1
|
McCaleb MR, Miranda AM, Ratliff KC, Torres RM, Pelanda R. CD19 Is Internalized Together with IgM in Proportion to B Cell Receptor Stimulation and Is Modulated by Phosphatidylinositol 3-Kinase in Bone Marrow Immature B Cells. Immunohorizons 2023; 7:49-63. [PMID: 36637517 PMCID: PMC10074640 DOI: 10.4049/immunohorizons.2200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Newly generated immature B cells that bind self-antigen with high avidity arrest in differentiation and undergo central tolerance via receptor editing and clonal deletion. These autoreactive immature B cells also express low surface levels of the coreceptor CD19, a key activator of the PI3K pathway. Signals emanating from both CD19 and PI3K are known to be critical for attenuating receptor editing and selecting immature B cells into the periphery. However, the mechanisms that modulate CD19 expression at this stage of B cell development have not yet been resolved. Using in vivo and in vitro models, we demonstrate that Cd19 de novo gene transcription and translation do not significantly contribute to the differences in CD19 surface expression in mouse autoreactive and nonautoreactive immature B cells. Instead, CD19 downregulation is induced by BCR stimulation in proportion to BCR engagement, and the remaining surface IgM and CD19 molecules promote intracellular PI3K-AKT activity in proportion to their level of expression. The internalized CD19 is degraded with IgM by the lysosome, but inhibiting lysosome-mediated protein degradation only slightly improves surface CD19. In fact, CD19 is restored only upon Ag removal. Our data also reveal that the PI3K-AKT pathway positively modulates CD19 surface expression in immature B cells via a mechanism that is independent of inhibition of FOXO1 and its role on Cd19 gene transcription while is dependent on mTORC1.
Collapse
Affiliation(s)
- Megan R. McCaleb
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Kaysie C. Ratliff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| |
Collapse
|
2
|
Pelanda R, Greaves SA, Alves da Costa T, Cedrone LM, Campbell ML, Torres RM. B-cell intrinsic and extrinsic signals that regulate central tolerance of mouse and human B cells. Immunol Rev 2022; 307:12-26. [PMID: 34997597 PMCID: PMC8986553 DOI: 10.1111/imr.13062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
The random recombination of immunoglobulin V(D)J gene segments produces unique IgM antibodies that serve as the antigen receptor for each developing B cell. Hence, the newly formed B cell repertoire is comprised of a variety of specificities that display a range of reactivity with self-antigens. Newly generated IgM+ immature B cells that are non-autoreactive or that bind self-antigen with low avidity are licensed to leave the bone marrow with their intact antigen receptor and to travel via the blood to the peripheral lymphoid tissue for further selection and maturation. In contrast, clones with medium to high avidity for self-antigen remain within the marrow and undergo central tolerance, a process that revises their antigen receptor or eliminates the autoreactive B cell altogether. Thus, central B cell tolerance is critical for reducing the autoreactive capacity and avidity for self-antigen of our circulating B cell repertoire. Bone marrow cultures and mouse models have been instrumental for understanding the mechanisms that regulate the selection of bone marrow B cells. Here, we review recent studies that have shed new light on the contribution of the ERK, PI3K, and CXCR4 signaling pathways in the selection of mouse and human immature B cells that either bind or do not bind self-antigen.
Collapse
Affiliation(s)
- Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thiago Alves da Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lena M Cedrone
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Margaret L Campbell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
3
|
Vanhee S, Åkerstrand H, Kristiansen TA, Datta S, Montano G, Vergani S, Lang S, Ungerbäck J, Doyle A, Olsson K, Beneventi G, Jensen CT, Bellodi C, Soneji S, Sigvardsson M, Gyllenbäck EJ, Yuan J. Lin28b controls a neonatal to adult switch in B cell positive selection. Sci Immunol 2019; 4:4/39/eaax4453. [DOI: 10.1126/sciimmunol.aax4453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
The ability of B-1 cells to become positively selected into the mature B cell pool, despite being weakly self-reactive, has puzzled the field since its initial discovery. Here, we explore changes in B cell positive selection as a function of developmental time by exploiting a link between CD5 surface levels and the natural occurrence of self-reactive B cell receptors (BCRs) in BCR wild-type mice. We show that the heterochronic RNA binding protein Lin28b potentiates a neonatal mode of B cell selection characterized by enhanced overall positive selection in general and the developmental progression of CD5+immature B cells in particular. Lin28b achieves this by amplifying the CD19/PI3K/c-Myc positive feedback loop, and ectopic Lin28b expression restores both positive selection and mature B cell numbers in CD19−/−adult mice. Thus, the temporally restricted expression ofLin28brelaxes the rules for B cell selection during ontogeny by modulating tonic signaling. We propose that this neonatal mode of B cell selection represents a cell-intrinsic cue to accelerate the de novo establishment of the adaptive immune system and incorporate a layer of natural antibody-mediated immunity throughout life.
Collapse
|
4
|
Transitional B cells in quiescent SLE: An early checkpoint imprinted by IFN. J Autoimmun 2019; 102:150-158. [PMID: 31085070 DOI: 10.1016/j.jaut.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 01/29/2023]
Abstract
Systemic lupus (SLE) is characterized by a break of B cell tolerance that plays a central role in disease pathophysiology. An early checkpoint defect occurs at the transitional stage leading to the survival of autoreactive B cells and consequently the production of pathogenic autoantibodies. The main purpose of our work was to determine whether transitional B cells, as the most immature naïve B cell subset upstream of pathogenic B cells, display specific features compared to healthy non SLE subjects. Through extensive analysis of transitional B cells from untreated or low treated, mostly Caucasian, SLE patients, we demonstrated that transitional (T1 and T2) B cell frequencies were increased in SLE and positively correlated with disease activity. SLE transitional B cells displayed defects in two closely inter-related molecules (i.e. TLR9 defective responses and CD19 downregulation). RNA sequencing of sorted transitional B cells from untreated patients revealed a predominant overexpression of interferon stimulated genes (ISGs) even out of flares. In addition, early transitional B cells from the bone marrow displayed the highest interferon score, reflecting a B cell interferon burden of central origin. Hence, the IFN signature in transitional B cells is not confined to African American SLE patients and exists in quiescent disease since the medullary stage. These results suggest that in SLE these 3 factors (i.e. IFN imprintment, CD19 downregulation and TLR9 responses impairment) could take part at the early transitional B cell stage in B cell tolerance by-pass, ultimately leading in periphery to the expansion of autoantibodies-secreting cells.
