1
|
Gong Z, Ren P, Bao H, Mao W, Zhao J, Yu Z, Shen Y, Liu Y, Liu B, Zhang S. The roles of Braun Lipoprotein in inducing tolerance of bovine endometrium infected by Escherichia coli. Anim Reprod Sci 2024; 266:107513. [PMID: 38843662 DOI: 10.1016/j.anireprosci.2024.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Escherichia coli (E. coli), a Gram-negative bacterium, is the primary pathogen responsible for endometritis in dairy cattle. The outer membrane components of E. coli, namely lipopolysaccharide (LPS) and bacterial lipoprotein, have the capacity to trigger the host's innate immune response through pattern recognition receptors (PRRs). Tolerance to bacterial cell wall components, including LPS, may play a crucial role as an essential regulatory mechanism during bacterial infection. However, the precise role of Braun lipoprotein (BLP) tolerance in E. coli-induced endometritis in dairy cattle remains unclear. In this study, we aimed to investigate the impact of BLP on the regulation of E. coli infection-induced endometritis in dairy cattle. The presence of BLP was found to diminish the expression and release of proinflammatory cytokines (IL-8 and IL-6), while concurrently promoting the expression and release of the anti-inflammatory cytokine IL-10 in endometrial epithelial cells (EECs). Furthermore, BLP demonstrated the ability to impede the activation of MAPK (ERK and p38) and NF-κB (p65) signaling pathways, while simultaneously enhancing signaling through the STAT3 pathway in EECs. Notably, BLP exhibited a dual role, acting both as an activator of TLR2 and as a regulator of TLR2 activation in LPS- and E. coli-treated EECs. In E. coli-infected endometrial explants, the presence of BLP was noted to decrease the release of proinflammatory cytokines and the expression of HMGB1, while simultaneously enhancing the release of anti-inflammatory cytokines. Collectively, our findings provide evidence that the bacterial component BLP plays a protective role in E. coli-induced endometritis in dairy cattle.
Collapse
Affiliation(s)
- Zhiguo Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Peipei Ren
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Haixia Bao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Jiamin Zhao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Zhuoya Yu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Yuan Shen
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Yuze Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China.
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot 010011, China.
| |
Collapse
|
2
|
Tang S, Ouyang Z, Tan X, Liu X, Bai J, Wang H, Huang L. Protective Effect of the Naringin-Chitooligosaccharide Complex on Lipopolysaccharide-Induced Systematic Inflammatory Response Syndrome Model in Mice. Foods 2024; 13:576. [PMID: 38397553 PMCID: PMC10887581 DOI: 10.3390/foods13040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Naringin is one of the common flavonoids in grapefruit, which has anti-cancer, antioxidant, and anti-inflammatory activities. However, its poor solubility limits its wide application. Therefore, the aim of this study is to investigate the anti-inflammatory effect of naringin combined with chitooligosaccharides with good biocompatibility by constructing a mouse model of systemic inflammatory response syndrome (SIRS). The results showed that the naringin-chitooligosaccharide (NG-COS) complex significantly inhibited lipopolysaccharide (LPS)-induced weight loss, reduced food intake, tissue inflammatory infiltration, and proinflammatory cytokines IL-6, TNF-α, INF-γ, and IL-1β levels. The complex also significantly affected the content of malondialdehyde and the activities of MPO, SOD, and GSH in the liver, spleen, lungs, and serum of mice with systemic inflammation. In addition, NG-COS significantly inhibited the mRNA expression of inflammatory factors in the TLR4/NF-κB signaling pathway. Principal component analysis showed that the complexes could inhibit LPS-induced systemic inflammation in mice, and the effect was significantly better than that of naringin and chitooligosaccharides alone. This study explored the synergistic effects of chitosan and naringin in reducing inflammation and could contribute to the development of novel biomedical interventions.
Collapse
Affiliation(s)
- Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Zhu Ouyang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Hua Wang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| |
Collapse
|
3
|
Qin Y, Chen J, Xu K, Lu Y, Xu F, Shi J. Triad3A involved in the regulation of endotoxin tolerance and mycobactericidal activity through the NFκB-nitric oxide pathway. Immun Inflamm Dis 2023; 11:e925. [PMID: 37506157 PMCID: PMC10363814 DOI: 10.1002/iid3.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Sepsis is characterized by an endotoxin tolerance phenotype that occurs in the stage of infection. Persistent bacterial infection can lead to immune cell exhaustion. Triad3A, an E3 ubiquitin ligase, negatively regulates its activation by TLR4. However, the effect of Triad3A on endotoxin tolerance and bactericidal ability in the state of endotoxin tolerance remains unclear. METHODS Using single dose LPS and repeated LPS stimulated macrophage cell lines at indicated times, we investigated miR-191, Tirad3A, TRAF3, TLR4, p-P65, TNF-α, IL-1β, and iNOS expression, the effect of miR-191 on Triad3A and TRAF3, gene loss-of-function analyses, the effect of Triad3A on TLR4, p-P65, cytokine, and mycobactericidal activity in endotoxin tolerant cells infected with Mycobacterium marinum. RESULTS Here we found that Triad3A is involved in regulating endotoxin tolerance. Our result also displayed that miR-191 expression is downregulated in macrophages in the state of endotoxin tolerance. miR-191 can directly bind to Triad3A and TRAF3. Additionally, knockdown of Triad3A can reverse the effect of decreasing TNF-α and IL-1β in endotoxin tolerant macrophages. Furthermore, we demonstrated that the TLR4-NF-κB-NO pathway was associated with Triad3A and responsible for the killing of intracellular mycobacteria in a tuberculosis sepsis model. CONCLUSIONS These results provide new insight into the mechanisms of Triad3A induced tolerogenic phenotype in macrophages, which can help the better comprehension of the pathogenesis involved in septic shock with infection of Mycobacterium tuberculosis, and suggest that Triad3A may be a potential drug target for the treatment of severe septic tuberculosis.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Kuang Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yang Lu
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Feifan Xu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Müller MM, Baldauf C, Hornischer S, Klassert TE, Schneegans A, Behnert A, Pletz MW, Hagel S, Slevogt H. Staphylococcus aureus induces tolerance in human monocytes accompanied with expression changes of cell surface markers. Front Immunol 2023; 14:1046374. [PMID: 37063823 PMCID: PMC10104166 DOI: 10.3389/fimmu.2023.1046374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Exposure of human monocytes to lipopolysaccharide (LPS) or other pathogen-associated molecular pattern (PAMPs) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance (ET), associated with the pathogenesis of sepsis. In this study, we aimed to characterize the cellular state of human monocytes from healthy donors stimulated with Staphylococcus aureus in comparison to TLR2-specific ligands. We analyzed S. aureus induced gene expression changes after 2 and 24 hours by amplicon sequencing (RNA-AmpliSeq) and compared the pro-inflammatory response after 2 hours with the response in re-stimulation experiments. In parallel, glycoprotein expression changes in human monocytes after 24 hours of S. aureus stimulation were analyzed by proteomics and compared to stimulation experiments with TLR2 ligands Malp-2 and Pam3Cys and TLR4 ligand LPS. Finally, we analyzed peripheral blood monocytes of patients with S. aureus bloodstream infection for their ex vivo inflammatory responses towards S. aureus stimulation and their glycoprotein expression profiles. Our results demonstrate that monocytes from healthy donors stimulated with S. aureus and TLR ligands of Gram-positive bacteria entered the tolerant cell state after activation similar to LPS treatment. In particular reduced gene expression of pro-inflammatory cytokines (TNF, IL1β) and chemokines (CCL20, CCL3, CCL4, CXCL2, CXCL3 and CXCL8) could be demonstrated. Glycoprotein expression changes in monocytes tolerized by the different TLR agonists were highly similar while S. aureus-stimulated monocytes shared some of the PAMP-induced changes but also exhibited a distinct expression profile. 11 glycoproteins (CD44, CD274, DSC2, ICAM1, LAMP3, LILRB1, PTGS2, SLC1A3, CR1, FGL2, and HP) were similarly up- or downregulated in all four comparisons in the tolerant cell state. Monocytes from patients with S. aureus bacteremia revealed preserved pro-inflammatory responsiveness to S. aureus stimulation ex vivo, expressed increased CD44 mRNA but no other glycoprotein of the tolerance signature was differentially expressed.
Collapse
Affiliation(s)
- Mario M. Müller
- Septomics Research Center, Jena University Hospital, Jena, Germany
- Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | | | | | - Tilman E. Klassert
- Septomics Research Center, Jena University Hospital, Jena, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Andrea Behnert
- Septomics Research Center, Jena University Hospital, Jena, Germany
- Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- *Correspondence: Hortense Slevogt,
| |
Collapse
|
5
|
Braun Lipoprotein Protects against Escherichia coli-Induced Inflammatory Responses and Lethality in Mice. Microbiol Spectr 2023:e0354122. [PMID: 36916913 PMCID: PMC10100777 DOI: 10.1128/spectrum.03541-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Escherichia coli (E. coli), a Gram-negative bacterium, is an important pathogen that causes several mammalian diseases. The outer membrane components of E. coli, namely, lipopolysaccharide (LPS) and bacterial lipoprotein, can induce the host innate immune response through pattern recognition receptors (PRRs). However, the detailed roles of the E. coli Braun lipoprotein (BLP) in the regulation of host inflammatory response to E. coli infection remain unclear. In this study, we sought to determine the effects of BLP on E. coli-induced host inflammatory response and lethality using mouse models. Experiments using the E. coli DH5α strain (BLP-positive), E. coli JE5505 strain (BLP-negative), and E. coli JE5505 strain combined with BLP indicated that the presence of BLP could alleviate mortality and organ (liver and lung) damage and decrease proinflammatory cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-1β [IL-1β]) and chemokine (regulated on activation normal T-cell expressed and secreted [RANTES]) production in mouse serum and organs. Conversely, E. coli JE5505, E. coli DH5α strain, and E. coli JE5505 combined with BLP treatment induce enhanced anti-inflammatory cytokine (interleukin 10 [IL-10]) production in mouse serum and organs. In addition, BLP could regulate the secretion of proinflammatory cytokines (TNF-α and IL-1β), chemokines (RANTES), and anti-inflammatory factors (IL-10) through mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling pathways in macrophages. Altogether, our results demonstrate that the bacterial component BLP plays crucial and protective roles in E. coli-infected mice, which may influence the outcome of inflammation in host response to E. coli infection. IMPORTANCE In this study, we investigated the roles of bacterial outer membrane component BLP in regulating inflammatory responses and lethality in mice that were induced by a ubiquitous and serious pathogen, Escherichia coli. BLP could alleviate the mortality of mice and organ damage, as well as decrease proinflammatory cytokines and chemokine production and enhance anti-inflammatory cytokine production in mouse serum and organs. Overall, our results demonstrate that the bacterial component BLP plays crucial and protective roles in E. coli-infected mice through regulating the production of an inflammatory mediator, which may influence the outcome of inflammation in host response to E. coli infection. Our findings provide new information about the basic biology involved in immune responses to E. coli and host-bacterial interactions, which have the potential to translate into novel approaches for the diagnosis and treatment of E. coli-related medical conditions, such as bacteremia and sepsis.
