1
|
Evaluation of Serum Interleukin-17, Transforming Growth Factor-beta Levels in Brucellosis Patients Before and After Treatment. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
2
|
Perro M, Iannacone M, von Andrian UH, Peixoto A. Role of LFA-1 integrin in the control of a lymphocytic choriomeningitis virus (LCMV) infection. Virulence 2020; 11:1640-1655. [PMID: 33251934 PMCID: PMC7714442 DOI: 10.1080/21505594.2020.1845506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Leukocyte function-associated antigen 1 (LFA-1) is the most widely expressed member of the β2 integrin family of cell-cell adhesion molecules. Although LFA-1 is thought to regulate multiple aspects of T cell immunity, its role in the response of CD8+ T cells to viral infections remains unclear. Indeed, compelling clinical evidence shows that loss of LFA-1 function predisposes to infection in humans but animal models show limited to no susceptibility to infection. Here, we addressed this conundrum in a mouse model of infection with lymphocytic choriomeningitis virus (LCMV), where CD8+ T cells are necessary and sufficient to confer protection. To this end, we followed the fate and function of wild-type and LFA-1 deficient virus-specific CD8+ T cells and assessed the effect of blocking anti-LFA-1 monoclonal antibody in the outcome of infection. Our analysis of viral clearance and T cell responses using transcriptome profiling reveals a role for LFA-1 as a gatekeeper of effector T cell survival and dysfunction that when defective can predispose to LCMV infection.
Collapse
Affiliation(s)
- Mario Perro
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Matteo Iannacone
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Ulrich H von Andrian
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Antonio Peixoto
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. PLoS Pathog 2020; 16:e1008497. [PMID: 32453780 PMCID: PMC7274463 DOI: 10.1371/journal.ppat.1008497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/05/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Molecular and cell-based studies suggest that HSPG-pathogen interactions promote pathogenesis by facilitating microbial attachment and invasion of host cells. However, the specific identity of HSPGs, precise mechanisms by which HSPGs promote pathogenesis, and the in vivo relevance of HSPG-pathogen interactions remain to be determined. HSPGs also modulate host responses to tissue injury and inflammation, but functions of HSPGs other than facilitating microbial attachment and internalization are understudied in infectious disease. Here we examined the role of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, in mouse models of Listeria monocytogenes (Lm) infection. We show that Sdc1-/- mice are significantly less susceptible to both intragastric and intravenous Lm infection compared to wild type (Wt) mice. This phenotype is not seen in Sdc3-/- or Sdc4-/- mice, indicating that ablation of Sdc1 causes a specific gain of function that enables mice to resist listeriosis. However, Sdc1 does not support Lm attachment or invasion of host cells, indicating that Sdc1 does not promote pathogenesis as a cell surface Lm receptor. Instead, Sdc1 inhibits the clearance of Lm before the bacterium gains access to its intracellular niche. Large intravascular aggregates of neutrophils and neutrophil extracellular traps (NETs) embedded with antimicrobial compounds are formed in Sdc1-/- livers, which trap and kill Lm. Lm infection induces Sdc1 shedding from the surface of hepatocytes in Wt livers, which is directly associated with the decrease in size of intravascular aggregated NETs. Furthermore, administration of purified Sdc1 ectodomains or DNase inhibits the formation of intravascular aggregated neutrophils and NETs and significantly increases the liver bacterial burden in Sdc1-/- mice. These data indicate that Lm induces Sdc1 shedding to subvert the activity of Sdc1 ectodomains to inhibit its clearance by intravascular aggregated NETs.
Collapse
|
4
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
5
|
A Loss-of-Function Mutation in the Integrin Alpha L ( Itgal) Gene Contributes to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Collaborative Cross Strain CC042. Infect Immun 2019; 88:IAI.00656-19. [PMID: 31636138 DOI: 10.1128/iai.00656-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella is an intracellular bacterium found in the gastrointestinal tract of mammalian, avian, and reptilian hosts. Mouse models have been extensively used to model in vivo distinct aspects of human Salmonella infections and have led to the identification of several host susceptibility genes. We have investigated the susceptibility of Collaborative Cross strains to intravenous infection with Salmonella enterica serovar Typhimurium as a model of human systemic invasive infection. In this model, strain CC042/GeniUnc (CC042) mice displayed extreme susceptibility with very high bacterial loads and mortality. CC042 mice showed lower spleen weights and decreased splenocyte numbers before and after infection, affecting mostly CD8+ T cells, B cells, and all myeloid cell populations, compared with control C57BL/6J mice. CC042 mice also had lower thymus weights with a reduced total number of thymocytes and double-negative and double-positive (CD4+, CD8+) thymocytes compared to C57BL/6J mice. Analysis of bone marrow-resident hematopoietic progenitors showed a strong bias against lymphoid-primed multipotent progenitors. An F2 cross between CC042 and C57BL/6N mice identified two loci on chromosome 7 (Stsl6 and Stsl7) associated with differences in bacterial loads. In the Stsl7 region, CC042 carried a loss-of-function variant, unique to this strain, in the integrin alpha L (Itgal) gene, the causative role of which was confirmed by a quantitative complementation test. Notably, Itgal loss of function increased the susceptibility to S. Typhimurium in a (C57BL/6J × CC042)F1 mouse background but not in a C57BL/6J mouse inbred background. These results further emphasize the utility of the Collaborative Cross to identify new host genetic variants controlling susceptibility to infections and improve our understanding of the function of the Itgal gene.
