1
|
Bröker BM, Mrochen D, Péton V. The T Cell Response to Staphylococcus aureus. Pathogens 2016; 5:pathogens5010031. [PMID: 26999219 PMCID: PMC4810152 DOI: 10.3390/pathogens5010031] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a dangerous pathogen and a leading cause of both nosocomial and community acquired bacterial infection worldwide. However, on the other hand, we are all exposed to this bacterium, often within the first hours of life, and usually manage to establish equilibrium and coexist with it. What does the adaptive immune system contribute toward lifelong control of S. aureus? Will it become possible to raise or enhance protective immune memory by vaccination? While in the past the S. aureus-specific antibody response has dominated this discussion, the research community is now coming to appreciate the role that the cellular arm of adaptive immunity, the T cells, plays. There are numerous T cell subsets, each with differing functions, which together have the ability to orchestrate the immune response to S. aureus and hence to tip the balance between protection and pathology. This review summarizes the state of the art in this dynamic field of research.
Collapse
Affiliation(s)
- Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Sauerbruchstraße DZ7, 17475 Greifswald, Germany.
| | - Daniel Mrochen
- Department of Immunology, University Medicine Greifswald, Sauerbruchstraße DZ7, 17475 Greifswald, Germany.
| | - Vincent Péton
- Department of Immunology, University Medicine Greifswald, Sauerbruchstraße DZ7, 17475 Greifswald, Germany.
| |
Collapse
|
2
|
Brown AF, Murphy AG, Lalor SJ, Leech JM, O’Keeffe KM, Mac Aogáin M, O’Halloran DP, Lacey KA, Tavakol M, Hearnden CH, Fitzgerald-Hughes D, Humphreys H, Fennell JP, van Wamel WJ, Foster TJ, Geoghegan JA, Lavelle EC, Rogers TR, McLoughlin RM. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection. PLoS Pathog 2015; 11:e1005226. [PMID: 26539822 PMCID: PMC4634925 DOI: 10.1371/journal.ppat.1005226] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022] Open
Abstract
Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans. Staphylococcus aureus is a leading cause of skin, soft tissue and bone infections and, most seriously, bloodstream infection. When S. aureus does get into the bloodstream, it is more likely to kill than any other bacterial infection, despite all the treatments modern medicine has to offer. It has thus far developed resistance to all antibiotics licensed to treat it. Thus, there is an urgent need to develop a vaccine against S. aureus. However, such a vaccine remains elusive. This is largely due to the fact that we have a very limited understanding of how our immune system fights this infection. Here, we examine how certain T cells of the mouse immune system effectively recognise and respond to S. aureus, and show that transferring these cells to other mice improves their ability to clear infection. We then demonstrate that a vaccine which drives these specific T cells also improves clearance of infection. Until recently, it was not known if human T cells could recognise and respond to S. aureus. Here we show, for the first time, that these cells are expanded in patients with S. aureus bloodstream infection, and suggest that they should be targeted in anti-S. aureus vaccines.
Collapse
Affiliation(s)
- Aisling F. Brown
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Alison G. Murphy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen J. Lalor
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - John M. Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate M. O’Keeffe
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Micheál Mac Aogáin
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Dara P. O’Halloran
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Keenan A. Lacey
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mehri Tavakol
- Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Claire H. Hearnden
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Jérôme P. Fennell
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Microbiology, Adelaide Meath & National Children’s Hospital, Dublin, Ireland
| | - Willem J. van Wamel
- Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Timothy J. Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
| | - Thomas R. Rogers
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Microbiology, St. James's Hospital, Dublin, Ireland
| | - Rachel M. McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
3
|
Liu J, Wang Z, He J, Wang G, Zhang R, Zhao B. Effect of site-specific PEGylation on the fibrinolytic activity, immunogenicity, and pharmacokinetics of staphylokinase. Acta Biochim Biophys Sin (Shanghai) 2014; 46:782-91. [PMID: 25098624 DOI: 10.1093/abbs/gmu068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bacterial plasminogen-activator staphylokinase (Sak) is a promising thrombolytic agent for treating acute myocardial infarction. To effectively reduce the immunogenicity of Sak while maintaining its fibrinolytic activity, site-specific PEGylation was performed in the present study. The chemoselective cysteine PEGylation site was selected within an immunodominant region (amino acid residues 71-87) using an in silico approach. The PEGylated Sak variants prepared in this study showed a purity of >97.0%. PEGylation at Position 80 resulted in a Sak variant Sak(E80C-PEG) which has similar fibrinolytic activity and thermostability compared with the native recombinant staphylokinase (r-Sak). The immunogenicity of Sak(E80C-PEG) in guinea pigs was greatly reduced compared with the native r-Sak. Furthermore, preliminary pharmacokinetic results suggested that the plasma clearance of Sak(E80C-PEG) from the blood stream of rabbit was significantly decreased compared with that of r-Sak, resulting in a 2.8-fold increase of initial half-life and a 3.8-fold increase of systemic availability. In summary, these results demonstrated that site-specific PEGylation yielded a novel Sak variant Sak(E80C-PEG) with remarkable advantages over the unmodified Sak.
