1
|
Zitti B, Hoffer E, Zheng W, Pandey RV, Schlums H, Perinetti Casoni G, Fusi I, Nguyen L, Kärner J, Kokkinou E, Carrasco A, Gahm J, Ehrström M, Happaniemi S, Keita ÅV, Hedin CRH, Mjösberg J, Eidsmo L, Bryceson YT. Human skin-resident CD8 + T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a. Immunity 2023:S1074-7613(23)00220-0. [PMID: 37269830 DOI: 10.1016/j.immuni.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/26/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
The integrin CD49a marks highly cytotoxic epidermal-tissue-resident memory (TRM) cells, but their differentiation from circulating populations remains poorly defined. We demonstrate enrichment of RUNT family transcription-factor-binding motifs in human epidermal CD8+CD103+CD49a+ TRM cells, paralleled by high RUNX2 and RUNX3 protein expression. Sequencing of paired skin and blood samples revealed clonal overlap between epidermal CD8+CD103+CD49a+ TRM cells and circulating memory CD8+CD45RA-CD62L+ T cells. In vitro stimulation of circulating CD8+CD45RA-CD62L+ T cells with IL-15 and TGF-β induced CD49a expression and cytotoxic transcriptional profiles in a RUNX2- and RUNX3-dependent manner. We therefore identified a reservoir of circulating cells with cytotoxic TRM potential. In melanoma patients, high RUNX2, but not RUNX3, transcription correlated with a cytotoxic CD8+CD103+CD49a+ TRM cell signature and improved patient survival. Together, our results indicate that combined RUNX2 and RUNX3 activity promotes the differentiation of cytotoxic CD8+CD103+CD49a+ TRM cells, providing immunosurveillance of infected and malignant cells.
Collapse
Affiliation(s)
- Beatrice Zitti
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ram Vinay Pandey
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Irene Fusi
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden; University of Siena, 53100 Siena, Italy
| | - Lien Nguyen
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Jaanika Kärner
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Anna Carrasco
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Jessica Gahm
- Department of Reconstructive surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | | | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Charlotte R H Hedin
- Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden; Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, 5030 Bergen, Norway.
| |
Collapse
|
2
|
Roy A, Chauhan S, Bhattacharya S, Jakhmola V, Tyagi K, Sachdeva A, Wasai A, Mandal S. Runt-related transcription factors in human carcinogenesis: a friend or foe? J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04769-0. [PMID: 37081242 DOI: 10.1007/s00432-023-04769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Cancer is one of the deadliest pathologies with more than 19 million new cases and 10 million cancer-related deaths across the globe. Despite development of advanced therapeutic interventions, cancer remains as a fatal pathology due to lack of early prognostic biomarkers, therapy resistance and requires identification of novel drug targets. METHODS Runt-related transcription factors (Runx) family controls several cellular and physiological functions including osteogenesis. Recent literatures from PubMed was mined and the review was written in comprehensive manner RESULTS: Recent literature suggests that aberrant expression of Runx contributes to tumorigenesis of many organs. Conversely, cell- and tissue-specific tumor suppressor roles of Runx are also reported. In this review, we have provided the structural/functional properties of Runx isoforms and its regulation in context of human cancer. Moreover, in an urgent need to discover novel therapeutic interventions against cancer, we comprehensively discussed the reported oncogenic and tumor suppressive roles of Runx isoforms in several tumor types and discussed the discrepancies that may have risen on Runx as a driver of malignant transformation. CONCLUSION Runx may be a novel therapeutic target against a battery of deadly human cancers.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| | - Shivi Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abdul Wasai
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| |
Collapse
|
3
|
Shavit E, Menascu S, Achiron A, Gurevich M. Age-related blood transcriptional regulators affect disease progression in pediatric multiple sclerosis. Neurobiol Dis 2023; 176:105953. [PMID: 36493973 DOI: 10.1016/j.nbd.2022.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pediatric onset multiple sclerosis patients (POMS) are defined as multiple sclerosis with an onset before the age of 18 years. Compared to adult onset multiple sclerosis (AOMS), POMS has more severe disease activity at onset, but better recovery. Little is known about the molecular mechanism responsible for the differences in the clinical presentations. METHODS Peripheral Blood Mononuclear Cells samples were taken from 22 POMS patients (mean age 14.1 ± 2.4 years, 15 females, 7 male), and 16 AOMS patients, (mean age 30.8 ± 6.1 years,10 females, 6 males), and gene-expression were analyzed using Affymetrix Inc. HU-133-A2 microarrays. Differentially Expressed Genes (DEGs) that significantly distinguished between POMS and AOMS with pvalue <0.05 after false discovery rate correction were evaluated using Partek software. Twenty-one matched age and gender control was applied to clarify age-related changes. Clinical assessment was performed by analysis of expanded disability status scale (EDSS) and brain MRI lesion loads. Gene functional analysis was performed by Ingenuity Pathway Analysis software. RESULTS Compared to AOMS, POMS had higher EDSS (3.0 IQR 2.0-3.0 and 2.0 IQR 2.0-3.0, p = 0.005), volume of T1 (2.72 mm3, IQR 0.44-8.39 mm3 and 0.5 mm3 IQR 0-1.29 mm3 respectively, p = 0.04) and T2 (3.70 mm3, IQR 1.3-9.6 and 0.96 mm3, IQR 0.24-4.63 respectively, p = 0.02) brain MRI lesions. The POMS transcriptional profile was characterized by 551 DEGs, enriched by cell cycling, B lymphocyte signaling and senescent pathways (p < 0.02). Of these, 183 DEGs significantly correlated with T2 lesions volume. The POMS MRI correlated DEGs (n = 183) and their upstream regulators (n = 718) has overlapped with age related DEGs obtained from healthy subjects (n = 497). This evaluated common DEGs (n = 29) defined as POMS age-related regulators, suggesting to promote effect on disease severity. CONCLUSION Our finding of higher transcriptional levels of genes involved in cell cycle, cell migration and B cell proliferation that promoted by transcriptional level of age-associated genes and transcription factors allows better understanding of the more aggressive clinical course that defines the POMS.
Collapse
Affiliation(s)
- Eitan Shavit
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; St. George's Hospital Medical School, University of London, London, United Kingdom; Arrow project for medical research education, Sheba Medical Center, Ramat-Gan, Israel.
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Bao X, Qin Y, Lu L, Zheng M. Transcriptional Regulation of Early T-Lymphocyte Development in Thymus. Front Immunol 2022; 13:884569. [PMID: 35432347 PMCID: PMC9008359 DOI: 10.3389/fimmu.2022.884569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
T-lymphocytes play crucial roles for maintaining immune homeostasis by fighting against various pathogenic microorganisms and establishing self-antigen tolerance. They will go through several stages and checkpoints in the thymus from progenitors to mature T cells, from CD4-CD8- double negative (DN) cells to CD4+CD8+ double positive (DP) cells, finally become CD4+ or CD8+ single positive (SP) cells. The mature SP cells then emigrate out of the thymus and further differentiate into distinct subsets under different environment signals to perform specific functions. Each step is regulated by various transcriptional regulators downstream of T cell receptors (TCRs) that have been extensively studied both in vivo and vitro via multiple mouse models and advanced techniques, such as single cell RNA sequencing (scRNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). This review will summarize the transcriptional regulators participating in the early stage of T cell development reported in the past decade, trying to figure out cascade networks in each process and provide possible research directions in the future.
Collapse
Affiliation(s)
- Xueyang Bao
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yingyu Qin
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Linrong Lu
- Shanghai Immune Therapy Institute, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China.,Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
6
|
Matthijssens F, Sharma ND, Nysus M, Nickl CK, Kang H, Perez DR, Lintermans B, Van Loocke W, Roels J, Peirs S, Demoen L, Pieters T, Reunes L, Lammens T, De Moerloose B, Van Nieuwerburgh F, Deforce DL, Cheung LC, Kotecha RS, Risseeuw MD, Van Calenbergh S, Takarada T, Yoneda Y, van Delft FW, Lock RB, Merkley SD, Chigaev A, Sklar LA, Mullighan CG, Loh ML, Winter SS, Hunger SP, Goossens S, Castillo EF, Ornatowski W, Van Vlierberghe P, Matlawska-Wasowska K. RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia. J Clin Invest 2021; 131:141566. [PMID: 33555272 DOI: 10.1172/jci141566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with inferior outcome compared with that of B cell ALL. Here, we show that Runt-related transcription factor 2 (RUNX2) was upregulated in high-risk T-ALL with KMT2A rearrangements (KMT2A-R) or an immature immunophenotype. In KMT2A-R cells, we identified RUNX2 as a direct target of the KMT2A chimeras, where it reciprocally bound the KMT2A promoter, establishing a regulatory feed-forward mechanism. Notably, RUNX2 was required for survival of immature and KMT2A-R T-ALL cells in vitro and in vivo. We report direct transcriptional regulation of CXCR4 signaling by RUNX2, thereby promoting chemotaxis, adhesion, and homing to medullary and extramedullary sites. RUNX2 enabled these energy-demanding processes by increasing metabolic activity in T-ALL cells through positive regulation of both glycolysis and oxidative phosphorylation. Concurrently, RUNX2 upregulation increased mitochondrial dynamics and biogenesis in T-ALL cells. Finally, as a proof of concept, we demonstrate that immature and KMT2A-R T-ALL cells were vulnerable to pharmacological targeting of the interaction between RUNX2 and its cofactor CBFβ. In conclusion, we show that RUNX2 acts as a dependency factor in high-risk subtypes of human T-ALL through concomitant regulation of tumor metabolism and leukemic cell migration.
