1
|
Zhang X, Wang J, Tang K, Yang Y, Liu X, Yuan S, Guo F, Zhang L, Ma K. The cell cycle regulator p16 promotes tumor infiltrated CD8 + T cell exhaustion and apoptosis. Cell Death Dis 2024; 15:339. [PMID: 38750022 PMCID: PMC11096187 DOI: 10.1038/s41419-024-06721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The therapeutic efficacy of adoptive T cell therapy is largely restricted by reduced viability and dysfunction of CD8+ T cells. Continuous antigen stimulation disrupts the expansion, effector function, and metabolic fitness of CD8+ T cells, leading to their differentiation into an exhausted state within the tumor microenvironment (TME). While the function of the cell cycle negative regulator p16 in senescent cells is well understood, its role in T cell exhaustion remains unclear. In this study, we demonstrated that TCR stimulation of CD8+ T cells rapidly upregulates p16 expression, with its levels positively correlating with TCR affinity. Chronic TCR stimulation further increased p16 expression, leading to CD8+ T cell apoptosis and exhaustion differentiation, without inducing DNA damage or cell senescence. Mechanistic investigations revealed that p16 downregulates mTOR, glycolysis, and oxidative phosphorylation (OXPHOS) associated gene expression, resulting in impaired mitochondrial fitness, reduced T cell viability, and diminished effector function. Furthermore, the deletion of p16 significantly enhances the persistence of CD8+ T cells within tumors and suppresses the terminal exhaustion of tumor-infiltrating T cells. Overall, our findings elucidate how increased p16 expression reshapes T cell intracellular metabolism, drives T cell apoptosis and exhaustion differentiation, and ultimately impairs T cell anti-tumor function.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jiajia Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Kun Tang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu, China
| | - Yu Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaowei Liu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Shengtao Yuan
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Feng Guo
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China.
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China.
| | - Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China.
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China.
| |
Collapse
|
2
|
Effects of Epstein-Barr Virus Infection on the Risk and Prognosis of Primary Laryngeal Squamous Cell Carcinoma: A Hospital-Based Case-Control Study in Taiwan. Cancers (Basel) 2021; 13:cancers13071741. [PMID: 33917480 PMCID: PMC8038767 DOI: 10.3390/cancers13071741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mounting molecular evidence supports Epstein-Barr virus (EBV) involvement in the pathogenesis of laryngeal squamous cell carcinoma (LSCC); however, the epidemiological data are inconsistent. In this retrospective case-control study, we aimed to determine whether EBV infection underlies the risk and prognosis of LSCC. The prevalence of EBV infection, as analyzed using an EBV DNA polymerase chain reaction assay, was significantly higher in 42 Taiwanese patients with newly diagnosed primary LSCC, compared to 39 age- and sex-matched control patients without cancer (48% vs. 19%). Furthermore, most of the EBER signals detected using in situ hybridization were localized to the nuclei of tumor-infiltrating lymphocytes. In multivariate analysis, EBV DNA positivity, age ≥ 55 years, cigarette smoking, and high BCL-2, B2M, and CD161 expression (assessed using immunohistochemistry) were identified as independent risk factors for LSCC. Furthermore, five-year local recurrence and disease-free survival rates were 34% and 58%, respectively, with a high EBER signal and low CD3 expression independently predicting five-year local recurrence and disease-free survival. Our comprehensive profiling data accurately identified patients at risk for LSCC development, local recurrence, or disease-free survival. The information obtained in this study improves our understanding of EBV infection in LSCC, and may guide precision medicine for patients with LSCC.