Collapse
|
5
|
Labi V, Schoeler K, Melamed D. miR-17∼92 in lymphocyte development and lymphomagenesis. Cancer Lett 2019; 446:73-80. [PMID: 30660648 DOI: 10.1016/j.canlet.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 01/07/2023]
Abstract
microRNAs (miRNAs) down-modulate the levels of proteins by sequence-specific binding to their respective target mRNAs, causing translational repression or mRNA degradation. The miR-17∼92 cluster encodes for six miRNAs whose target recognition specificities are determined by their distinct sequence. In mice, the four miRNA families generated from the miR-17∼92 cluster coordinate to allow for proper lymphocyte development and effective adaptive immune responses following infection or immunization. Lymphocyte development and homeostasis rely on tight regulation of PI3K signaling to avoid autoimmunity or immunodeficiency, and the miR-17∼92 miRNAs appear as key mediators to appropriately tune PI3K activity. On the other hand, in lymphoid tumors overexpression of the miR-17∼92 miRNAs is a common oncogenic event. In this review, we touch on what we have learned so far about the miR-17∼92 miRNAs, particularly with respect to their role in lymphocyte development, homeostasis and pathology.
Collapse
Affiliation(s)
- Verena Labi
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria.
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Doron Melamed
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
6
|
Benhamou D, Labi V, Getahun A, Benchetrit E, Dowery R, Rajewsky K, Cambier JC, Melamed D. The c-Myc/miR17-92/PTEN Axis Tunes PI3K Activity to Control Expression of Recombination Activating Genes in Early B Cell Development. Front Immunol 2018; 9:2715. [PMID: 30524445 PMCID: PMC6262168 DOI: 10.3389/fimmu.2018.02715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Appropriate PI3K signals generated by the antigen receptor are essential to promote B cell development. Regulation of recombination activating gene (RAG)-1 and RAG-2 expression is one key process that is mediated by PI3K to ensure developmental progression and selection. When PI3K signals are too high or too low, expression of RAGs does not turn off and B cell development is impaired or blocked. Yet, the mechanism which tunes PI3K activity to control RAG expression during B cell development in the bone marrow is unknown. Recently we showed that a c-Myc/miR17-92/PTEN axis regulates PI3K activity for positive and negative selection of immature B cells. Here, we show that the c-Myc/miR17-92/PTEN axis tunes PI3K activity to control the expression of RAGs in proB cells. Using different genetically engineered mouse models we show that impaired function of the c-Myc/miR17-92/PTEN axis alters the PI3K/Akt/Foxo1 pathway to result in dis-regulated expression of RAG and a block in B cell development. Studies using 38c-13 B lymphoma cells, where RAGs are constitutively expressed, suggest that this regulatory effect is mediated post-translationally through Foxo1.
Collapse
Affiliation(s)
- David Benhamou
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Verena Labi
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Eli Benchetrit
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Reem Dowery
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Doron Melamed
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Benhamou D, Labi V, Novak R, Dai I, Shafir-Alon S, Weiss A, Gaujoux R, Arnold R, Shen-Orr SS, Rajewsky K, Melamed D. A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency. Cell Rep 2016; 16:419-431. [DOI: 10.1016/j.celrep.2016.05.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023] Open
|
8
|
Shahaf G, Zisman-Rozen S, Benhamou D, Melamed D, Mehr R. B Cell Development in the Bone Marrow Is Regulated by Homeostatic Feedback Exerted by Mature B Cells. Front Immunol 2016; 7:77. [PMID: 27047488 PMCID: PMC4801882 DOI: 10.3389/fimmu.2016.00077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022] Open
Abstract
Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment.
Collapse
Affiliation(s)
- Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan , Israel
| | - Simona Zisman-Rozen
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa , Israel
| | - David Benhamou
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa , Israel
| | - Doron Melamed
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa , Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan , Israel
| |
Collapse
|
9
|
von Muenchow L, Engdahl C, Karjalainen K, Rolink AG. The selection of mature B cells is critically dependent on the expression level of the co-receptor CD19. Immunol Lett 2014; 160:113-9. [PMID: 24472602 DOI: 10.1016/j.imlet.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/14/2014] [Indexed: 01/28/2023]
Abstract
CD19 plays a crucial role in mature B cell development as best exemplified by the finding that CD19 deficient mice have severely reduced mature B cell compartments (Engel et al., 1995; Rickert et al., 1995). In the present study we show that the transition into the mature B cell compartments is heavily dependent on the correct amount of CD19 expression. Thus, Nup-98-HoxB4 immortalized hematopoietic stem cells (HSCs) over-expressing CD19 show upon transplantation an impaired pro/pre B to immature B cell transition in the bone marrow, whereas Nup-98-HoxB4 HSCs expressing a shRNA that down-modulates CD19 expression show upon transplantation a strongly reduced mature B cell compartment. Overall our findings indicate that too high CD19 expression might result into too strong BCR signaling in the bone marrow and therefore causing negative selection. Too low CD19 expression might result into too little BCR signaling and thereby preventing the B cells to enter the mature pool (absence of positive selection).
Collapse
Affiliation(s)
- Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstraße, Basel 284058, Switzerland
| | - Corinne Engdahl
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstraße, Basel 284058, Switzerland
| | - Klaus Karjalainen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstraße, Basel 284058, Switzerland.
| |
Collapse
|
10
|
Liu J, Lange MD, Hong SY, Xie W, Xu K, Huang L, Yu Y, Ehrhardt GRA, Zemlin M, Burrows PD, Su K, Carter RH, Zhang Z. Regulation of VH replacement by B cell receptor-mediated signaling in human immature B cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:5559-66. [PMID: 23630348 DOI: 10.4049/jimmunol.1102503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
VH replacement provides a unique RAG-mediated recombination mechanism to edit nonfunctional IgH genes or IgH genes encoding self-reactive BCRs and contributes to the diversification of Ab repertoire in the mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. In this article, we show that cross-linking BCRs induces VH replacement in human EU12 μHC(+) cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases but is inhibited by CD19 costimulation, presumably through activation of the PI3K pathway. These results show that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Aging and the physiologic decline of tissues and cells were once thought to be irreversible. However, recent studies suggest that various tissues, especially parts of the hematopoietic system, can be rejuvenated. Here we review potential mechanisms for this process and how they may be used to reverse age-related disorders and aging in general. We propose the novel hypothesis that altering the homeostatic process during cellular depletion can reverse aging in the hematopoietic system.