Collapse
Affiliation(s)
- Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nitesh D Sharma
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Monique Nysus
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christian K Nickl
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Huining Kang
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Dominique R Perez
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.,University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, USA
| | - Beatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sofie Peirs
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | | | - Dieter L Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Laurence C Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Martijn Dp Risseeuw
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Serge Van Calenbergh
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukio Yoneda
- Department of Pharmacology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Frederik W van Delft
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, Lowy Cancer Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Seth D Merkley
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Alexandre Chigaev
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.,University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, USA
| | - Larry A Sklar
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.,University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, UCSF, San Francisco, California, USA
| | - Stuart S Winter
- Cancer and Blood Disorders Program, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Eliseo F Castillo
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biol 2020; 21:190. [PMID: 32746932 PMCID: PMC7397672 DOI: 10.1186/s13059-020-02100-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deep learning has emerged as a versatile approach for predicting complex biological phenomena. However, its utility for biological discovery has so far been limited, given that generic deep neural networks provide little insight into the biological mechanisms that underlie a successful prediction. Here we demonstrate deep learning on biological networks, where every node has a molecular equivalent, such as a protein or gene, and every edge has a mechanistic interpretation, such as a regulatory interaction along a signaling pathway. RESULTS With knowledge-primed neural networks (KPNNs), we exploit the ability of deep learning algorithms to assign meaningful weights in multi-layered networks, resulting in a widely applicable approach for interpretable deep learning. We present a learning method that enhances the interpretability of trained KPNNs by stabilizing node weights in the presence of redundancy, enhancing the quantitative interpretability of node weights, and controlling for uneven connectivity in biological networks. We validate KPNNs on simulated data with known ground truth and demonstrate their practical use and utility in five biological applications with single-cell RNA-seq data for cancer and immune cells. CONCLUSIONS We introduce KPNNs as a method that combines the predictive power of deep learning with the interpretability of biological networks. While demonstrated here on single-cell sequencing data, this method is broadly relevant to other research areas where prior domain knowledge can be represented as networks.
Collapse
Affiliation(s)
- Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Hay J, Gilroy K, Huser C, Kilbey A, Mcdonald A, MacCallum A, Holroyd A, Cameron E, Neil JC. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. J Cell Biochem 2019; 120:18332-18345. [PMID: 31257681 PMCID: PMC6772115 DOI: 10.1002/jcb.29143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/14/2019] [Indexed: 11/12/2022]
Abstract
MYC and RUNX oncogenes each trigger p53‐mediated failsafe responses when overexpressed in vitro and collaborate with p53 deficiency in vivo. However, together they drive rapid onset lymphoma without mutational loss of p53. This phenomenon was investigated further by transcriptomic analysis of premalignant thymus from RUNX2/MYC transgenic mice. The distinctive contributions of MYC and RUNX to transcriptional control were illustrated by differential enrichment of canonical binding sites and gene ontology analyses. Pathway analysis revealed signatures of MYC, CD3, and CD28 regulation indicative of activation and proliferation, but also strong inhibition of cell death pathways. In silico analysis of discordantly expressed genes revealed Tnfsrf8/CD30, Cish, and Il13 among relevant targets for sustained proliferation and survival. Although TP53 mRNA and protein levels were upregulated, its downstream targets in growth suppression and apoptosis were largely unperturbed. Analysis of genes encoding p53 posttranslational modifiers showed significant upregulation of three genes, Smyd2, Set, and Prmt5. Overexpression of SMYD2 was validated in vivo but the functional analysis was constrained by in vitro loss of p53 in RUNX2/MYC lymphoma cell lines. However, an early role is suggested by the ability of SMYD2 to block senescence‐like growth arrest induced by RUNX overexpression in primary fibroblasts.
Collapse
Affiliation(s)
- Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Camille Huser
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alma Mcdonald
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Amanda MacCallum
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ailsa Holroyd
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
10
|
Olesin E, Nayar R, Saikumar-Lakshmi P, Berg LJ. The Transcription Factor Runx2 Is Required for Long-Term Persistence of Antiviral CD8 + Memory T Cells. Immunohorizons 2018; 2:251-261. [PMID: 30264035 PMCID: PMC6156005 DOI: 10.4049/immunohorizons.1800046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During acute lymphocytic choriomeningitis virus infection, pathogen-specific CD8+ cytotoxic T lymphocytes undergo clonal expansion leading to viral clearance. Following this, the majority of pathogen-specific CD8+ T cells undergo apoptosis, leaving a small number of memory CD8+ T cells that persist long-term and provide rapid protection upon secondary infection. Whereas much is known about the cytokines and transcription factors that regulate the early effector phase of the antiviral CD8+ T cell response, the factors regulating memory T cell homeostasis and survival are not well understood. In this article, we show that the Runt-related transcription factor Runx2 is important for long-term memory CD8+ T cell persistence following acute lymphocytic choriomeningitis virus-Armstrong infection in mice. Loss of Runx2 in T cells led to a reduction in KLRG1lo CD127hi memory precursor cell numbers with no effect on KLRG1hi CD127lo terminal effector cell populations. Runx2 expression levels were transcriptionally regulated by TCR signal strength via IRF4, TLR4/7, and selected cytokines. These data demonstrate a CD8+ T cell–intrinsic role for Runx2 in the long-term maintenance of antiviral memory CD8+ T cell populations.
Collapse
Affiliation(s)
- Elizabeth Olesin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Priya Saikumar-Lakshmi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
11
|
Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nat Immunol 2018; 19:279-290. [PMID: 29434353 DOI: 10.1038/s41590-018-0046-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 01/08/2018] [Indexed: 02/02/2023]
Abstract
Deletion of master regulators of the B cell lineage reprograms B cells into T cells. Here we found that the transcription factor Hoxb5, which is expressed in uncommitted hematopoietic progenitor cells but is not present in cells committed to the B cell or T cell lineage, was able to reprogram pro-pre-B cells into functional early T cell lineage progenitors. This reprogramming started in the bone marrow and was completed in the thymus and gave rise to T lymphocytes with transcriptomes, hierarchical differentiation, tissue distribution and immunological functions that closely resembled those of their natural counterparts. Hoxb5 repressed B cell 'master genes', activated regulators of T cells and regulated crucial chromatin modifiers in pro-pre-B cells and ultimately drove the B cell fate-to-T cell fate conversion. Our results provide a de novo paradigm for the generation of functional T cells through reprogramming in vivo.
Collapse
|
12
|
Addiction to Runx1 is partially attenuated by loss of p53 in the Eµ-Myc lymphoma model. Oncotarget 2018; 7:22973-87. [PMID: 27056890 PMCID: PMC5029604 DOI: 10.18632/oncotarget.8554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The Runx genes function as dominant oncogenes that collaborate potently with Myc or loss of p53 to induce lymphoma when over-expressed. Here we examined the requirement for basal Runx1 activity for tumor maintenance in the Eμ-Myc model of Burkitt's lymphoma. While normal Runx1fl/fl lymphoid cells permit mono-allelic deletion, primary Eμ-Myc lymphomas showed selection for retention of both alleles and attempts to enforce deletion in vivo led to compensatory expansion of p53null blasts retaining Runx1. Surprisingly, Runx1 could be excised completely from established Eμ-Myc lymphoma cell lines in vitro without obvious effects on cell phenotype. Established lines lacked functional p53, and were sensitive to death induced by introduction of a temperature-sensitive p53 (Val135) allele. Transcriptome analysis of Runx1-deleted cells revealed a gene signature associated with lymphoid proliferation, survival and differentiation, and included strong de-repression of recombination-activating (Rag) genes, an observation that was mirrored in a panel of human acute leukemias where RUNX1 and RAG1,2 mRNA expression were negatively correlated. Notably, despite their continued growth and tumorigenic potential, Runx1null lymphoma cells displayed impaired proliferation and markedly increased sensitivity to DNA damage and dexamethasone-induced apoptosis, validating Runx1 function as a potential therapeutic target in Myc-driven lymphomas regardless of their p53 status.
Collapse
|
13
|
Anderson G, Mackay N, Gilroy K, Hay J, Borland G, McDonald A, Bell M, Hassanudin SA, Cameron E, Neil JC, Kilbey A. RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. J Cell Biochem 2017; 119:2750-2762. [PMID: 29052866 PMCID: PMC5813226 DOI: 10.1002/jcb.26443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/27/2023]
Abstract
RUNX gene over‐expression inhibits growth of primary cells but transforms cells with tumor suppressor defects, consistent with reported associations with tumor progression. In contrast, chromosomal translocations involving RUNX1 are detectable in utero, suggesting an initiating role in leukemias. How do cells expressing RUNX1 fusion oncoproteins evade RUNX‐mediated growth suppression? Previous studies showed that the TEL‐RUNX1 fusion from t(12;21) B‐ALLs is unable to induce senescence‐like growth arrest (SLGA) in primary fibroblasts while potent activity is displayed by the RUNX1‐ETO fusion found in t(8;21) AMLs. We now show that SLGA potential is suppressed in TEL‐RUNX1 but reactivated by deletion of the TEL HLH domain or mutation of a key residue (K99R). Attenuation of SLGA activity is also a feature of RUNX1‐ETO9a, a minor product of t(8;21) translocations with increased leukemogenicity. Finally, while RUNX1‐ETO induces SLGA it also drives a potent senescence‐associated secretory phenotype (SASP), and promotes the immortalization of rare cells that escape SLGA. Moreover, the RUNX1‐ETO SASP is not strictly linked to growth arrest as it is largely suppressed by RUNX1 and partially activated by RUNX1‐ETO9a. These findings underline the heterogeneous nature of premature senescence and the multiple mechanisms by which this failsafe process is subverted in cells expressing RUNX1 oncoproteins.