Collapse
|
3
|
Chen G, Subedi K, Chakraborty S, Sharov A, Lu J, Kim J, Mi X, Wersto R, Sung MH, Weng NP. Ezh2 Regulates Activation-Induced CD8 + T Cell Cycle Progression via Repressing Cdkn2a and Cdkn1c Expression. Front Immunol 2018; 9:549. [PMID: 29632530 PMCID: PMC5879148 DOI: 10.3389/fimmu.2018.00549] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Transition from resting to cell cycle in response to antigenic stimulation is an essential step for naïve CD8+ T cells to differentiate to effector and memory cells. Leaving the resting state requires dramatic changes of chromatin status in the key cell cycle inhibitors but the details of these concerted events are not fully elucidated. Here, we showed that Ezh2, an enzymatic component of polycomb repressive complex 2 (PRC2) catalyzing the trimethylation of lysine 27 on histone 3 (H3K27me3), regulates activation induced naïve CD8+ T cells proliferation and apoptosis. Upon deletion of Ezh2 during thymocyte development (Ezh2fl/flCd4Cre+ mice), naive CD8+ T cells displayed impaired proliferation and increased apoptosis in response to antigen stimulation. However, naive CD8+ T cells only had impaired proliferation but no increase in apoptosis when Ezh2 was deleted after activation (Ezh2fl/flGzmBCre+ mice), suggesting cell cycle and apoptosis are temporally separable events controlled by Ezh2. We then showed that deletion of Ezh2 resulted in the increase in expression of cyclin-dependent kinase inhibitors Cdkn2a (p16 and Arf) and Cdkn1c (p57) in activated naïve CD8+ T cells as the consequence of reduced levels of H3K27me3 at these two gene loci. Finally, with real time imaging, we observed prolonged cell division times of naïve CD8+ T cells in the absence of Ezh2 post in vitro stimulation. Together, these findings reveal that repression of Cdkn1c and Cdkn2a by Ezh2 plays a critical role in execution of activation-induced CD8+ T cell proliferation.
Collapse
Affiliation(s)
- Guobing Chen
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Kalpana Subedi
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Sayantan Chakraborty
- Transcription Systems Dynamics and Biology Unit, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Alexie Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Jian Lu
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Jaekwan Kim
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Xiaofan Mi
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Robert Wersto
- Flow Cytometry Unit, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Myong-Hee Sung
- Transcription Systems Dynamics and Biology Unit, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| | - Nan-Ping Weng
- Lymphocyte Differentiation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging (NIH), Baltimore, MD, United States
| |
Collapse
|
4
|
Lepletier A, Chidgey AP, Savino W. Perspectives for Improvement of the Thymic Microenvironment through Manipulation of Thymic Epithelial Cells: A Mini-Review. Gerontology 2015; 61:504-14. [DOI: 10.1159/000375160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
|
5
|
Allday MJ. EBV finds a polycomb-mediated, epigenetic solution to the problem of oncogenic stress responses triggered by infection. Front Genet 2013; 4:212. [PMID: 24167519 PMCID: PMC3807040 DOI: 10.3389/fgene.2013.00212] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/01/2013] [Indexed: 12/22/2022] Open
Abstract
Viruses that establish a persistent infection, involving intracellular latency, commonly stimulate cellular DNA synthesis and sometimes cell division early after infection. However, most cells of metazoans have evolved "fail-safe" responses that normally monitor unscheduled DNA synthesis and prevent cell proliferation when, for instance, cell proto-oncogenes are "activated" by mutation, amplification, or chromosomal rearrangements. These cell intrinsic defense mechanisms that reduce the risk of neoplasia and cancer are collectively called oncogenic stress responses (OSRs). Mechanisms include the activation of tumor suppressor genes and the so-called DNA damage response that together trigger pathways leading to cell cycle arrest (e.g., cell senescence) or complete elimination of cells (e.g., apoptosis). It is not surprising that viruses that can induce cellular DNA synthesis and cell division have the capacity to trigger OSR, nor is it surprising that these viruses have evolved countermeasures for inactivating or bypassing OSR. The main focus of this review is how the human tumor-associated Epstein-Barr virus manipulates the host polycomb group protein system to control - by epigenetic repression of transcription - key components of the OSR during the transformation of normal human B cells into permanent cell lines.