Collapse
Affiliation(s)
- Jianwei Liu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhu Wang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jintian He
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Gaizhen Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rongbo Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Front Immunol 2014; 4:507. [PMID: 24409186 PMCID: PMC3884195 DOI: 10.3389/fimmu.2013.00507] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/15/2022] Open
Abstract
In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity.
Collapse
Affiliation(s)
- Aisling F Brown
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - John M Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - Thomas R Rogers
- Sir Patrick Dun Laboratory, Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital , Dublin , Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| |
Collapse
|
5
|
Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012; 2012:482096. [PMID: 23118509 PMCID: PMC3477821 DOI: 10.1155/2012/482096] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023] Open
Abstract
In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.
Collapse
|
6
|
Osipovitch DC, Parker AS, Makokha CD, Desrosiers J, Kett WC, Moise L, Bailey-Kellogg C, Griswold KE. Design and analysis of immune-evading enzymes for ADEPT therapy. Protein Eng Des Sel 2012; 25:613-23. [PMID: 22898588 DOI: 10.1093/protein/gzs044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The unparalleled specificity and activity of therapeutic proteins has reshaped many aspects of modern clinical practice, and aggressive development of new protein drugs promises a continued revolution in disease therapy. As a result of their biological origins, however, therapeutic proteins present unique design challenges for the biomolecular engineer. For example, protein drugs are subject to immune surveillance within the patient's body; this anti-drug immune response can compromise therapeutic efficacy and even threaten patient safety. Thus, there is a growing demand for broadly applicable protein deimmunization strategies. We have recently developed optimization algorithms that integrate computational prediction of T-cell epitopes and bioinformatics-based assessment of the structural and functional consequences of epitope-deleting mutations. Here, we describe the first experimental validation of our deimmunization algorithms using Enterobacter cloacae P99 β-lactamase, a component of antibody-directed enzyme prodrug cancer therapies. Compared with wild-type or a previously deimmunized variant, our computationally optimized sequences exhibited significantly less in vitro binding to human type II major histocompatibility complex immune molecules. At the same time, our globally optimal design exhibited wild-type catalytic proficiency. We conclude that our deimmunization algorithms guide the protein engineer towards promising immunoevasive candidates and thereby have the potential to streamline biotherapeutic development.
Collapse
Affiliation(s)
- Daniel C Osipovitch
- Program in Experimental and Molecular Medicine, Geisel School of Medicine, Dartmouth, Hanover, NH 03784, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
He J, Xu R, Chen X, Jia K, Zhou X, Zhu K. Simultaneous elimination of T- and B-cell epitope by structure-based mutagenesis of single Glu80 residue within recombinant staphylokinase. Acta Biochim Biophys Sin (Shanghai) 2010; 42:209-15. [PMID: 20213046 DOI: 10.1093/abbs/gmq002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To reduce the immunogenicity of recombinant staphylokinase, structure-based mutagenesis of Glu80 residue in wild-type staphylokinase (wt-Sak) was rationally designed and carried out by a modified QuikChange site-directed mutagenesis. Sak mutants, including Sak(E80A) and Sak(E80S), were successfully expressed in E. coli DH5a as a soluble cytoplasmic proteins and accounted for more than 40% of the total cellular proteins. The expressed proteins were purified by a three-step chromatographic purification process. SDS-PAGE and HPLC analyses results indicated that the purified proteins were almost completely homogeneous and the purities of Sak mutants exceeded 97%. Analysis of fibrinolytic activity revealed that substitution of E80 residue with serine and alanine resulted in slightly increased specific activities of Sak mutants. Investigation of the immunogenicity of Sak mutants showed that the amount of specific anti-Sak IgG antibodies elicited by Sak(E80A) and Sak(E80S) in BALB/c mice decreased approximately 35% and 27%, respectively compared with wt-Sak. The abilities of Sak mutants to stimulate proliferation of T cells from BALB/c mice and to bind mouse anti-Sak polyclonal serum were significantly lower than those of wt-Sak. These results suggested that substitution of Glu80 residue by alanine and serine successfully eliminated part of T- and B-cell epitope of Sak molecule. Our findings suggested that simultaneous elimination of T- and B-cell epitopes was a useful method to reduce the immunogenicity of wt-Sak molecule and provided a strategy for engineering safe Sak-based fibrinolytics for the clinical treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Jintian He
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China.