Collapse
|
6
|
Ji ZH, Ren WZ, Gao W, Hao Y, Gao W, Chen J, Quan FS, Hu JP, Yuan B. Analyzing the innate immunity of NIH hairless mice and the impact of gut microbial polymorphisms on Listeria monocytogenes infection. Oncotarget 2017; 8:106222-106232. [PMID: 29290943 PMCID: PMC5739728 DOI: 10.18632/oncotarget.22051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Spontaneous mutant hairless (HL) mice are often used to study hair growth and hair follicle development, and they often exhibit immune dysfunctions. Listeria monocytogenes, an important food-borne bacterium, has been used in animal models to study immune responses to infection. Herein, we analyzed the innate immunity of HL mice and the impact of gut microbial polymorphisms on L. monocytogenes infection. Compared to NIH mice, NIH HL mice were more susceptible to L. monocytogenes, as weight losses, mortality, bacterial load, and histopathological lesions were more severe; the decrease in monocytes may be an important underlying reason. The degree of spleen damage was reduced after co-housing, indicating that the host guides the gut microbiota to alleviate infection. High-throughput pyrosequencing of 16S rRNA demonstrated that gut microbiota composition differed between NIH HL and NIH mice. Infection with L. monocytogenes induced an increase in the number of bacteria belonging to the Rikenellaceae family and Gammaproteobacteria class, and decreased bacteria belonging to the Clostridiales class and Lachnospiraceae family. A substantial reduction in Clostridiales bacteria in infected HL mice may cause a serious infection. The Mycoplasma genus was present only in NIH HL mice and was, thus, considered a biomarker. The results of this study improve our understanding of the use of NIH HL mice as a good animal model of innate immune dysfunction.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Yang Hao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Fu-Shi Quan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
7
|
Witter AR, Okunnu BM, Berg RE. The Essential Role of Neutrophils during Infection with the Intracellular Bacterial Pathogen Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2017; 197:1557-65. [PMID: 27543669 DOI: 10.4049/jimmunol.1600599] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 01/04/2023]
Abstract
Neutrophils have historically been characterized as first responder cells vital to host survival because of their ability to contain and eliminate bacterial and fungal pathogens. However, recent studies have shown that neutrophils participate in both protective and detrimental responses to a diverse array of inflammatory and infectious diseases. Although the contribution of neutrophils to extracellular infections has been investigated for decades, their specific role during intracellular bacterial infections has only recently been appreciated. During infection with the Gram-positive intracellular pathogen Listeria monocytogenes, neutrophils are recruited from the bone marrow to sites of infection where they use novel bacterial-sensing pathways leading to phagocytosis and production of bactericidal factors. This review summarizes the requirement of neutrophils during L. monocytogenes infection by examining both neutrophil trafficking and function during primary and secondary infection.
Collapse
Affiliation(s)
- Alexandra R Witter
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Busola M Okunnu
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Rance E Berg
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
8
|
Wanke-Jellinek L, Keegan JW, Dolan JW, Lederer JA. Characterization of lung infection-induced TCRγδ T cell phenotypes by CyTOF mass cytometry. J Leukoc Biol 2015; 99:483-93. [PMID: 26428679 DOI: 10.1189/jlb.4a0315-115rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/14/2015] [Indexed: 01/11/2023] Open
Abstract
T cell receptor γδ cells are known to be the primary effector T cells involved in the response to bacterial infections, yet their phenotypic characteristics are not as well established as other T cell subsets. In this study, we used cytometry by time-of-flight mass cytometry to better characterize the phenotypic response of T cell receptor γδ cells to Streptococcus pneumoniae lung infection. Mice were infected, and cells from lung washouts, spleen, and lymph nodes were stained to detect cell-surface, intracellular, and signaling markers. We observed that infection caused a significant increase in T cell receptor γδ cells, which expressed high interferon-γ and interleukin-17A levels. Profiling T cell receptor γδ cells by cytometry by time-of-flight revealed that activated γδ T cells uniquely coexpressed cell-surface Gr-1, cluster of differentiation 14, and cluster of differentiation 274 (programmed death-ligand 1). Further classification of Gr-1 expression patterns on T cell receptor γδ cells demonstrated that Gr-1(+) T cell receptor γδ cells were the primary source of interferon-γ, whereas Gr-1(-) cells mostly expressed interleukin-17A. Gr-1(+) T cell receptor γδ cells also showed higher ζ-chain-associated protein kinase 70, p38, and 4eBP1 signaling in response to infection as compared with Gr-1(-) T cell receptor γδ cells. Taken together, Gr-1 expression patterns on γδ T cells in the lung provide a robust marker to differentiate interferon-γ- and interleukin-17A-producing subsets involved in the early immune response to bacterial pneumonia.
Collapse
Affiliation(s)
- Lorenz Wanke-Jellinek
- *Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joshua W Keegan
- *Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - James W Dolan
- *Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - James A Lederer
- *Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Liu JR, Han X, Soriano SG, Yuki K. Leukocyte function-associated antigen-1 deficiency impairs responses to polymicrobial sepsis. World J Clin Cases 2015; 3:793-806. [PMID: 26380827 PMCID: PMC4568529 DOI: 10.12998/wjcc.v3.i9.793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To determine the role of leukocyte function-associated antigen-1 (LFA-1) in polymicrobial sepsis model in mice.
METHODS: Cecal ligation and puncture model was used to study polymicrobial sepsis in wild type and LFA-1 knockout (KO) (= CD11a KO) mice. Their survivals were examined. Neutrophil recruitment to the abdominal cavity, bacterial tissue load and bacterial killing by neutrophils, tissue cytokine profiles, and serum cytokines were examined. Apoptosis of tissues was assessed using cleaved-caspase 3 and TUNNEL staining. The recruitment of neutrophils to various tissues was assessed using myeloperoxidase staining or measuring myeloperoxidase activity.
RESULTS: LFA-1 deficiency significantly decreased survival (P = 0.0024) with the reduction of neutrophil recruitment to the abdominal cavity and higher bacterial load in blood. It was also associated with increased apoptosis in spleen and more organ injuries probed by interleukin-6 mRNA level. However, the deficiency of LFA-1 did not prevent neutrophil recruitment to lung, liver, spleen or kidney, which suggested the existence of LFA-1 independent recruitment mechanism in these organs.
CONCLUSION: LFA-1 deficiency did not attenuate neutrophil recruitment to various organs to adequately mitigate secondary tissue injury in sepsis. It was associated with decreased neutrophil recruitment to the abdominal cavity, higher bacterial load, leading to increased mortality in an abdominal, polymicrobial sepsis.
Collapse
|
10
|
Abstract
PURPOSE Macrophage 1 antigen (Mac-1, CD11bCD18) is a leukocyte adhesion molecule that is involved in many functions including leukocyte recruitment, phagocytosis, and neutrophil apoptosis. The previous report of mild polymicrobial, abdominal sepsis showed that the administration of anti-CD11b-blocking antibody administration attenuated lung injury without any survival benefit. Here we tested the impact of Mac-1 deficiency in severe polymicrobial abdominal sepsis model. METHODS Polymicrobial sepsis was studied using cecal ligation and puncture model in wild-type (WT) or Mac-1-deficient (CD11b knockout [KO]) mice, and their outcomes were examined. Bacterial tissue load and the recruitment of neutrophils to the abdominal cavity were assessed. In vitro bacterial killing assay was performed. Serum cytokine levels were measured using multiarray. Apoptosis of spleen tissues was assessed using Western blot analysis and immunohistochemistry (cleaved caspase 3 and TUNEL staining). In addition, in vitro apoptosis assay was performed using primary splenocytes from both WT and KO mice. The recruitment of neutrophils to lung was assessed by measuring myeloperoxidase activity. RESULTS Macrophage 1 antigen deficiency significantly decreased survival (survival percentage WT 43.5% vs. KO 13.0%; P = 0.0038) with higher bacterial load in blood and more severe systemic inflammation. Knockout mice demonstrated higher apoptosis both in vivo and in vitro. The recruitment of neutrophils to lung was not different between WT and KO mice. CONCLUSIONS Macrophage 1 antigen deficiency was associated with poorer outcomes, more bacterial load, systemic inflammation, and splenic apoptosis. However, Mac-1 deficiency did not attenuate neutrophil recruitment to lung.