Collapse
|
6
|
Zhou H, Lu X, Huang J, Jordan P, Ma S, Xu L, Hu F, Gui H, Zhao H, Bai Z, Redmond HP, Wang JH, Wang J. Induction of Trained Immunity Protects Neonatal Mice Against Microbial Sepsis by Boosting Both the Inflammatory Response and Antimicrobial Activity. J Inflamm Res 2022; 15:3829-3845. [PMID: 35836719 PMCID: PMC9273902 DOI: 10.2147/jir.s363995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background Neonates are susceptible to a wide range of microbial infection and at a high risk to develop severe sepsis and septic shock. Emerged evidence has shown that induction of trained immunity triggers a much stronger inflammatory response in adult monocytes/macrophages, thereby conferring protection against microbial infection. Methods This study was carried out to examine whether trained immunity is inducible and exerts its protection against microbial sepsis in neonates. Results Induction of trained immunity by Bacillus Calmette-Guerin (BCG) plus bacterial lipoprotein (BLP) protected neonatal mice against cecal slurry peritonitis-induced polymicrobial sepsis, and this protection is associated with elevated circulating inflammatory cytokines, increased neutrophil recruitment, and accelerated bacterial clearance. In vitro stimulation of neonatal murine macrophages with BCG+BLP augmented both inflammatory response and antimicrobial activity. Notably, BCG+BLP stimulation resulted in epigenetic remodeling characterized by histone modifications with enhanced H3K4me3, H3K27Ac, and suppressed H3K9me3 at the promoters of the targeted inflammatory and antimicrobial genes. Critically, BCG+BLP stimulation led to a shift in cellular metabolism with increased glycolysis, which is the prerequisite for subsequent BCG+BLP-triggered epigenetic reprogramming and augmented inflammatory response and antimicrobial capacity. Conclusion These results illustrate that BCG+BLP induces trained immunity in neonates, thereby protecting against microbial infection by boosting both inflammatory and antimicrobial responses.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaying Lu
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland.,Department of Physiology, Gannan Medical University, Ganzhou, People's Republic of China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Patrick Jordan
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Shurong Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lingqi Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangjie Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huan Gui
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
7
|
TLR2, TLR4, and NLRP3 mediated the balance between host immune-driven resistance and tolerance in Staphylococcus aureus-infected mice. Microb Pathog 2022; 169:105671. [PMID: 35811022 DOI: 10.1016/j.micpath.2022.105671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 01/02/2023]
Abstract
Staphylococcus aureus (S. aureus) is a gram-positive pathogen that can cause infectious diseases in mammals. S. aureus-induced host innate immune responses have a relationship with Toll-like receptor 2 (TLR2), TLR4, and Nod-like receptor pyrin domain-containing protein 3 (NLRP3). However, the detailed roles of TLR2, TLR4, and NLRP3 in regulating the host inflammatory response to S. aureus infection remain unclear. Our data indicated that the S. aureus-induced mortality was aggravated by deficiency of TLR2, TLR4, and NLRP3 in mice. In the subsequent experiment, we found that during S. aureus infection, the roles of TLR2, TLR4, and NLRP3 seemed to be different at multiple timepoints. The deficiency of TLR2, TLR4, or NLRP3 attenuated the expression of High-mobility group box protein 1 (HMGB1) and Hyaluronic acid-binding protein 2 (HABP2), which is accompanied by decreased proinflammatory cytokine (TNF-α), chemokine (RANTES), and anti-inflammatory cytokine (IL-10) production in lungs and serum at 3 h and 6 h post-infection. However, with S. aureus infection prolonged (24 h post-infection), the trend was diametrically opposite. The results showed that deficiency of TLR2, TLR4, or NLRP3 aggravated HABP2 and HMGB1 expression, which is accompanied by enhanced proinflammatory cytokine (TNF-α), chemokine (RANTES), and anti-inflammatory cytokine (IL-10) production in lungs and serum. These results were consistent with the data observed in S. aureus-infected bone marrow-derived macrophages (BMDMs). All these results suggested that during S. aureus infection, TLR2, TLR4, and NLRP3 has time-dependent effect in regulating the balance between immune-driven resistance and tolerance.
Collapse
|
8
|
Piatti G, De Ferrari L, Schito AM, Riccio AM, Penco S, Cassia S, Bruzzone M, Ceppi M. In Vitro Reduction of Interleukin-8 Response to Enterococcus faecalis by Escherichia coli Strains Isolated from the Same Polymicrobial Urines. Microorganisms 2021; 9:microorganisms9071501. [PMID: 34361936 PMCID: PMC8307267 DOI: 10.3390/microorganisms9071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Urinary tract infections are often polymicrobial and are mainly due to uropathogenic Escherichia coli (UPEC). We previously demonstrated a link among clinical fluoroquinolone susceptible E. coli reducing in vitro urothelial interleukin-8 (CXCL8) induced by E. coli K-12, polymicrobial cystitis, and pyuria absence. Here, we evaluated whether fifteen clinical fluoroquinolone susceptible UPEC were able to reduce CXCL8 induced by Enterococcus faecalis that had been isolated from the same mixed urines, other than CXCL8 induced by E. coli K-12. We also evaluated the connection between fluoroquinolone susceptibility and pathogenicity by evaluating the immune modulation of isogenic gyrA, a mutant UPEC resistant to ciprofloxacin. Using the 5637 bladder epithelial cell line, we observed that lower CXCL8 induced the most UPEC isolates than K-12 and the corresponding E. faecalis. During coinfections of UPEC/K-12 and UPEC/E. faecalis, we observed lower CXCL8 than during infections caused by K-12 and E. faecalis alone. UPEC strains showed host–pathogen and pathogen–pathogen interaction, which in part explained their persistence in the human urinary tract and coinfections, respectively. Mutant UPEC showed lower modulating activity with respect to the wildtypes, confirming the connection between acquired fluoroquinolone resistance and the decrease of innate microbial properties.
Collapse
Affiliation(s)
- Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-0105555193
| | - Laura De Ferrari
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (L.D.F.); (A.M.R.); (S.C.)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genova, Italy;
| | - Anna Maria Riccio
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (L.D.F.); (A.M.R.); (S.C.)
| | - Susanna Penco
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy;
| | - Sebastiano Cassia
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (L.D.F.); (A.M.R.); (S.C.)
| | - Marco Bruzzone
- Unit of Clinical Epidemiology, Ospedale Policlinico San Martino-IRCCS per l’Oncologia, 16132 Genova, Italy; (M.B.); (M.C.)
| | - Marcello Ceppi
- Unit of Clinical Epidemiology, Ospedale Policlinico San Martino-IRCCS per l’Oncologia, 16132 Genova, Italy; (M.B.); (M.C.)
| |
Collapse
|
9
|
Chen W, Zhao S, Ita M, Li Y, Ji J, Jiang Y, Redmond HP, Wang JH, Liu J. An Early Neutrophil Recruitment into the Infectious Site Is Critical for Bacterial Lipoprotein Tolerance-Afforded Protection against Microbial Sepsis. THE JOURNAL OF IMMUNOLOGY 2019; 204:408-417. [PMID: 31801813 DOI: 10.4049/jimmunol.1801602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Bacterial lipoprotein (BLP)-induced tolerance represents an essential regulatory mechanism during bacterial infection and has been shown to protect against microbial sepsis. This protection is generally attributed to BLP-tolerized monocytes/macrophages characterized by hyporesponsiveness in producing inflammatory cytokines and, simultaneously, an augmented antimicrobial activity. However, the contribution of polymorphonuclear neutrophils (PMNs), another major player in innate immunity against bacterial infection, to BLP tolerance-afforded protection against microbial sepsis has not been identified. In this study, we report that induction of BLP tolerance protected mice against cecal ligation and puncture-induced polymicrobial sepsis, with significantly improved survival. Importantly, BLP tolerization via i.p. injection triggered an early PMN recruitment even before bacterial infection and promoted further PMN influx into the infectious site (i.e., the peritoneal cavity upon cecal ligation and puncture-associated septic challenge). Notably, this early PMN influx was mediated by BLP tolerization-induced PMN chemoattractant CXCL2-formed concentration gradient between the circulation and peritoneal cavity. Critically, blockage of PMN influx with the CXCR2 antagonist SB225002 abolished BLP tolerance-afforded protection and rendered BLP-tolerized mice more vulnerable to microbial infection with impaired bacterial clearance and increased overall mortality. Thus, our results highlight that an early recruitment of PMNs in the infectious site, as an important cellular mechanism, contributes to BLP tolerance-afforded protection against microbial sepsis.
Collapse
Affiliation(s)
- Wenting Chen
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Shuqi Zhao
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Michael Ita
- Department of Academic Surgery, Cork University Hospital, University College Cork, Wilton, Cork, Ireland
| | - Yue Li
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingjing Ji
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - H Paul Redmond
- Department of Academic Surgery, Cork University Hospital, University College Cork, Wilton, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, Cork University Hospital, University College Cork, Wilton, Cork, Ireland
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
10
|
Dickson K, Lehmann C. Inflammatory Response to Different Toxins in Experimental Sepsis Models. Int J Mol Sci 2019; 20:ijms20184341. [PMID: 31491842 PMCID: PMC6770119 DOI: 10.3390/ijms20184341] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by the dysregulated host response to infection. Despite serious mortality and morbidity, no sepsis-specific drugs exist. Endotoxemia is often used to model the hyperinflammation associated with early sepsis. This model classically uses lipopolysaccharide (LPS) from Gram-negative pathogens to activate the immune system, leading to hyperinflammation, microcirculatory disturbances and death. Other toxins may also be used to activate the immune system including Gram-positive peptidoglycan (PG) and lipoteichoic acid (LTA). In addition to these standard toxins, other bacterial components can induce inflammation. These molecules activate different signaling pathways and produce different physiological responses which can be taken advantage of for sepsis modeling. Endotoxemia modeling can provide information on pathways to inflammation in sepsis and contribute to preclinical drug development.
Collapse
Affiliation(s)
- Kayle Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
11
|
Ismail Hassan F, Didari T, Khan F, Niaz K, Mojtahedzadeh M, Abdollahi M. A Review on The Protective Effects of Metformin in Sepsis-Induced Organ Failure. CELL JOURNAL 2019; 21:363-370. [PMID: 31376317 PMCID: PMC6722446 DOI: 10.22074/cellj.2020.6286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/17/2018] [Indexed: 02/02/2023]
Abstract
Despite advances in sepsis management, it remains a major intensive-care-unit (ICU) concern. From new prospective, positive
effects of metformin, such as anti-oxidant and anti-inflammatory properties are considered potentially beneficial properties
for management of septic patients. This article reviewed the potential ameliorative effects of metformin in sepsis-induced
organ failure. Information were retrieved from PubMed, Scopus, Embase, and Google Scholar. Multi-organ damage, oxidative
stress, inflammatory cytokine stimulation, and altered circulation are hallmarks of sepsis. Metformin exerts its effect via
adenosine monophosphate-activated protein kinase (AMPK) activation. It improves sepsis-induced organ failure by inhibiting
the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, preventing the activation of transcription
factors related to inflammation, decreasing neutrophil accumulation/infiltration, and also maintaining mitochondrial membrane
potential. Studies reported the safety of metformin therapeutic doses, with no evidence of lactic acidosis, in septic patients.