Collapse
Affiliation(s)
- Gail Anderson
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nancy Mackay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Alma McDonald
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Margaret Bell
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Siti Ayuni Hassanudin
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Ampuja M, Kallioniemi A. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer 2017; 57:3-11. [DOI: 10.1002/gcc.22502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- M. Ampuja
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
- Fimlab Laboratories; Tampere Finland
| |
Collapse
|
15
|
Kaptan E, Sancar Bas S, Sancakli A, Aktas HG, Bayrak BB, Yanardag R, Bolkent S. Runt-Related Transcription Factor 2 (Runx2) Is Responsible for Galectin-3 Overexpression in Human Thyroid Carcinoma. J Cell Biochem 2017; 118:3911-3919. [PMID: 28390192 DOI: 10.1002/jcb.26043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Runx2 promotes metastatic ability of cancer cells by directly activating some of the mediators regarding malignancy. Galectin-3 (Gal-3) extensively expressed in normal and transformed cells and it is responsible for many cellular processes. In this study, we aimed to investigate whether there is any relationship between runx2 transcription factor and regulation of galectin-3 expression in different human thyroid carcinoma cell lines. To show effects of runx2 transcription factor on gal-3 expression, we developed runx2 knockdown model in the thyroid carcinoma cell lines; anaplastic 8505C and 8305C and, papillary TPC-1 and follicular FTC-133 by using siRNA transfection. We analyzed the protein expressions and mRNA levels of gal-3 and MMP2/9 in the runx2-silenced cell lines using Western blotting, qPCR, and fluorescent microscopy. Our results showed that mRNA expression levels of gal-3 and MMP2/9 were downregulated in runx2-silenced cell lines. In this investigation, we revealed that regulation of gal-3 expression was strongly correlated with runx2 transcription factor in human thyroid carcinoma. Considering the contribution of human gal-3 in collaboration with MMP2/9 to the malignant characters of many cancers, regulation of their expressions through runx2 seems like one of the key regulatory mechanism for malignant potential of human thyroid carcinoma. Accordingly, runx2 transcription factor inhibitors can be a potential target in order to prevent gal-3 mediated malignancy of human thyroid carcinoma. J. Cell. Biochem. 118: 3911-3919, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Engin Kaptan
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Serap Sancar Bas
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Aylin Sancakli
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Hatice Gumushan Aktas
- Art and Science Faculty, Department of Biology, Harran University, Sanliurfa, Osmanbey, 63300, Turkey
| | - Bertan Boran Bayrak
- Faculty of Engineering, Department of Chemistry, Istanbul University, Avcilar, Istanbul, 34320, Turkey
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University, Avcilar, Istanbul, 34320, Turkey
| | - Sehnaz Bolkent
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| |
Collapse
|
16
|
Neil JC, Gilroy K, Borland G, Hay J, Terry A, Kilbey A. The RUNX Genes as Conditional Oncogenes: Insights from Retroviral Targeting and Mouse Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:247-264. [PMID: 28299662 DOI: 10.1007/978-981-10-3233-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The observation that the Runx genes act as targets for transcriptional activation by retroviral insertion identified a new family of dominant oncogenes. However, it is now clear that Runx genes are 'conditional' oncogenes whose over-expression is growth inhibitory unless accompanied by another event such as concomitant over-expression of MYC or loss of p53 function. Remarkably, while the oncogenic activities of either MYC or RUNX over-expression are suppressed while p53 is intact, the combination of both neutralises p53 tumour suppression in vivo by as yet unknown mechanisms. Moreover, there is emerging evidence that endogenous, basal RUNX activity is important to maintain the viability and proliferation of MYC-driven lymphoma cells. There is also growing evidence that the human RUNX genes play a similar conditional oncogenic role and are selected for over-expression in end-stage cancers of multiple types. Paradoxically, reduced RUNX activity can also predispose to cell immortalisation and transformation, particularly by mutant Ras. These apparently conflicting observations may be reconciled in a stage-specific model of RUNX involvement in cancer. A question that has yet to be fully addressed is the extent to which the three Runx genes are functionally redundant in cancer promotion and suppression.
Collapse
Affiliation(s)
- James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anne Terry
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
17
|
Kanto S, Grynberg M, Kaneko Y, Fujita J, Satake M. A variant of Runx2 that differs from the bone isoform in its splicing is expressed in spermatogenic cells. PeerJ 2016; 4:e1862. [PMID: 27069802 PMCID: PMC4824880 DOI: 10.7717/peerj.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Members of the Runx gene family encode transcription factors that bind to DNA in a sequence-specific manner. Among the three Runx proteins, Runx2 comprises 607 amino acid (aa) residues, is expressed in bone, and plays crucial roles in osteoblast differentiation and bone development. We examined whether the Runx2 gene is also expressed in testes. Methods. Murine testes from 1-, 2-, 3-, 4-, and 10-week-old male mice of the C57BL/6J strain and W∕Wv strain were used throughout the study. Northern Blot Analyses were performed using extracts form the murine testes. Sequencing of cDNA clones and 5′-rapid amplification of cDNA ends were performed to determine the full length of the transcripts, which revealed that the testicular Runx2 comprises 106 aa residues coding novel protein. Generating an antiserum using the amino-terminal 15 aa of Runx2 (Met1 to Gly15) as an antigen, immunoblot analyses were performed to detect the predicted polypeptide of 106 aa residues with the initiating Met1. With the affinity-purified anti-Runx2 antibody, immunohistochemical analyses were performed to elucidate the localization of the protein. Furthermore, bioinformatic analyses were performed to predict the function of the protein. Results. A Runx2 transcript was detected in testes and was specifically expressed in germ cells. Determination of the transcript structure indicated that the testicular Runx2 is a splice isoform. The predicted testicular Runx2 polypeptide is composed of only 106 aa residues, lacks a Runt domain, and appears to be a basic protein with a predominantly alpha-helical conformation. Immunoblot analyses with an anti-Runx2 antibody revealed that Met1 in the deduced open reading frame of Runx2 is used as the initiation codon to express an 11 kDa protein. Furthermore, immunohistochemical analyses revealed that the Runx2 polypeptide was located in the nuclei, and was detected in spermatocytes at the stages of late pachytene, diplotene and second meiotic cells as well as in round spermatids. Bioinformatic analyses suggested that the testicular Runx2 is a histone-like protein. Discussion. A variant of Runx2 that differs from the bone isoform in its splicing is expressed in pachytene spermatocytes and round spermatids in testes, and encodes a histone-like, nuclear protein of 106 aa residues. Considering its nuclear localization and differentiation stage-dependent expression, Runx2 may function as a chromatin-remodeling factor during spermatogenesis. We thus conclude that a single Runx2 gene can encode two different types of nuclear proteins, a previously defined transcription factor in bone and cartilage and a short testicular variant that lacks a Runt domain.
Collapse
Affiliation(s)
- Satoru Kanto
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Urology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Program in Bioinformatics and Systems Biology, Stanford Burnham Medical Research Institute, La Jolla, CA, United States of America
| | - Yoshiyuki Kaneko
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University , Kyoto , Japan
| | - Jun Fujita
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University , Kyoto , Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University , Sendai, Miyagi , Japan
| |
Collapse
|
18
|
Abstract
RUNX proteins belong to a family of metazoan transcription factors that serve as master regulators of development. They are frequently deregulated in human cancers, indicating a prominent and, at times, paradoxical role in cancer pathogenesis. The contextual cues that direct RUNX function represent a fast-growing field in cancer research and could provide insights that are applicable to early cancer detection and treatment. This Review describes how RUNX proteins communicate with key signalling pathways during the multistep progression to malignancy; in particular, we highlight the emerging partnership of RUNX with p53 in cancer suppression.
Collapse
Affiliation(s)
- Yoshiaki Ito
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| | - Suk-Chul Bae
- 1] Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, 361763, South Korea. [2]
| | - Linda Shyue Huey Chuang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| |
Collapse
|
19
|
Hu G, Chen J. A genome-wide regulatory network identifies key transcription factors for memory CD8⁺ T-cell development. Nat Commun 2014; 4:2830. [PMID: 24335726 DOI: 10.1038/ncomms3830] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/28/2013] [Indexed: 01/02/2023] Open
Abstract
Memory CD8⁺ T-cell development is defined by the expression of a specific set of memory signature genes. Despite recent progress, many components of the transcriptional control of memory CD8⁺ T-cell development are still unknown. To identify transcription factors and their interactions in memory CD8⁺ T-cell development, we construct a genome-wide regulatory network and apply it to identify key transcription factors that regulate memory signature genes. Most of the known transcription factors having a role in memory CD8⁺ T-cell development are rediscovered and about a dozen new ones are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified, and Bach2 is further shown to promote both development and recall proliferation of memory CD8⁺ T cells through Prdm1 and Id3. Gene perturbation study identifies the interactions between the transcription factors, with Sox4 positioned as a hub. The identified transcription factors and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8⁺ T-cell development.
