph nodes and induction of T cell apoptosis in vitro and ex vivo. The above work suggests that Grp78 is an immunomodulatory molecule that could aid resolution of inflammation. It may thus contribute to induce durable tolerance to be of potential therapeutic benefit in transplanted allogeneic grafts and autoimmune diseases such as type I diabetes.
Collapse
Affiliation(s)
- Muyang Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Kai Qin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Min Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
37
|
Navid F, Colbert RA. Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nat Rev Rheumatol 2016; 13:25-40. [PMID: 27904144 DOI: 10.1038/nrrheum.2016.192] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rheumatic diseases represent a heterogeneous group of inflammatory conditions, many of which involve chronic activation of both innate and adaptive immune responses by multiple genetic and environmental factors. These immune responses involve the secretion of excessive amounts of cytokines and other signalling mediators by activated immune cells. The endoplasmic reticulum (ER) is the cellular organelle that directs the folding, processing and trafficking of membrane-bound and secreted proteins, including many key components of the immune response. Maintaining homeostasis in the ER is critical to cell function and survival. Consequently, elaborate mechanisms have evolved to sense and respond to ER stress through three main signalling pathways that together comprise the unfolded protein response (UPR). Activation of the UPR can rapidly resolve the accumulation of misfolded proteins, direct permanent changes in the size and function of cells during differentiation, and critically influence the immune response and inflammation. Recognition of the importance of ER stress and UPR signalling pathways in normal and dysregulated immune responses has greatly increased in the past few years. This Review discusses several settings in which ER stress contributes to the pathogenesis of rheumatic diseases and considers some of the therapeutic opportunities that these discoveries provide.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Building 10, Room 12N248B,10 Center Drive, Bethesda, Maryland 20892, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Building 10, Room 12N248B,10 Center Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Increased Serum Levels of Anti-Carbamylated 78-kDa Glucose-Regulated Protein Antibody in Patients with Rheumatoid Arthritis. Int J Mol Sci 2016; 17:ijms17091510. [PMID: 27618024 PMCID: PMC5037787 DOI: 10.3390/ijms17091510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to investigate the presence and titer of anti-carbamylated 78-kDa glucose-regulated protein (anti-CarGRP78) antibody in serum from controls, and patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren syndrome (pSS). Thirty-three RA patients, 20 SLE patients, 20 pSS patients, and 20 controls were enrolled from our outpatient clinic. GRP78 was cloned and carbamylated. Serum titers of anti- cyclic citrullinated peptides (anti-CCP), anti-GRP78, and anti-CarGRP78 were measured with an enzyme-linked immunosorbent assay. No differences in serum titers of anti-GRP78 antibody in patients with RA, SLE, or pSS compared with the controls were observed. Serum levels of anti-carGRP78 antibody in patients with RA, but not SLE or pSS, were significantly higher compared with the controls (OD405 0.15 ± 0.08 versus 0.11 ± 0.03, p = 0.033). There was a positive correlation between the serum levels of anti-GRP78 antibody, but not anti-CarGRP78 antibody, with the levels of anti-CCP antibody in patients with RA. Both anti-GRP78 and anti-carGRP78 antibodies failed to correlate with C-reactive protein levels in patients with RA. In conclusion, we demonstrated the presence of anti-CarGRP78 antibody in patients with RA. In addition, the serum titer of anti-CarGRP78 antibody was significantly elevated in patients with RA compared with the controls. Anti-CarGRP78 antibody could also be detected in patients with SLE or pSS.