Collapse
Affiliation(s)
- Martin J. Allday
- Section of Virology, Department of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
6
|
Skalska L, White RE, Parker GA, Sinclair AJ, Paschos K, Allday MJ. Induction of p16(INK4a) is the major barrier to proliferation when Epstein-Barr virus (EBV) transforms primary B cells into lymphoblastoid cell lines. PLoS Pathog 2013; 9:e1003187. [PMID: 23436997 PMCID: PMC3578823 DOI: 10.1371/journal.ppat.1003187] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/22/2012] [Indexed: 12/27/2022] Open
Abstract
To explore the role of p16INK4a as an intrinsic barrier to B cell transformation by EBV, we transformed primary B cells from an individual homozygous for a deletion in the CDKN2A locus encoding p16INK4a and p14ARF. Using recombinant EBV-BAC viruses expressing conditional EBNA3C (3CHT), we developed a system that allows inactivation of EBNA3C in lymphoblastoid cell lines (LCLs) lacking active p16INK4a protein but expressing a functional 14ARF-fusion protein (p14/p16). The INK4a locus is epigenetically repressed by EBNA3C – in cooperation with EBNA3A – despite the absence of functional p16INK4a. Although inactivation of EBNA3C in LCLs from normal B cells leads to an increase in p16INK4a and growth arrest, EBNA3C inactivation in the p16INK4a-null LCLs has no impact on the rate of proliferation, establishing that the repression of INK4a is a major function of EBNA3C in EBV-driven LCL proliferation. This conditional LCL system allowed us to use microarray analysis to identify and confirm genes regulated specifically by EBNA3C, independently of proliferation changes modulated by the p16INK4a-Rb-E2F axis. Infections of normal primary B cells with recombinant EBV-BAC virus from which EBNA3C is deleted or with 3CHT EBV in the absence of activating ligand 4-hydroxytamoxifen, revealed that EBNA3C is necessary to overcome an EBV-driven increase in p16INK4a expression and concomitant block to proliferation 2–4 weeks post-infection. If cells are p16INK4a-null, functional EBNA3C is dispensable for the outgrowth of LCLs. Epstein-Barr virus (EBV) is a causative agent of several types of B cell lymphoma. In human B cells, EBV reduces protein levels of at least two tumour suppressors that would otherwise be activated in response to over-expressed oncogenes. These proteins are BIM, which induces cell death and p16INK4a, which prevents cell proliferation. Repression of both is via epigenetic methylation of histones and is dependent on expression of both EBNA3A and EBNA3C – two EBV proteins required for the transformation of normal B cells into lymphoblastoid cell lines (LCLs). In this report we have used EBV with a conditionally active EBNA3C – active only in the presence of 4-hydroxytamoxifen – together with B cells from an individual carrying a homozygous deletion of p16INK4a to confirm that regulation of p16INK4a expression is a major function of EBNA3C and demonstrate that if B cells lack p16INK4a, then EBNA3C is no longer required for EBV-driven proliferation of LCLs. Furthermore we show that early after the infection of normal B cells, EBV induces p16INK4a accumulation that – if unchecked by EBNA3C (and EBNA3A) – prevents LCL outgrowth. Formal proof that p16INK4a is the main target of EBNA3C comes with the production of p16-null LCLs that have never expressed functional EBNA3C.
Collapse
Affiliation(s)
- Lenka Skalska
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Robert E. White
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Gillian A. Parker
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Alison J. Sinclair
- Department of Biochemistry, University of Sussex, Brighton, United Kingdom
| | - Kostas Paschos
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Martin J. Allday
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a. Blood 2012; 119:5715-21. [PMID: 22555975 DOI: 10.1182/blood-2011-12-400002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Involution of the thymus results in reduced production of naive T cells, and this in turn is thought to contribute to impaired immunity in the elderly. Early T-cell progenitors (ETPs), the most immature intrathymic T-cell precursors, harvested from the involuted thymus exhibit a diminished proliferative potential and increased rate of apoptosis and as a result their number is significantly reduced. In the present study, we show that these age-induced alterations result in part from increased expression of the Ink4a tumor-suppressor gene in ETPs. We also show that repression of Ink4a in aged ETPs results in their partial rejuvenation and that this can be accomplished by in vivo fibroblast growth factor 7 administration. These results define a genetic basis for thymocyte progenitor aging and demonstrate that the senescence-associated gene Ink4a can be pharmacologically repressed in ETPs to partially reverse the effects of aging.
Collapse
|
8
|
Berent-Maoz B, Montecino-Rodriguez E, Dorshkind K. Genetic regulation of thymocyte progenitor aging. Semin Immunol 2012; 24:303-8. [PMID: 22559986 DOI: 10.1016/j.smim.2012.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023]
Abstract
The number of T cell progenitors is significantly reduced in the involuted thymus, and the growth and developmental potential of the few cells that are present is severely attenuated. This review provides an overview of how aging affects T cell precursors before and following entry into the thymus and discusses the age-related genetic changes that may occur in them. Finally, interventions that rejuvenate thymopoiesis in the elderly by targeting T cell progenitors are discussed.
Collapse
Affiliation(s)
- Beata Berent-Maoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
9
|
Abstract
Previous authors have suggested that tumor suppressor expression promotes aging while preventing cancer, but direct experimental support for this cancer-aging hypothesis has been elusive. Here, by using somatic, tissue-specific inactivation of the p16(INK4a) tumor suppressor in murine T- or B-lymphoid progenitors, we report that ablation of p16(INK4a) can either rescue aging or promote cancer in a lineage-specific manner. Deletion of p16(INK4a) in the T lineage ameliorated several aging phenotypes, including thymic involution, decreased production of naive T cells, reduction in homeostatic T-cell proliferation, and attenuation of antigen-specific immune responses. Increased T-cell neoplasia was not observed with somatic p16(INK4a) inactivation in T cells. In contrast, B lineage-specific ablation of p16(INK4a) was associated with a markedly increased incidence of systemic, high-grade B-cell neoplasms, which limited studies of the effects of somatic p16(INK4a) ablation on B-cell aging. Together, these data show that expression of p16(INK4a) can promote aging and prevent cancer in related lymphoid progeny of a common stem cell.