Collapse
Affiliation(s)
- Fatima Ismail Hassan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Didari
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Niaz
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:.,Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhao S, Xi D, Cai J, Chen W, Xiang J, Peng N, Wang J, Jiang Y, Mei Z, Liu J. Rab20 is critical for bacterial lipoprotein tolerization-enhanced bactericidal activity in macrophages during bacterial infection. SCIENCE CHINA-LIFE SCIENCES 2019; 63:401-409. [PMID: 31152389 DOI: 10.1007/s11427-019-9527-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Bacterial cell wall component-induced tolerance represents an important protective mechanism during microbial infection. Tolerance induced by the TLR2 agonist bacterial lipoprotein (BLP) has been shown to attenuate the inflammatory response, and simultaneously to augment antimicrobial function, thereby conferring its protection against microbial sepsis. However, the underlying mechanism by which BLP tolerance augments bactericidal activity has not been fully elucidated. Here, we reported that the induction of BLP tolerance in murine macrophages upregulated the expression of Rab20, a membrane trafficking regulator, at both the mRNA and protein levels upon bacterial infection. The knockdown of Rab20 with Rab20 specific siRNA (siRab20) did not affect the phagocytosis of Escherichia coli (E. coli), but substantially impaired the intracellular killing of the ingested E. coli in BLP-tolerized macrophages. Furthermore, Rab20 was associated with GFP-E. coli containing phagosomes, and BLP tolerization resulted in the enhanced maturation of GFP-E. coli-containing phagosomes associated with Rab20 and strong lysosomal acidification. The knockdown of Rab20 substantially diminished lysosome acidification and disturbed the fusion of GFP-E. coli containing phagosomes with lysosomes in BLP-tolerized macrophages. These results demonstrate that Rab20 plays a critical role in BLP tolerization-induced augmentation of bactericidal activity via promoting phagosome maturation and the fusion of bacteria containing phagosomes with lysosomes.
Collapse
Affiliation(s)
- Shuqi Zhao
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dalin Xi
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junwei Cai
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Chen
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Xiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Na Peng
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuzhong Mei
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Zhou H, Coveney AP, Wu M, Huang J, Blankson S, Zhao H, O'Leary DP, Bai Z, Li Y, Redmond HP, Wang JH, Wang J. Activation of Both TLR and NOD Signaling Confers Host Innate Immunity-Mediated Protection Against Microbial Infection. Front Immunol 2019; 9:3082. [PMID: 30692992 PMCID: PMC6339916 DOI: 10.3389/fimmu.2018.03082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022] Open
Abstract
The detection of microbial pathogens relies on the recognition of highly conserved microbial structures by the membrane sensor Toll-like receptors (TLRs) and cytosolic sensor NOD-like receptors (NLRs). Upon detection, these sensors trigger innate immune responses to eradicate the invaded microbial pathogens. However, it is unclear whether TLR and NOD signaling are both critical for innate immunity to initiate inflammatory and antimicrobial responses against microbial infection. Here we report that activation of both TLR and NOD signaling resulted in an augmented inflammatory response and the crosstalk between TLR and NOD led to an amplified downstream NF-κB activation with increased nuclear transactivation of p65 at both TNF-α and IL-6 promoters. Furthermore, co-stimulation of macrophages with TLR and NOD agonists maximized antimicrobial activity with accelerated phagosome maturation. Importantly, administration of both TLR and NOD agonists protected mice against polymicrobial sepsis-associated lethality with increased serum levels of inflammatory cytokines and accelerated clearance of bacteria from the circulation and visceral organs. These results demonstrate that activation of both TLR and NOD signaling synergizes to induce efficient inflammatory and antimicrobial responses, thus conferring protection against microbial infection.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Andrew P Coveney
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Ming Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Siobhan Blankson
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - D Peter O'Leary
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yiping Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Liu D, Cao S, Zhou Y, Xiong Y. Recent advances in endotoxin tolerance. J Cell Biochem 2018; 120:56-70. [PMID: 30246452 DOI: 10.1002/jcb.27547] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Endotoxin tolerance is defined as a reduced capacity of a cell to respond endotoxin (lipopolysaccharide, LPS) challenge after an initial encounter with endotoxin in advance. The body becomes tolerant to subsequent challenge with a lethal dose of endotoxin and cytokines release and cell/tissue damage induced by inflammatory reaction are significantly reduced in the state of endotoxin tolerance. The main characteristics of endotoxin tolerance are downregulation of inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and C-X-C motif chemokine 10 (CXCL10) and upregulation of anti-inflammatory cytokines such as IL-10 and transforming growth factor β (TGF-β). Therefore, endotoxin tolerance is often regarded as the regulatory mechanism of the host against excessive inflammation. Endotoxin tolerance is a complex pathophysiological process and involved in multiple cellular signal pathways, receptor alterations, and biological molecules. However, the exact mechanism remains elusive up to date. To better understand the underlying cellular and molecular mechanisms of endotoxin tolerance, it is crucial to investigate the comprehensive cellular signal pathways, signaling proteins, cell surface molecules, proinflammatory and anti-inflammatory cytokines, and other mediators. Endotoxin tolerance plays an important role in reducing the mortality of sepsis, endotoxin shock, and other endotoxin-related diseases. Recent reports indicated that endotoxin tolerance is also related to other diseases such as cystic fibrosis, acute coronary syndrome, liver ischemia-reperfusion injury, and cancer. The aim of this review is to discuss the recent advances in endotoxin tolerance mainly based on the cellular and molecular mechanisms by outline the current state of the knowledge of the involvement of the toll-like receptor 4 (TLR4) signaling pathways, negative regulate factor, microRNAs, apoptosis, chromatin modification, and gene reprogramming of immune cells in endotoxin tolerance. We hope to provide a new idea and scientific basis for the rational treatment of endotoxin-related diseases such as endotoxemia, sepsis, and endotoxin shock clinically.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Martínez A, Bono C, Megías J, Yáñez A, Gozalbo D, Gil ML. Systemic Candidiasis and TLR2 Agonist Exposure Impact the Antifungal Response of Hematopoietic Stem and Progenitor Cells. Front Cell Infect Microbiol 2018; 8:309. [PMID: 30234030 PMCID: PMC6130230 DOI: 10.3389/fcimb.2018.00309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
We have previously demonstrated that Candida albicans induces differentiation of hematopoietic stem and progenitor cells (HSPCs) toward the myeloid lineage both in vitro and in vivo in a TLR2- and Dectin-1-dependent manner, giving rise to functional macrophages. In this work, we used an ex vivo model to investigate the functional consequences for macrophages derived from HSPCs in vivo-exposed to Pam3CSK4 (a TLR2 agonist) or C. albicans infection. Short in vivo treatment of mice with Pam3CSK4 results in a tolerized phenotype of ex vivo HSPC-derived macrophages, whereas an extended Pam3CSK4 treatment confers a trained phenotype. Early during candidiasis, HSPCs give rise to macrophages trained in their response to Pam3CSK4 and with an increased fungicidal activity; however, as the infection progresses to higher fungal burden, HSPC-derived macrophages become tolerized, while their fungicidal capacity is maintained. These results demonstrate that memory-like innate immune responses, already described for monocytes and macrophages, also take place in HSPCs. Interestingly, extended Pam3CSK4 treatment leads to an expansion of spleen HSPCs and myeloid cells, and drastically reduces the fungal burden in the kidney and spleen during systemic C. albicans infection. This protection against tissue invasion is abrogated by immunodepletion of HSPCs, suggesting their protective role against infection in this model. In addition, HSPCs produce in vitro cytokines and chemokines in response to C. albicans and Pam3CSK4, and these secretomes are capable of inducing myeloid differentiation of HSPCs and modulating peritoneal macrophage cytokine responses. Taken together, these data assign an active role for HSPCs in sensing pathogens during infection and in contributing to host protection by diverse mechanisms.
Collapse
Affiliation(s)
- Alba Martínez
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Cristina Bono
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Javier Megías
- Departamento de Patología, Universitat de València, Valencia, Spain
| | - Alberto Yáñez
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daniel Gozalbo
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - M Luisa Gil
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| |
Collapse
|
16
|
Huang Z, Yi X, Chen Y, Hou X, Wang X, Zhu P, Zhao K, Wu S, Fu N, Liu B. Pretreatment of Pam3CSK4 attenuates inflammatory responses caused by systemic infection of methicillin-resistant Staphylococcus aureus in mice. Biomed Pharmacother 2017; 95:1684-1692. [PMID: 28954388 DOI: 10.1016/j.biopha.2017.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022] Open
Abstract
Pam3CSK4 is a synthetic tripalmitoylated lipopeptide that acts as a ligand of TLR1/TLR2 by mimicking the acetylated amino terminus of bacterial lipoproteins. Here we found that pretreatment of Pam3CSK4 protected mice from systemic infection of methicillin-resistant Staphylococcus aureus (MRSA), and enhanced the bacterial clearance in bacteremia model. Pro-inflammatory cytokines, such as TNF-α, IL-6, MCP-1 and IFN-γ were significantly decreased in serum from Pam3CSK4-treated mice. Besides, upon PamCSK4 treatment, the TLR2 expression was down-regulated, IRAK1 phosphorylation was inhibited, and the expression of IRAK-M and Tollip, two negative regulators of NF-κB pathway, was up-regulated. All of these indicated that Pam3CSK4 attenuated inflammation via inhibiting TLR1/TLR2 and the downstream NF-κB pathways, and suggested that Pam3CSK4 could be a potential immune modulator for MRSA systemic infection.