| | | | | | | | | | | |
Collapse
|
8
|
Van Walle I, Gansemans Y, Parren PWHI, Stas P, Lasters I. Immunogenicity screening in protein drug development. Expert Opin Biol Ther 2007; 7:405-18. [PMID: 17309332 DOI: 10.1517/14712598.7.3.405] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most therapeutic proteins in clinical trials or on the market are, to a variable extent, immunogenic. Formation of antidrug antibodies poses a risk that should be assessed during drug development, as it possibly compromises drug safety and alters pharmacokinetics. The generation of these antibodies is critically dependent on the presence of T helper cell epitopes, which have classically been identified by in vitro methods using blood cells from human donors. As a novel development, in silico methods that identify T cell epitopes have been coming on line. These methods are relatively inexpensive and allow the mapping of epitopes from virtually all human leukocyte antigen molecules derived from a wide genetic background. In vitro assays remain important, but guided by in silico data they can focus on selected peptides and human leukocyte antigen haplotypes, thereby significantly reducing time and cost.
Collapse
Affiliation(s)
- Ivo Van Walle
- Algonomics NV, Technologiepark 4, 9052 Gent-Zwijnaarde, Belgium.
| | | | | | | | | |
Collapse
|
9
|
Harding FA, Liu AD, Stickler M, Razo OJ, Chin R, Faravashi N, Viola W, Graycar T, Yeung VP, Aehle W, Meijer D, Wong S, Rashid MH, Valdes AM, Schellenberger V. A beta-lactamase with reduced immunogenicity for the targeted delivery of chemotherapeutics using antibody-directed enzyme prodrug therapy. Mol Cancer Ther 2006; 4:1791-800. [PMID: 16276001 DOI: 10.1158/1535-7163.mct-05-0189] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antibody-directed enzyme prodrug therapy (ADEPT) delivers chemotherapeutic agents in high concentration to tumor tissue while minimizing systemic drug exposure. beta-Lactamases are particularly useful enzymes for ADEPT systems due to their unique substrate specificity that allows the activation of a variety of lactam-based prodrugs with minimal interference from mammalian enzymes. We evaluated the amino acid sequence of beta-lactamase from Enterobacter cloacae for the presence of human T-cell epitopes using a cell-based proliferation assay using samples from 65 community donors. We observed a low background response that is consistent with a lack of preexposure to this enzyme. beta-Lactamase was found to contain four CD4+ T-cell epitopes. For two of these epitopes, we identified single amino acid changes that result in significantly reduced proliferative responses while retaining stability and activity of the enzyme. The beta-lactamase variant containing both changes induces significantly less proliferation in human and mouse cell assays, and 5-fold lower levels of IgG1 in mice were observed after repeat administration of beta-lactamase variant with adjuvant. The beta-lactamase variant should be very suitable for the construction of ADEPT fusion proteins, as it combines high activity toward lactam prodrugs, high plasma stability, a monomeric architecture, and a relatively low risk of eliciting an immune response in patients.
Collapse
Affiliation(s)
- Fiona A Harding
- Genencor International, 925 Page Mill Road, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jones TD, Phillips WJ, Smith BJ, Bamford CA, Nayee PD, Baglin TP, Gaston JSH, Baker MP. Identification and removal of a promiscuous CD4+ T cell epitope from the C1 domain of factor VIII. J Thromb Haemost 2005; 3:991-1000. [PMID: 15869596 DOI: 10.1111/j.1538-7836.2005.01309.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The development of inhibitors in hemophiliacs is a severe complication of factor VIII (FVIII) replacement therapy and is a process driven by FVIII specific T helper cells. OBJECTIVES To finely map T cell epitopes within the whole FVIII protein in order to investigate the possibility of engineering FVIII variants with reduced propensity for inhibitor development. PATIENTS AND METHODS T cell lines were generated from five patients with severe hemophilia who had developed inhibitors, and were screened for T cell proliferation against pools of overlapping peptides spanning the entire B domain deleted (BDD) FVIII sequence. Positive peptide pools were decoded by screening individual peptides against the T cell lines. Positive peptides, and mutants thereof, were tested for their ability to bind major histocompatibility complex (MHC) Class II and stimulate T cell proliferation in a panel of healthy donors. The activities of the corresponding mutant proteins were assessed via chromogenic assay. RESULTS One peptide, spanning FVIII amino acids 2098-2112, elicited a vigorous response from one hemophiliac donor, induced strong T cell responses in the panel of healthy donors and bound to a number of HLA-DR alleles. Mutations were made in this peptide that removed its ability to stimulate T cells of healthy donors and to bind to MHC Class II while retaining full activity when incorporated into a mutant BDD-FVIII protein. CONCLUSIONS Fine T cell epitope mapping of the entire FVIII protein is feasible, although challenging, and this knowledge may be used to create FVIII variants which potentially have reduced immunogenicity.