Collapse
|
39
|
Chalan P, van den Berg A, Kroesen BJ, Brouwer L, Boots A. Rheumatoid Arthritis, Immunosenescence and the Hallmarks of Aging. Curr Aging Sci 2016. [PMID: 26212057 PMCID: PMC5388800 DOI: 10.2174/1874609808666150727110744] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age is the most important risk factor for the development of infectious diseases, cancer and chronic inflammatory diseases including rheumatoid arthritis (RA). The very act of living causes damage to cells. A network of molecular, cellular and physiological maintenance and repair systems creates a buffering capacity against these damages. Aging leads to progressive shrinkage of the buffering capacity and increases vulnerability. In order to better understand the complex mammalian aging processes, nine hallmarks of aging and their interrelatedness were recently put forward. RA is a chronic autoimmune disease affecting the joints. Although RA may develop at a young age, the incidence of RA increases with age. It has been suggested that RA may develop as a consequence of premature aging (immunosenescence) of the immune system. Alternatively, premature aging may be the consequence of the inflammatory state in RA. In an effort to answer this chicken and egg conundrum, we here outline and discuss the nine hallmarks of aging, their contribution to the pre-aged phenotype and the effects of treatment on the reversibility of immunosenescence in RA.
Collapse
Affiliation(s)
| | | | | | | | - Annemieke Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
40
|
de Wolf C, van der Zee R, den Braber I, Glant T, Maillère B, Favry E, van Lummel M, Koning F, Hoek A, Ludwig I, van Eden W, Broere F. An Arthritis-Suppressive and Treg Cell-Inducing CD4+ T Cell Epitope Is Functional in the Context of HLA-Restricted T Cell Responses. Arthritis Rheumatol 2016; 68:639-47. [PMID: 26414917 DOI: 10.1002/art.39444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We previously showed that mycobacterial Hsp70-derived peptide B29 induced B29-specific Treg cells that suppressed experimental arthritis in mice via cross-recognition of their mammalian Hsp70 homologs. The aim of the current study was to characterize B29 binding and specific CD4+ T cell responses in the context of human major histocompatibility complex (MHC) molecules. METHODS Competitive binding assays were performed to examine binding of peptide B29 and its mammalian homologs to HLA molecules. The effect of B29 immunization in HLA-DQ8-transgenic mice with proteoglycan-induced arthritis was assessed, followed by ex vivo restimulation with B29 to examine the T cell response. Human peripheral blood mononuclear cells were used to investigate the presence of B29-specific T cells with immunoregulatory potential. RESULTS The binding affinity of the B29 peptide was high to moderate for multiple HLA-DR and HLA-DQ molecules, including those highly associated with rheumatoid arthritis. This binding was considered to be functional, because B29 immunization resulted in the suppression of arthritis and T cell responses in HLA-DQ8-transgenic mice. In humans, we demonstrated the presence and expansion of B29-specific CD4+ T cells, which were cross-reactive with the mammalian homologs. Using HLA-DR4+ tetramers specific for B29 or the mammalian homolog mB29b, we showed expansion of cross-reactive T cells, especially the human FoxP3+ CD4+CD25+ T cell population, after in vitro stimulation with B29. CONCLUSION These results demonstrated a conserved fine specificity and functionality of B29-induced Treg cell responses in the context of the human MHC. Based on these findings, a path for translation of the experimental findings for B29 into a clinical immunomodulatory therapeutic approach is within reach.
Collapse
Affiliation(s)
| | | | | | - Tibor Glant
- Rush University Medical Center, Chicago, Illinois
| | - Bernard Maillère
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, Gif Sur Yvette, France
| | - Emmanuel Favry
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, Gif Sur Yvette, France
| | | | - Frits Koning
- Leiden University Medical Center, Leiden, The Netherlands
| | - Aad Hoek
- Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
41
|
Spierings J, van Eden W. Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology (Oxford) 2016; 56:198-208. [PMID: 27411479 DOI: 10.1093/rheumatology/kew266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/24/2016] [Indexed: 11/14/2022] Open
Abstract
Autoimmune diseases, including inflammatory arthritis, are characterized by a loss of self-tolerance, leading to an excessive immune responses and subsequent ongoing inflammation. Current therapies are focused on dampening this inflammation, but a permanent state of tolerance is seldom achieved. Therefore, novel therapies that restore and maintain tolerance are needed. Tregs could be a potential target to achieve permanent immunotolerance. Activation of Tregs can be accomplished when they recognize and bind their specific antigens. HSPs are proteins present in all cells and are upregulated during inflammation. These proteins are immunogenic and can be recognized by Tregs. Several studies in animal models and in human clinical trials have shown the immunoregulatory effects of HSPs and their protective effects in inflammatory arthritis. In this review, an overview is presented of the immunomodulatory effects of several members of the HSP family in general and in inflammatory arthritis. These effects can be attributed to the activation of Tregs through cellular interactions within the immune system. The effect of HSP-specific therapies in patients with inflammatory arthritis should be explored further, especially with regard to long-term efficacy and safety and their use in combination with current therapeutic approaches.