Collapse
Affiliation(s)
- Zhaoxia Huang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xiayu Yi
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yiguo Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xiangyu Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Kangmin Zhao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shuangshuang Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ning Fu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Beiyi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
17
|
Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, Moldawer LL, Moore FA, Larson SD, Efron PA. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2564-2573. [PMID: 28115287 PMCID: PMC5519458 DOI: 10.1016/j.bbadis.2017.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
Early host recognition of microbial invasion or damaged host tissues provides an effective warning system by which protective immune and inflammatory processes are initiated. Host tissues responsible for continuous sampling of their local environment employ cell surface and cytosolic pattern recognition receptors (PRRs) that provide redundant and overlapping identification of both microbial and host alarmins. Microbial products containing pathogen-associated molecular patterns (PAMPs), as well as damage-associated molecular patterns (DAMPs) serve as principle ligands for recognition by these PRRs. It is this interaction which plays both an essential survival role in response to infection and injury, as well as the pathologic role in tissue and organ injury associated with severe sepsis and trauma. Elucidating the interaction between ligands and their respective PRRs can provide both a better understanding of the host response, as well as a rational basis for therapeutic intervention. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - David C Holden
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Juan C Mira
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
18
|
Liu J, Xiang J, Li X, Blankson S, Zhao S, Cai J, Jiang Y, Redmond HP, Wang JH. NF-κB activation is critical for bacterial lipoprotein tolerance-enhanced bactericidal activity in macrophages during microbial infection. Sci Rep 2017; 7:40418. [PMID: 28079153 PMCID: PMC5227741 DOI: 10.1038/srep40418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Tolerance to bacterial components represents an essential regulatory mechanism during bacterial infection. Bacterial lipoprotein (BLP)-induced tolerance confers protection against microbial sepsis by attenuating inflammatory responses and augmenting antimicrobial activity in innate phagocytes. It has been well-documented that BLP tolerance-attenuated proinflammatory cytokine production is associated with suppressed TLR2 signalling pathway; however, the underlying mechanism(s) involved in BLP tolerance-enhanced antimicrobial activity is unclear. Here we report that BLP-tolerised macrophages exhibited accelerated phagosome maturation and enhanced bactericidal activity upon bacterial infection, with upregulated expression of membrane-trafficking regulators and lysosomal enzymes. Notably, bacterial challenge resulted in a strong activation of NF-κB pathway in BLP-tolerised macrophages. Importantly, activation of NF-κB pathway is critical for BLP tolerance-enhanced antimicrobial activity, as deactivation of NF-κB in BLP-tolerised macrophages impaired phagosome maturation and intracellular killing of the ingested bacteria. Finally, activation of NF-κB pathway in BLP-tolerised macrophages was dependent on NOD1 and NOD2 signalling, as knocking-down NOD1 and NOD2 substantially inhibited bacteria-induced activation of NF-κB and overexpression of Rab10 and Acp5, two membrane-trafficking regulators and lysosomal enzymes contributed to BLP tolerance-enhanced bactericidal activity. These results indicate that activation of NF-κB pathway is essential for BLP tolerance-augmented antimicrobial activity in innate phagocytes and depends primarily on both NOD1 and NOD2.
Collapse
Affiliation(s)
- Jinghua Liu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Jing Xiang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Xue Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Siobhan Blankson
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | - Shuqi Zhao
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Junwei Cai
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| |
Collapse
|
19
|
Evers D, van der Bom JG, Tijmensen J, Middelburg RA, de Haas M, Zalpuri S, de Vooght KMK, van de Kerkhof D, Visser O, Péquériaux NCV, Hudig F, Zwaginga JJ. Red cell alloimmunisation in patients with different types of infections. Br J Haematol 2016; 175:956-966. [PMID: 27539877 PMCID: PMC7161904 DOI: 10.1111/bjh.14307] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/03/2016] [Indexed: 01/13/2023]
Abstract
Red cell alloantigen exposure can cause alloantibody‐associated morbidity. Murine models have suggested that inflammation modulates red cell alloimmunisation. This study quantifies alloimmunisation risks during infectious episodes in humans. We performed a multicentre case–control study within a source population of patients receiving their first and subsequent red cell transfusions during an 8‐year follow‐up period. Patients developing a first transfusion‐induced red cell alloantibody (N = 505) were each compared with two similarly exposed, but non‐alloimmunised controls (N = 1010) during a 5‐week ‘alloimmunisation risk period’ using multivariate logistic regression analysis. Transfusions during ‘severe’ bacterial (tissue‐invasive) infections were associated with increased risks of alloantibody development [adjusted relative risk (RR) 1·34, 95% confidence interval (95% CI) 0·97–1·85], especially when these infections were accompanied with long‐standing fever (RR 3·06, 95% CI 1·57–5·96). Disseminated viral disorders demonstrated a trend towards increased risks (RR 2·41, 95% CI 0·89–6·53), in apparent contrast to a possible protection associated with Gram‐negative bacteraemia (RR 0·58, 95% CI 0·13–1·14). ‘Simple’ bacterial infections, Gram‐positive bacteraemia, fungal infections, maximum C‐reactive protein values and leucocytosis were not associated with red cell alloimmunisation. These findings are consistent with murine models. Confirmatory research is needed before patients likely to develop alloantibodies may be identified based on their infectious conditions at time of transfusion.
Collapse
Affiliation(s)
- Dorothea Evers
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna G van der Bom
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janneke Tijmensen
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Rutger A Middelburg
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Masja de Haas
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Department of Immunohaematology Diagnostics, Sanquin, Amsterdam, The Netherlands
| | - Saurabh Zalpuri
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| | - Karen M K de Vooght
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daan van de Kerkhof
- Department of Clinical Chemistry and Haematology, Catharina Hospital, Eindhoven, The Netherlands
| | - Otto Visser
- Department of Haematology, VU Medical Center, Amsterdam, The Netherlands
| | - Nathalie C V Péquériaux
- Department of Clinical Chemistry and Haematology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | | | - Jaap Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Coveney AP, Wang W, Kelly J, Hua Liu J, Blankson S, Di Wu Q, Paul Redmond H, Huai Wang J. Myeloid-related protein 8 induces self-tolerance and cross-tolerance to bacterial infection via TLR4- and TLR2-mediated signal pathways. Sci Rep 2015; 5:13694. [PMID: 26329314 PMCID: PMC4642578 DOI: 10.1038/srep13694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Abstract
Myeloid-related protein 8 (Mrp8) is the active component of Mrp8/14 protein complex released by phagocytes at the site of infection and stimulates inflammatory responses. However, it is unclear whether Mrp8 could induce self-tolerance and cross-tolerance to bacterial infection. Here we report that Mrp8 triggered TNF-α and IL-6 release via a Toll-like receptor 4 (TLR4)-dependent manner. Pre-stimulation of murine macrophages and human monocytes with Mrp8 induced self-tolerance to Mrp8 re-stimulation and cross-tolerance to lipopolysaccharide (LPS), bacterial lipoprotein (BLP), gram-negative and gram-positive bacterial challenges, with substantially attenuated TNF-α and IL-6 release. Moreover, Mrp8 tolerisation significantly reduced serum TNF-α and IL-6, increased polymorphonuclear neutrophil (PMN) recruitment and accelerated bacterial clearance, thus protecting mice against LPS-induced lethality and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. In addition to TLR4, TLR2 also contributed to Mrp8-induced inflammatory response and tolerance. Down-regulation of phosphorylated p38 by Mrp8 pre-stimulation was predominantly responsible for the intracellular mechanism of Mrp8-induced tolerance. Thus, our findings of Mrp8-induced self-tolerance and cross-tolerance may provide a potential strategy for attenuating an overwhelming proinflammatory cascade and enhancing antimicrobial responses during microbial sepsis.
Collapse
Affiliation(s)
- Andrew P. Coveney
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | - Wei Wang
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
- Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Justin Kelly
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | - Jing Hua Liu
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
- Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Siobhan Blankson
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | - Qiong Di Wu
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | - H. Paul Redmond
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| |
Collapse
|
21
|
Paeoniflorin reduced BLP-induced inflammatory response by inhibiting the NF-κB signal transduction in pathway THP-1 cells. Cent Eur J Immunol 2014; 39:461-7. [PMID: 26155163 PMCID: PMC4439956 DOI: 10.5114/ceji.2014.47729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a severe illness in which the bloodstream is overwhelmed by bacteria. Despite effective antibiotic treatment, the mortality of septic shock remains high. In this study, we examined a potential usage of paeoniflorin, anti-inflammatory component for the treatment of sepsis. We established an inflammatory cell line by stimulating human THP-1 cell line with bacterial lipoprotein (BLP), which resulted in an activation of nuclear factor κB (NF-κB) p65 dependent-signal pathway, and in consequence, an increase in tumor necrosis factor α (TNF-α) and interleukin (IL)-6 expression. With this model, we studied the effect of paeoniflorin on the expression of NF-κB and Toll-like receptor 2 (TLR2) mediated signal transduction. Our data indicated that paeoniflorin directly inhibited activation of NF-κB p65, thereby reduced the expression of TNF-α and IL-6 in the BLP stimulated THP-1 cells. Paeoniflorin was also found to inhibit IκB phosphorylation and degradation. However, no significant differences in TLR2 and myeloid differentiation factor 88 (MyD88) expression were observed; therefore, these signaling molecules may not have much anti-inflammatory effect in our cellular model. As such, our current study provided a molecular base for the potential use of paeoniflorin in therapeutic treatment of sepsis induced by bacterial lipoprotein.
Collapse
|
22
|
de Lima TM, Sampaio SC, Petroni R, Brigatte P, Velasco IT, Soriano FG. Phagocytic activity of LPS tolerant macrophages. Mol Immunol 2014; 60:8-13. [DOI: 10.1016/j.molimm.2014.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023]
|
23
|
Stiehm M, Peters K, Wiesmüller KH, Bufe A, Peters M. A novel synthetic lipopeptide is allergy-protective by the induction of LPS-tolerance. Clin Exp Allergy 2014; 43:785-97. [PMID: 23786285 DOI: 10.1111/cea.12116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exposure to the environment of traditional farms can protect children from some allergic disease. Due to this exposure, TLR2 expression in these children is increased. TLR2 ligands derived from gram-positive bacteria are found in the dust of these farms. OBJECTIVES We proved whether a synthetic lipopeptide binding to the TLR1/2 heterodimer is able to protect from allergic disease in two different murine models of allergy. We also investigated the immunological mechanisms underlying the protective properties of the lipopeptide. METHODS We synthesized a lipopeptide derived from a germination lipoprotein of Bacillus cereus (LPGerD). We evaluated the immunomodulatory activity of LPGerD in a murine model of systemic sensitization (OVA/Alum) and in a model in which mice were sensitized with OVA pulsed bone-marrow-derived dendritic cells (BMDCs) via the airways. Furthermore, the induction of LPS tolerance was studied. RESULTS Treatment of mice with LPGerD in a mouse model of asthma led to protection against sensitization and airway inflammation. Similarly, bone-marrow-derived dendritic cells (BMDCs) pre-treated with LPGerD were not able to prime mice for allergic immune response. We observed that pre-treatment with LPGerD led to the induction of a LPS-tolerant state in BMDCs. These cells secreted markedly lower amounts of pro-inflammatory cytokines upon LPS stimulation. Furthermore, we observed an up-regulation of IRAK-M mRNA in BMDCs pre-treated with LPGerD. CONCLUSIONS AND CLINICAL RELEVANCE Our results suggest that induction of a LPS-tolerant state in antigen-presenting cells (APCs) may contribute to the protective effect of a farming environment. TLR2 agonists similar to those appearing in cowshed dust extracts, such as our synthetic LPGerD, lead to the ignorance of the LPS stimulus, which is important for the activation of APCs to mount a Th2 immune response. This substance might be a promising candidate for allergy-preventive treatments as LPGerD had only low pro-inflammatory characteristics.