Collapse
Affiliation(s)
- T D Jones
- Biovation Ltd, Babraham, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mayer A, Sharma SK, Tolner B, Minton NP, Purdy D, Amlot P, Tharakan G, Begent RHJ, Chester KA. Modifying an immunogenic epitope on a therapeutic protein: a step towards an improved system for antibody-directed enzyme prodrug therapy (ADEPT). Br J Cancer 2004; 90:2402-10. [PMID: 15162148 PMCID: PMC2409521 DOI: 10.1038/sj.bjc.6601888] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Carboxypeptidase G2 (CP) is a bacterial enzyme, which is targeted to tumours by an antitumour antibody for local prodrug activation in antibody-directed enzyme prodrug therapy (ADEPT). Repeated cycles of ADEPT are desirable but are hampered by human antibody response to CP (HACA). To address this, we aimed to identify and modify clinically important immunogenic sites on MFECP, a recombinant fusion protein of CP with MFE-23, a single chain Fv (scFv) antibody. A discontinuous conformational epitope at the C-terminus of the CP previously identified by the CM79 scFv antibody (CM79-identified epitope) was chosen for study. Modification of MFECP was achieved by mutations of the CM79-identified epitope or by addition of a hexahistidine tag (His-tag) to the C-terminus of MFECP, which forms part of the epitope. Murine immunisation experiments with modified MFECP showed no significant antibody response to the CM79-identified epitope compared to A5CP, an unmodified version of CP chemically conjugated to an F(ab)(2) antibody. Success of modification was also demonstrated in humans because patients treated with His-tagged MFECP had a significantly reduced antibody response to the CM79-identified epitope, compared to patients given A5CP. Moreover, the polyclonal antibody response to CP was delayed in both mice and patients given modified MFECP. This increases the prospect of repeated treatment with ADEPT for effective cancer treatment.
Collapse
Affiliation(s)
- A Mayer
- Department of Oncology, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stickler M, Chin R, Faravashi N, Gebel W, Razo OJ, Rochanayon N, Power S, Valdes AM, Holmes S, Harding FA. Human population-based identification of CD4(+) T-cell peptide epitope determinants. J Immunol Methods 2003; 281:95-108. [PMID: 14580884 DOI: 10.1016/s0022-1759(03)00279-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A human cell-based method to identify functional CD4(+) T-cell epitopes in any protein has been developed. Proteins are tested as synthetic 15-mer peptides offset by three amino acids. Percent responses within a large donor population are tabulated for each peptide in the set. Peptide epitope regions are designated by difference in response frequency from the overall background response rate for the compiled dataset. Epitope peptide responses are reproducible, with a median coefficient of variance of 21% when tested on multiple random-donor sets. The overall average response rate within the dataset increases with increasing putative human population antigenic exposure to a given protein. The background rate was high for HPV16 E6, and was low for human-derived cytokine proteins. The assay identified recall epitope regions within the donor population for the protein staphylokinase. For an industrial protease with minimal presumed population exposure, immunodominant epitope peptides were identified that were found to bind promiscuously to many HLA class II molecules in vitro. The peptide epitope regions identified in presumably unexposed donors represent a subset of the total recall epitopes. Finally, as a negative control, the assay found no peptide epitope regions in human beta2-microglobulin. This method identifies functional CD4(+) T-cell epitopes in any protein without pre-selection for HLA class II, suggests whether a donor population is pre-exposed to a protein of interest, and does not require sensitized donors for in vitro testing.
Collapse
Affiliation(s)
- Marcia Stickler
- Genencor International, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- F Harding
- Genencor International, Palo Alto, California 94304, USA.
| |
Collapse
|