Collapse
|
11
|
Bu W, Pereira LM, Eckenhoff RG, Yuki K. Stereoselectivity of isoflurane in adhesion molecule leukocyte function-associated antigen-1. PLoS One 2014; 9:e96649. [PMID: 24801074 PMCID: PMC4011845 DOI: 10.1371/journal.pone.0096649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Isoflurane in clinical use is a racemate of S- and R-isoflurane. Previous studies have demonstrated that the effects of S-isoflurane on relevant anesthetic targets might be modestly stronger (less than 2-fold) than R-isoflurane. The X-ray crystallographic structure of the immunological target, leukocyte function-associated antigen-1 (LFA-1) with racemic isoflurane suggested that only S-isoflurane bound specifically to this protein. If so, the use of specific isoflurane enantiomers may have advantage in the surgical settings where a wide range of inflammatory responses is expected to occur. Here, we have further tested the hypothesis that isoflurane enantioselectivity is apparent in solution binding and functional studies. METHODS First, binding of isoflurane enantiomers to LFA-1 was studied using 1-aminoanthracene (1-AMA) displacement assays. The binding site of each enantiomer on LFA-1 was studied using the docking program GLIDE. Functional studies employed the flow-cytometry based ICAM binding assay. RESULTS Both enantiomers decreased 1-AMA fluorescence signal (at 520 nm), indicating that both competed with 1-AMA and bound to the αL I domain. The docking simulation demonstrated that both enantiomers bound to the LFA-1 "lovastatin site." ICAM binding assays showed that S-isoflurane inhibited more potently than R-isoflurane, consistent with the result of 1-AMA competition assay. CONCLUSIONS In contrast with the x-ray crystallography, both enantiomers bound to and inhibited LFA-1. S-isoflurane showed slight preference over R-isoflurane.
Collapse
Affiliation(s)
- Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Luis M. Pereira
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
The role of T helper (TH)17 cells as a double-edged sword in the interplay of infection and autoimmunity with a focus on xenobiotic-induced immunomodulation. Clin Dev Immunol 2013; 2013:374769. [PMID: 24151516 PMCID: PMC3787652 DOI: 10.1155/2013/374769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/04/2013] [Accepted: 06/22/2013] [Indexed: 12/18/2022]
Abstract
Extensive research in recent years suggests that exposure to xenobiotic stimuli plays a critical role in autoimmunity induction and severity and that the resulting response would be exacerbated in individuals with an infection-aroused immune system. In this context, heavy metals constitute a prominent category of xenobiotic substances, known to alter divergent immune cell responses in accidentally and occupationally exposed individuals, thereby increasing the susceptibility to autoimmunity and cancer, especially when accompanied by inflammation-triggered persistent sensitization. This perception is learned from experimental models of infection and epidemiologic studies and clearly underscores the interplay of exposure to such immunomodulatory elements with pre- or postexposure infectious events. Further, the TH17 cell subset, known to be associated with a growing list of autoimmune manifestations, may be the “superstar” at the interface of xenobiotic exposure and autoimmunity. In this review, the most recently established links to this nomination are short-listed to create a framework to better understand new insights into TH17's contributions to autoimmunity.
Collapse
|
13
|
Liu Z, Petersen R, Devireddy L. Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections. THE JOURNAL OF IMMUNOLOGY 2013; 190:4692-706. [PMID: 23543755 DOI: 10.4049/jimmunol.1202411] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens for which siderophores would normally be chelated by 24p3. Specific granule deficiency (SGD) is a rare congenital disorder characterized by complete absence of proteins in secondary granules. Neutrophils from SGD patients, who are prone to bacterial infections, lack normal functions, but the potential role of 24p3 in neutrophil dysfunction in SGD is not known. In this study, we show that neutrophils from mice genetically deficient for lipocalin 24p3 (24p3(-/-)) are defective in many neutrophil functions. Specifically, neutrophils in 24p3(-/-) mice do not extravasate to sites of infection and are defective for chemotaxis. A transcriptome analysis revealed that genes that control cytoskeletal reorganization are selectively suppressed in 24p3(-/-) neutrophils. Additionally, small regulatory RNAs (microRNAs) that control upstream regulators of cytoskeletal proteins are also increased in 24p3(-/-) neutrophils. Further, 24p3(-/-) neutrophils failed to phagocytose bacteria, which may account for the enhanced sensitivity of 24p3(-/-) mice to both intracellular (Listeria monocytogenes) and extracellular (Candida albicans and Staphylococcus aureus) pathogens. Listeria does not secrete siderophores, and additionally, the siderophore secreted by Candida is not sequestered by 24p3. Therefore, the heightened sensitivity of 24p3(-/-) mice to these pathogens is not due to sequestration of siderophores limiting iron availability, but is a consequence of impaired neutrophil function.
Collapse
Affiliation(s)
- Zhuoming Liu
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
14
|
El Kebir D, Filep JG. Modulation of Neutrophil Apoptosis and the Resolution of Inflammation through β2 Integrins. Front Immunol 2013; 4:60. [PMID: 23508943 PMCID: PMC3589696 DOI: 10.3389/fimmu.2013.00060] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/21/2013] [Indexed: 01/13/2023] Open
Abstract
Precise control of the neutrophil death program provides a balance between their defense functions and safe clearance, whereas impaired regulation of neutrophil death is thought to contribute to a wide range of inflammatory pathologies. Apoptosis is essential for neutrophil functional shutdown, removal of emigrated neutrophils, and timely resolution of inflammation. Neutrophils receive survival and pro-apoptosis cues from the inflammatory microenvironment and integrate these signals through surface receptors and common downstream mechanisms. Among these receptors are the leukocyte-specific membrane receptors β2 integrins that are best known for regulating adhesion and phagocytosis. Accumulating evidence indicate that outside-in signaling through the β2 integrin Mac-1 can generate contrasting cues in neutrophils, leading to promotion of their survival or apoptosis. Binding of Mac-1 to its ligands ICAM-1, fibrinogen, or the azurophilic granule enzyme myeloperoxidase suppresses apoptosis, whereas Mac-1-mediated phagocytosis of bacteria evokes apoptotic cell death. Mac-1 signaling is also target for the anti-inflammatory, pro-resolving mediators, including lipoxin A4, aspirin-triggered lipoxin A4, and resolvin E1. This review focuses on molecular mechanisms underlying Mac-1 regulation of neutrophil apoptosis and highlights recent advances how hierarchy of survival and pro-apoptosis signals can be harnessed to facilitate neutrophil apoptosis and the resolution of inflammation.