Collapse
Affiliation(s)
- M Stiehm
- Department of Experimental Pneumology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | |
Collapse
|
24
|
Banerjee S, Meng J, Das S, Krishnan A, Haworth J, Charboneau R, Zeng Y, Ramakrishnan S, Roy S. Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Sci Rep 2013; 3:1977. [PMID: 23756365 PMCID: PMC3679508 DOI: 10.1038/srep01977] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022] Open
Abstract
Development of tolerance to endotoxin prevents sustained hyper inflammation during systemic infections. Here we report for the first time that chronic morphine treatment tempers endotoxin tolerance resulting in persistent inflammation, septicemia and septic shock. Morphine was found to down-regulate endotoxin/LPS induced miR-146a and 155 in macrophages. However, only miR-146a over expression, but not miR-155 abrogates morphine mediated hyper-inflammation. Conversely, antagonizing miR-146a (but not miR-155) heightened the severity of morphine-mediated hyper-inflammation. These results suggest that miR-146a acts as a molecular switch controlling hyper-inflammation in clinical and/or recreational use of morphine.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang SG, Li YP, Zhang Q, Redmond HP, Wang JH, Wang J. Laparotomy and laparoscopy diversely affect macrophage-associated antimicrobial activity in a murine model. BMC Immunol 2013; 14:27. [PMID: 23786397 PMCID: PMC3711975 DOI: 10.1186/1471-2172-14-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 06/18/2013] [Indexed: 02/08/2023] Open
Abstract
Background Surgical intervention-related trauma contributes largely to the development of postoperative immunosuppression, with reduced resistance to secondary bacterial infection. This study compared the impact of laparotomy versus laparoscopy on macrophage-associated bactericidal ability and examined whether laparotomy renders the host more susceptible to microbial infection. Results BALB/c mice were randomized into control, laparotomy, and laparoscopy groups. Laparotomy, but not laparoscopy, significantly downregulated CR3 expression on macrophages, diminished macrophage-induced uptake and phagocytosis of E. coli and S. aureus, and impaired macrophage-mediated intracellular bacterial killing. Consistent with this, mice that underwent laparotomy displayed substantially higher bacterial counts in the blood and visceral organs as well as a significantly enhanced mortality rate following bacterial infection, whereas mice subjected to laparoscopy did not show any defects in their bacterial clearance. Conclusion Laparotomy has an adverse effect on host innate immunity against microbial infection by impairing macrophage-mediated phagocytosis and killing of the invaded bacteria. By contrast, laparoscopy appears to preserve macrophage-associated bactericidal ability, thus alleviating the development of postoperative immunosuppression.
Collapse
Affiliation(s)
- Shun Gen Huang
- Department of Pediatric Surgery, Affiliated Children's Hospital, Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Lu M, Varley AW, Munford RS. Persistently active microbial molecules prolong innate immune tolerance in vivo. PLoS Pathog 2013; 9:e1003339. [PMID: 23675296 PMCID: PMC3649966 DOI: 10.1371/journal.ppat.1003339] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/18/2013] [Indexed: 01/01/2023] Open
Abstract
Measures that bolster the resolution phase of infectious diseases may offer new opportunities for improving outcome. Here we show that inactivation of microbial lipopolysaccharides (LPS) can be required for animals to recover from the innate immune tolerance that follows exposure to Gram-negative bacteria. When wildtype mice are exposed to small parenteral doses of LPS or Gram-negative bacteria, their macrophages become reprogrammed (tolerant) for a few days before they resume normal function. Mice that are unable to inactivate LPS, in contrast, remain tolerant for several months; during this time they respond sluggishly to Gram-negative bacterial challenge, with high mortality. We show here that prolonged macrophage reprogramming is maintained in vivo by the persistence of stimulatory LPS molecules within the cells' in vivo environment, where naïve cells can acquire LPS via cell-cell contact or from the extracellular fluid. The findings provide strong evidence that inactivation of a stimulatory microbial molecule can be required for animals to regain immune homeostasis following parenteral exposure to bacteria. Measures that disable microbial molecules might enhance resolution of tissue inflammation and help restore innate defenses in individuals recovering from many different infectious diseases. We showed previously that mice lacking acyloxyacyl hydrolase (AOAH), the host enzyme that inactivates Gram-negative bacterial lipopolysaccharides (LPS), are unable to regain normal immune responsiveness for many weeks/months after they are exposed in vivo to a small amount of LPS or Gram-negative bacteria. The many possible explanations for slow recovery included long-lasting epigenetic changes in macrophages or other host cells, chronically stimulated cells that produce certain mediators, and persistent signaling by internalized LPS within macrophages. Using several in vivo techniques to study peritoneal macrophages, we found that none of these mechanisms was correct. Rather, prolonged recovery is caused by intact LPS that remains in the environment where macrophages live and can pass from one cell to another in vivo. This is the first evidence that the persistence of a bioactive microbial agonist, per se, can prevent resolution of inflammation in vivo. It also identifies the stimulatory microbial molecule as a realistic target for intervention – in further support, we found that providing recombinant AOAH can be partially preventive. In a larger sense, showing that chemical inactivation of one important microbial signaling molecule is required for full recovery should encourage efforts to find out whether disabling other microbial agonists (chitin, lipopeptides, flagella, others) also benefits infected animals.
Collapse
Affiliation(s)
- Mingfang Lu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | |
Collapse
|
27
|
Quinn EM, Wang JH, O’Callaghan G, Redmond HP. MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One 2013; 8:e62232. [PMID: 23638011 PMCID: PMC3639252 DOI: 10.1371/journal.pone.0062232] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/19/2013] [Indexed: 01/22/2023] Open
Abstract
TLR signaling is a crucial component of the innate immune response to infection. MicroRNAs (miRNAs) have been shown to be upregulated during TLR signaling. Specifically, microRNA-146a (miR-146a) plays a key role in endotoxin tolerance by downregulating interleukin-1 receptor-associated kinase 1 (IRAK-1). The aim of this study was to assess the role of miR-146a in the TLR2 signaling and development of bacterial lipoprotein (BLP) self-tolerance and cross-tolerance to bacteria. Expression of miR-146a increased in a dose- and time-dependent manner in BLP-stimulated human THP-1 promonocytic cells. In BLP-tolerised cells miR-146a was even further upregulated in response to BLP re-stimulation (p<0.001). Re-stimulation of BLP-tolerised cells with heat-killed gram-negative Salmonella typhimurium (S. typhimurium), but not gram-positive Staphylococcus aureus (S. aureus), led to significant overexpression of miR-146a (p<0.05). Transfection of naive cells with a miR-146a mimic substantially suppressed TNF-α production (p<0.05). Furthermore, overexpression of miR-146a resulted in strong reduction in IRAK-1 and phosphorylated IκBα expression in naive and S. typhimurium-stimulated THP-1 cells. Collectively, miR-146a is upregulated in response to BLP and bacterial stimulation in both naive and BLP-tolerised cells. Overexpression of miR-146a induces a state analogous to tolerance in BLP-stimulated cells and therefore may represent a future target for exogenous modulation of tolerance during microbial infection and sepsis.
Collapse
Affiliation(s)
- Edel M. Quinn
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
- * E-mail:
| | - Grace O’Callaghan
- Department of Medicine, University College Cork, Cork University Hospital, Cork, Ireland
| | - H. Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| |
Collapse
|
28
|
Zhang Q, Coveney AP, Yu S, Liu JH, Li Y, Blankson S, Redmond HP, Wang JH, Wang J. Inefficient antimicrobial functions of innate phagocytes render infant mice more susceptible to bacterial infection. Eur J Immunol 2013; 43:1322-32. [PMID: 23404483 DOI: 10.1002/eji.201243077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/16/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
Neonates and infants, due to the immaturity in their adaptive immunity, are thought to depend largely on the innate immune system for protection against bacterial infection. However, the innate immunity-mediated antimicrobial response in neonates and infants is incompletely characterized. Here, we report that infant mice were more susceptible to microbial sepsis than adult mice, with significantly reduced bacterial clearance from the circulation and visceral organs. Infant PMNs exhibited less constitutive expression of the chemokine receptor CXCR2, and bacterial infection caused further reduction of PMN CXCR2 in infant mice compared with adult mice. This correlates with diminished in vitro chemotaxis of infant PMNs toward the chemoattractant CXCL2 and impaired in vivo recruitment of infant PMNs into the infectious site. Furthermore, consistent with the reduced antimicrobial response in vivo, infant macrophages displayed an impaired bactericidal activity with a defect in phagosome maturation after ingestion of either gram-positive or gram-negative bacteria. Thus, infant mice exhibit an increased vulnerability to microbial infection with delayed bacterial clearance, which is associated with the inefficiency in their innate phagocyte-associated antimicrobial functions characterized by defects in PMN recruitment and macrophage phagosome maturation during microbial sepsis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pediatric Surgery, Affiliated Children's Hospital, Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Philippart F, Max A, Couzigou C, Misset B. Reanimación y prevención de las infecciones nosocomiales. EMC - ANESTESIA-REANIMACIÓN 2013. [PMCID: PMC7147915 DOI: 10.1016/s1280-4703(12)63970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Los servicios de reanimación deben organizar de forma minuciosa la prevención de infecciones en sus enfermos, ya que éstos suelen estar inmunodeprimidos, están sometidos a múltiples procedimientos invasivos realizados por un personal sanitario variado, a menudo en situaciones de urgencia y a cualquier hora del día o de la noche. Las principales infecciones que hay que tratar de prevenir son las neumonías bacterianas adquiridas asociadas a ventilación mecánica (NAVM), las infecciones relacionadas con catéteres intravasculares y las infecciones urinarias asociadas al sondeo vesical. La incidencia de estas infecciones ha disminuido en la mayoría de los servicios que realizan un control cifrado, sobre todo gracias a la implantación de programas de mejora de la calidad. Las técnicas de prevención son múltiples y deben aplicarse simultáneamente. Incluyen medidas globales, como las modalidades de prevención de la transmisión cruzada (higiene de las manos, sobre todo) o de uso de antibióticos, concebidas para reducir la presión de selección de bacterias resistentes a éstos, así como medidas específicas relativas a la colocación y uso de cada uno de los dispositivos invasivos. Numerosas técnicas han demostrado su eficacia en estudios de buen nivel metodológico (higiene de las manos, apósitos para catéteres, etc.), mientras que otras siguen siendo objeto de controversias, por lo que las recomendaciones nacionales e internacionales se actualizan regularmente de acuerdo con los nuevos datos científicos. Estas medidas, implantadas de manera razonada en el marco de programas de mejora de la calidad, permiten obtener tasas muy bajas de infecciones relacionadas con el uso de catéteres vasculares y resultados menos satisfactorios con las NAVM, que justifican la necesidad de proseguir la investigación en este campo.