Collapse
Affiliation(s)
- Guangan Hu
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jianzhu Chen
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Huser CA, Gilroy KL, de Ridder J, Kilbey A, Borland G, Mackay N, Jenkins A, Bell M, Herzyk P, van der Weyden L, Adams DJ, Rust AG, Cameron E, Neil JC. Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis. PLoS Genet 2014; 10:e1004167. [PMID: 24586197 PMCID: PMC3937229 DOI: 10.1371/journal.pgen.1004167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a 'progression network' that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.
Collapse
Affiliation(s)
- Camille A. Huser
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn L. Gilroy
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
| | - Anna Kilbey
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Borland
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nancy Mackay
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alma Jenkins
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Bell
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- Glasgow Polyomics, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Alistair G. Rust
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ewan Cameron
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James C. Neil
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
21
|
Faienza MF, Ventura A, Piacente L, Ciccarelli M, Gigante M, Gesualdo L, Colucci S, Cavallo L, Grano M, Brunetti G. Osteoclastogenic potential of peripheral blood mononuclear cells in cleidocranial dysplasia. Int J Med Sci 2014; 11:356-64. [PMID: 24578613 PMCID: PMC3936030 DOI: 10.7150/ijms.7793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/10/2014] [Indexed: 12/29/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia characterized by hypoplastic or aplastic clavicles, dental abnormalities, and delayed closure of the cranial sutures. In addition, mid-face hypoplasia, short stature, skeletal anomalies and osteoporosis are common. We aimed to evaluate osteoclastogenesis in a child (4 years old), who presented with clinical signs of CCD and who have been diagnosed as affected by deletion of RUNX2, master gene in osteoblast differentiation, but also affecting T cell development and indirectly osteoclastogenesis. The results of this study may help to understand whether in this disease is present an alteration in the bone-resorptive cells, the osteoclasts (OCs). Unfractionated and T cell-depleted Peripheral Blood Mononuclear Cells (PBMCs) from patient were cultured in presence/absence of recombinant human M-CSF and RANKL. At the end of the culture period, OCs only developed following the addition of M-CSF and RANKL. Moreover, real-time PCR experiment showed that freshly isolated T cells expressed the osteoclastogenic cytokines (RANKL and TNFα) at very low level, as in controls. This is in accordance with results arising from flow cytometry experiments demonstrating an high percentage of circulating CD4(+)CD28(+) and CD4(+)CD27(+) T cells, not able to produce osteoclastogenic cytokines. Also RANKL, OPG and CTX serum levels in CCD patient are similar to controls, whereas QUS measurements showed an osteoporotic status (BTT-Z score -3.09) in the patient. In conclusions, our findings suggest that the heterozygous deletion of RUNX2 in this CCD patient did not alter the osteoclastogenic potential of PBMCs in vitro.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Annamaria Ventura
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Laura Piacente
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Maria Ciccarelli
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Margherita Gigante
- 2. Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- 2. Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Silvia Colucci
- 3. Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Luciano Cavallo
- 1. Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University of Bari, Bari, Italy
| | - Maria Grano
- 3. Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- 3. Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| |
Collapse
|
22
|
Trivino Pardo JC, Grimaldi S, Taranta M, Naldi I, Cinti C. Microwave electromagnetic field regulates gene expression in T-lymphoblastoid leukemia CCRF-CEM cell line exposed to 900 MHz. Electromagn Biol Med 2012; 31:1-18. [PMID: 22332889 DOI: 10.3109/15368378.2011.596251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electric, magnetic, and electromagnetic fields are ubiquitous in our society, and concerns have been expressed regarding possible adverse effects of these exposures. Research on Extremely Low-Frequency (ELF) magnetic fields has been performed for more than two decades, and the methodology and quality of studies have improved over time. Studies have consistently shown increased risk for childhood leukemia associated with ELF magnetic fields. There are still inadequate data for other outcomes. More recently, focus has shifted toward Radio Frequencies (RF) exposures from mobile telephony. There are no persuasive data suggesting a health risk, but this research field is still immature with regard to the quantity and quality of available data. This technology is constantly changing and there is a need for continued research on this issue. To investigate whether exposure to high-frequency electromagnetic fields (EMF) could induce adverse health effects, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of 900 MHz MW-EMF generated by a transverse electromagnetic (TEM) cell at short and long exposure times. We evaluated the effect of high-frequency EMF on gene expression and we identified functional pathways influenced by 900 MHz MW-EMF exposure.
Collapse
|
23
|
van der Deen M, Akech J, Lapointe D, Gupta S, Young DW, Montecino MA, Galindo M, Lian JB, Stein JL, Stein GS, van Wijnen AJ. Genomic promoter occupancy of runt-related transcription factor RUNX2 in Osteosarcoma cells identifies genes involved in cell adhesion and motility. J Biol Chem 2011; 287:4503-17. [PMID: 22158627 DOI: 10.1074/jbc.m111.287771] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runt-related transcription factors (RUNX1, RUNX2, and RUNX3) are key lineage-specific regulators of progenitor cell growth and differentiation but also function pathologically as cancer genes that contribute to tumorigenesis. RUNX2 attenuates growth and stimulates maturation of osteoblasts during bone formation but is also robustly expressed in a subset of osteosarcomas, as well as in metastatic breast and prostate tumors. To assess the biological function of RUNX2 in osteosarcoma cells, we examined human genomic promoter interactions for RUNX2 using chromatin immunoprecipitation (ChIP)-microarray analysis in SAOS-2 cells. Promoter binding of both RUNX2 and RNA polymerase II was compared with gene expression profiles of cells in which RUNX2 was depleted by RNA interference. Many RUNX2-bound loci (1550 of 2339 total) exhibit promoter occupancy by RNA polymerase II and contain the RUNX consensus motif 5'-((T/A/C)G(T/A/C)GG(T/G). Gene ontology analysis indicates that RUNX2 controls components of multiple signaling pathways (e.g. WNT, TGFβ, TNFα, and interleukins), as well as genes linked to cell motility and adhesion (e.g. the focal adhesion-related genes FAK/PTK2 and TLN1). Our results reveal that siRNA depletion of RUNX2, PTK2, or TLN1 diminishes motility of U2OS osteosarcoma cells. Thus, RUNX2 binding to diverse gene loci may support the biological properties of osteosarcoma cells.
Collapse
Affiliation(s)
- Margaretha van der Deen
- Dept. of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655-0106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nagel S, Venturini L, Przybylski GK, Grabarczyk P, Schneider B, Meyer C, Kaufmann M, Schmidt CA, Scherr M, Drexler HG, Macleod RAF. Activation of Paired-homeobox gene PITX1 by del(5)(q31) in T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2011; 52:1348-59. [PMID: 21425961 DOI: 10.3109/10428194.2011.566391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In T-cell acute lymphoblasic leukemia (T-ALL), neoplastic chromosomal rearrangements are known to deregulate members of the homeobox gene families NKL and HOXA. Here, analysis of T-ALL cell lines and primary cells identified aberrant expression of a third homeobox gene group, the Paired (PRD) class. LOUCY cells revealed chromosomal deletion at 5q31, which targets the downstream regulatory region of the PRD homeobox gene PITX1, removing a STAT1 binding site. STAT1 mediates repressive interleukin 2 (IL2)-STAT1 signaling, implicating IL2 pathway avoidance as a possible activation mechanism. Among primary T-ALL samples, 2/22 (9%) aberrantly expressed PITX1, highlighting the importance of this gene. Forced expression of PITX1 in JURKAT cells and subsequent target gene analysis prompted deregulation of genes involved in T-cell development including HES1, JUN, NKX3-1, RUNX1, RUNX2, and TRIB2. Taken together, our data show leukemic activation of PITX1, a novice PRD-class homeobox gene in a subset of early-staged T-ALL, which may promote leukemogenesis by inhibiting T-cell development.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The helper versus cytotoxic-lineage choice of CD4(+)CD8(+) DP thymocytes correlates with MHC restriction of their T cell receptors and the termination of either CD8 or CD4 coreceptor expression. It has been hypothesized that transcription factors regulating the expression of the Cd4/Cd8 coreceptor genes must play a role in regulating the lineage decision of DP thymocytes. Indeed, progress made during the past decade led to the identification of several transcription factors that regulate CD4/CD8 expression that are as well important regulators of helper/cytotoxic cell fate choice. These studies provided insight into the molecular link between the regulation of coreceptor expression and lineage decision. However, studies initiated by the identification of ThPOK, a central transcription factor for helper T cell development, have offered another perspective on the cross-regulation between these two processes. Here, we review advances in our understanding of regulatory circuits composed of transcription factors and their link to epigenetic mechanisms, which play essential roles in specifying and sealing cell lineage identity during the CD4/CD8 commitment process of DP thymocytes.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, Research Center for Allergy and Immunology, RIKEN, Suehiro-cho, Turumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
26
|
Runx2 in normal tissues and cancer cells: A developing story. Blood Cells Mol Dis 2010; 45:117-23. [PMID: 20580290 DOI: 10.1016/j.bcmd.2010.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/22/2022]
Abstract
The Runx transcription factors are essential for mammalian development, most notably in the haematopoietic and osteogenic lineages. Runx1 and its binding partner, CBFbeta, are frequently targeted in acute leukaemia but evidence is accumulating that all three Runx genes may have a role to play in a wider range of cancers, either as tumour promoters or tumour suppressors. Whilst Runx2 is renowned for its role as a master regulator of bone development we discuss here its expression pattern and putative functions beyond this lineage. Furthermore, we review the evidence that RUNX2 promotes neoplastic development in haematopoietic lineages and in advanced mammary and prostate cancer.