Collapse
|
12
|
Shen S, Manser T. Direct reduction of antigen receptor expression in polyclonal B cell populations developing in vivo results in light chain receptor editing. THE JOURNAL OF IMMUNOLOGY 2011; 188:47-56. [PMID: 22131331 DOI: 10.4049/jimmunol.1102109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secondary Ab V region gene segment rearrangement, termed receptor editing, is a major mechanism contributing to B lymphocyte self-tolerance. However, the parameters that determine whether a B cell undergoes editing are a current subject of debate. We tested the role that the level of BCR expression plays in the regulation of receptor editing in a polyclonal population of B cells differentiating in vivo. Expression of a short hairpin RNA for κ L chain RNA in B cells resulted in reduction in levels of this RNA and surface BCRs. Strikingly, fully mature and functional B cells that developed in vivo and efficiently expressed the short hairpin RNA predominantly expressed BCRs containing λ light chains. This shift in L chain repertoire was accompanied by inhibition of development, increased Rag gene expression, and increased λ V gene segment-cleavage events at the immature B cell stage. These data demonstrated that reducing the translation of BCRs that are members of the natural repertoire at the immature B cell stage is sufficient to promote editing.
Collapse
Affiliation(s)
- Shixue Shen
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
13
|
Duong BH, Ota T, Aoki-Ota M, Cooper AB, Ait-Azzouzene D, Vela JL, Gavin AL, Nemazee D. Negative selection by IgM superantigen defines a B cell central tolerance compartment and reveals mutations allowing escape. THE JOURNAL OF IMMUNOLOGY 2011; 187:5596-605. [PMID: 22043016 DOI: 10.4049/jimmunol.1102479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To analyze B lymphocyte central tolerance in a polyclonal immune system, mice were engineered to express a superantigen reactive to IgM of allotype b (IgM(b)). IgM(b/b) mice carrying superantigen were severely B cell lymphopenic, but small numbers of B cells matured. Their sera contained low levels of IgG and occasionally high levels of IgA. In bone marrow, immature B cells were normal in number, but internalized IgM and had a unique gene expression profile, compared with those expressing high levels of surface IgM, including elevated recombinase activator gene expression. A comparable B cell population was defined in wild-type bone marrows, with an abundance suggesting that at steady state ∼20% of normal developing B cells are constantly encountering autoantigens in situ. In superantigen-expressing mice, as well as in mice carrying the 3H9 anti-DNA IgH transgene, or 3H9 H along with mutation in the murine κ-deleting element RS, IgM internalization was correlated with CD19 downmodulation. CD19(low) bone marrow cells from 3H9;RS(-/-) mice were enriched in L chains that promote DNA binding. Our results suggest that central tolerance and attendant L chain receptor editing affect a large fraction of normal developing B cells. IgH(a/b) mice carrying the superantigen had a ∼50% loss in follicular B cell numbers, suggesting that escape from central tolerance by receptor editing from one IgH allele to another was not a major mechanism. IgM(b) superantigen hosts reconstituted with experimental bone marrow were demonstrated to be useful in revealing pathways involved in central tolerance.
Collapse
Affiliation(s)
- Bao Hoa Duong
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Keren Z, Averbuch D, Shahaf G, Zisman-Rozen S, Golan K, Itkin T, Lapidot T, Mehr R, Melamed D. Chronic B Cell Deficiency from Birth Prevents Age-Related Alterations in the B Lineage. THE JOURNAL OF IMMUNOLOGY 2011; 187:2140-7. [DOI: 10.4049/jimmunol.1100999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci 2011; 1217:96-121. [PMID: 21251012 DOI: 10.1111/j.1749-6632.2010.05877.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.
Collapse
Affiliation(s)
- Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
16
|
Novak R, Jacob E, Haimovich J, Avni O, Melamed D. The MAPK/ERK and PI3K pathways additively coordinate the transcription of recombination-activating genes in B lineage cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:3239-47. [PMID: 20709952 DOI: 10.4049/jimmunol.1001430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rag-1 and Rag-2 are essential for the construction of the BCR repertoire. Regulation of Rag gene expression is tightly linked with BCR expression and signaling during B cell development. Earlier studies have shown a major role of the PI(3)K/Akt pathway in regulating the transcription of Rag genes. In this study, by using the 38c13 murine B cell lymphoma we show that transcription of Rag genes is also regulated by the MEK/ERK pathways, and that both pathways additively coordinate in this regulation. The additive effect is observed for both ligand-dependent (upon BCR ligation) and ligand independent (tonic) signals. However, whereas the PI(3)K/Akt regulation of Rag transcription is mediated by Foxo1, we show in this study that the MEK/ERK pathway coordinates with the regulation of Rag by controlling the phosphorylation and turnover of E47 and its consequential binding to the Rag enhancer regions. Our results suggest that the PI(3)K and MEK/ERK pathways additively coordinate in the regulation of Rag transcription in an independent manner.
Collapse
Affiliation(s)
- Rostislav Novak
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
17
|
Kövesdi D, Bell SE, Turner M. The development of mature B lymphocytes requires the combined function of CD19 and the p110δ subunit of PI3K. SELF NONSELF 2010; 1:144-153. [PMID: 21487516 DOI: 10.4161/self.1.2.11796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/25/2010] [Accepted: 03/11/2010] [Indexed: 11/19/2022]
Abstract
Mice lacking either CD19 or p110δ have reduced numbers of marginal zone and B1 B cells but normal numbers of naïve B2 cells which occupy the follicles of the lymphoid organs. We show here that mice lacking both CD19 and p110δ have normal B cell development in the bone marrow but have a significant reduction in the number of naïve B2 cells in the bone marrow, spleen and lymph nodes. These p110δ/CD19 double mutant B cells show a survival defect and reduced responsiveness to the pro-survival cytokine BAFF despite normal NFκB2/p100 processing and elevated expression of Bcl-2. Although the combined loss of p110δ and CD19 did not increase switching to Ig-lambda in immature B cells, mature B lymphocytes from the lymph nodes of p110δ/CD19 double mutant mice express highly elevated levels of mRNA encoding RAG-1 and RAG-2, which confirms the existing synergy between CD19 and p110δ-mediated signaling.