Collapse
Affiliation(s)
- Julia Spierings
- Department of Rheumatology, Maastricht University Medical Center, Maastricht
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
42
|
Immune responses to Mycobacterial heat shock protein 70 accompany self-reactivity to human BiP in rheumatoid arthritis. Sci Rep 2016; 6:22486. [PMID: 26927756 PMCID: PMC4772543 DOI: 10.1038/srep22486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, and a member of human heat shock protein (HSP) 70 protein family, Binding Immunoglobulin Protein (BiP), has been identified as an important autoantigen for T and B cells. We herein focused on Mycobacterial (Myc) HSPs and immune responses to MycHSPs in RA patients. Serum titers of antibodies against MycHSP70 were significantly elevated in RA patients and correlated with serum anti-BiP antibody titers. A MycHSP70-derived HLA-DR4 major epitope was identified using the proliferative capacity of RA PBMCs as an indicator. The major epitope, MycHSP70287–306, was located at the corresponding position in the major epitope for human BiP336–355, and a strong correlation was found between the proliferation of PBMCs in response to MycHSP70287–306 and BiP336–355. The immunization of HLA-DR4 transgenic mice with MycHSP70 induced the proliferation of T cells and development of anti-BiP antibodies. In contrast, the oral administration of MycHSP70287–306 resulted in the amelioration of collagen-induced arthritis, serum antibody responses, and T cell proliferation. In conclusion, immune responses to MycHSP70 were associated with adaptive immunity against BiP in RA, and could be an important mechanism underlying the development of autoimmunity.
Collapse
|
43
|
Aghamollaei H, Mousavi Gargari SL, Ghanei M, Rasaee MJ, Amani J, Bakherad H, Farnoosh G. Structure prediction, expression, and antigenicity of c-terminal of GRP78. Biotechnol Appl Biochem 2016; 64:117-125. [PMID: 26549515 DOI: 10.1002/bab.1455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/30/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Hossein Aghamollaei
- Applied Biotechnology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | | | - Mostafa Ghanei
- Chemical Injuries Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Mohamad Javad Rasaee
- Medical Biotechnology Department, Faculty of Medical sciences; Tarbiat Modares University; Tehran Iran
| | - Jafar Amani
- Applied Microbiology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| |
Collapse
|
44
|
Guillou C, Derambure C, Fréret M, Verdet M, Avenel G, Golinski ML, Sabourin JC, Loarer FL, Adriouch S, Boyer O, Lequerré T, Vittecoq O. Prophylactic Injection of Recombinant Alpha-Enolase Reduces Arthritis Severity in the Collagen-Induced Arthritis Mice Model. PLoS One 2015; 10:e0136359. [PMID: 26302382 PMCID: PMC4547710 DOI: 10.1371/journal.pone.0136359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/31/2015] [Indexed: 01/13/2023] Open
Abstract
Objective To evaluate the ability of the glycolytic enzyme alpha-enolase (ENO1) or its immunodominant peptide (pEP1) to reduce the severity of CIA in DBA/1 mice when injected in a prophylactic way. Methods Mice were treated with mouse ENO1 or pEP1 one day prior to collagen II immunization. Clinical assessment was evaluated using 4 parameters (global and articular scores, ankle thickness and weight). Titers of serum anti-ENO1, anti-cyclic citrullinated peptides (anti-CCP) and anti-CII (total IgG and IgG1/IgG2a isotypes) antibodies were measured by ELISA at different time-points. Disease activity was assessed by histological analysis of both anterior and hind paws at the end of experimentation. Results Prophylactic injection of 100 μg of ENO1 reduced severity of CIA. Serum levels of anti-CII antibodies were reduced in ENO1-treated mice. Concordantly, ENO1-treated mice joints presented less severe histological signs of arthritis. ENO1 did not induce a shift toward a Th2 response since IgG1/IgG2a ratio of anti-CII antibodies remained unchanged and IL-4 serum levels were similar to those measured in the control group. Conclusions Pre-immunization with ENO1 or its immunodominant peptide pEP1 reduces CIA severity at the clinical, immunological and histological levels. Effects of pEP1 were less pronounced. This immunomodulatory effect is associated with a reduction in anti-CII antibodies production but is not due to a Th1/Th2 shift.