Collapse
|
10
|
Mouly E, Chemin K, Nguyen HV, Chopin M, Mesnard L, Leite-de-Moraes M, Burlen-defranoux O, Bandeira A, Bories JC. The Ets-1 transcription factor controls the development and function of natural regulatory T cells. ACTA ACUST UNITED AC 2010; 207:2113-25. [PMID: 20855499 PMCID: PMC2947068 DOI: 10.1084/jem.20092153] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulatory T cells (T reg cells) constitute a population of CD4(+) T cells that limits immune responses. The transcription factor Foxp3 is important for determining the development and function of T reg cells; however, the molecular mechanisms that trigger and maintain its expression remain incompletely understood. In this study, we show that mice deficient for the Ets-1 transcription factor (Ets-1(-/-)) developed T cell-mediated splenomegaly and systemic autoimmunity that can be blocked by functional wild-type T reg cells. Spleens of Ets-1(-/-) mice contained mostly activated T cells, including Th2-polarized CD4(+) cells and had reduced percentages of T reg cells. Splenic and thymic Ets-1(-/-) T reg cells expressed low levels of Foxp3 and displayed the CD103 marker that characterizes antigen-experienced T reg cells. Thymic development of Ets-1(-/-) T reg cells appeared intrinsically altered as Foxp3-expressing cells differentiate poorly in mixed fetal liver reconstituted chimera and fetal thymic organ culture. Ets-1(-/-) T reg cells showed decreased in vitro suppression activity and did not protect Rag2(-/-) hosts from naive T cell-induced inflammatory bowel disease. Furthermore, in T reg cells, Ets-1 interacted with the Foxp3 intronic enhancer and was required for demethylation of this regulatory sequence. These data demonstrate that Ets-1 is required for the development of natural T reg cells and suggest a role for this transcription factor in the regulation of Foxp3 expression.
Collapse
Affiliation(s)
- Enguerran Mouly
- EA3963, Université Paris 7 Denis Diderot, Institut National de la Santé et de la Recherche Médicale, Institut Fédératif de Recherche 105, Institut Universitaire d'Hématologie, 75475 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu Y, Sharpless NE. Tumor suppressor mechanisms in immune aging. Curr Opin Immunol 2009; 21:431-9. [PMID: 19535234 DOI: 10.1016/j.coi.2009.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 12/22/2022]
Abstract
The cancer-aging hypothesis suggests that the activation of some tumor suppressor mechanisms beneficially prevents cancer but also untowardly promotes mammalian aging. Along these lines, activation of tumor suppressor mechanisms that inhibit the cell cycle (e.g. p16(INK4a) and p53) in response to DNA damage and other age-promoting stimuli has taken center stage in immune-aging research. Immune cells are intrinsically susceptible to transforming events due to V(D)J recombination, a high rate of cellular turnover and requisite long-term self-renewal. Therefore, the DNA damage response and cell cycle regulation play a clear role in maintaining homeostasis without neoplastic progression. Here we will argue on the basis of recent advances in our understanding of tumor suppressor mechanisms in immune cells; however, that aspects of these same beneficial pathways have the potential to induce intrinsic immune aging.