Collapse
Affiliation(s)
- Dorottya Kövesdi
- Laboratory of Lymphocyte Signalling and Development; The Babraham Institute; Babraham, Cambridge UK
| | | | | |
Collapse
|
18
|
Henry RA, Acevedo-Suárez CA, Thomas JW. Functional silencing is initiated and maintained in immature anti-insulin B cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3432-9. [PMID: 19265121 DOI: 10.4049/jimmunol.0803121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechanisms of B cell tolerance act during development in the bone marrow and periphery to eliminate or restrict autoreactive clones to prevent autoimmune disease. B cells in the spleens of mice that harbor anti-insulin BCR transgenes (125Tg) are maintained in a functionally silenced or anergic state by endogenous hormone, but it is not clear when and where anergy is induced. An in vitro bone marrow culture system was therefore used to probe whether small protein hormones, a critical class of autoantigens, could interact with the BCR to induce anergy early during B cell development. Upon exposure to insulin, anti-insulin (125Tg) immature B cells show similar hallmarks of anergy as those observed in mature splenic B cells. These include BCR down-regulation, impaired proliferative responses to anti-CD40, and diminished calcium mobilization upon stimulation with BCR-dependent and independent stimuli. Inhibition of calcineurin also results in reduced immature B cell proliferation in a similar manner, suggesting a potential mechanism through which reduced intracellular calcium mobilization may be altering cellular proliferation. Signs of impairment appear after short-term exposure to insulin, which are reversible upon Ag withdrawal. This suggests that a high degree of functional plasticity is maintained at this stage and that constant Ag engagement is required to maintain functional inactivation. These findings indicate that tolerance observed in mature, splenic 125Tg B cells is initiated by insulin in the developing B cell compartment and thus highlight an important therapeutic window for the prevention of insulin autoimmunity.
Collapse
Affiliation(s)
- Rachel A Henry
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
19
|
Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9:195-205. [PMID: 19240758 DOI: 10.1038/nri2491] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pre-B-cell receptor (pre-BCR) is expressed following the productive recombination of the immunoglobulin heavy chain gene. Signals through the pre-BCR are required for initiating diverse processes in pre-B cells, including proliferation and recombination of the light chain gene, which eventually lead to the differentiation of pre-B cells to immature B cells. However, the molecular mechanisms by which the pre-BCR promotes these processes remain largely unresolved. Recent findings suggest that forkhead box O (FOXO) transcription factors connect pre-BCR signalling to the activation of the recombination machinery. In this Review, we discuss how FOXO transcription factors are regulated by the pre-BCR to allow the progression of the cell cycle and the recombination of the light chain gene.
Collapse
Affiliation(s)
- Sebastian Herzog
- Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
20
|
Edry E, Azulay-Debby H, Melamed D. TOLL-like receptor ligands stimulate aberrant class switch recombination in early B cell precursors. Int Immunol 2008; 20:1575-85. [PMID: 18974086 DOI: 10.1093/intimm/dxn117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TOLL-like receptor (TLR) ligands stimulate class switch recombination (CSR) in mature B cells. We showed earlier that developing B cells in the bone marrow (BM) express TLR9 and are responsive to CpG DNA. Since CSR is a critical process for synthesis of effector antibodies, we studied the competence of precursor B cells to undergo CSR in response to TLR ligands, and the regulation of these cells. We found that CSR is induced throughout B lymphopoiesis in response to CpG and to LPS. However, sequencing analysis revealed aberrant joining of the switch junctions. In addition, we found that this CSR is independent of IgM expression and/or VDJ assembly and is directed to a specific isotype by cytokines. Finally, we found that activation of the switched precursor B cells is regulated by Fas. Thus, BM B cells can be activated by TLR ligands to undergo CSR and to secrete non-IgM antibodies. However, the effector potential of these cells is regulated by the Fas pathway.
Collapse
Affiliation(s)
- Efrat Edry
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
21
|
SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat Immunol 2008; 9:623-31. [PMID: 18488031 DOI: 10.1038/ni.1616] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/21/2008] [Indexed: 12/30/2022]
Abstract
Although the essential role of the adaptor protein SLP-65 in pre-B cell differentiation is established, the molecular mechanism underlying its function is poorly understood. In this study, we uncover a link between SLP-65-dependent signaling and the phosphoinositide-3-OH kinase (PI(3)K)-protein kinase B (PKB)-Foxo pathway. We show that the forkhead box transcription factor Foxo3a promotes light chain rearrangement in pre-B cells. Our data suggest that PKB suppresses light chain recombination by phosphorylating Foxo proteins, whereas reconstitution of SLP-65 function counteracts PKB activation and promotes Foxo3a and Foxo1 activity in pre-B cells. Together, these data illuminate a molecular function of SLP-65 and identify a key role for Foxo proteins in the regulation of light chain recombination, receptor editing and B cell selection.
Collapse
|
22
|
Schram BR, Tze LE, Ramsey LB, Liu J, Najera L, Vegoe AL, Hardy RR, Hippen KL, Farrar MA, Behrens TW. B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. THE JOURNAL OF IMMUNOLOGY 2008; 180:4728-41. [PMID: 18354197 DOI: 10.4049/jimmunol.180.7.4728] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.
Collapse
Affiliation(s)
- Brian R Schram
- Center for Immunology, Department of Medicine, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Edry E, Koralov SB, Rajewsky K, Melamed D. Spontaneous class switch recombination in B cell lymphopoiesis generates aberrant switch junctions and is increased after VDJ rearrangement. THE JOURNAL OF IMMUNOLOGY 2007; 179:6555-60. [PMID: 17982044 DOI: 10.4049/jimmunol.179.10.6555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development.
Collapse
Affiliation(s)
- Efrat Edry
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
24
|
Wang H, Feng J, Qi CF, Li Z, Morse HC, Clarke SH. Transitional B Cells Lose Their Ability to Receptor Edit but Retain Their Potential for Positive and Negative Selection. THE JOURNAL OF IMMUNOLOGY 2007; 179:7544-52. [DOI: 10.4049/jimmunol.179.11.7544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Lamoureux JL, Watson LC, Cherrier M, Skog P, Nemazee D, Feeney AJ. Reduced receptor editing in lupus-prone MRL/lpr mice. ACTA ACUST UNITED AC 2007; 204:2853-64. [PMID: 17967905 PMCID: PMC2118512 DOI: 10.1084/jem.20071268] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The initial B cell repertoire contains a considerable proportion of autoreactive specificities. The first major B cell tolerance checkpoint is at the stage of the immature B cell, where receptor editing is the primary mode of eliminating self-reactivity. The cells that emigrate from the bone marrow have a second tolerance checkpoint in the transitional compartment in the spleen. Although it is known that the second checkpoint is defective in lupus, it is not clear whether there is any breakdown in central B cell tolerance in the bone marrow. We demonstrate that receptor editing is less efficient in the lupus-prone strain MRL/lpr. In an in vitro system, when receptor-editing signals are given to bone marrow immature B cells by antiidiotype antibody or after in vivo exposure to membrane-bound self-antigen, MRL/lpr 3-83 transgenic immature B cells undergo less endogenous rearrangement and up-regulate recombination activating gene messenger RNA to a lesser extent than B10 transgenic cells. CD19, along with immunoglobulin M, is down-regulated in the bone marrow upon receptor editing, but the extent of down-regulation is fivefold less in MRL/lpr mice. Less efficient receptor editing could allow some autoreactive cells to escape from the bone marrow in lupus-prone mice, thus predisposing to autoimmunity.