Collapse
Affiliation(s)
- F. Philippart
- Service de réanimation, Groupe hospitalier Paris Saint-Joseph, 185, rue Raymond-Losserand, 75014 Paris, France
- Université Paris Descartes, 12, rue de l’École-de-Médecine, 75270 Paris cedex 06, France
- Unité cytokines et inflammation, Institut Pasteur, 25-28, rue du Docteur-Roux, 75015 Paris, France
| | - A. Max
- Service de réanimation, Groupe hospitalier Paris Saint-Joseph, 185, rue Raymond-Losserand, 75014 Paris, France
| | - C. Couzigou
- Unité d’hygiène, Groupe hospitalier Paris Saint-Joseph, 185, rue Raymond-Losserand, 75014 Paris, France
| | - B. Misset
- Université Paris Descartes, 12, rue de l’École-de-Médecine, 75270 Paris cedex 06, France
- Chef du service de réanimation, Groupe hospitalier Paris Saint-Joseph, 185, rue Raymond-Losserand, 75014 Paris, France
- Auteur correspondant.
| |
Collapse
|
30
|
Rianimazione e prevenzione delle infezioni nosocomiali. EMC - ANESTESIA-RIANIMAZIONE 2013. [PMCID: PMC7148748 DOI: 10.1016/s1283-0771(12)63945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
I servizi di rianimazione devono organizzare la prevenzione delle infezioni nei loro pazienti in modo minuzioso, in quanto i pazienti sono spesso immunodepressi e subiscono gesti invasivi molteplici, realizzati da personale differente, spesso in situazioni di urgenza e a qualsiasi ora del giorno o della notte. Le principali infezioni che bisogna tentare di prevenire sono le polmoniti batteriche acquisite sotto ventilazione meccanica (PAVM), le infezioni su cateteri intravascolari e le infezioni urinarie su catetere vescicale. L’incidenza di queste infezioni è diminuita nella maggior parte dei servizi che ne effettuano un monitoraggio su base numerica, in particolare nel quadro di programmi di miglioramento della qualità. Le tecniche di prevenzione sono molteplici e devono essere applicate simultaneamente. Esse riguardano delle misure globali, come le modalità di prevenzione della trasmissione crociata (igiene delle mani, in particolare) o di utilizzo degli antibiotici nella prospettiva di ridurre la pressione di selezione di batteri resistenti agli antibiotici, così come delle misure specifiche relative al posizionamento e all’utilizzo di ciascuno dei dispositivi invasivi. Numerose tecniche si sono dimostrate efficaci in studi di buon livello metodologico (igiene delle mani, medicazioni dei cateteri, ecc.) mentre altre sono ancora oggetto di controversie, portando a raccomandazioni nazionali e internazionali regolarmente aggiornate in funzione dei nuovi dati scientifici. Queste misure, implementate in modo ragionato nel quadro di programmi di miglioramento della qualità, consentono di ottenere dei tassi molto bassi per quanto riguarda le infezioni dei cateteri vascolari e dei risultati meno buoni per le PAVM, illustrando la necessità di proseguire la ricerca in questo settore.
Collapse
|
31
|
Bandyopadhaya A, Kesarwani M, Que YA, He J, Padfield K, Tompkins R, Rahme LG. The quorum sensing volatile molecule 2-amino acetophenon modulates host immune responses in a manner that promotes life with unwanted guests. PLoS Pathog 2012; 8:e1003024. [PMID: 23166496 PMCID: PMC3499575 DOI: 10.1371/journal.ppat.1003024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/26/2012] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence indicates that bacterial quorum sensing (QS) signals are important mediators of immunomodulation. However, whether microbes utilize these immunomodulatory signals to maintain infection remain unclear. Here, we show that the Pseudomonas aeruginosa QS-regulated molecule 2-amino acetophenone (2-AA) modulates host immune responses in a manner that increases host ability to cope with this pathogen. Mice treated with 2-AA prior to infection had a 90% survival compared to 10% survival rate observed in the non-pretreated infected mice. Whilst 2-AA stimulation activates key innate immune response pathways involving mitogen-activated protein kinases (MAPKs), nuclear factor (NF)-κB, and pro-inflammatory cytokines, it attenuates immune response activation upon pretreatment, most likely by upregulating anti-inflammatory cytokines. 2-AA host pretreatment is characterized by a transcriptionally regulated block of c-JUN N-terminal kinase (JNK) and NF-κB activation, with relatively preserved activation of extracellular regulated kinase (ERK) 1/2. These kinase changes lead to CCAAT/enhancer-binding protein-β (c/EBPβ) activation and formation of the c/EBPβ-p65 complex that prevents NF-κB activation. 2-AA's aptitude for dampening the inflammatory processes while increasing host survival and pathogen persistence concurs with its ability to signal bacteria to switch to a chronic infection mode. Our results reveal a QS immunomodulatory signal that promotes original aspects of interkingdom communication. We propose that this communication facilitates pathogen persistence, while enabling host tolerance to infection.
Collapse
Affiliation(s)
- Arunava Bandyopadhaya
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Meenu Kesarwani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Yok-Ai Que
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Katie Padfield
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Ronald Tompkins
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Matsumura N, Kamei M, Tsujikawa M, Suzuki M, Xie P, Nishida K. Low-dose lipopolysaccharide pretreatment suppresses choroidal neovascularization via IL-10 induction. PLoS One 2012; 7:e39890. [PMID: 22802947 PMCID: PMC3388993 DOI: 10.1371/journal.pone.0039890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022] Open
Abstract
Recent studies have suggested that some kinds of microbial infection may have a crucial role in the development of many diseases such as autoimmune diseases and certain types of cancer. It has been reported that some chronic infections, such as Chlamydia pneumoniae, and immunological dysfunctions are associated with age-related macular degeneration (AMD), a leading cause of blindness. To evaluate the association between systemic low-level inflammation induced by infection and AMD pathogenesis, we investigated whether intraperitoneal injection of lipopolysaccharide (LPS) can modulate the development of laser-induced choroidal neovascularization (CNV), a key feature of AMD. Contrary to our expectations, the sizes of CNV in mice with LPS pretreatment were approximately 65% smaller than those of the control mice. After LPS pretreatment, serum IL-10 concentration and IL-10 gene expression in peritoneal macrophages and in the posterior part of the eye increased. Peritoneal injection of anti-IL10 antibody reduced CNV suppression by LPS pretreatment. Moreover, adoptive transfer of the resident peritoneal macrophages from LPS-treated mice into control littermates resulted in an approximately 26% reduction in the size of CNV compared with PBS-treated mice. We concluded that CNV formation was suppressed by low-dose LPS pretreatment via IL-10 production by macrophages.
Collapse
Affiliation(s)
- Nagakazu Matsumura
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motohiro Kamei
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mihoko Suzuki
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ping Xie
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
33
|
Quinn EM, Wang J, Redmond HP. The emerging role of microRNA in regulation of endotoxin tolerance. J Leukoc Biol 2012; 91:721-7. [DOI: 10.1189/jlb.1111571] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Kearney DE, Wang W, Redmond HP, Wang JH. Bacterial superantigens enhance the in vitro proinflammatory response and in vivo lethality of the TLR2 agonist bacterial lipoprotein. THE JOURNAL OF IMMUNOLOGY 2011; 187:5363-9. [PMID: 22003201 DOI: 10.4049/jimmunol.1003747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial superantigens are Gram-positive exotoxins that induce proinflammatory cytokine release in vitro, cause lethal shock in vivo, and can be detected in the bloodstream of critically ill patients. They also have a powerful priming effect on the TLR4 agonist LPS. The aim of this study was to investigate the relationship between superantigens and the TLR2 agonist bacterial lipoprotein (BLP). Priming of human monocytes or PBMCs with superantigens significantly enhanced proinflammatory cytokine TNF-α and IL-6 release in response to BLP stimulation. The priming effect of superantigens could be blocked by inhibiting p38 MAPK during the priming phase as opposed to NF-κB or ERK inhibition. This was consistent with higher expression of the phosphorylated p38 after superantigen priming and BLP or LPS stimulation. C57BL/6 mice with superantigen priming (10 μg/mouse) when challenged with BLP (600 μg/mouse) exhibited substantially higher mortality (100%) compared with mice without superantigen priming (zero). Mice given superantigen alone did not demonstrate any signs of illness. Mice challenged with both superantigen and BLP had significantly higher levels of serum TNF-α and IL-6 compared with those of mice challenged with either agent alone. Depletion of the monocyte/macrophage subpopulation significantly reduced the mortality rate from 100 to 20% in superantigen-primed, BLP-challenged C57BL/6 mice, with a 5- to 10-fold decrease in serum TNF-α and IL-6. Our results demonstrate that bacterial superantigens enhance the in vitro proinflammatory cytokine release and in vivo lethality of BLP. This novel finding may help to explain the massive proinflammatory cytokine release seen in superantigen-mediated septic shock.
Collapse
Affiliation(s)
- David E Kearney
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | | | | | | |
Collapse
|
35
|
Buckley JM, Liu JH, Li CH, Blankson S, Wu QD, Jiang Y, Redmond HP, Wang JH. Increased Susceptibility of ST2-Deficient Mice to Polymicrobial Sepsis Is Associated with an Impaired Bactericidal Function. THE JOURNAL OF IMMUNOLOGY 2011; 187:4293-9. [DOI: 10.4049/jimmunol.1003872] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Li CH, Liu J, An M, Redmond HP, Wang JH. Bacterial lipoprotein-induced tolerance is reversed by overexpression of IRAK-1. Immunol Cell Biol 2011; 90:314-20. [PMID: 21537341 DOI: 10.1038/icb.2011.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.
Collapse
Affiliation(s)
- Chong Hui Li
- Department of Academic Surgery, University College Cork (UCC)/National University of Ireland (NUI), Cork University Hospital, Cork, Ireland
| | | | | | | | | |
Collapse
|
37
|
Saverino D, Schito AM, Mannini A, Penco S, Bassi AM, Piatti G. Quinolone/fluoroquinolone susceptibility in Escherichia coli correlates with human polymicrobial bacteriuria and with in vitro interleukine-8 suppression. ACTA ACUST UNITED AC 2010; 61:84-93. [PMID: 21070386 DOI: 10.1111/j.1574-695x.2010.00751.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urinary tract infections (UTIs) are frequently polymicrobial diseases mainly sustained by Escherichia coli in association with other opportunistic pathogens. Cystitis and pyelonephritis are usually accompanied by an inflammatory response, which includes neutrophil recruitment. Uropathogenic E. coli possess the ability to evade host defenses, modulating the innate immune response. The aim of this study was to determine whether particular E. coli strains correlate with polymicrobial bacteriuria and whether escape from the early host defenses and microbial synergy could lead to mixed UTIs. We evaluated 188 E. coli-positive urine samples and assessed the relationships among polymicrobism, neutrophil presence and several traits of E. coli isolates (virulence factors such as hlyA, fimA, papC and their relative products, i.e. hemolysin, type 1 and P fimbriae, and cnf1, their phylogenetic group) and their ability to suppress cytokine response in 5637 bladder epithelial cells. Escherichia coli susceptibility toward quinolones and fluoroquinolones, known to be linked to the pathogenicity of this species, was also considered. We found significant correlations among polymicrobial bacteriuria, absence of pyuria and quinolone/fluoroquinolone susceptibility of E. coli isolates and their enhanced capability to suppress interleukin-8 urothelial production when compared with the patterns induced by the resistant strains.