Collapse
|
27
|
Nagel S, Venturini L, Marquez VE, Meyer C, Kaufmann M, Scherr M, MacLeod RA, Drexler HG. Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating ID2 in NK/T-cell lines. Mol Cancer 2010; 9:151. [PMID: 20565746 PMCID: PMC2894765 DOI: 10.1186/1476-4598-9-151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NK- and T-cells are closely related lymphocytes, originating from the same early progenitor cells during hematopoiesis. In these differentiation processes deregulation of developmental genes may contribute to leukemogenesis. Here, we compared expression profiles of NK- and T-cell lines for identification of aberrantly expressed genes in T-cell acute lymphoblastic leukemia (T-ALL) which physiologically regulate the differentiation program of the NK-cell lineage. RESULTS This analysis showed high expression levels of HOXA9, HOXA10 and ID2 in NK-cell lines in addition to T-cell line LOUCY, suggesting leukemic deregulation therein. Overexpression experiments, chromatin immuno-precipitation and promoter analysis demonstrated that HOXA9 and HOXA10 directly activated expression of ID2. Concomitantly elevated expression levels of HOXA9 and HOXA10 together with ID2 in cell lines containing MLL translocations confirmed this form of regulation in both ALL and acute myeloid leukemia. Overexpression of HOXA9, HOXA10 or ID2 resulted in repressed expression of apoptosis factor BIM. Furthermore, profiling data of genes coding for chromatin regulators of homeobox genes, including components of polycomb repressor complex 2 (PRC2), indicated lacking expression of EZH2 in LOUCY and exclusive expression of HOP in NK-cell lines. Subsequent treatment of T-cell lines JURKAT and LOUCY with DZNep, an inhibitor of EZH2/PRC2, resulted in elevated and unchanged HOXA9/10 expression levels, respectively. Moreover, siRNA-mediated knockdown of EZH2 in JURKAT enhanced HOXA10 expression, confirming HOXA10-repression by EZH2. Additionally, profiling data and overexpression analysis indicated that reduced expression of E2F cofactor TFDP1 contributed to the lack of EZH2 in LOUCY. Forced expression of HOP in JURKAT cells resulted in reduced HOXA10 and ID2 expression levels, suggesting enhancement of PRC2 repression. CONCLUSIONS Our results show that major differentiation factors of the NK-cell lineage, including HOXA9, HOXA10 and ID2, were (de)regulated via PRC2 which therefore contributes to T-cell leukemogenesis.
Collapse
Affiliation(s)
- Stefan Nagel
- Dept. of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wong WF, Nakazato M, Watanabe T, Kohu K, Ogata T, Yoshida N, Sotomaru Y, Ito M, Araki K, Telfer J, Fukumoto M, Suzuki D, Sato T, Hozumi K, Habu S, Satake M. Over-expression of Runx1 transcription factor impairs the development of thymocytes from the double-negative to double-positive stages. Immunology 2010; 130:243-53. [PMID: 20102410 DOI: 10.1111/j.1365-2567.2009.03230.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Runx1 transcription factor is highly expressed at a CD4/CD8-double-negative (DN) stage of thymocyte development but is down-regulated when cells proceed to the double-positive (DP) stage. In the present study, we examined whether the down-regulation of Runx1 is necessary for thymocyte differentiation from the DN to DP stage. When Runx1 was artificially over-expressed in thymocytes by Lck-driven Cre, the DN3 population was unaffected, as exemplified by proper pre-T-cell receptor expression, whereas the DN4 population was perturbed as shown by the decrease in the CD27(hi) sub-fraction. In parallel, the growth rate of DN4 cells was reduced by half, as measured by bromodeoxyuridine incorporation. These events impaired the transition of DN4 cells to the DP stage, resulting in the drastic reduction of the number of DP thymocytes. The Runx1 gene has two promoters, a proximal and a distal promoter; and, in thymocytes, endogenous Runx1 was mainly transcribed from the distal promoter. Interestingly, only distal, but not proximal, Runx1 over-expression exhibited an inhibitory effect on thymocyte differentiation, suggesting that the distal Runx1 protein may fulfil a unique function. Our collective results indicate that production of the distal Runx1 protein must be adequately down-regulated for thymocytes to transit from the DN to the DP stage, a critical step in the massive expansion of the T-cell lineage.
Collapse
Affiliation(s)
- Won F Wong
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuo YH, Zaidi SK, Gornostaeva S, Komori T, Stein GS, Castilla LH. Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood 2009; 113:3323-32. [PMID: 19179305 PMCID: PMC2665897 DOI: 10.1182/blood-2008-06-162248] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 01/03/2009] [Indexed: 12/29/2022] Open
Abstract
The core-binding factor (CBF) is a master regulator of developmental and differentiation programs, and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study, we show that sustained expression of Runx2 modulates Cbfbeta-smooth muscle myosin heavy chain (SMMHC)-mediated myeloid leukemia development. Expression of Runx2 is high in the hematopoietic stem cell compartment and decreases during myeloid differentiation. Sustained Runx2 expression hinders myeloid progenitor differentiation capacity and represses expression of CBF targets Csf1R, Mpo, Cebpd, the cell cycle inhibitor Cdkn1a, and myeloid markers Cebpa and Gfi1. In addition, full-length Runx2 cooperates with Cbfbeta-SMMHC in leukemia development in transplantation assays. Furthermore, we show that the nuclear matrix-targeting signal and DNA-binding runt-homology domain of Runx2 are essential for its leukemogenic activity. Conversely, Runx2 haplo-insufficiency delays the onset and reduces the incidence of acute myeloid leukemia. Together, these results indicate that Runx2 is expressed in the stem cell compartment, interferes with differentiation and represses CBF targets in the myeloid compartment, and modulates the leukemogenic function of Cbfbeta-SMMHC in mouse leukemia.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/physiology
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/physiology
- Down-Regulation/genetics
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/physiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Mice
- Mice, Transgenic
- Models, Biological
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Survival Analysis
Collapse
Affiliation(s)
- Ya-Huei Kuo
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
30
|
Blyth K, Slater N, Hanlon L, Bell M, Mackay N, Stewart M, Neil JC, Cameron ER. Runx1 promotes B-cell survival and lymphoma development. Blood Cells Mol Dis 2009; 43:12-9. [PMID: 19269865 DOI: 10.1016/j.bcmd.2009.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
Runx1 is essential for the homeostatic control of normal hematopoiesis and is required for lymphoid development. Translocations or point mutations that result in RUNX1 loss or disrupted function predispose to leukemia but data derived from model systems suggests that Runx genes can also be pro-oncogenic. Here we investigate the effects of enforced Runx1 expression in lymphoid lineages both in vivo and in vitro and show that transgene expression enhanced cell survival in the thymus and bone marrow but strongly inhibited the expansion of hematopoietic and B cell progenitors in vitro. Despite this, modestly enhanced levels of Runx1 accelerated Myc-induced lymphomagenesis in both the B cell and T cell lineages. Together these data provide formal proof that wild type Runx1 can promote oncogenesis in lymphoid tissues and that, in addition to loss of function, gain of function may have an aetiological role in leukemia.
Collapse
Affiliation(s)
- Karen Blyth
- Faculty of Veterinary Medicine, Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Teplyuk NM, Galindo M, Teplyuk VI, Pratap J, Young DW, Lapointe D, Javed A, Stein JL, Lian JB, Stein GS, van Wijnen AJ. Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors. J Biol Chem 2008; 283:27585-27597. [PMID: 18625716 PMCID: PMC2562077 DOI: 10.1074/jbc.m802453200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/11/2008] [Indexed: 01/28/2023] Open
Abstract
Runt-related transcription factor 2 (Runx2) controls lineage commitment, proliferation, and anabolic functions of osteoblasts as the subnuclear effector of multiple signaling axes (e.g. transforming growth factor-beta/BMP-SMAD, SRC/YES-YAP, and GROUCHO/TLE). Runx2 levels oscillate during the osteoblast cell cycle with maximal levels in G(1). Here we examined what functions and target genes of Runx2 control osteoblast growth. Forced expression of wild type Runx2 suppresses growth of Runx2(-/-) osteoprogenitors. Point mutants defective for binding to WW domain or SMAD proteins or the nuclear matrix retain this growth regulatory ability. Hence, key signaling pathways are dispensable for growth control by Runx2. However, mutants defective for DNA binding or C-terminal gene repression/activation functions do not block proliferation. Target gene analysis by Affymetrix expression profiling shows that the C terminus of Runx2 regulates genes involved in G protein-coupled receptor signaling (e.g. Rgs2, Rgs4, Rgs5, Rgs16, Gpr23, Gpr30, Gpr54, Gpr64, and Gna13). We further examined the function of two genes linked to cAMP signaling as follows: Gpr30 that is stimulated and Rgs2 that is down-regulated by Runx2. RNA interference of Gpr30 and forced expression of Rgs2 in each case inhibit osteoblast proliferation. Notwithstanding its growth-suppressive potential, our results surprisingly indicate that Runx2 may sensitize cAMP-related G protein-coupled receptor signaling by activating Gpr30 and repressing Rgs2 gene expression in osteoblasts to increase responsiveness to mitogenic signals.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - Mario Galindo
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - Viktor I Teplyuk
- Bioinformatics Core, Program in Molecular Medicine, Worcester, Massachusetts 01655
| | - Jitesh Pratap
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - Daniel W Young
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - David Lapointe
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655; Information Services, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Amjad Javed
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - Janet L Stein
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - Jane B Lian
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - Gary S Stein
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655
| | - Andre J van Wijnen
- Department of Cell Biology and Cancer Center, Worcester, Massachusetts 01655.