Collapse
Affiliation(s)
- Driss El Kebir
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital Montreal, QC, Canada
| | | |
Collapse
|
15
|
CD11a regulates effector CD8 T cell differentiation and central memory development in response to infection with Listeria monocytogenes. Infect Immun 2013; 81:1140-51. [PMID: 23357382 DOI: 10.1128/iai.00749-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
β2 (CD18) integrins with α-chains CD11a, -b, -c, and -d are important adhesion molecules necessary for leukocyte migration and cellular interactions. CD18 deficiency leads to recurrent bacterial infections and poor wound healing due to reduced migration of leukocytes to inflammatory sites. CD8 T cells also upregulate CD11a, CD11b, and CD11c upon activation. However, the role these molecules play for CD8 T cells in vivo is not known. To determine the function of individual β2 integrins, we examined CD8 T cell responses to Listeria monocytogenes infection in CD11a-, CD11b-, and CD11c-deficient mice. The absence of CD11b or CD11c had no effect on the generation of antigen-specific CD8 T cells. In contrast, the magnitude of the primary CD8 T cell response in CD11a-deficient mice was significantly reduced. Moreover, the response in CD11a(-/-) mice exhibited reduced differentiation of short-lived effector cells (KLRG1(hi) CD127(lo)), although cytokine and granzyme B production levels were unaffected. Notably, CD11a deficiency resulted in greatly enhanced generation of CD62L(+) central memory cells. Surprisingly, CD8 T cells lacking CD11a mounted a robust secondary response to infection. Taken together, these findings demonstrated that CD11a expression contributes to expansion and differentiation of primary CD8 T cells but may be dispensable for secondary responses to infection.
Collapse
|
16
|
Anti-cancer versus cancer-promoting effects of the interleukin-17-producing T helper cells. Immunol Lett 2012; 149:123-33. [PMID: 23159638 DOI: 10.1016/j.imlet.2012.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/15/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022]
Abstract
Research on T helper 17 (Th17) cells with regard to immunoediting has revealed elusive results. Whereas enhanced Th17 response and related molecules such as interleukin (IL)-17, IL-21, IL-22, IL-23 and STAT3 accompanied tumor induction and progression, finding that tumor growth/stage was negatively correlated with increased infiltration of Th17 cells in the tumor mass has prompted elucidation of various antitumor mechanisms elicited by Th17 and their related molecules. The pro-tumor efficacy of Th17 response included promotion of neutrophilia and induction of angiogenic (e.g. VEGF, MMP2 and MMP9) and anti-apoptotic factors (e.g. Bcl-XL), as well as expansion and activation of myeloid-derived suppressor cells, which facilitate generation of tumor-specific regulatory T cells. Other tumor immunogenic settings revealed anti-tumor pathways including induction of cytotoxic activity, expression of MHC antigens, the ability Th17 cells to reside within the tumor, and to convert into IFN-γ producers. Notably, Th17 cell related molecules exert indirect pro- or anti-tumor effects via inducing viral persistence or mediating protective mechanisms against bacterial and viral infection. Herein, the recent literature revealing such immunoediting events mediated by Th17 cells and their associated molecules as delivered by various experimental regimens and observed in cancer patient are revised, with a focus on some proposed anti-cancer therapies.
Collapse
|
17
|
Sauer A, Pfaff AW, Villard O, Creuzot-Garcher C, Dalle F, Chiquet C, Pelloux H, Speeg-Schatz C, Gaucher D, Prevost G, Bourcier T, Candolfi E. Interleukin 17A as an Effective Target for Anti-inflammatory and Antiparasitic Treatment of Toxoplasmic Uveitis. J Infect Dis 2012; 206:1319-29. [DOI: 10.1093/infdis/jis486] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Guo X, Barroso L, Lyerly DM, Petri WA, Houpt ER. CD4+ and CD8+ T cell- and IL-17-mediated protection against Entamoeba histolytica induced by a recombinant vaccine. Vaccine 2010; 29:772-7. [PMID: 21095257 DOI: 10.1016/j.vaccine.2010.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/02/2010] [Accepted: 11/06/2010] [Indexed: 01/17/2023]
Abstract
Amebiasis in the murine model can be prevented by vaccination with the Gal/GalNAc lectin through a T cell-dependent mechanism. In this work we further decipher the mechanism of this protection. Mice vaccinated with the recombinant "LecA" fragment of the Gal/GalNAc lectin with alum were capable of transferring protection to naïve recipients by both CD4+ T cells and surprisingly CD8+ T cells. We then examined the cytokine profile of these cells. CD4+ T cells from PBMC of LecA-alum vaccinated mice were observed to be a major source of IFN-γ, known to be a protective cytokine with this vaccine. In contrast, CD8+ T cells produced relatively little IFN-γ but more IL-17 than the CD4 compartment. We thus examined the role of IL-17 in vaccine mediated protection and found through neutralization experiments that this cytokine contributed to LecA-alum vaccine protection. In addition we examined whether these cells exhibited direct amebicidal activity in vitro and found that both populations had amebicidal activity at high concentrations (1000:1) but CD8+ T cells appeared more potent, capable of cytotoxicity at a 100:1 ratio. In conclusion, both CD4 and CD8 T cells exert protection with this amebiasis vaccine. The mechanism of CD8 T cell-mediated protection may include direct amebicidal activity and/or IL-17 production. Both IL-17 and IFN-γ are useful surrogates for immune protection.