Collapse
Affiliation(s)
- Clément Guillou
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Céline Derambure
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Manuel Fréret
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Mathieu Verdet
- Rouen University Hospital, Department of Rheumatology, Rouen, France
| | - Gilles Avenel
- Rouen University Hospital, Department of Rheumatology, Rouen, France
| | - Marie-Laure Golinski
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean-Christophe Sabourin
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Pathology, Rouen, France
| | | | - Sahil Adriouch
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Olivier Boyer
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Immunology, Rouen, France
| | - Thierry Lequerré
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Rheumatology, Rouen, France
| | - Olivier Vittecoq
- INSERM, U905, Rouen, France
- Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- Rouen University Hospital, Department of Rheumatology, Rouen, France
- * E-mail:
| |
Collapse
|
45
|
Shoda H, Fujio K, Sakurai K, Ishigaki K, Nagafuchi Y, Shibuya M, Sumitomo S, Okamura T, Yamamoto K. Autoantigen BiP-Derived HLA-DR4 Epitopes Differentially Recognized by Effector and Regulatory T Cells in Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1171-81. [PMID: 25778936 DOI: 10.1002/art.39054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The balance between effector and regulatory CD4+ T cells plays a key role in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to examine whether the RA autoantigen BiP has epitopes for both effector and regulatory immunities. METHODS The proliferation and cytokine secretion of peripheral blood mononuclear cells (PBMCs) from HLA-DR4-positive RA patients in response to BiP-derived peptides were examined by (3)H-thymidine uptake and enzyme-linked immunosorbent assay. As a mouse therapeutic model, a BiP-derived peptide was administered orally to mice with collagen-induced arthritis (CIA). RESULTS Among the peptides examined, BiP(336-355) induced the strongest proliferation of PBMCs from RA patients, but not from healthy donors. The proliferation of PBMCs in response to BiP(336-355) showed a correlation with clinical RA activity and serum anti-BiP/citrullinated BiP antibodies. In contrast, BiP(456-475) induced interleukin-10 (IL-10) secretion from CD25-positive PBMCs obtained from RA patients and healthy donors without inducing cell proliferation, and it actively suppressed the BiP(336-355)-induced proliferation and proinflammatory cytokine secretion by PBMCs. Oral administration of BiP(456-475) to mice with CIA reduced the severity of arthritis and T cell proliferation and increased the secretion of IL-10 from T cells as well as the number of CD4+CD25+FoxP3+ regulatory T cells. CONCLUSION Effector and regulatory T cells recognized different BiP epitopes. The deviated balance toward BiP-specific effector T cells in RA may be associated with disease activity; therefore, BiP-specific effector or regulatory T cells could be a target of new RA therapies.