| |
Collapse
|
33
|
Vladimirova V, Waha A, Lückerath K, Pesheva P, Probstmeier R. Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 2008; 86:2450-61. [PMID: 18438928 DOI: 10.1002/jnr.21686] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Runx2 is a member of the Runx family of transcription factors (Runx1-3) with a restricted expression pattern. It has so far been detected predominantly in skeletal tissues where, inter alia, it regulates the expression of the beta-galactoside-specific lectin galectin-3. Here we show that, in contrast to Runx3, Runx1 and Runx2 are expressed in a variety of human glioma cells. Runx2 expression pattern in these cells correlated completely with that of galectin-3, but not with that of other galectins. A similar correlation in the expression pattern of galectin-3 and Runx2 transcripts was detected in distinct types of 70 primary neural tumors, such as glioblastoma multiforme, but not in others, such as gangliocytomas. In glioma cells, Runx2 is directly involved in the regulation of galectin-3 expression, as shown by RNAi and transcription factor binding assays demonstrating that Runx2 interacts with a Runx2-binding motif present in the human galectin-3 promoter. Knockdown of Runx2 was thus accompanied by a reduction of both galectin-3 mRNA and protein levels by at least 50%, dependent on the glial tumor cell line tested. Reverse transcriptase-polymerase chain reaction analyses, aimed at finding other potential target genes of Runx2 in glial tumor cells, revealed the presence of bone sialoprotein, osteocalcin, osteopontin, and osteoprotegerin. However, their expression patterns only partially overlap with that of Runx2. These data suggest a functional contribution of Runx-2-regulated galectin-3 expression to glial tumor malignancy.
Collapse
Affiliation(s)
- Valentina Vladimirova
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | |
Collapse
|
34
|
Zhou L, Wang H, Zhong X, Jin Y, Mi QS, Sharma A, McIndoe RA, Garge N, Podolsky R, She JX. The IL-10 and IFN-gamma pathways are essential to the potent immunosuppressive activity of cultured CD8+ NKT-like cells. Genome Biol 2008; 9:R119. [PMID: 18664279 PMCID: PMC2530876 DOI: 10.1186/gb-2008-9-7-r119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 07/29/2008] [Indexed: 01/30/2023] Open
Abstract
Global gene expression profiling of in vitro cultured CD8+ T cells that express natural killer cell markers revealed differential expression of about 3,000 genes between these cells and naïve CD8+ T cells. Background CD8+ NKT-like cells are naturally occurring but rare T cells that express both T cell and natural killer cell markers. These cells may play key roles in establishing tolerance to self-antigens; however, their mechanism of action and molecular profiles are poorly characterized due to their low frequencies. We developed an efficient in vitro protocol to produce CD8+ T cells that express natural killer cell markers (CD8+ NKT-like cells) and extensively characterized their functional and molecular phenotypes using a variety of techniques. Results Large numbers of CD8+ NKT-like cells were obtained through culture of naïve CD8+ T cells using anti-CD3/anti-CD28-coated beads and high dose IL-2. These cells possess potent activity in suppressing the proliferation of naïve responder T cells. Gene expression profiling suggests that the cultured CD8+ NKT-like cells and the naïve CD8+ T cells differ by more than 2-fold for about 3,000 genes, among which 314 are upregulated by more than 5-fold and 113 are upregulated by more than 10-fold in the CD8+ NKT-like cells. A large proportion of the highly upregulated genes are soluble factors or surface markers that have previously been implicated in immune suppression or are likely to possess immunosuppressive properties. Many of these genes are regulated by two key cytokines, IL-10 and IFN-γ. The immunosuppressive activities of cells cultured from IL-10-/- and IFN-γ-/- mice are reduced by about 70% and about 50%, respectively, compared to wild-type mice. Conclusion Immunosuppressive CD8+ NKT-like cells can be efficiently produced and their immunosuppressive activity is related to many surface and soluble molecules regulated by IL-10 and IFN-γ.
Collapse
Affiliation(s)
- Li Zhou
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 15th Street, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wotton S, Terry A, Kilbey A, Jenkins A, Herzyk P, Cameron E, Neil JC. Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival. Oncogene 2008; 27:5856-66. [PMID: 18560354 DOI: 10.1038/onc.2008.195] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Runx genes are important in development and cancer, where they can act either as oncogenes or tumour suppressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias toward genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins, reflecting the marked effects of Runx on cell adhesion. Furthermore, in silico prediction of resistance to glucocorticoid growth inhibition was confirmed in fibroblasts and lymphoid cells expressing ectopic Runx. The effects of fibroblast expression of common RUNX1 fusion oncoproteins (RUNX1-ETO, TEL-RUNX1 and CBFB-MYH11) were also tested. Although two direct Runx activation target genes were repressed (Ncam1 and Rgc32), the fusion proteins appeared to disrupt the regulation of downregulated targets (Cebpd, Id2 and Rgs2) rather than impose constitutive repression. These results elucidate the oncogenic potential of the Runx family and reveal novel targets for therapeutic inhibition.
Collapse
Affiliation(s)
- S Wotton
- Faculty of Veterinary Medicine, Molecular Oncology Laboratory,Institute of Comparative Medicine, University of Glasgow, Glasgow, Scotland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tpl2 and ERK transduce antiproliferative T cell receptor signals and inhibit transformation of chronically stimulated T cells. Proc Natl Acad Sci U S A 2008; 105:2987-92. [PMID: 18287049 DOI: 10.1073/pnas.0708381104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein kinase encoded by the Tpl2 protooncogene plays an obligatory role in the transduction of Toll-like receptor and death receptor signals in macrophages, B cells, mouse embryo fibroblasts, and epithelial cells in culture and promotes inflammatory responses in animals. To address its role in T cell activation, we crossed the T cell receptor (TCR) transgene 2C, which recognizes class I MHC presented peptides, into the Tpl2(-/-) genetic background. Surprisingly, the TCR2C(tg/tg)/Tpl2(-/-) mice developed T cell lymphomas with a latency of 4-6 months. The tumor cells were consistently TCR2C(+)CD8(+)CD4(-), suggesting that they were derived either from chronically stimulated mature T cells or from immature single positive (ISP) cells. Further studies showed that the population of CD8(+) ISP cells was not expanded in the thymus of TCR2C(tg/tg)/Tpl2(-/-) mice, making the latter hypothesis unlikely. Mature peripheral T cells of Tpl2(-/-) mice were defective in ERK activation and exhibited enhanced proliferation after TCR stimulation. The same cells were defective in the induction of CTLA4, a negative regulator of the T cell response, which is induced by TCR signals via ERK. These findings suggest that Tpl2 functions normally in a feedback loop that switches off the T cell response to TCR stimulation. As a result, Tpl2, a potent oncogene, functions as a tumor suppressor gene in chronically stimulated T cells.
Collapse
|
37
|
Stewart M, Mackay N, Hanlon L, Blyth K, Scobie L, Cameron E, Neil JC. Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Res 2007; 67:5126-33. [PMID: 17545590 PMCID: PMC2562448 DOI: 10.1158/0008-5472.can-07-0433] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we have exploited the power of insertional mutagenesis to elucidate tumor progression pathways in mice carrying two oncogenes (MYC/Runx2) that collaborate to drive early lymphoma development. Neonatal infection of these mice with Moloney murine leukemia virus resulted in accelerated tumor onset with associated increases in clonal complexity and lymphoid dissemination. Large-scale analysis of retroviral integration sites in these tumors revealed a profound bias towards a narrow range of target genes, including Jdp2 (Jundm2), D cyclin, and Pim family genes. Remarkably, direct PCR analysis of integration hotspots revealed that every progressing tumor consisted of multiple clones harboring hits at these loci, giving access to large numbers of independent insertion events and uncovering the contrasting mutagenic mechanisms operating at each target gene. Direct PCR analysis showed that high-frequency targeting occurs only in the tumor environment in vivo and is specific for the progression gene set. These results indicate that early lymphomas in MYC/Runx2 mice remain dependent on exogenous growth signals, and that progression can be achieved by constitutive activation of pathways converging on a cell cycle checkpoint that acts as the major rate-limiting step for lymphoma outgrowth.