Collapse
Affiliation(s)
- Yan Liu
- Department of Genetics and Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
12
|
Batsi C, Markopoulou S, Kontargiris E, Charalambous C, Thomas C, Christoforidis S, Kanavaros P, Constantinou AI, Marcu KB, Kolettas E. Bcl-2 blocks 2-methoxyestradiol induced leukemia cell apoptosis by a p27(Kip1)-dependent G1/S cell cycle arrest in conjunction with NF-kappaB activation. Biochem Pharmacol 2009; 78:33-44. [PMID: 19447221 DOI: 10.1016/j.bcp.2009.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2-ME2) induces leukemia cells to undergo apoptosis in association with Bcl-2 inactivation but the mechanisms whereby Bcl-2 contributes to protection against programmed cell death in this context remain unclear. Here we showed that 2-ME2 inhibited the proliferation of Jurkat leukemia cells by markedly suppressing the levels of cyclins D3 and E, E2F1 and p21(Cip1/Waf1) and up-regulating p16(INK4A). Further, 2-ME2 induced apoptosis of Jurkat cells in association with down-regulation and phosphorylation of Bcl-2 (as mediated by JNK), up-regulation of Bak, activation of caspases-9 and -3 and PARP-1 cleavage. To determine the importance and mechanistic role of Bcl-2 in this process, we enforced its expression in Jurkat cells by retroviral transduction. Enforcing Bcl-2 expression in Jurkat cells abolished 2-ME2-induced apoptosis and instead produced a G1/S phase cell cycle arrest in association with markedly increased levels of p27(Kip1). Bcl-2 and p27(Kip1) were localized mainly in the nucleus in these apoptotic resistant cells. Interestingly, NF-kappaB activity and p50 levels were increased by 2-ME2 and suppression of NF-kappaB signaling reduced p27(Kip1) expression and sensitized cells to 2-ME2-induced apoptosis. Importantly, knocking-down p27(Kip1) in Jurkat Bcl-2 cells sensitized them to spontaneous and 2-ME2-induced apoptosis. Thus, Bcl-2 prevented the 2-ME2-induced apoptotic response by orchestrating a p27(Kip1)-dependent G1/S phase arrest in conjunction with activating NF-kappaB. Thus, we achieved a much better understanding of the penetrance and mechanistic complexity of Bcl-2 dependent anti-apoptotic pathways in cancer cells and why Bcl-2 inactivation is so critical for the efficacy of apoptosis and anti-proliferative inducing drugs like 2-ME2.
Collapse
Affiliation(s)
- Christina Batsi
- Cell and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Finnberg N, Wambi C, Ware JH, Kennedy AR, El-Deiry WS. Gamma-radiation (GR) triggers a unique gene expression profile associated with cell death compared to proton radiation (PR) in mice in vivo. Cancer Biol Ther 2008; 7:2023-33. [PMID: 19106632 DOI: 10.4161/cbt.7.12.7417] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Proton radiation (PR) therapy offers a number of potential advantages over conventional (photon) gamma-radiation (GR) therapy for cancer, due to a more localized delivery of the radiation dose. However, the pathophysiological effects following PR-exposure are less well characterized than those of GR-exposure and the molecular changes associated with the acute apoptotic effects in mice in vivo following PR have not been elucidated. Previous studies have estimated the RBE of protons for various in vivo and in vitro endpoints at between 1.1 and 1.3. We assumed an RBE of 1.1 for the endpoints to be evaluated in these studies. Based on this assumption, ICR mice were treated with whole-body doses of GR (1.1 and 7.0 Gy) and PR (1.0 and 6.4 Gy) that were expected to represent RBE-weighted doses. The bone marrow, thymus, spleen and GI-tract were isolated and processed for histology and immunohistochemistry. The apoptotic responses varied greatly between GR and PR in a tissue- and dose-dependent manner. Surprisingly,cell death in the splenic white pulp was consistently lower in PR-treated animals compared to animals treated with GR. This was in spite of an increased presence of damaged DNA following PR as determined by staining for gammaH2AX and phospho-ATM. Interestingly, both PR and GR triggered nuclear accumulation of p53 and no significant differences were found in the majority of the known pro-apoptotic p53-target genes in the spleens of treated mice. However, GR uniquely triggered a pro-apoptotic expression profile including expression of the pro-apoptotic, p53- and interferon stimulated target gene Bcl-G. In contrast to PR, GR may, in a cell type specific manner, trigger a more diverse non-random stress-response that mediates apoptosis partially independent of the extent of DNA damage.
Collapse
Affiliation(s)
- Niklas Finnberg
- Laboratory of Molecular Oncology and Cell Cycle Regulation, The Institute for Translational Medicine and Therapeutics, The Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
14
|
Taghon T, Rothenberg EV. Molecular mechanisms that control mouse and human TCR-alphabeta and TCR-gammadelta T cell development. Semin Immunopathol 2008; 30:383-98. [PMID: 18925397 DOI: 10.1007/s00281-008-0134-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/30/2008] [Indexed: 12/22/2022]
Abstract
Following specification of hematopoietic precursor cells into the T cell lineage, several developmental options remain available to the immature thymocytes. The paradigm is that the outcome of the T cell receptor rearrangements and the corresponding T cell receptor signaling events will be predominant to determine the first of these choices: the alphabeta versus gammadelta T cell pathways. Here, we review the thymus-derived environmental signals, the transcriptional mediators, and other molecular mechanisms that are also involved in this decision in both the mouse and human. We discuss the differences in cellular events between the alphabeta and gammadelta developmental pathways and try to correlate these with a corresponding complexity of the molecular mechanisms that support them.