Collapse
|
46
|
Shields AM, Klavinskis LS, Antoniou M, Wooley PH, Collins HL, Panayi GS, Thompson SJ, Corrigall VM. Systemic gene transfer of binding immunoglobulin protein (BiP) prevents disease progression in murine collagen-induced arthritis. Clin Exp Immunol 2015; 179:210-9. [PMID: 25228326 DOI: 10.1111/cei.12456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Summary Recombinant human binding immunoglobulin protein (BiP) has previously demonstrated anti-inflammatory properties in multiple models of inflammatory arthritis. We investigated whether these immunoregulatory properties could be exploited using gene therapy techniques. A single intraperitoneal injection of lentiviral vector containing the murine BiP (Lenti-mBiP) or green fluorescent protein (Lenti-GFP) transgene was administered in low- or high-dose studies during early arthritis. Disease activity was assessed by visual scoring, histology, serum cytokine and antibody production measured by cell enzyme-linked immunosorbent assay (ELISA) and ELISA, respectively. Lentiviral vector treatment caused significant induction of interferon (IFN)-γ responses regardless of the transgene; however, further specific effects were directly attributable to the BiP transgene. In both studies Lenti-mBiP suppressed clinical arthritis significantly. Histological examination showed that low-dose Lenti-mBiP suppressed inflammatory cell infiltration, cartilage destruction and significantly reduced pathogenic anti-type II collagen (CII) antibodies. Lenti-mBiP treatment caused significant up-regulation of soluble cytotoxic T lymphocyte antigen-4 (sCTLA-4) serum levels and down-regulation of interleukin (IL)-17A production in response to CII cell restimulation. In-vitro studies confirmed that Lenti-mBiP spleen cells could significantly suppress the release of IL-17A from CII primed responder cells following CII restimulation in vitro, and this suppression was associated with increased IL-10 production. Neutralization of CTLA-4 in further co-culture experiments demonstrated inverse regulation of IL-17A production. In conclusion, these data demonstrate proof of principle for the therapeutic potential of systemic lentiviral vector delivery of the BiP transgene leading to immunoregulation of arthritis by induction of soluble CTLA-4 and suppression of IL-17A production.
Collapse
Affiliation(s)
- A M Shields
- Academic Department of Rheumatology, King's College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kovačević-Jovanović V, Miletić T, Stanojević S, Mitić K, Dimitrijević M. Immune response to gut Escherichia coli and susceptibility to adjuvant arthritis in the rats. Acta Microbiol Immunol Hung 2015; 62:1-19. [PMID: 25823450 DOI: 10.1556/amicr.62.2015.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have investigated the humoral immune response to antigens of predominant gut aerobic bacterial strains (i.e. Escherichia coli) over the course of adjuvant arthritis and oil-induced arthritis in two inbred rat strains: Dark Agouti (DA) and Albino Oxford (AO). We report the presence of antibodies specific to proteins of E. coli in molecular weight range between 20-30 kDa in sera of diseased DA rats, and the absence of these antibodies in the sera of AO rats. In DA rats, CFA and IFA provoked a stronger antibody response to E. coli, especially of the IgG2b antibody class. Intramuscular administration of E. coli preceding the adjuvant arthritis induction had no effect on the development and course of disease, as well as on the activation of T cells in the draining inguinal lymph nodes. Higher serum levels of natural and induced IgA antibodies, combined with a higher CD3+CD26+ cell percentage were found in AO rats. The observed correlation between the serologic response to commensal flora and rats' genetic background as a defining factor for arthritis susceptibility may contribute to the process of creating a favorable (or less favorable) milieu for arthritis development.