Collapse
Affiliation(s)
- Jennifer L Lamoureux
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
26
|
Verkoczy L, Duong B, Skog P, Aït-Azzouzene D, Puri K, Vela JL, Nemazee D. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. THE JOURNAL OF IMMUNOLOGY 2007; 178:6332-41. [PMID: 17475862 PMCID: PMC3777394 DOI: 10.4049/jimmunol.178.10.6332] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PI3K plays key roles in cell growth, differentiation, and survival by generating the second messenger phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). PIP3 activates numerous enzymes, in part by recruiting them from the cytosol to the plasma membrane. We find that in immature B lymphocytes carrying a nonautoreactive Ag receptor, PI3K signaling suppresses RAG expression and promotes developmental progression. Inhibitors of PI3K signaling abrogate this positive selection. Furthermore, immature primary B cells from mice lacking the p85alpha regulatory subunit of PI3K suppress poorly RAG expression, undergo an exaggerated receptor editing response, and, as in BCR-ligated cells, fail to progress into the G1 phase of cell cycle. Moreover, immature B cells carrying an innocuous receptor have sustained elevation of PIP3 levels and activation of the downstream effectors phospholipase C (PLC)gamma2, Akt, and Bruton's tyrosine kinase. Of these, PLCgamma2 appears to play the most significant role in down-regulating RAG expression. It therefore appears that when the BCR of an immature B cell is ligated, PIP3 levels are reduced, PLCgamma2 activation is diminished, and receptor editing is promoted by sustained RAG expression. Taken together, our results provide evidence that PI3K signaling is an important cue required for fostering development of B cells carrying a useful BCR.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Bao Duong
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Kellogg School of Science and Technology Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - Patrick Skog
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | | | | | - José Luis Vela
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Kellogg School of Science and Technology Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037
| | - David Nemazee
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Address correspondence and reprint requests to Dr. David Nemazee, Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop IMM-29, La Jolla, CA 92037.
| |
Collapse
|
27
|
Llorian M, Stamataki Z, Hill S, Turner M, Mårtensson IL. The PI3K p110delta is required for down-regulation of RAG expression in immature B cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:1981-5. [PMID: 17277100 DOI: 10.4049/jimmunol.178.4.1981] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At the immature B cell stage the BCR signals the down-regulation of the RAG genes and Ig L chain (LC) allelic and isotype exclusion. The signaling pathway that regulates these events is poorly characterized. We demonstrate that immature B cells from mice deficient in the PI3K catalytic subunit p110delta fail to suppress RAG expression and inappropriately recombine kappa and lambda LC loci. In addition, in the presence of the autoantigen, clonal deletion and receptor editing still takes place, demonstrating that these processes are independent of p110delta. These results demonstrate a role for p110delta in the regulation of RAG gene expression and thereby LC allelic/isotype exclusion.
Collapse
Affiliation(s)
- Miriam Llorian
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Sirac C, Carrion C, Duchez S, Comte I, Cogné M. Light chain inclusion permits terminal B cell differentiation and does not necessarily result in autoreactivity. Proc Natl Acad Sci U S A 2006; 103:7747-52. [PMID: 16682638 PMCID: PMC1472516 DOI: 10.1073/pnas.0509121103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mice in which the Jkappa cluster was replaced with a VkappaJkappa rearranged gene were studied. More than 90% of B cells from homozygous mutant mice expressed the transgenic kappa chain but showed a slightly reduced level of kappa transcripts compared with WT B lymphocytes. Light chain inclusion was apparent in 10% of B cells from these mice and raised 25% in hemizygous mice with a still lower expression of the knockin kappa chain. Beyond the rules of clonal selection, peripheral B cells developed in such animals, with included cells being activated and differentiating into class-switched or antibody-secreting cells. The high amount of included mature B cells was associated with an increase of hybrid kappa/lambda immunoglobulins but not with the increased prevalence of autoantibodies. Altogether, these data suggest that light chain exclusion prevalent in normal B cells mostly results from ordered rearrangements and stochastic mechanisms but is neither tightly ensured by a stringent cell selection process nor absolutely required for normal B cell function.
Collapse
Affiliation(s)
- C. Sirac
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - C. Carrion
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - S. Duchez
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - I. Comte
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - M. Cogné
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
- To whom correspondence should be addressed at:
Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, 2 Rue du Dr. Marcland, 87025 Limoges Cedex, France. E-mail:
| |
Collapse
|
29
|
Pelanda R, Torres RM. Receptor editing for better or for worse. Curr Opin Immunol 2006; 18:184-90. [PMID: 16460922 DOI: 10.1016/j.coi.2006.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/24/2006] [Indexed: 10/25/2022]
Abstract
Receptor editing has emerged from its original identification as a minor secondary mechanism of B cell tolerance to be considered as a dominant mechanism by which autoreactive immature B cells are rendered tolerant. Clonal deletion, previously regarded as the major mechanism of central B cell tolerance, has been shown by recent studies to operate secondarily and only when receptor editing is unable to provide a non-autoreactive specificity. Receptor editing has also been shown to operate during the development of wild-type B lymphocytes, and ongoing investigations demonstrate the influence of particular signaling molecules in the induction and/or inhibition of receptor editing. Together, these studies begin to map the signaling pathways that regulate receptor editing in autoreactive and non-autoreactive immature B cells.
Collapse
Affiliation(s)
- Roberta Pelanda
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
30
|
Rezanka LJ, Kenny JJ, Longo DL. Dual isotype expressing B cells [kappa(+)/lambda(+)] arise during the ontogeny of B cells in the bone marrow of normal nontransgenic mice. Cell Immunol 2006; 238:38-48. [PMID: 16458869 DOI: 10.1016/j.cellimm.2005.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/09/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Central to the clonal selection theory is the tenet that a single B cell expresses a single receptor with a single specificity. Previously, based on our work in anti-phosphocholine transgenic mouse models, we suggested that B cells escaped clonal deletion by coexpression of more than one receptor on their cell surface. We argued that "receptor dilution" was necessary when: (i) the expressed immunoglobulin receptor is essential for immune protection against pathogens and (ii) this protective receptor is autoreactive and would be clonally deleted, leaving a hole in the B cell repertoire. Here, we demonstrate that dual isotype expressing B cells arise during the normal ontogeny of B cells in the bone marrow and populate both the spleen and peritoneal cavity of nontransgenic mice. Furthermore, single cell analysis of the expressed immunoglobulin light chains suggests that receptor editing may play a role in the generation of a significant fraction of dual isotype expressing B cells.