Collapse
Affiliation(s)
- Xiaoti Guo
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
19
|
Costantini C, Cassatella MA. The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity. J Leukoc Biol 2010; 89:221-33. [PMID: 20682626 DOI: 10.1189/jlb.0510250] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The immune system is equipped with a plethora of mechanisms that protect the host from the harmful effects of environmental insults. However, the traditional "hierarchical" view of the immune response, in which innate, "nonspecific" cells are first recruited to the site of damage, before the highly "specific", adaptive immune response develops, has been questioned recently. First, the innate response is much more specific than recognized previously: indeed, each cell of the innate system is not only endowed with an ever-expanding array of germ-line-encoded receptors, which differentiate between distinct insults, but also is modulated continuously by other leukocytes that concomitantly interact with and respond to that particular insult. The other reason is that the cells of the innate system are instrumental for the adaptive system to accomplish its function, as they can also modulate the activity of lymphocytes reciprocally during the entire course of the immune response. This complex pattern of interactions is illustrated by recent advances on the functions of PMNs, clearly showing that unexpectedly, these cells also contribute to the regulation of the host immune response by crosstalk with innate and adaptive leukocytes, including NK cells. Herein, given the peculiar role of neutrophils and NK cells in inflammation, clearance of pathogens/viral-infected cells, and cancer immunosurveillance, we summarize the current knowledge about the mechanisms whereby neutrophils and NK cells interact and regulate the activities of one another, as well as discuss their potential implications involved in the pathogenesis of chronic, inflammatory pathologies, infections, and tumors.
Collapse
|
20
|
Emoto M, Emoto Y, Yoshizawa I, Kita E, Shimizu T, Hurwitz R, Brinkmann V, Kaufmann SHE. Alpha-GalCer ameliorates listeriosis by accelerating infiltration of Gr-1+ cells into the liver. Eur J Immunol 2010; 40:1328-41. [PMID: 20162550 DOI: 10.1002/eji.200939594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alpha-galactosylceramide (alpha-GalCer) activates invariant (i)NKT cells, which in turn stimulate immunocompetent cells. Although activation of iNKT cells appears critical for regulation of immune responses, it remains elusive whether protection against intracellular bacteria can be induced by alpha-GalCer. Here, we show that alpha-GalCer treatment ameliorates murine listeriosis, and inhibits inflammation following Listeria monocytogenes infection. Liver infiltration of Gr-1+ cells and gamma/delta T cells was accelerated by alpha-GalCer treatment. Gr-1+ cell and gamma/delta T-cell depletion exacerbated listeriosis in alpha-GalCer-treated mice, and this effect was more pronounced after depletion of Gr-1+ cells than that of gamma/delta T cells. Although GM-CSF and IL-17 were secreted by NKT cells after alpha-GalCer treatment, liver infiltration of Gr-1+ cells was not prevented by neutralizing mAb. In parallel to the numerical increase of CD11b+Gr-1+ cells in the liver following alpha-GalCer treatment, CD11b-Gr-1+ cells were numerically reduced in the bone marrow. In addition, respiratory burst in Gr-1+ cells was enhanced by alpha-GalCer treatment. Our results indicate that alpha-GalCer-induced antibacterial immunity is caused, in part, by accelerated infiltration of Gr-1+ cells and to a lesser degree of gamma/delta T cells into the liver. We also suggest that the infiltration of Gr-1+ cells is caused by an accelerated supply from the bone marrow.
Collapse
Affiliation(s)
- Masashi Emoto
- Laboratory of Immunology, Department of Laboratory Sciences, Gunma University School of Health Sciences, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Henry T, Kirimanjeswara GS, Ruby T, Jones JW, Peng K, Perret M, Ho L, Sauer JD, Iwakura Y, Metzger DW, Monack DM. Type I IFN signaling constrains IL-17A/F secretion by gammadelta T cells during bacterial infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3755-67. [PMID: 20176744 PMCID: PMC2879132 DOI: 10.4049/jimmunol.0902065] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recognition of intracellular bacteria by macrophages leads to secretion of type I IFNs. However, the role of type I IFN during bacterial infection is still poorly understood. Francisella tularensis, the causative agent of tularemia, is a pathogenic bacterium that replicates in the cytosol of macrophages leading to secretion of type I IFN. In this study, we investigated the role of type I IFNs in a mouse model of tularemia. Mice deficient for type I IFN receptor (IFNAR1(-/-)) are more resistant to intradermal infection with F. tularensis subspecies novicida (F. novicida). Increased resistance to infection was associated with a specific increase in IL-17A/F and a corresponding expansion of an IL-17A(+) gammadelta T cell population, indicating that type I IFNs negatively regulate the number of IL-17A(+) gammadelta T cells during infection. Furthermore, IL-17A-deficient mice contained fewer neutrophils compared with wild-type mice during infection, indicating that IL-17A contributes to neutrophil expansion during F. novicida infection. Accordingly, an increase in IL-17A in IFNAR1(-/-) mice correlated with an increase in splenic neutrophil numbers. Similar results were obtained in a mouse model of pneumonic tularemia using the highly virulent F. tularensis subspecies tularensis SchuS4 strain and in a mouse model of systemic Listeria monocytogenes infection. Our results indicate that the type I IFN-mediated negative regulation of IL-17A(+) gammadelta T cell expansion is conserved during bacterial infections. We propose that this newly described activity of type I IFN signaling might participate in the resistance of the IFNAR1(-/-) mice to infection with F. novicida and other intracellular bacteria.