Collapse
Affiliation(s)
| | - Tatjana Miletić
- 1 Vaccines and Sera “Torlak” Immunology Research Center, Institute of Virology Belgrade Serbia
| | - Stanislava Stanojević
- 1 Vaccines and Sera “Torlak” Immunology Research Center, Institute of Virology Belgrade Serbia
| | - Katarina Mitić
- 1 Vaccines and Sera “Torlak” Immunology Research Center, Institute of Virology Belgrade Serbia
| | - Mirjana Dimitrijević
- 1 Vaccines and Sera “Torlak” Immunology Research Center, Institute of Virology Belgrade Serbia
| |
Collapse
|
48
|
Immunoglobulin heavy-chain-binding protein (BiP): a stress protein that has the potential to be a novel therapy for rheumatoid arthritis. Biochem Soc Trans 2014; 42:1752-5. [DOI: 10.1042/bst20140230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunoglobulin heavy-chain-binding protein (BiP) or glucose-regulated protein 78 (Grp78) is a vital ubiquitous resident of the endoplasmic reticulum (ER). As an intracellular chaperone, BiP correctly folds nascent polypeptides within the ER and regulates the unfolded protein response ensuring protection of the cell from denatured protein and reinforcing its anti-apoptotic role, when the cell is under stress. Additionally, BiP is a member of the heat-shock protein (HSP) 70 family and, as a stress protein, is up-regulated by conditions of reduced oxygen and glucose. Cell stress induces surface expression and secretion of BiP. Consequently, BiP is detectable in several bodily fluids including serum, synovial fluid (SF) and oviductal fluid. However, as an extracellular protein, BiP has additional properties that are quite distinct from the intracellular functions. Extracellular BiP is immunoregulatory and anti-inflammatory causing development of tolerogenic dendritic cells (DCs), induction of regulatory T-cells, abrogation of osteoclast development and function, induction of anti-inflammatory cytokine production, including interleukin (IL)-10, IL-1 receptor antagonist and soluble tumour necrosis factor (TNF)-receptor type II, and attenuation of TNFα and IL-6. Together, these functions help drive the resolution of inflammation. Disease models of inflammatory arthritis have helped to demonstrate the novel mode of action of BiP in which the pharmacokinetics and pharmacodynamics are dissociated. The three murine models to be discussed each show BiP induced long-term therapeutic protection and therefore has potential for long-lasting drug-free therapy in rheumatoid arthritis (RA).
Collapse
|
49
|
Li X, Xu T, Li X, Huang C, Li J. Upregulation of 78-kDa glucose-regulated protein in macrophages in peripheral joints of active ankylosing spondylitis: comments on the article by Dong et al. Scand J Rheumatol 2014; 43:173-4. [PMID: 24559160 DOI: 10.3109/03009742.2013.869353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- X Li
- School of Pharmacy, Anhui Medical University , Hefei , China
| | | | | | | | | |
Collapse
|
50
|
Activated macrophage-like synoviocytes are resistant to endoplasmic reticulum stress-induced apoptosis in antigen-induced arthritis. Inflamm Res 2014; 63:335-46. [PMID: 24468888 DOI: 10.1007/s00011-013-0705-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/30/2013] [Accepted: 12/26/2013] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore the characteristic expression of endoplasmic reticulum (ER) stress protein in antigen-induced arthritis models and the role of ER stress in arthritis. METHODS Effective animal models of rheumatoid arthritis in rabbits and rats were induced by methylated bovine serum albumin and Freund's complete adjuvant. Pathological changes were assessed by magnetic resonance imaging and histological analysis. The expression and localization of ER stress proteins in synovium and peritoneal macrophages (PMΦ) were analyzed by double immunofluorescence staining. RT-PCR was performed to detect mRNA expression of ER stress-related genes. Tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels in synoviocytes were measured by RT-PCR and radioimmunoassay. RESULTS We found that the ER stress marker BiP was highly up-regulated in arthritis synovium and extensively expressed in fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS). The expression of the pro-apoptotic factor CHOP/GADD153 was slightly elevated in inflammatory synovium and mainly localized in FLS, but insignificant in MLS. Unexpectedly, increased expression of CHOP was observed in PMΦ in arthritis rats. Likewise, cleaved caspase-3 was rarely expressed in MLS. In addition, induction of ER stress by tunicamycin resulted in significantly increased expression of pro-inflammatory molecules such as IL-1β and TNF-α in cultured inflammatory FLS. CONCLUSION Differential activation of the ER stress proteins in synovium MLS may contribute to the resistance of synoviocytes to ER stress-induced apoptosis. Furthermore, ER stress is a potential mediator of arthritis inflammation.
Collapse
|