Collapse
Affiliation(s)
- Louis J Rezanka
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
31
|
Rezanka LJ, Kenny JJ, Longo DL. 2 BCR or NOT 2 BCR - receptor dilution: a unique mechanism for preventing the development of holes in the protective B cell repertoire. Immunobiology 2005; 210:769-74. [PMID: 16325496 DOI: 10.1016/j.imbio.2005.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 08/30/2005] [Indexed: 11/17/2022]
Abstract
The clonal selection theory and the associated corollaries have had a major influence in shaping our thinking about lymphoid cell development as well as how these cells respond to antigenic challenges. Among these concepts are that a single B cell expresses a single receptor with a single antigen specificity. While these hypotheses have proven invaluable in expanding our understanding of immune response, over time numerous observations have been made that suggest that the single cell, single receptor, single specificity model is not absolute. In this manuscript, we review this literature as it pertains to B cells and provide a summary that supports the notion that in certain situations, the over-arching rules by which we consider development and response of immune cells may be compromised. The result of compromising allelic and isotype exclusion is a small but real population of dual receptor expressing B cells. A number of mechanisms that have been proposed for generating these dual expressing B cells are presented and discussed. We also consider the negative implications of dual receptor expression on regulating and controlling autoreactive B cell populations as well as its beneficial contributions to preserving essential receptor specificities and thereby preventing the development of holes in the immune repertoire. Previously, the dual receptor expressing population has received relatively little attention. Improvements in the tools available to examine individual B cell populations have resulted in our identification of and discrimination between novel populations of B cells, including novel dual receptor expressing populations. This combined with continuing increases in our understanding of how the immune repertoire relates to a protective immune response will strengthen and further define this novel aspect of immune cell development.
Collapse
Affiliation(s)
- Louis J Rezanka
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
32
|
Abstract
The murine immunoglobulin (Ig) kappa locus has been intensively studied in an attempt to understand its developmentally regulated activation for both transcription and V(D)J recombination. A variety of signaling proteins, cis-acting DNA elements, and trans-acting DNA-binding proteins have been discovered and shown to be involved in the regulated changes in chromatin structure, which are associated with recombinase accessibility. In addition, key roles have been suggested for DNA methylation and replication in kappa-locus expression and rearrangement. This review summarizes data in this area and considers what studies of the murine kappa locus have revealed about the lineage specificity, order, and allelic exclusion of lymphoid V(D)J recombination.
Collapse
|
33
|
Diamant E, Keren Z, Melamed D. CD19 regulates positive selection and maturation in B lymphopoiesis: lack of CD19 imposes developmental arrest of immature B cells and consequential stimulation of receptor editing. Blood 2005; 105:3247-54. [PMID: 15644414 DOI: 10.1182/blood-2004-08-3165] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligand-independent signals that are produced by the B-cell antigen receptor (BCR) confer an important positive selection checkpoint for immature B cells. Generation of inappropriate signals imposes developmental arrest of immature B cells, though the fate of these cells has not been investigated. Studies have shown that the lack of CD19 results in inappropriate signaling. In immunoglobulin transgenic mice, this inappropriate signaling impairs positive selection and stimulates receptor editing. Here, we studied the extent and significance of receptor editing in CD19-regulated positive selection of normal, nontransgenic B lymphopoiesis, using our bone marrow culture system. We found that the lack of CD19 resulted in elevated tonic signaling and impaired maturation, as revealed by surface marker expression and by functional assays. Immature CD19-/- B cells did not suppress RAG and underwent intensive receptor editing attempts in culture. Finally, in vivo analysis of light-chain isotype expression and Jkappa use in CD19-/- mice validated our in vitro observations. Our results suggest that CD19 has an important function in regulating positive selection and maturation of nontransgenic B-cell precursors and that receptor editing is an important salvage mechanism for immature B cells that fail positive selection.
Collapse
Affiliation(s)
- Eran Diamant
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
34
|
Hayashi K, Nojima T, Goitsuka R, Kitamura D. Impaired receptor editing in the primary B cell repertoire of BASH-deficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:5980-8. [PMID: 15528332 DOI: 10.4049/jimmunol.173.10.5980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Antinuclear/genetics
- Antibodies, Antinuclear/metabolism
- Autoantigens/immunology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Clonal Anergy/genetics
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genetic Markers/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- RNA Editing/genetics
- RNA Editing/immunology
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | | | | | | |
Collapse
|
35
|
Edry E, Melamed D. Receptor editing in positive and negative selection of B lymphopoiesis. THE JOURNAL OF IMMUNOLOGY 2004; 173:4265-71. [PMID: 15383554 DOI: 10.4049/jimmunol.173.7.4265] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In B lymphopoiesis, Ag receptor expression and signaling are critical to determine developmental progression, survival, and activation. Several positive and negative selection checkpoints to test this receptor have been described in B lymphopoiesis, aiming to ensure the generation of functionally competent, nonautoimmune repertoire. Secondary Ag receptor gene recombination allows B lymphocytes to replace an inappropriate receptor with a new receptor, a mechanism called receptor editing. This salvage mechanism uncouples the Ag receptor fate from that of the cell itself, suggesting that B cell repertoire is regulated by a process of receptor selection. Secondary rearrangements are stimulated in different stages of B cell development, where editing of the receptor is necessary to fulfill stage-specific requirements. In this study, we discuss the contribution of receptor editing in B lymphopoiesis and its regulation by positive and negative selection signals.