Collapse
Affiliation(s)
- Thomas Henry
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Fondation Innovation en Infectiologie, Institut National de la Santé et de la Recherche Médicale, Unité 851, Centre d'infectiologie, Lyon, France
| | | | - Thomas Ruby
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan W. Jones
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Kaitian Peng
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Magali Perret
- Fondation Innovation en Infectiologie, Institut National de la Santé et de la Recherche Médicale, Unité 851, Centre d'infectiologie, Lyon, France
| | - Lena Ho
- Howard Hugues Medical Institute and the Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - John-Demian Sauer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94117, USA
| | - Yoichiro Iwakura
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany, Medical College, Albany, NY, USA
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Infect Immun 2010; 78:2272-82. [PMID: 20231405 DOI: 10.1128/iai.01374-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Major impediments to developing a Chlamydia vaccine lie in identifying immunologically relevant T-cell antigens and delivery in a manner to stimulate protective immunity. Using an immunoproteomic approach, we previously identified three immunodominant Chlamydia T-cell antigens (PmpG-1, PmpE/F-2, and RplF). Because RplF has high homology to a human ortholog, it may not be suitable for human vaccine development. Therefore, in this study, we evaluated protection against Chlamydia infection in the genital tract in C57BL/6 mice immunized with Chlamydia-specific membrane proteins PmpG-1, PmpE/F-2, and major outer membrane protein (MOMP; as a reference) or a combination of them formulated with one of three adjuvants, CpG oligodeoxynucleotide (CpG-ODN), AbISCO-100 (AbISCO), or DDA/TDB (dimethyldioctadecylammonium bromide/D-(+)-trehalose 6,6'-dibehenate). The results show that immunization with the CpG-ODN formulation failed to provide protection against Chlamydia infection; the AbISCO formulation conferred moderate protection, and the DDA/TDB formulation showed the highest degree of protective efficacy. The combination of PmpG-1, PmpE/F-2, and MOMP proteins formulated with DDA/TDB exhibited the greatest degree of protection among all vaccine groups studied. Moreover, this vaccine combination also engendered significant protection in BALB/c mice, which have a different major histocompatibility complex (MHC) background. We measured cell-mediated immune cytokine responses in mice immunized with PmpG-1 mixed with each of the three adjuvants. The results demonstrate that mice immunized with the DDA/TDB formulation induced the strongest gamma interferon (IFN-gamma) and interleukin-17 (IL-17) responses, characterized by the highest frequency of IFN-gamma/tumor necrosis factor alpha (TNF-alpha) and IFN-gamma/IL-17 double-positive CD4(+) T cells. In conclusion, a Chlamydia vaccine based on the recombinant proteins PmpG-1, PmpE/F-2, and MOMP delivered in a DDA/TDB adjuvant conferred protection against infection that correlated with IFN-gamma/TNF-alpha and IFN-gamma/IL-17 double-positive CD4(+) T cells.
Collapse
|
23
|
Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE. IL-23 is required for protection against systemic infection with Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2010; 183:8026-34. [PMID: 19923464 DOI: 10.4049/jimmunol.0901588] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Listeria monocytogenes (LM) is a Gram-positive, intracellular bacterium that can induce spontaneous abortion, septicemia, and meningitis. Although it is known that neutrophils are required for elimination of the bacteria and for survival of the host, the mechanisms governing the recruitment of neutrophils to LM-infected tissues are not fully understood. We demonstrate here that IL-23 and the IL-17 receptor A (IL-17RA), which mediates both IL-17A and IL-17F signaling, are necessary for resistance against systemic LM infection. LM-infected IL-23p19 knockout (KO) mice have decreased production of IL-17A and IL-17F, while IFN-gamma production is not altered by the lack of IL-23. LM induces the production of IL-17A from gammadelta T cells, but not CD4, CD8, or NK cells. Furthermore, a lack of efficient neutrophil recruitment to the liver is evident in both IL-23p19 KO and IL-17RA KO mice during LM infection. Immunocytochemical analysis of infected livers revealed that neutrophils were able to localize with LM in IL-23p19 KO and IL-17RA KO mice, indicating that IL-23 and IL-17RA do not regulate the precise localization of neutrophils with LM. The importance of IL-23-induced IL-17A was demonstrated by injecting IL-23p19 KO mice with recombinant IL-17A. These mice had reduced LM bacterial burdens compared with IL-23p19 KO mice that did not receive IL-17A. These results indicate that during LM infection, IL-23 regulates the production of IL-17A and IL-17F from gammadelta T cells, resulting in optimal liver neutrophil recruitment and enhanced bacterial clearance.
Collapse
Affiliation(s)
- Karen D Meeks
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Lineage-specific responses from the effector T-cell repertoire form a critical component of adaptive immunity. The recent identification of Th17 cells-a third, distinct lineage of helper T cells-collapses the long-accepted paradigm in which Th1 and Th2 cells distinctly mediate cellular and humoral immunity, respectively. In this minireview, we discuss the involvement of the Th17 lineage during infection by extracellular bacteria, intracellular bacteria, and fungi. Emerging trends suggest that the Th17 population bridges innate and adaptive immunity to produce a robust antimicrobial inflammatory response. However, because Th17 cells mediate both host defense and pathological inflammation, elucidation of mechanisms that attenuate but do not completely abolish the Th17 response may have powerful implications for therapy.
Collapse
|
25
|
Abstract
SUMMARY Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4(+) T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection.
Collapse
Affiliation(s)
- Laura A Tesmer
- Department of Internal Medicine, Division of Rheumatology, Rheumatic Disease Core Center, University of Michigan, Ann Arbor, MI 48109-5358, USA
| | | | | | | |
Collapse
|
26
|
Abstract
SUMMARY Our understanding of the role of T cells in human disease is undergoing revision as a result of the discovery of T-helper 17 (Th17) cells, a unique CD4(+) T-cell subset characterized by production of interleukin-17 (IL-17). IL-17 is a highly inflammatory cytokine with robust effects on stromal cells in many tissues. Recent data in humans and mice suggest that Th17 cells play an important role in the pathogenesis of a diverse group of immune-mediated diseases, including psoriasis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and asthma. Initial reports also propose a role for Th17 cells in tumorigenesis and transplant rejection. Important differences, as well as many similarities, are emerging when the biology of Th17 cells in the mouse is compared with corresponding phenomena in humans. As our understanding of human Th17 biology grows, the mechanisms underlying many diseases are becoming more apparent, resulting in a new appreciation for both previously known and more recently discovered cytokines, chemokines, and feedback mechanisms. Given the strong association between excessive Th17 activity and human disease, new therapeutic approaches targeting Th17 cells are highly promising, but the potential safety of such treatments may be limited by the role of these cells in normal host defenses against infection.
Collapse
Affiliation(s)
- Laura A Tesmer
- Department of Internal Medicine, Division of Rheumatology, Rheumatic Disease Core Center, University of Michigan, Ann Arbor, MI 48109-5358, USA
| | | | | | | |
Collapse
|
27
|
Curtis MM, Way SS. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 2009; 126:177-85. [PMID: 19125888 DOI: 10.1111/j.1365-2567.2008.03017.x] [Citation(s) in RCA: 357] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mammalian immune system is intricately regulated, allowing for potent pathogen-specific immunity to be rapidly activated in response to infection with a broad and diverse array of potential pathogens. As a result of their ability to differentiate into distinct effector lineages, CD4 T cells significantly contribute to pathogen-specific adaptive immune responses. Through the production of effector cytokines, CD4 T helper (Th) cells orchestrate the precise mobilization of specific immune cells to eradicate infection. The protective effects of the newly identified lineage of Th17 cells against pathogens like Klebsiella pneumoniae, Citrobacter rodentium and Candida albicans indicate the capacity of Th17 cells to confer protection against extracellular bacterial and fungal pathogens, filling a critical void in host immunity not covered by the classically described Th1 lineage that activates immunity to intracellular pathogens or the Th2 lineage that is important in protection against mucosal parasitic pathogens. Host defence by Th17 cells extends beyond protection against extracellular bacterial and fungal pathogens, as demonstrated in infections against intracellular bacteria like Listeria monocytogenes and Salmonella enterica, as well as Mycobacterium tuberculosis. Herein, we summarize both experimental data from mouse infection models and epidemiological studies in humans that demonstrate the protective effects of interleukin-17 and Th17 CD4 T cells in immunity to bacterial, mycobacterial and fungal pathogens.