Collapse
Affiliation(s)
- Daniele Saverino
- Department of Experimental Medicine, Section of Human Anatomy, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Liu J, Buckley JM, Redmond HP, Wang JH. ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance. THE JOURNAL OF IMMUNOLOGY 2010; 184:5802-8. [PMID: 20400705 DOI: 10.4049/jimmunol.0904127] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of TLR signaling is critical for host innate immunity against bacterial infection. Previous studies reported that the ST2 receptor, a member of the Toll/IL-1 receptor superfamily, functions as a negative regulator of TLR4 signaling and maintains LPS tolerance. However, it is undetermined whether ST2 negatively regulates TLR2 signaling and furthermore, whether a TLR2 agonist, bacterial lipoprotein (BLP)-induced tolerance is dependent on ST2. In this study, we show that BLP stimulation-induced production of proinflammatory cytokines and immunocomplex formation of TLR2-MyD88 and MyD88-IL-1R-associated kinase (IRAK) were significantly enhanced in ST2-deficient macrophages compared with those in wild-type controls. Furthermore, overexpression of ST2 dose-dependently attenuated BLP-induced NF-kappaB activation, suggesting a negative regulatory role of ST2 in TLR2 signaling. A moderate but significantly attenuated production of TNF-alpha and IL-6 on a second BLP stimulation was observed in BLP-pretreated, ST2-deficient macrophages, which is associated with substantially reduced IRAK-1 protein expression and downregulated TLR2-MyD88 and MyD88-IRAK immunocomplex formation. ST2-deficient mice, when pretreated with a nonlethal dose of BLP, benefitted from an improved survival against a subsequent lethal BLP challenge, indicating BLP tolerance develops in the absence of the ST2 receptor. Taken together, our results demonstrate that ST2 acts as a negative regulator of TLR2 signaling, but is not required for BLP-induced tolerance.
Collapse
Affiliation(s)
- Jinghua Liu
- Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland
| | | | | | | |
Collapse
|
39
|
Xiang Q, Wen L, Liu MH, Zhang Y, Qu JF, Tian J. Endotoxin tolerance of RAW264.7 correlates with p38-dependent up-regulation of scavenger receptor-A. J Int Med Res 2009; 37:491-502. [PMID: 19383244 DOI: 10.1177/147323000903700225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pre-exposure to lipopolysaccharide (LPS) leads to hyposensitivity to secondary LPS stimulation, known as endotoxin tolerance. The role of macrophage scavenger receptor-A (SR-A) in endotoxin tolerance is unknown. In this study, LPS was shown to induce SR-A expression in the mouse macrophage cell line, RAW264.7, in dose- and time-dependent manners, which correlated with inflammatory cytokine suppression in RAW264.7 on secondary LPS stimulation. Over-expression of SR-A in RAW264.7 suppressed tumour necrosis factor (TNF)-alpha release and nuclear factor (NF)-kappa B activation, demonstrating the involvement of SR-A in endotoxin tolerance. LPS-pre-treated RAW264.7 cells could bind and internalize more fluorescein isothiocyanate (FITC)-LPS than untreated cells and both the SR-A ligand, fucoidan, and anti-SR-A 2F8 antibodies completely suppressed LPS-induced binding and internalization of FITC-LPS by RAW264.7. LPS-induced SR-A expression on RAW264.7 was completely suppressed by the p38-specific inhibitor, SB203580, but not by inhibition of toll-like receptor 4 (TLR4) signalling with MTS510, demonstrating that p38- but not TLR4-dependent up-regulation of SR-A was involved in endotoxin tolerance through binding and internalization of LPS.
Collapse
Affiliation(s)
- Q Xiang
- Department of Critical Care Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
40
|
Wideman RF, Bowen OT, Erf GF. Broiler pulmonary hypertensive responses during lipopolysaccharide-induced tolerance and cyclooxygenase inhibition. Poult Sci 2009; 88:72-85. [PMID: 19096060 DOI: 10.3382/ps.2008-00314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS, endotoxin) triggers pulmonary hypertension (PH) characterized by an increase in pulmonary arterial pressure (PAP) that reaches a peak value within 20 to 25 min and then gradually subsides within 60 min. As the PAP subsides PH cannot be reinitiated, signifying the onset of a period of tolerance (refractoriness) to repeated LPS exposure. The present study was conducted to determine the duration of this tolerance, and to evaluate key mediators thought to contribute to LPS-mediated PH in broilers. Tolerance was shown to persist for 4 to 5 d after the initial exposure to LPS. In tolerant broilers supramaximal i.v. injections of LPS did not reinitiate PH, nor was a significant modulatory role for nitric oxide demonstrated. The pulmonary vasculature of tolerant broilers remains responsive to the thromboxane A(2) (TxA(2)) mimetic U44069, 5-hydroxytryptamine (5-HT, serotonin), and constitutive nitric oxide. Meclofenamate successfully blocked the conversion of arachidonic acid to vasoconstrictive eicosanoids such as TxA(2); nevertheless, meclofenamate failed to inhibit PH in response to LPS. Therefore, TxA(2) does not appear to be the primary vasoconstrictor involved in the PH response to LPS and neither does 5-HT. Broilers emerging from tolerance 5 d after the initial exposure to LPS exhibited interindividual variation in their PH responsiveness to a second LPS injection, ranging from zero response (individuals that remain fully tolerant) to large increases in PAP (post-tolerant individuals). Tolerance might be an important compensatory or protective mechanism for broilers whose pulmonary vascular capacity is marginally adequate under optimal conditions, and whose respiratory systems are chronically challenged with LPS in commercial production facilities. The key vasoconstrictors responsible for the PH elicited by LPS remain to be determined.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | |
Collapse
|
41
|
Induction of endotoxin tolerance enhances bacterial clearance and survival in murine polymicrobial sepsis. Shock 2008; 30:267-73. [PMID: 18197145 DOI: 10.1097/shk.0b013e318162c190] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fundamental mechanisms that underlie endotoxin tolerance remain to be elucidated, and the clinical significance of endotoxin tolerance in the context of active systemic infection remains in question. We hypothesized that the endotoxin tolerance phenotype would result in decreased inflammation at the expense of altered bacterial clearance and, thus, higher mortality in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Endotoxin tolerance was induced in C57Bl/6 mice with 5 mg/kg LPS or vehicle 18 h before subsequent CLP. Lung tissue, peritoneal fluid, and blood were collected at 1, 3, 6, and 18 h after surgery for subsequent analysis. Peritoneal macrophages were isolated for ex vivo phagocytosis assay. In separate experiments, mice were allowed to recover, and survival was monitored for 7 days. Endotoxin tolerance attenuated plasma TNF-alpha and IL-6 at 6 h after CLP. Peritoneal fluid cytokines were significantly attenuated as well. Endotoxin tolerance significantly improved bacterial clearance in both blood and peritoneal fluid after CLP. Similarly, ex vivo phagocytosis by primary peritoneal macrophages and RAW264.7 murine peritoneal macrophages was significantly improved after induction of the endotoxin tolerance phenotype. Contrary to our original hypothesis, we conclude that endotoxin tolerance significantly attenuates the host inflammatory response, augments bacterial clearance, and improves survival in this murine model of polymicrobial sepsis.
Collapse
|
42
|
Pretreatment with the Gram-positive bacterial cell wall molecule peptidoglycan improves bacterial clearance and decreases inflammation and mortality in mice challenged with Staphylococcus aureus. Crit Care Med 2008; 36:3067-73. [PMID: 18824898 DOI: 10.1097/ccm.0b013e31818c6fb7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine whether tolerance and enhancement of innate immune function can be induced by the Gram-positive cell wall component peptidoglycan. DESIGN Controlled, in vivo laboratory study. SUBJECTS Male mice, 8-12 wks (C57BL6/J; C3H/HeJ; B6.129-Tlr2/J). INTERVENTIONS Mice were given intraperitoneal injections of 1 mg peptidoglycan on two consecutive days. Mice were then challenged with an intravenous injection of live Staphylococcus aureus (1 x 10 colony-forming units) 2 days after the second pretreatment. MEASUREMENTS AND MAIN RESULTS Mice pretreated with peptidoglycan had diminished plasma concentrations of tumor necrosis factor-alpha and interferon-gamma in response to the bacterial challenge when compared with untreated controls. Plasma interleukin-10 after bacterial challenge was higher in peptidoglycan-pretreated mice than in controls. Clearance of bacteria after the staphylococcal challenge was improved in mice pretreated with peptidoglycan, and mortality in response to a subsequent Staphylococcus challenge was significantly attenuated. Peptidoglycan pretreatment of mice lacking intact toll-like receptor-4 signaling (C3H/HeJ) or toll-like receptor-2 signaling (toll-like receptor-2 knockouts) had similar effects on plasma cytokine balance, bacterial clearance, and mortality. CONCLUSIONS Exposure to peptidoglycan significantly attenuated inflammation and enhanced bacterial clearance after a subsequent challenge with S. aureus. These results show that exposure to Gram-positive bacterial cell wall components can induce tolerance and enhance innate immune function and neither toll-like receptor-2 nor toll-like receptor-4 are necessary for this phenomenon. Further, although the altered cytokine balance is similar to that seen in septic patients, induced tolerance differs importantly from the clinical scenario of sepsis in that bacterial clearance and survival are improved compared with normal control animals.
Collapse
|
43
|
Lu M, Varley AW, Ohta S, Hardwick J, Munford RS. Host inactivation of bacterial lipopolysaccharide prevents prolonged tolerance following gram-negative bacterial infection. Cell Host Microbe 2008; 4:293-302. [PMID: 18779055 DOI: 10.1016/j.chom.2008.06.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/02/2008] [Accepted: 06/30/2008] [Indexed: 12/20/2022]
Abstract
A transient state of tolerance to microbial molecules accompanies many infectious diseases. Such tolerance is thought to minimize inflammation-induced injury, but it may also alter host defenses. Here we report that recovery from the tolerant state induced by Gram-negative bacteria is greatly delayed in mice that lack acyloxyacyl hydrolase (AOAH), a lipase that partially deacylates the bacterial cell-wall lipopolysaccharide (LPS). Whereas wild-type mice regained normal responsiveness within 14 days after they received an intraperitoneal injection of LPS or Gram-negative bacteria, AOAH-deficient mice had greatly reduced proinflammatory responses to a second LPS injection for at least 3 weeks. In contrast, LPS-primed Aoah- knockout mice maintained an anti-inflammatory response, evident from their plasma levels of interleukin-10 (IL-10). LPS-primed Aoah-knockout mice experiencing prolonged tolerance were highly susceptible to virulent E. coli challenge. Inactivating LPS, an immunostimulatory microbial molecule, is thus important for restoring effective host defenses following Gram-negative bacterial infection in animals.