Collapse
Affiliation(s)
- Monica Stewart
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Woolf E, Brenner O, Goldenberg D, Levanon D, Groner Y. Runx3 regulates dendritic epidermal T cell development. Dev Biol 2006; 303:703-14. [PMID: 17222403 DOI: 10.1016/j.ydbio.2006.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 11/22/2006] [Accepted: 12/05/2006] [Indexed: 01/19/2023]
Abstract
The Runx3 transcription factor regulates development of T cells during thymopoiesis and TrkC sensory neurons during dorsal root ganglia neurogenesis. It also mediates transforming growth factor-beta signaling in dendritic cells and is essential for development of skin Langerhans cells. Here, we report that Runx3 is involved in the development of skin dendritic epidermal T cells (DETCs); an important component of tissue immunoregulation. In developing DETCs, Runx3 regulates expression of the alphaEbeta7 integrin CD103, known to affect migration and epithelial retention of DETCs. It also regulates expression of IL-2 receptor beta (IL-2Rbeta) that mediates cell proliferation in response to IL-2 or IL-15. In the absence of Runx3, the reduction in CD103 and IL-2Rbeta expression on Runx3(-/-) DETC precursors resulted in impaired cell proliferation and maturation, leading to complete lack of skin DETCs in Runx3(-/-) mice. The data demonstrate the requirement of Runx3 for DETCs development and underscore the importance of CD103 and IL-2Rbeta in this process. Of note, while Runx3(-/-) mice lack both DETCs and Langerhans cells, the two most important components of skin immune surveillance, the mice did not develop skin lesions under pathogen-free (SPF) conditions.
Collapse
Affiliation(s)
- Eilon Woolf
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
39
|
Dijkman R, van Doorn R, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood 2006; 109:1720-7. [PMID: 17068154 DOI: 10.1182/blood-2006-04-018143] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AbstractCD4+CD56+ hematodermic neoplasm (CD4+CD56+HN) is an aggressive hematopoietic malignancy with distinct clinicopathologic and immunophenotypic features that commonly involve the skin, bone marrow, and blood. Differentiation from cutaneous myelomonocytic leukemia (c-AML) may be exceedingly difficult and requires extensive phenotyping. The molecular mechanisms involved in the development of CD4+CD56+HN are largely unresolved. Moreover, recurrent chromosomal alterations have not yet been precisely defined in CD4+CD56+HN and c-AML. In the present study an integrated genomic analysis using expression profiling and array-based comparative genomic hybridization (CGH) was performed on lesional skin biopsy samples of patients with CD4+CD56+HN and c-AML. Our results demonstrate that CD4+CD56+HN and c-AML show distinct gene-expression profiles and distinct patterns of chromosomal aberrations. CD4+CD56+HN is characterized by recurrent deletion of regions on chromosome 4 (4q34), chromosome 9 (9p13-p11 and 9q12-q34), and chromosome 13 (13q12-q31) that contain several tumor suppressor genes with diminished expression (Rb1, LATS2). Elevated expression of the oncogenes HES6, RUNX2, and FLT3 was found but was not associated with genomic amplification. We noted high expression of various plasmacytoid dendritic-cell (pDC)–related genes, pointing to the cell of origin of this malignancy.
Collapse
Affiliation(s)
- Remco Dijkman
- Department of Dermatology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Dose M, Khan I, Guo Z, Kovalovsky D, Krueger A, von Boehmer H, Khazaie K, Gounari F. c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood 2006; 108:2669-77. [PMID: 16788099 PMCID: PMC1895574 DOI: 10.1182/blood-2006-02-005900] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive and cell-autonomous signals emanating from the pre-T-cell receptor (pre-TCR) promote proliferation, survival and differentiation of immature thymocytes. We show here that induction of pre-TCR signaling resulted in rapid elevation of c-Myc protein levels. Cre-mediated thymocyte-specific ablation of c-Myc in CD25(+)CD44(-) thymocytes reduced proliferation and cell growth at the pre-TCR checkpoint, resulting in thymic hypocellularity and a severe reduction in CD4(+)CD8(+) thymocytes. In contrast, c-Myc deficiency did not inhibit pre-TCR-mediated differentiation or survival. Myc(-/-) double-negative (DN) 3 cells progressed to the double-positive (DP) stage and up-regulated TCRalphabeta surface expression in the absence of cell proliferation, in vivo as well as in vitro. These observations indicate that distinct signals downstream of the pre-TCR are responsible for proliferation versus differentiation, and demonstrate that c-Myc is only required for pre-TCR-induced proliferation but is dispensable for developmental progression from the DN to the DP stage.
Collapse
Affiliation(s)
- Marei Dose
- Tufts-New England Medical Center, 750 Washington St, Tufts-NEMC no. 5602, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Aho TLT, Sandholm J, Peltola KJ, Ito Y, Koskinen PJ. Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity. BMC Cell Biol 2006; 7:21. [PMID: 16684349 PMCID: PMC1473194 DOI: 10.1186/1471-2121-7-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 05/09/2006] [Indexed: 12/27/2022] Open
Abstract
Background The pim family genes encode oncogenic serine/threonine kinases which in hematopoietic cells have been implicated in cytokine-dependent signaling as well as in lymphomagenesis, especially in cooperation with other oncogenes such as myc, bcl-2 or Runx family genes. The Runx genes encode α-subunits of heterodimeric transcription factors which regulate cell proliferation and differentiation in various tissues during development and which can become leukemogenic upon aberrant expression. Results Here we have identified novel protein-protein interactions between the Pim-1 kinase and the RUNX family transcription factors. Using the yeast two-hybrid system, we were able to show that the C-terminal part of human RUNX3 associates with Pim-1. This result was confirmed in cell culture, where full-length murine Runx1 and Runx3 both coprecipitated and colocalized with Pim-1. Furthermore, catalytically active Pim-1 kinase was able to phosphorylate Runx1 and Runx3 proteins and enhance the transactivation activity of Runx1 in a dose-dependent fashion. Conclusion Altogether, our results suggest that mammalian RUNX family transcription factors are novel binding partners and substrates for the Pim-1 kinase, which may be able to regulate their activities during normal hematopoiesis as well as in leukemogenesis.
Collapse
Affiliation(s)
- Teija LT Aho
- Turku Centre for Biotechnology, University of Turku/Åbo Akademi University, Tykistökatu 6 B, 20520 Turku, Finland
- Turku Graduate School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland
| | - Jouko Sandholm
- Turku Centre for Biotechnology, University of Turku/Åbo Akademi University, Tykistökatu 6 B, 20520 Turku, Finland
| | - Katriina J Peltola
- Turku Centre for Biotechnology, University of Turku/Åbo Akademi University, Tykistökatu 6 B, 20520 Turku, Finland
- Turku Graduate School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland
| | - Yoshiaki Ito
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Päivi J Koskinen
- Turku Centre for Biotechnology, University of Turku/Åbo Akademi University, Tykistökatu 6 B, 20520 Turku, Finland
| |
Collapse
|
42
|
Blyth K, Vaillant F, Hanlon L, Mackay N, Bell M, Jenkins A, Neil JC, Cameron ER. Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res 2006; 66:2195-201. [PMID: 16489021 DOI: 10.1158/0008-5472.can-05-3558] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the Runx and MYC families have been implicated as collaborating oncogenes. The mechanism of this potent collaboration is elucidated in this study of Runx2/MYC mice. As shown previously, ectopic expression of Runx2 in the thymus leads to a preneoplastic state defined by an accumulation of cells with an immature phenotype and a low proliferative rate. We now show that c-MYC overexpression is sufficient to rescue proliferation and to release the differentiation block imposed by Runx2. Analysis of Runx2-expressing lymphomas reveals a consistently low rate of apoptosis, in contrast to lymphomas of MYC mice which are often highly apoptotic. The low apoptosis phenotype is dominant in Runx2/MYC tumors, indicating that Runx2 confers a potent survival advantage to MYC-expressing tumor cells. The role of the p53 pathway in Runx2/MYC tumors was explored on a p53 heterozygote background. Surprisingly, functional p53 was retained in vivo, even after transplantation, whereas explanted tumor cells displayed rapid allele loss in vitro. Our results show that Runx2 and MYC overcome distinct "fail-safe" responses and that their selection as collaborating genes is due to their ability to neutralize each other's negative growth effect. Furthermore, the Runx2/MYC combination overcomes the requirement for genetic inactivation of the p53 pathway in vivo.
Collapse
Affiliation(s)
- Karen Blyth
- Molecular Oncology Laboratory, Institute of Comparative Medicine, Faculty of Veterinary, Medicine, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A. Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem 2006; 281:7118-28. [PMID: 16407259 DOI: 10.1074/jbc.m508162200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RUNX2 is a member of the runt family of DNA-binding transcription factors. RUNX2 mediates endothelial cell migration and invasion during tumor angiogenesis and is expressed in metastatic breast and prostate tumors. Our published studies showed that RUNX2 DNA-binding activity is low during growth arrest, but elevated in proliferating endothelial cells. To investigate its role in cell proliferation and cell cycle regulation, RUNX2 was depleted in human bone marrow endothelial cells using RNA interference. Specific RUNX2 depletion inhibited DNA-binding activity as measured by electrophoretic mobility shift assay resulting in inhibition of cell proliferation. Cells were synchronized at the G(1)/S boundary with excess thymidine or in mitosis (M phase) with nocodazole. Endogenous or ectopic RUNX2 activity was maximal at late G(2) and during M phase. Inhibition of RUNX2 expression by RNA interference delayed entry into and exit out of the G(2)/M phases of the cell cycle. RUNX2 was coimmunoprecipitated with cyclin B1 in mitotic cells, which further supported a role for RUNX2 in cell cycle progression. Moreover, in vitro kinase assays using recombinant cdc2 kinase showed that RUNX2 was phosphorylated at Ser(451). The cdc2 inhibitor roscovitine dose dependently inhibited in vivo RUNX2 DNA-binding activity during mitosis and the RUNX2 mutant S451A exhibited lower DNA-binding activity and reduced stimulation of anchorage-independent growth relative to wild type RUNX2. These results suggest for the first time that RUNX2 phosphorylation by cdc2 may facilitate cell cycle progression possibly through regulation of G(2) and M phases, thus promoting endothelial cell proliferation required for tumor angiogenesis.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The RUNX genes have come to prominence recently because of their roles as essential regulators of cell fate in development and their paradoxical effects in cancer, in which they can function either as tumour-suppressor genes or dominant oncogenes according to context. How can this family of transcription factors have such an ambiguous role in cancer? How and where do these genes impinge on the pathways that regulate growth control and differentiation? And what is the evidence for a wider role for the RUNX genes in non-haematopoietic cancers?