Collapse
Affiliation(s)
- Meredith M Curtis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
28
|
Stimulation of the molecule 4-1BB enhances host defense against Listeria monocytogenes infection in mice by inducing rapid infiltration and activation of neutrophils and monocytes. Infect Immun 2009; 77:2168-76. [PMID: 19237524 DOI: 10.1128/iai.01350-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor necrosis factor receptor family molecule 4-1BB (CD137) has diverse roles in adaptive and innate immune responses. However, little is known of its role in bacterial infections. Previously, we showed that 4-1BB-deficient mice have enhanced susceptibility to Listeria monocytogenes infection, and mice pretreated with agonistic anti-4-1BB antibody (3E1) were much more resistant to L. monocytogenes infection than mice treated with control antibody. In this study, we report that stimulating 4-1BB by administering 3E1 in the early phase of L. monocytogenes infection is critical for promoting the survival of mice by inducing rapid infiltration of neutrophils and monocytes into L. monocytogenes-infected livers. The levels of tumor necrosis factor alpha, interleukin 6, and monocyte chemoattractant protein 1 in the livers of 3E1-treated mice increased as early as 30 min postinfection and peaked by 1 to 2 h, while those in mice treated with control antibody started to increase only at 16 h postinfection. Monocytes and neutrophils from the 3E1-treated mice had higher levels of activation markers, phagocytic activity, and reactive oxygen species than those from control mice. In vitro stimulation of 4-1BB induced the production of the inflammatory cytokines/chemokines of neutrophils, but not those of monocytes. These results suggest that 4-1BB stimulation of neutrophils in the early phase of L. monocytogenes infection causes rapid production of inflammatory cytokines/chemokines and that the subsequent infiltration of neutrophils and monocytes is crucial for eliminating the infecting L. monocytogenes.
Collapse
|
29
|
Sieve AN, Meeks KD, Bodhankar S, Lee S, Kolls JK, Simecka JW, Berg RE. A novel IL-17-dependent mechanism of cross protection: respiratory infection with mycoplasma protects against a secondary listeria infection. Eur J Immunol 2009; 39:426-38. [PMID: 19180464 PMCID: PMC2735239 DOI: 10.1002/eji.200838726] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune responses to pathogens occur within the context of current and previous infections. Cross protection refers to the phenomena where infection with a particular pathogen provides enhanced resistance to a subsequent unrelated pathogen in an antigen-independent manner. Proposed mechanisms of antigen-independent cross protection have involved the secretion of IFN-gamma, which activates macrophages, thus providing enhanced innate immunity against the secondary viral or bacterial pathogen. Here we provide evidence that a primary infection with the chronic respiratory pathogen, Mycoplasma pulmonis, provides a novel form of cross protection against a secondary infection with Listeria monocytogenes that is not mediated by IFN-gamma, but instead relies upon IL-17 and mobilization of neutrophils. Mice infected with M. pulmonis have enhanced clearance of L. monocytogenes from the spleen and liver, which is associated with increased numbers of Gr-1(+)CD11b(+) cells and higher levels of IL-17. This enhanced clearance of L. monocytogenes was absent in mice depleted of Gr-1(+) cells or in mice deficient in the IL-17 receptor. Additionally, both the IL-17 receptor and neutrophils were essential for optimal clearance of M. pulmonis. Thus, a natural component of the immune response directed against M. pulmonis was able to enhance clearance of L. monocytogenes.
Collapse
Affiliation(s)
- Amy N. Sieve
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Karen D. Meeks
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Sheetal Bodhankar
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Suheung Lee
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jay K. Kolls
- Division of Pulmonology, Department of Pediatrics, Children's Hospital of Pittsburgh and The University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Jerry W. Simecka
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Rance E. Berg
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|
30
|
Lee SH, Prince JE, Rais M, Kheradmand F, Ballantyne CM, Weitz-Schmidt G, Smith CW, Corry DB. Developmental control of integrin expression regulates Th2 effector homing. THE JOURNAL OF IMMUNOLOGY 2008; 180:4656-67. [PMID: 18354189 DOI: 10.4049/jimmunol.180.7.4656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T cells showed normal in vitro differentiation and function. However, Th2 cell-dependent allergic lung disease was markedly reduced in CD11a null mice and wild-type mice given LFA-1 inhibitors, whereas control of infection with Leishmania major, a Th1-dependent response, was enhanced. In both disease models, recruitment of IL-4-, but not IFN-gamma-secreting cells to relevant organs was impaired, as was adhesion of Th2 cells in vitro. These diverse findings were explained by the markedly reduced expression of CD29, an alternate homing integrin, on Th2, but not Th1, cells, which precludes Th2 homing in the absence of CD11a. Thus, murine Th1 and Th2 cells use distinct integrins for homing, suggesting novel opportunities for integrin-based therapeutic intervention in diverse human ailments influenced by Th2 cells.