Collapse
Affiliation(s)
- Mingfang Lu
- Infectious Disease Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA.
| | | | | | | | | |
Collapse
|
44
|
Murphey ED, Sherwood ER. Pretreatment with the Gram-positive bacterial cell wall molecule peptidoglycan improves bacterial clearance and decreases inflammation and mortality in mice challenged with Pseudomonas aeruginosa. Microbes Infect 2008; 10:1244-50. [PMID: 18678270 DOI: 10.1016/j.micinf.2008.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/13/2008] [Accepted: 07/07/2008] [Indexed: 11/20/2022]
Abstract
The objective of this study was to determine if inflammatory tolerance and enhancement of innate immune function could be induced by the Gram-positive cell wall component peptidoglycan (PGN). Male mice (C57BL6/J or C3H/HeJ, 8-12 weeks of age) were given intraperitoneal injections of 1mg PGN on 2 consecutive days. The mice were then challenged with lipopolysaccharide (LPS) or live Pseudomonas aeruginosa (1 x 10(8) colony-forming units) 2 days after the second pretreatment. Mice pretreated with PGN had diminished plasma concentrations of TNFalpha and IFNgamma and elevated concentrations of IL-10 in response to a subsequent LPS or Pseudomonas challenge when compared to untreated controls. Bacterial clearance was improved in mice pretreated with PGN, and mortality in response to a subsequent Pseudomonas challenge was significantly attenuated. PGN pretreatment of LPS-unresponsive mice (C3H/HeJ) verified that the effect of PGN pretreatment was not due to any LPS contamination. We have previously demonstrated that PGN pretreatment induced resistance to a Gram-positive bacterial challenge. The present study extends those results by showing that exposure to the Gram-positive bacterial cell wall component peptidoglycan also induces cross-tolerance to LPS and non-specifically enhances innate immune function in that PGN-pretreated mice had increased resistance to Gram-negative bacterial challenge.
Collapse
Affiliation(s)
- E D Murphey
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Ave, Galveston, TX 77555-0591, USA.
| | | |
Collapse
|
45
|
Murphey ED, Fang G, Sherwood ER. ENDOTOXIN PRETREATMENT IMPROVES BACTERIAL CLEARANCE AND DECREASES MORTALITY IN MICE CHALLENGED WITH STAPHYLOCOCCUS AUREUS. Shock 2008; 29:512-8. [PMID: 17724430 DOI: 10.1097/shk.0b013e318150776f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We studied the effects of tolerance induced by Escherichia coli-derived LPS on the innate immune response to a subsequent Staphylococcus aureus bacterial challenge. LPS tolerance was induced in wild-type mice by either intraperitoneal or intravenous injection of 2 microg of LPS on 2 consecutive days. Mice were challenged with an intravenous injection of live S. aureus (5 x 10(8) colony-forming units) 2 days after the second LPS dose. LPS-tolerant mice had a diminished serum interferon-gamma response to the bacterial challenge. Bacterial counts in liver and spleen tissues were decreased, and survival was improved after the Staphylococcus challenge in LPS-tolerant mice compared with saline-pretreated control mice. LPS pretreatment by the intravenous route was also associated with a decreased number of bacterial colonies in lung tissue in addition to liver and spleen, suggesting that induction of LPS tolerance was somewhat compartmentalized after intraperitoneal LPS pretreatment. Induction of tolerance seemed to be due to LPS-specific signaling because LPS pretreatment of LPS-nonresponsive C3H/HeJ mice did not provide similar effects after bacterial challenge. Flow cytometric analysis of spleens from LPS-tolerant mice revealed an increase in phagocytic cells (neutrophiles and macrophages) compared with control mice. Ex vivo culture of splenocytes from LPS-tolerant mice demonstrated increased uptake of fluorescein isothiocyanate-tagged ovalbumin, but no difference in either phagocytosis of fluorescein isothiocyanate-labeled Staphylococcus or bactericidal activity could be demonstrated on a per-cell basis. These results show that attenuation of inflammation and mortality during LPS tolerance extends to gram-positive bacterial organisms and suggests that LPS-induced enhancement of the innate immune response may be attributed to increased numbers of phagocytic cells.
Collapse
Affiliation(s)
- E D Murphey
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | |
Collapse
|
46
|
Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, Núñez G. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 2008; 28:246-57. [PMID: 18261938 DOI: 10.1016/j.immuni.2007.12.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 11/10/2007] [Accepted: 12/13/2007] [Indexed: 12/17/2022]
Abstract
The cytosolic sensors Nod1 and Nod2 and Toll-like receptors (TLRs) activate defense signaling pathways in response to microbial stimuli. However, the role of Nod1 and Nod2 and their interplay with TLRs during systemic bacterial infection remains poorly understood. Here, we report that macrophages or mice made insensitive to TLRs by previous exposure to microbial ligands remained responsive to Nod1 and Nod2 stimulation. Furthermore, Nod1- and Nod2-mediated signaling and gene expression are enhanced in TLR-tolerant macrophages. Further analyses revealed that innate immune responses induced by bacterial infection relied on Nod1 and Nod2 and their adaptor RICK in macrophages pretreated with TLR ligands but not in naive macrophages. In addition, bacterial clearance upon systemic infection with L. monocytogenes was critically dependent on Nod1 and Nod2 when mice were previously stimulated with lipopolysaccharide or E. coli. Thus, Nod1 and Nod2 are important for microbial recognition and host defense after TLR stimulation.
Collapse
Affiliation(s)
- Yun-Gi Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kumar A, Hazlett LD, Yu FSX. Flagellin suppresses the inflammatory response and enhances bacterial clearance in a murine model of Pseudomonas aeruginosa keratitis. Infect Immun 2008; 76:89-96. [PMID: 17938214 PMCID: PMC2223647 DOI: 10.1128/iai.01232-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/03/2007] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is a common organism associated with bacterial keratitis, especially in extended-wear contact lens users. In the present study, we determined that pretreatment of cultured human corneal epithelial cells with flagellin isolated from the P. aeruginosa PAO1 strain attenuated cytokine production when the cells were challenged with a cytotoxic strain (ATCC 19660), suggesting a potential use of bacterial flagellin to downregulate infection-associated inflammation in vivo. Administration of flagellin via the subconjunctival and intraperitoneal routes 24 h prior to Pseudomonas inoculation significantly improved the disease outcome, preserved structural integrity and transparency, and thus maintained vision in otherwise perforated corneas of C57BL/6 (B6) mice. The flagellin pretreatment resulted in suppression of polymorphonuclear leukocyte infiltration at a late stage of infection but not at an early stage of infection, decreased the expression of proinflammatory cytokine genes (genes encoding interleukin-1beta [IL-1beta], macrophage inflammatory protein 2, IL-12, and gamma interferon), and greatly enhanced bacterial clearance in the corneas of B6 mice probably through induced expression of the cathelicidin-related antimicrobial peptide and inducible nitric oxide synthase. This is the first report that describes the protective mechanisms induced by a Toll-like receptor agonist that not only curbs the host inflammatory response but also eliminates invading bacteria in the B6 mouse cornea.
Collapse
Affiliation(s)
- Ashok Kumar
- Kresge Eye Institute/Department of Ophthalmo, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
48
|
Coffey JC, Wang JH, Kelly R, Romics L, O'Callaghan A, Fiuza C, Redmond HP. Tolerization with BLP down-regulates HMGB1-a critical mediator of sepsis-related lethality. J Leukoc Biol 2007; 82:906-14. [PMID: 17626148 DOI: 10.1189/jlb.0806504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tolerization with bacterial lipoprotein (BLP) affords a significant survival benefit in sepsis. Given that high mobility group box protein-1 (HMGB1) is a recognized mediator of sepsis-related lethality, we determined if tolerization with BLP leads to alterations in HMGB1. In vitro, BLP tolerization led to a reduction in HMGB1 gene transcription. This was mirrored at the protein level, as HMGB1 protein expression and release were reduced significantly in BLP-tolerized human THP-1 monocytic cells. BLP tolerance in vivo led to a highly significant, long-term survival benefit following challenge with lethal dose BLP in C57BL/6 mice. This was associated with an attenuation of HMGB1 release into the circulation, as evidenced by negligible serum HMGB1 levels in BLP-tolerized mice. Moreover, HMGB1 levels in peritoneal macrophages from BLP-tolerized mice were reduced significantly. Hence, tolerization with BLP leads to a down-regulation of HMGB1 protein synthesis and release. The improved survival associated with BLP tolerance could thus be explained by a reduction in HMGB1, were the latter associated with lethality in BLP-related sepsis. In testing this hypothesis, it was noted that neutralization of HMGB1, using anti-HMGB1 antibodies, abrogated BLP-associated lethality almost completely. To conclude, tolerization with BLP leads to a down-regulation of HMGB1, thus offering a novel means of targeting the latter. HMGB1 is also a mediator of lethality in BLP-related sepsis.
Collapse
Affiliation(s)
- J Calvin Coffey
- Department of Academic Surgery, University College Cork (UCC)/National University of Ireland (NUI), Cork University Hospital, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
49
|
Tsukada K, Kitazawa T, Fukushima A, Okugawa S, Yanagimoto S, Tatsuno K, Koike K, Nagase H, Hirai K, Ota Y. Macrophage tolerance induced by stimulation with Toll-like receptor 7/8 ligands. Immunol Lett 2007; 111:51-6. [PMID: 17597229 DOI: 10.1016/j.imlet.2007.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 04/30/2007] [Accepted: 05/08/2007] [Indexed: 01/22/2023]
Abstract
The engagement of Toll-like receptors (TLRs) results in resistance to subsequent challenge with respective ligands in macrophages. Studies have shown that stimulation by ligands for TLR2, TLR4, TLR5 and TLR9 induces this state of hypo-responsiveness (homo-tolerance) towards subsequent stimulation with the same ligands. However, whether homo-tolerance is induced by the ligands of TLR7/8 has not been previously determined. We found that ligands for TLR7/8, namely ss-RNA from HIV and an imidazoquinoline compound, R848, induced macrophage tolerance, as judged by the production of the chemokine MIP-1beta. IRAK-1 phosphorylation was also inhibited in the tolerant cells after subsequent stimulation with R848, although no significant differences were observed in the protein levels of TLR7 between tolerant and non-tolerant cells. These results indicate that macrophage tolerance induced by TLR7/8 ligands is regulated at least at the level of IRAK-1 activation.
Collapse
Affiliation(s)
- Kunihisa Tsukada
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chao LK, Hua KF, Hsu HY, Su YC, Chang ST. Bioactivity assay of extracts from Calocedrus macrolepis var. formosana bark. BIORESOURCE TECHNOLOGY 2006; 97:2462-5. [PMID: 16343895 DOI: 10.1016/j.biortech.2005.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/17/2005] [Accepted: 10/23/2005] [Indexed: 05/05/2023]
Abstract
Alcoholic extracts from bark of Calocedrus macrolepis var. formosana Florin (Cupressaceae) were extracted successively using n-hexane, dichloromethane, ethyl acetate, 1-butanol and water, which gave 34.8%, 34.1%, 24.1%, 3.3% and 3.7% soluble fractions, respectively. Antioxidation activity of these fractions by DPPH assay and dissimilar IC50 values of the DPPH showed that ethyl acetate fraction had the best antioxidant activity; its IC50 was 2.6 microg/ml. Analyses of the composition and anti-inflammatory activity of the subfractions from n-C6H14 fraction showed that the T3 and H5ppt had the best anti-inflammatory activity in LPS-stimulated murine macrophage J774A. 1 cells, respectively; moreover, their major constituent was sugiol (T3 37.1%, H5ppt 81.1%), which at dosages of 10 microg/ml inhibited proIL-1beta protein production completely. Furthermore, the T1 also exhibited anti-inflammatory activity, and its major constituent was ferruginol (above 85.6%).
Collapse
Affiliation(s)
- Louis Kuoping Chao
- Department of Biological Science and Technology, Chung Hwa College of Medical Technology, Tainan, Taiwan
| | | | | | | | | |
Collapse
|