Collapse
Affiliation(s)
- Karen Blyth
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, G61 1QH, UK
| | | | | |
Collapse
|
45
|
Flores MV, Tsang VWK, Hu W, Kalev-Zylinska M, Postlethwait J, Crosier P, Crosier K, Fisher S. Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expr Patterns 2005; 4:573-81. [PMID: 15261836 DOI: 10.1016/j.modgep.2004.01.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 11/18/2022]
Abstract
The differentiation of cells in the vertebrate skeleton is controlled by a precise genetic program. One crucial regulatory gene in the pathway encodes the transcription factor Runx2, which in mouse is required for differentiation of all osteoblasts and the proper development of a subset of hypertrophic chondrocytes. To explore the differentiation of skeletogenic cells in the model organism zebrafish (Danio rerio), we have identified two orthologues of the mammalian gene, runx2a and runx2b. Both genes share sequence homology and gene structure with the mammalian genes, and map to regions of the zebrafish genome displaying conserved synteny with the region where the human gene is localized. While both genes are expressed in developing skeletal elements, they show evidence of partial divergence in expression pattern, possibly explaining why both orthologues have been retained through teleost evolution.
Collapse
Affiliation(s)
- Maria Vega Flores
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
47
|
Sørensen KD, Quintanilla-Martinez L, Kunder S, Schmidt J, Pedersen FS. Mutation of all Runx (AML1/core) sites in the enhancer of T-lymphomagenic SL3-3 murine leukemia virus unmasks a significant potential for myeloid leukemia induction and favors enhancer evolution toward induction of other disease patterns. J Virol 2004; 78:13216-31. [PMID: 15542674 PMCID: PMC524987 DOI: 10.1128/jvi.78.23.13216-13231.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SL3-3 murine leukemia virus is a potent inducer of T-lymphomas in mice. Using inbred NMRI mice, it was previously reported that a mutant of SL3-3 with all enhancer Runx (AML1/core) sites disrupted by 3-bp mutations (SL3-3dm) induces predominantly non-T-cell tumors with severely extended latency (S. Ethelberg, J. Lovmand, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:7273-7280, 1997). By use of three-color flow cytometry and molecular and histopathological analyses, we have now performed a detailed phenotypic characterization of SL3-3- and SL3-3dm-induced tumors in this mouse strain. All wild-type induced tumors had clonal T-cell receptor beta rearrangements, and the vast majority were CD3(+) CD4(+) CD8(-) T-lymphomas. Such a consistent phenotypic pattern is unusual for murine leukemia virus-induced T-lymphomas. The mutant virus induced malignancies of four distinct hematopoietic lineages: myeloid, T lymphoid, B lymphoid, and erythroid. The most common disease was myeloid leukemia with maturation. Thus, mutation of all Runx motifs in the enhancer of SL3-3 severely impedes viral T-lymphomagenicity and thereby discloses a considerable and formerly unappreciated potential of this virus for myeloid leukemia induction. Proviral enhancers with complex structural alterations (deletions, insertions, and/or duplications) were found in most SL3-3dm-induced T-lymphoid tumors and immature myeloid leukemias but not in any cases of myeloid leukemia with maturation, mature B-lymphoma, or erythroleukemia. Altogether, our results indicate that the SL3-3dm enhancer in itself promotes induction of myeloid leukemia with maturation but that structural changes may arise in vivo and redirect viral disease specificity to induction of T-lymphoid or immature myeloid leukemias, which typically develop with moderately shorter latencies.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
48
|
North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MFTR. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. ACTA ACUST UNITED AC 2004; 22:158-68. [PMID: 14990855 DOI: 10.1634/stemcells.22-2-158] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor Runx1 marks all functional hematopoietic stem cells (HSCs) in the embryo and is required for their generation. Mutations in Runx1 are found in approximately 25% of acute leukemias and in familial platelet disorder, suggesting a role for Runx1 in adult hematopoiesis as well. A comprehensive analysis of Runx1 expression in adult hematopoiesis is lacking. Here we show that Runx1 is expressed in functional HSCs in the adult mouse, as well as in cells with spleen colony-forming unit (CFU) and culture CFU capacities. Additionally, we document Runx1 expression in all hematopoietic lineages at the single cell level. Runx1 is expressed in the majority of myeloid cells and in a smaller proportion of lymphoid cells. Runx1 expression substantially decreases during erythroid differentiation. We also document effects of reduced Runx1 levels on adult hematopoiesis.
Collapse
Affiliation(s)
- Trista E North
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, USA. (Current address for Dr. de Bruijn) MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Terry A, Kilbey A, Vaillant F, Stewart M, Jenkins A, Cameron E, Neil JC. Conservation and expression of an alternative 3' exon of Runx2 encoding a novel proline-rich C-terminal domain. Gene 2004; 336:115-25. [PMID: 15225881 DOI: 10.1016/j.gene.2004.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/08/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
The Runx2 (Cbfa1, Aml3, PEBP2alphaA) gene plays an essential role in bone development and is one of a three-member family of closely related genes that encode the alpha-chain DNA binding components of the heterodimeric core binding factor complex. While all three mammalian Runx genes share a complex dual promoter structure (P1, P2) and display alternative splicing, a distinctive feature of Runx2 is the potential to encode larger isoforms in which the C-terminal domain encoded by the standard 3' terminal exon (exon 6) is replaced by an extended 200-201 amino acid C-terminal sequence including an extensive proline-rich domain and a C-terminal amphipathic helix. We report that the novel exon that gives rise to these variants (exon 6.1) is located over 100 kb downstream of exon 6 in the mouse, rat and human genomes. Exon 6.1 spans a CpG-rich island, and human/rodent conservation is evident through the coding sequence and the 3' untranslated region (UTR). Reverse transcriptase polymerase chain reaction (RT-PCR) and blot hybridisation analyses reveal that exon 6.1 is utilised at low levels in all mouse tissues and cell lines that express Runx2, regardless of which promoter is active, giving Runx2 the potential to encode more than 12 distinct isoforms. RT-PCR analysis of human RUNX2 exon 6.1 expression shows that utilisation of this exon is also conserved. In vitro transcription/translation of cDNAs encoding several exon 6.1 isoforms reveals that the novel Runx proteins are able to bind specifically to canonical Runx DNA target sequences. Antibodies raised to the unique C-terminal domain were shown to be reactive by immunoprecipitation and immunoblot assay, and were used in confocal immunofluorescence microscopy to reveal low level cytoplasmic staining in osteosarcoma and lymphoma cells that express high levels of Runx2 mRNA. However, reactive protein could not be detected in immunoblots of extracts from either cell type, suggesting that these proteins are unstable in lymphoid and osteosarcoma cells. In conclusion, the conservation and widespread utilisation of Runx2 exon 6.1 suggest that its encoded isoforms play an as yet undetermined role in mammalian development.
Collapse
Affiliation(s)
- Anne Terry
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Anderson MK, Pant R, Miracle AL, Sun X, Luer CA, Walsh CJ, Telfer JC, Litman GW, Rothenberg EV. Evolutionary origins of lymphocytes: ensembles of T cell and B cell transcriptional regulators in a cartilaginous fish. THE JOURNAL OF IMMUNOLOGY 2004; 172:5851-60. [PMID: 15128764 DOI: 10.4049/jimmunol.172.10.5851] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of lymphocytes can be traced by phylogenetic comparisons of key features. Homologs of rearranging TCR and Ig (B cell receptor) genes are present in jawed vertebrates, but have not been identified in other animal groups. In contrast, most of the transcription factors that are essential for the development of mammalian T and B lymphocytes belong to multigene families that are represented by members in the majority of the metazoans, providing a potential bridge to prevertebrate ancestral roles. This work investigates the structure and regulation of homologs of specific transcription factors known to regulate mammalian T and B cell development in a representative of the earliest diverging jawed vertebrates, the clearnose skate (Raja eglanteria). Skate orthologs of mammalian GATA-3, GATA-1, EBF-1, Pax-5, Pax-6, Runx2, and Runx3 have been characterized. GATA-3, Pax-5, Runx3, EBF-1, Spi-C, and most members of the Ikaros family are shown throughout ontogeny to be 1) coregulated with TCR or Ig expression, and 2) coexpressed with each other in combinations that for the most part correspond to known mouse T and B cell patterns, supporting conservation of function. These results indicate that multiple components of the gene regulatory networks that operate in mammalian T cell and B cell development were present in the common ancestor of the mammals and the cartilaginous fish. However, certain factors relevant to the B lineage differ in their tissue-specific expression patterns from their mouse counterparts, suggesting expanded or divergent B lineage characteristics or tissue specificity in these animals.
Collapse
Affiliation(s)
- Michele K Anderson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|