Collapse
Affiliation(s)
- Efrat Edry
- Department of Immunology, Faculty of Medicine, Technion, Israel
| | | |
Collapse
|
36
|
Middendorp S, Hendriks RW. Cellular maturation defects in Bruton's tyrosine kinase-deficient immature B cells are amplified by premature B cell receptor expression and reduced by receptor editing. THE JOURNAL OF IMMUNOLOGY 2004; 172:1371-9. [PMID: 14734712 DOI: 10.4049/jimmunol.172.3.1371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the mouse, Bruton's tyrosine kinase (Btk) is essential for efficient developmental progression of CD43(+)CD2(-) large cycling into CD43(-)CD2(+) small resting pre-B cells in the bone marrow and of IgM(high) transitional type 2 B cells into IgM(low) mature B cells in the spleen. In this study, we show that the impaired induction of cell surface changes in Btk-deficient pre-B cells was still noticeable in kappa(+) immature B cells, but was largely corrected in lambda(+) immature B cells. As lambda gene rearrangements are programmed to follow kappa rearrangements and lambda expression is associated with receptor editing, we hypothesized that the transit time through the pre-B cell compartment or receptor editing may affect the extent of the cellular maturation defects in Btk-deficient B cells. To address this issue, we used 3-83 mu delta transgenic mice, which prematurely express a complete B cell receptor and therefore manifest accelerated B cell development. In Btk-deficient 3-83 mu delta mice, the IgM(+) B cells in the bone marrow exhibited a very immature phenotype (pre-BCR(+)CD43(+)CD2(-)) and were arrested at the transitional type 1 B cell stage upon arrival in the spleen. However, these cellular maturation defects were largely restored when Btk-deficient 3-83 mu delta B cells were on a centrally deleting background and therefore targeted for receptor editing. Providing an extended time window for developing B cells by enforced expression of the antiapoptotic gene Bcl-2 did not alter the Btk dependence of their cellular maturation. We conclude that premature B cell receptor expression amplifies the cellular maturation defects in Btk-deficient B cells, while extensive receptor editing reduces these defects.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Clonal Deletion/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/immunology
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Immunoglobulin delta-Chains/genetics
- Immunoglobulin kappa-Chains/biosynthesis
- Immunoglobulin lambda-Chains/biosynthesis
- Immunoglobulin mu-Chains/genetics
- Lymphopenia/enzymology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Pre-B Cell Receptors
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Spleen/immunology
- Spleen/pathology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Sabine Middendorp
- Department of Immunology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
37
|
Seagal J, Edry E, Keren Z, Leider N, Benny O, Machluf M, Melamed D. A fail-safe mechanism for negative selection of isotype-switched B cell precursors is regulated by the Fas/FasL pathway. ACTA ACUST UNITED AC 2004; 198:1609-19. [PMID: 14623914 PMCID: PMC2194123 DOI: 10.1084/jem.20030357] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In B lymphocytes, immunoglobulin (Ig)M receptors drive development and construction of naive repertoire, whereas IgG receptors promote formation of the memory B cell compartment. This isotype switching process requires appropriate B cell activation and T cell help. In the absence of T cell help, activated B cells undergo Fas-mediated apoptosis, a peripheral mechanism contributing to the establishment of self-tolerance. Using Igμ-deficient μMT mouse model, where B cell development is blocked at pro-B stage, here we show an alternative developmental pathway used by isotype-switched B cell precursors. We find that isotype switching occurs normally in B cell precursors and is T independent. Ongoing isotype switching was found in both normal and μMT B cell development as reflected by detection of IgG1 germline and postswitch transcripts as well as activation-induced cytidine deaminase expression, resulting in the generation of IgG-expressing cells. These isotype-switched B cells are negatively selected by Fas pathway, as blocking the Fas/FasL interaction rescues the development of isotype-switched B cells in vivo and in vitro. Similar to memory B cells, isotype-switched B cells have a marginal zone phenotype. We suggest a novel developmental pathway used by isotype-switched B cell precursors that effectively circumvents peripheral tolerance requirements. This developmental pathway, however, is strictly controlled by Fas/FasL interaction to prevent B cell autoimmunity.
Collapse
Affiliation(s)
- Jane Seagal
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | | | | | | | | | | | |
Collapse
|
38
|
Keren Z, Diamant E, Ostrovsky O, Bengal E, Melamed D. Modification of ligand-independent B cell receptor tonic signals activates receptor editing in immature B lymphocytes. J Biol Chem 2003; 279:13418-24. [PMID: 14668327 DOI: 10.1074/jbc.m311970200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maturation of B lymphocytes strictly depends on the signaling competence of the B cell antigen receptor (BCR). Autoreactive receptors undergo negative selection and can be replaced by receptor editing. In addition, the process of maturation of non-self B cells and migration to the spleen, referred to as positive selection, is limited by the signaling competence of the BCR. Using 3-83Tg mice deficient of CD19 we have shown that signaling incompetence not only blocks positive selection but also activates receptor editing. Here we study the role of ligand-independent BCR tonic tyrosine phosphorylation signals in activation of receptor editing. We find that editing, immature 3-83Tg B cells deficient of CD19 have elevated BCR tonic signals and that lowering these tonic signals effectively suppresses receptor editing. Furthermore, we show that elevation of BCR tonic signals in non-editing, immature 3-83Tg B cells stimulates significant receptor editing. We also show that positive selection and developmental progression from the bone marrow to the spleen are limited to cells capable of establishing appropriate tonic signals, as in contrast to immature cells, splenic 3-83Tg B cells deficient of CD19 have BCR tonic signals similar to those of the control 3-83Tg cells. This developmental progression is accompanied by activation of molecules signaling for growth and survival. Hence, we suggest that ligand-independent BCR tonic signals are required for promoting positive selection and suppressing the receptor-editing mechanism in immature B cells.