Collapse
Affiliation(s)
- Tom Taghon
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University Hospital, Ghent University, De Pintelaan 185, 4 Blok A, 9000, Ghent, Belgium.
| | | |
Collapse
|
15
|
Fasseu M, Aplan PD, Chopin M, Boissel N, Bories JC, Soulier J, von Boehmer H, Sigaux F, Regnault A. p16INK4A tumor suppressor gene expression and CD3epsilon deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis. Blood 2007; 110:2610-9. [PMID: 17507663 PMCID: PMC1988920 DOI: 10.1182/blood-2007-01-066209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inactivation of the CDKN2 genes that encode the p16(INK4A) and p14(ARF) proteins occurs in the majority of human T-cell acute lymphoblastic leukemias (T-ALLs). Ectopic expression of TAL1 and LMO1 genes is linked to the development of T-ALL in humans. In TAL1xLMO1 mice, leukemia develops in 100% of mice at 5 months. To identify the molecular events crucial to leukemic transformation, we produced several mouse models. We report here that expression of P16(INK4A) in developing TAL1xLMO1 thymocytes blocks leukemogenesis in the majority of the mice, and the leukemias that eventually develop show P16(INK4A) loss of expression. Events related to the T-cell receptor beta selection process are thought to be important for leukemic transformation. We show here that the absence of the pTalpha chain only slightly delays the appearance of TAL1xLMO1-induced T-ALL, which indicates a minor role of the pTalpha chain. We also show that the CD3epsilon-mediated signal transduction pathway is essential for this transformation process, since the TAL1xLMO1xCD3epsilon-deficient mice do not develop T-ALL for up to 1 year.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Differentiation
- Cell Lineage
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclin D3
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- LIM Domain Proteins
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Mice
- Mice, Transgenic
- Mutation/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Survival Rate
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Magali Fasseu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U462, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Higuchi T, Bartel FO, Masuya M, Deguchi T, Henderson KW, Li R, Muise-Helmericks RC, Kern MJ, Watson DK, Spyropoulos DD. Thymomegaly, microsplenia, and defective homeostatic proliferation of peripheral lymphocytes in p51-Ets1 isoform-specific null mice. Mol Cell Biol 2007; 27:3353-66. [PMID: 17339335 PMCID: PMC1899970 DOI: 10.1128/mcb.01871-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ets1 is a member of the Ets transcription factor family. Alternative splicing of exon VII results in two naturally occurring protein isoforms: full-length Ets1 (p51-Ets1) and Ets1(DeltaVII) (p42-Ets1). These isoforms bear key distinctions regarding protein-protein interactions, DNA binding kinetics, and transcriptional target specificity. Disruption of both Ets1 isoforms in mice results in the loss of detectable NK and NKT cell activity and defects in B and T lymphocytes. We generated mice that express only the Ets1(DeltaVII) isoform. Ets1(DeltaVII) homozygous mice express no p51-Ets1 and elevated levels of the p42-Ets1 protein relative to the wild type and display increased perinatal lethality, thymomegaly, and peripheral lymphopenia. Proliferation was increased in both the thymus and the spleen, while apoptosis was decreased in the thymus and increased in the spleen of homozygotes. Significant elevations of CD8(+) and CD8(+)CD4(+) thymocytes were observed. Lymphoid cell (CD19(+), CD4(+), and CD8(+)) reductions were predominantly responsible for diminished spleen cellularity, with fewer memory cells and a failure of homeostatic proliferation to maintain peripheral lymphocytes. Collectively, the Ets1(DeltaVII) mutants demonstrate lymphocyte maturation defects associated with misregulation of p16(Ink4a), p27(Kip1), and CD44. Thus, a balance in the differential regulation of Ets1 isoforms represents a potential mechanism in the control of lymphoid maturation and homeostasis.