Collapse
Affiliation(s)
- Zohar Keren
- Technion, Faculty of Medicine, Departments of Immunology and Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
39
|
Otero DC, Rickert RC. CD19 Function in Early and Late B Cell Development. II. CD19 Facilitates the Pro-B/Pre-B Transition. THE JOURNAL OF IMMUNOLOGY 2003; 171:5921-30. [PMID: 14634103 DOI: 10.4049/jimmunol.171.11.5921] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Proliferative expansion of pro-B cells is an IL-7-dependent process that allows for the rearrangement of H chain genes and the expression of the pre-B cell receptor (pre-BCR). Further B cell differentiation is dependent upon signals elicited through the pre-BCR, which are thought to be responsible for allelic exclusion, induced L chain gene rearrangement, and continued proliferation. CD19 promotes the proliferation and survival of mature B cells, but its role in early B cell development is less well understood. Here we identify and characterize impairments in early B cell development in CD19(-/-) mice. Following sublethal irradiation, we found decreased numbers of autoreconstituted early B cells, which was first evident in the large cycling pre-B cell fraction. Reduced cell progression due to a defect in proliferation was made evident from cell cycle analysis and bromodeoxyuridine labeling of bone marrow cells from CD19(-/-) and wild-type mice. Studies of IL-7-dependent pre-B cell cultures derived from wild-type and CD19(-/-) mouse bone marrow suggested that CD19 has little affect on IL-7 signaling. By contrast, signaling through the pre-BCR was impaired in the absence of CD19, as demonstrated by reduced activation of Bruton's tyrosine kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase. Thus, in addition to promoting mature B cell homeostasis and Ag-induced responses, the early onset of CD19 expression acts to enhance B cell generation.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Bone Marrow/immunology
- Bone Marrow/radiation effects
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cells, Cultured
- Crosses, Genetic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Pre-B Cell Receptors
- Radiation Chimera/immunology
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Dennis C Otero
- Division of Biology and University of California-San Diego Cancer Center, La Jolla, CA 92093, USA
| | | |
Collapse
|
40
|
Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, Levy S. The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. THE JOURNAL OF IMMUNOLOGY 2003; 171:4062-72. [PMID: 14530327 DOI: 10.4049/jimmunol.171.8.4062] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD81 is a widely expressed tetraspanin that associates in B cells with CD19 in the CD19-CD21-CD81 signaling complex. CD81 is necessary for normal CD19 expression; cd81(-/-) B cells express lower levels of CD19, especially cd81(-/-) small pre-BII cells, which are almost devoid of surface CD19. The dependence of CD19 expression on CD81 is specific to this particular tetraspanin since cd9(-/-) B cells express normal levels of CD19. Furthermore, expression of human CD81 in mouse cd81(-/-) B cells restored surface CD19 to normal levels. Quantitative analysis of CD19 mRNA demonstrated normal levels, even in cd81(-/-) pre-BII cells. Analysis of CD19 at the protein level identified two CD19 glycoforms in both wild-type and cd81(-/-) B cells. The higher M(r) glycoform is significantly reduced in cd81(-/-) B cells and is endoglycosidase H (endo-H) resistant. In contrast, the low M(r) glycoform is comparably expressed in cd81(-/-) and in wild-type B cells and is endo-H sensitive. Because endo-H sensitivity is tightly correlated with endoplasmic reticulum localization, we suggest that the dependency of CD19 expression on CD81 occurs in a postendoplasmic reticulum compartment where CD81 is necessary for normal trafficking or for surface membrane stability of CD19.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, CD19/analysis
- Antigens, CD19/biosynthesis
- Antigens, CD19/metabolism
- B-Lymphocyte Subsets/chemistry
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Bone Marrow Cells/chemistry
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Endoplasmic Reticulum/chemistry
- Endoplasmic Reticulum/immunology
- Endoplasmic Reticulum/metabolism
- Female
- Hematopoietic Stem Cells/chemistry
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Hexosaminidases
- Humans
- Male
- Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase
- Membrane Glycoproteins/physiology
- Membrane Proteins/biosynthesis
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Isoforms/analysis
- Protein Isoforms/biosynthesis
- Protein Isoforms/metabolism
- RNA, Messenger/biosynthesis
- Tetraspanin 28
- Tetraspanin 29
Collapse
Affiliation(s)
- Tsipi Shoham
- Department of Medicine, Division of Oncology, Stanford University Medical Center, CA 94305-5151, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Leider N, Melamed D. Differential c-Myc responsiveness to B cell receptor ligation in B cell-negative selection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2446-52. [PMID: 12928392 DOI: 10.4049/jimmunol.171.5.2446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Responsiveness of c-Myc oncogene to B cell receptor ligation has been implicated in the induction of apoptosis in transformed and normal immature B cells. These studies provided compelling evidence to link the c-Myc oncogene with the process of negative selection in B-lymphocytes. However, in addition to apoptosis, B cell-negative selection has been shown to occur by secondary Ig gene rearrangements, a mechanism called receptor editing. In this study, we assessed whether differential c-Myc responsiveness to B cell receptor (BCR) ligation is associated with the mechanism of negative selection in immature B cells. Using an in vitro bone marrow culture system and an Ig-transgenic mouse model (3-83) we show here that c-Myc is expressed at low levels throughout B cell development and that c-Myc responsiveness to BCR ligation is developmentally regulated and increased with maturation. Furthermore, we found that the competence to mount c-Myc responsiveness upon BCR ligation is important for the induction of apoptosis and had no effect on the process of receptor editing. Therefore, this study suggests an important role of c-Myc in promoting and/or maintaining B cell development and that compartmentalization of B cell tolerance may also be developmentally regulated by differential c-Myc responsiveness.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Apoptosis/genetics
- Apoptosis/immunology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Transformed
- Cells, Cultured
- DNA-Binding Proteins/biosynthesis
- Gene Expression Regulation/immunology
- Genes, myc/immunology
- Ligands
- Lymphopoiesis/genetics
- Lymphopoiesis/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- RNA Editing/genetics
- RNA Editing/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Self Tolerance/genetics
Collapse
Affiliation(s)
- Nira Leider
- Department of Immunology, Technion Faculty of Medicine, Haifa 31096, Israel
| | | |
Collapse
|
42
|
Nemazee D, Hogquist KA. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol 2003; 15:182-9. [PMID: 12633668 DOI: 10.1016/s0952-7915(03)00008-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clonal selection is central to immune function, but it is complemented by "receptor selection", which regulates the immune repertoire not by cell death or proliferation but through the control of antigen receptor gene recombination. Inappropriate receptors, such as those that are autoreactive, underexpressed, or that fail to promote positive selection of thymocytes or B cells, stimulate secondary V-to-J recombinations that destroy and replace receptor genes. These processes play a central role in lymphocyte repertoire development. Recent work on the role of receptor selection in B and T cells has uncovered evidence for and against antigen-induced editing in thymocytes. Many studies suggest that editing plays a central role in B and T lymphocyte repertoire development. Important recent evidence has been uncovered addressing the role of tolerance-induced editing in thymocytes.
Collapse
MESH Headings
- Animals
- Down-Regulation/immunology
- Gene Rearrangement/immunology
- Genes, Immunoglobulin/genetics
- Humans
- Models, Biological
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop IM-29, La Jolla, CA 92037, USA.
| | | |
Collapse
|
43
|
Affiliation(s)
- Jane Seagal
- Department of Immunology, Bruce Rappaport Faculty of Medicine and Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | |
Collapse
|
44
|
Goldmit M, Schlissel M, Cedar H, Bergman Y. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J 2002; 21:5255-61. [PMID: 12356741 PMCID: PMC129040 DOI: 10.1093/emboj/cdf518] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Gene rearrangement in the immune system is always preceded by DNA demethylation and increased chromatin accessibility. Using a model system in which rearrangement of the endogenous immunoglobulin kappa locus is prevented, we demonstrate that these epigenetic and chromatin changes actually occur on one allele with a higher probability than the other. It may be this process that, together with feedback inhibition, serves as the basis for allelic exclusion.
Collapse
Affiliation(s)
- Maya Goldmit
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Mark Schlissel
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Howard Cedar
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Yehudit Bergman
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| |
Collapse
|