Collapse
Affiliation(s)
- Tsukasa Higuchi
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Migliaccio M, Alves PMS, Romero P, Rufer N. Distinct mechanisms control human naive and antigen-experienced CD8+ T lymphocyte proliferation. THE JOURNAL OF IMMUNOLOGY 2006; 176:2173-82. [PMID: 16455973 DOI: 10.4049/jimmunol.176.4.2173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Ag-specific CD8(+) T lymphocytes are heterogeneous and include functionally distinct populations. In this study, we report that at least two distinct mechanisms control the expansion of circulating naive, memory, and effector CD8(+) T lymphocytes when exposed to mitogen or Ag stimulation. The first one leads to apoptosis and occurs shortly after in vitro stimulation. Susceptibility to cell death is prominent among primed T cell subsets, and it is inversely correlated with the size of the ex vivo Bcl-2(high) population within these subsets. Importantly, the Bcl-2(high) phenotype is associated to the proportion of responsive CD8(+) T cells, independently of their differentiation stage. The second one depends on the expression of newly synthesized cyclin-dependent kinase inhibitor p16(INK4a) that occurs in a significant fraction of T cells that had been actively cycling, leading to their cell cycle arrest upon stimulation. Strikingly, accumulation of p16(INK4a) protein preferentially occurs in naive as opposed to primed derived T lymphocytes and is not related to apoptosis. Significant levels of p16 are readily detectable in a small number of ex vivo CD8(+) T cells. Our observations reveal that activation-induced p16 expression represents an alternative process to apoptosis, limiting the proliferation potential of activated naive derived T lymphocytes.
Collapse
Affiliation(s)
- Marco Migliaccio
- Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | | | | | | |
Collapse
|
18
|
Bianchi T, Rufer N, MacDonald HR, Migliaccio M. The tumor suppressor p16Ink4a regulates T lymphocyte survival. Oncogene 2006; 25:4110-5. [PMID: 16491120 DOI: 10.1038/sj.onc.1209437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In contrast to other cell cycle inhibitors, the tumor suppressor p16Ink4a is not detectable or expressed at very low levels in embryonic and adult mouse tissues, and therefore it has often been considered as a specialized checkpoint protein that does not participate in the control of normal cell cycle progression. However, Ink4a-/- mice possess increased thymus size and cellularity, thus suggesting the involvement of p16(Ink4a) in the control of thymocyte proliferation. In this study, we found increased numbers of CD8 and CD4 T lymphocytes in thymus and spleen from Ink4a-/- mice. Unexpectedly, this was not related to an increase in T-cell division rates, which were similar in lymphoid organs of Ink4a-/- and wild-type mice. In contrast, T-cell apoptosis rates were significantly decreased in thymus and spleen from Ink4a-/- mice. Moreover, whereas p16Ink4a-deficient and wild-type T cells were equally sensitive to Fas or TCR-mediated apoptosis, the former were clearly more resistant to apoptosis induced by oxidative stress or gamma irradiation. Our results indicate that p16Ink4a function is associated with T-cell apoptosis, and subsequently contributes to the control of T-cell population size in lymphoid organs.
Collapse
Affiliation(s)
- T Bianchi
- Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | | | | | | |
Collapse
|
19
|
Owens BM, Hawley TS, Spain LM, Kerkel KA, Hawley RG. TLX1/HOX11-mediated disruption of primary thymocyte differentiation prior to the CD4+CD8+ double-positive stage. Br J Haematol 2006; 132:216-29. [PMID: 16398656 PMCID: PMC2431114 DOI: 10.1111/j.1365-2141.2005.05850.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The TLX1/HOX11 homeobox gene is frequently activated in T-cell acute lymphoblastic leukaemia (T-ALL) by the t(10;14)(q24;q11) and t(7;10)(q35;q24) chromosomal translocations or by as yet unknown transcriptional mechanisms in the absence of 10q24 cytogenetic abnormalities. Almost all TLX1(+) T-ALLs exhibit a CD4(+)CD8(+) double-positive (DP) phenotype. To investigate the role of TLX1 as an initiating oncogene in T-ALL pathogenesis, we assessed the consequences of retroviral vector-directed TLX1 expression during the differentiation of murine and human thymocytes in fetal thymic organ cultures. Interestingly, enforced expression of TLX1 disrupted the differentiation of murine fetal liver precursors and human cord blood CD34(+) stem/progenitor cells prior to the DP thymocyte stage. Although differentiation arrest was associated with an increased percentage of apoptotic thymocytes, it could only be partially bypassed by coexpression of transgenic BCL2. Mutation of the invariant asparagine residue at position 51 of the homeodomain - which is required for efficient DNA binding - released the block, consistent with the notion that TLX1 inhibits thymocyte differentiation and promotes T-cell oncogenesis by functioning as a transcription factor. The relevance of these findings is discussed in the context of activating NOTCH1 mutations and the other genetic lesions implicated in the multistep transformation process of TLX1(+) T-ALL.
Collapse
Affiliation(s)
- Bronwyn M. Owens
- Graduate Program in Molecular and Cellular Oncology, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC
| | - Teresa S. Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington DC
| | - Lisa M. Spain
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristi A. Kerkel
- Graduate Program in Molecular and Cellular Oncology, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC
| | - Robert G. Hawley
- Graduate Program in Molecular and Cellular Oncology, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC
| |
Collapse
|
20
|
Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev 2006; 209:159-69. [PMID: 16448541 DOI: 10.1111/j.0105-2896.2006.00343.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pre-T-cell receptor (pre-TCR) functions and the study of early thymocyte development continue to fascinate immunologists more than 10 years after the first description and cloning of the receptor. Although multiple reports have addressed several aspects of pre-TCR signaling and function, its ability to regulate diverse functions, including proliferation, survival, and allelic exclusion of the TCR-beta locus, remains an open question. What fascinates us is its central role in the fine balance between physiological differentiation and thymocyte transformation that leads to T-cell leukemia and lymphomas. In this review, we integrate pre-TCR signaling pathways and study their effects on the regulation of T-cell progenitor cell-cycle entry and cell survival. We also connect aberrant pre-TCR signaling to deregulated proliferation and apoptotic balances and thymocyte transformation.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction
- T-Lymphocytes/cytology
- Thymus Gland/cytology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Iannis Aifantis
- University of Chicago, Department of Medicine, Section of Rheumatology, Committees of Immunology, Cancer and Developmental Biology, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
21
|
Sharpless NE. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 2005; 576:22-38. [PMID: 15878778 DOI: 10.1016/j.mrfmmm.2004.08.021] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 07/12/2004] [Accepted: 08/12/2004] [Indexed: 02/02/2023]
Abstract
The INK4a/ARF locus encodes two physically linked tumor suppressor proteins, p16(INK4a) and ARF, which regulate the RB and p53 pathways, respectively. The unusual genomic relationship of the open reading frames of these proteins initially fueled speculation that only one of the two was the true tumor suppressor, and loss of the other merely coincidental in cancer. Recent human and mouse genetic data, however, have firmly established that both proteins possess significant in vivo tumor suppressor activity, although there appear to be species- and cell-type specific differences between the two. For example, ARF plays a clear role in preventing Myc-induced lymphomagenesis in mice, whereas the role for p16(INK4a) is human carcinomas is more firmly established. In this review, I discuss the evolutionary history of the locus, the relative importance of these tumor suppressor genes in human cancer, and recent information suggesting novel biochemical and physiologic functions of these proteins in vivo.
Collapse
Affiliation(s)
- Norman E Sharpless
- Department of Medicine, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, 27599-7295, USA.
| |
Collapse
|
22
|
Abstract
The mammalian INK4a/ARF locus encodes two linked tumor suppressor proteins, p16INK4a and ARF, which respectively regulate the retinoblastoma (RB) and p53 pathways. Genetic data have firmly established that both proteins possess significant in vivo tumor suppressor activity. In addition to their non-overlapping roles in preventing cancer, one or both proteins are induced under certain circumstances in most cultured murine and human cell types, and thereby are critical effectors of senescence. Likewise, data from murine models have suggested that this anti-cancer growth inhibitory activity of the locus can similarly affect permanent growth arrest in vivo. When such in vivo senescence occurs in a cell possessing self-renewal potential (e.g. a tissue stem cell), there is an attendant decline in the regenerative capabilities of the organ maintained by that stem cell. In turn, the concomitant decline of this stem cell reserve is a cardinal feature of mammalian aging. Expression of the INK4a/ARF locus, therefore, appears not only to be a major suppressor of cancer, but also an effector of mammalian aging.
Collapse
Affiliation(s)
- Norman E Sharpless
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
23
|
Sachs Z, Sharpless NE, DePinho RA, Rosenberg N. p16(Ink4a) interferes with Abelson virus transformation by enhancing apoptosis. J Virol 2004; 78:3304-11. [PMID: 15016851 PMCID: PMC371071 DOI: 10.1128/jvi.78.7.3304-3311.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.
Collapse
Affiliation(s)
- Zohar Sachs
- Department of Pathology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Mammalian aging occurs in part because of a decline in the restorative capacity of tissue stem cells. These self-renewing cells are rendered malignant by a small number of oncogenic mutations, and overlapping tumor suppressor mechanisms (e.g., p16(INK4a)-Rb, ARF-p53, and the telomere) have evolved to ward against this possibility. These beneficial antitumor pathways, however, appear also to limit the stem cell life span, thereby contributing to aging.
Collapse
Affiliation(s)
- Norman E Sharpless
- Department of Medicine and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-8212, USA.
| | | |
Collapse
|