Collapse
Affiliation(s)
- Seung-Hyo Lee
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang J, Yang M, Htut TM, Ouyang X, Hanidu A, Li X, Sellati R, Jiang H, Zhang S, Li H, Zhao J, Ting AT, Mayer L, Unkeless JC, Labadia ME, Hodge M, Li J, Xiong H. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgamma t. Eur J Immunol 2008; 38:1204-14. [PMID: 18412165 PMCID: PMC2989250 DOI: 10.1002/eji.200838145] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) associates with p28 to form IL-27 and with IL-12p35 to form IL-35. IL-27Ralpha(-/-) mice studies indicate that IL-27 negatively regulates Th17 cell differentiation. However, no EBI3, p28 or p35-deficiency studies that directly address the role of EBI3, p28 or p35 on Th17 cells have been done. Here, we demonstrate that spleen cells derived from EBI3(-/-) mice produce significantly higher levels of IL-17 as well as IL-22 upon stimulation with OVA. In vitro derived EBI3(-/-) Th17 cells also produced significantly higher levels of IL-17 and IL-22 than WT cells. The frequency of IL-17-producing cells was also elevated when EBI3(-/-) cells were cultured under Th17 conditions. In addition, spleen cells from EBI3(-/-) mice immunized with Listeria monocytogenes produced significantly elevated levels of IL-17 and IL-22. Furthermore, the Th17 transcription factor RORgamma t was significantly enhanced in EBI3(-/-) cells. Finally, EBI3(-/-) mice exhibited a reduced bacterial load following an acute challenge with L. monocytogenes or a re-challenge of previously immunized mice, suggesting that EBI3 negatively regulates both innate and adaptive immunity. Taken together, these data provide direct evidence that EBI3 negatively regulates the expression of IL-17, IL-22 and RORgamma t as well as protective immunity against L. monocytogenes.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression/genetics
- Gene Expression Regulation
- Interferon-gamma/blood
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-17/blood
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukins/genetics
- Interleukins/metabolism
- Listeria monocytogenes/immunology
- Listeriosis/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Retinoic Acid/genetics
- Receptors, Thyroid Hormone/genetics
- Spleen/cytology
- Spleen/microbiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Jianfei Yang
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Min Yang
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Tin Min Htut
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Xinshou Ouyang
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Adedayo Hanidu
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Xiang Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Rosemarie Sellati
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Huiping Jiang
- Department of Translational Science, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Shu Zhang
- Deperatment of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029
| | - Hongxing Li
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Jie Zhao
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Adrian T. Ting
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Lloyd Mayer
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Jay C. Unkeless
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Mark E. Labadia
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Martin Hodge
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Jun Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
32
|
Graf B, Bushnell T, Miller J. LFA-1-mediated T cell costimulation through increased localization of TCR/class II complexes to the central supramolecular activation cluster and exclusion of CD45 from the immunological synapse. THE JOURNAL OF IMMUNOLOGY 2007; 179:1616-24. [PMID: 17641028 PMCID: PMC3993012 DOI: 10.4049/jimmunol.179.3.1616] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T cell activation is associated with a dramatic reorganization of cell surface proteins and associated signaling components into discrete subdomains within the immunological synapse in T cell:APC conjugates. However, the signals that direct the localization of these proteins and the functional significance of this organization have not been established. In this study, we have used wild-type and LFA-1-deficient, DO11.10 TCR transgenic T cells to examine the role of LFA-1 in the formation of the immunological synapse. We found that coengagement of LFA-1 is not required for the formation of the central supramolecular activation cluster (cSMAC) region, but does increase the accumulation of TCR/class II complexes within the cSMAC. In addition, LFA-1 is required for the recruitment and localization of talin into the peripheral supramolecular activation cluster region and exclusion of CD45 from the synapse. The ability of LFA-1 to increase the amount of TCR engaged during synapse formation and segregate the phosphatase, CD45, from the synapse suggests that LFA-1 might enhance proximal TCR signaling. To test this, we combined flow cytometry-based cell adhesion and calcium-signaling assays and found that coengagement of LFA-1 significantly increased the magnitude of the intracellular calcium response following Ag presentation. These data support the idea that in addition to its important role on regulating T cell:APC adhesion, coengagement of LFA-1 can enhance T cell signaling, and suggest that this may be accomplished in part through the organization of proteins within the immunological synapse.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Cell Communication/genetics
- Cell Communication/immunology
- Cell Line, Tumor
- Histocompatibility Antigens Class II/metabolism
- Leukocyte Common Antigens/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Function-Associated Antigen-1/biosynthesis
- Lymphocyte Function-Associated Antigen-1/genetics
- Lymphocyte Function-Associated Antigen-1/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Talin/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Beth Graf
- The David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
| | - Timothy Bushnell
- Center for Pediatric Biomedical Research, Aab Institute for Biomedical Research, University of Rochester, Rochester, NY 14642
| | - Jim Miller
- The David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
- Corresponding Author: Jim Miller, Center for Vaccine Biology and Immunology, Univ. Rochester, Box 609, 601 Elmwood Avenue, Rochester, NY 14642-8609 Phone (585) 275-9698, FAX (585) 273-2452,
| |
Collapse
|
33
|
Wu X, Guo R, Wang Y, Cunningham PN. The role of ICAM-1 in endotoxin-induced acute renal failure. Am J Physiol Renal Physiol 2007; 293:F1262-71. [PMID: 17670897 DOI: 10.1152/ajprenal.00445.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pathogenesis of acute renal failure (ARF) occurring during the course of sepsis is incompletely understood. Intercellular adhesion molecule-1 (ICAM-1) is a key cell adhesion molecule upregulated by LPS, which binds to the integrins CD11a/CD18 and CD11b/CD18 present on the surface of leukocytes. We hypothesized that ICAM-1 facilitates renal injury in LPS-induced ARF. To test this, three groups of mice (n = 8 per group) were injected intraperitoneally with 6 mg/kg LPS: 1) normal C57BL/6 mice, 2) mice with a targeted deficiency of ICAM-1 (ICAM-1(-/-)), and 3) mice expressing very low levels of CD18 (CD18-def). ICAM-1(-/-) mice were significantly resistant to LPS-mediated ARF, as opposed to CD18-def mice, which developed severe ARF, as did wild-type controls (48 h blood urea nitrogen 143 +/- 31.5, 70.8 +/- 24.4, and 185 +/- 16.6 mg/dl in wild-type, ICAM-1(-/-), and CD18-def mice, respectively, P < 0.05). At death, ICAM-1(-/-) mice had significantly less renal neutrophil infiltration than the other two groups, as well as less histological tubular injury. Depletion of neutrophils with mAb Gr-1 led to a profound exaggeration of tumor necrosis factor (TNF) release and high mortality, but neutrophil-depleted mice receiving 10-fold less LPS were protected against ARF despite TNF release similar to what is normally associated with LPS-induced ARF. LPS caused a significant increase in renal expression of chemokines; however, this increase was significantly exaggerated in CD18-def mice, which may account for their lack of protection. In conclusion, these data show that ICAM-1 plays a key role in LPS-induced ARF.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Section of Nephrology, University of Chicago, Chicago, Illinios, USA
| | | | | | | |
Collapse
|
34
|
High KP, Prasad R, Marion CR, Schurig GG, Boyle SM, Sriranganathan N. Outcome and immune responses after Brucella abortus infection in young adult and aged mice. Biogerontology 2007; 8:583-93. [PMID: 17653832 DOI: 10.1007/s10522-007-9106-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 03/07/2007] [Indexed: 11/24/2022]
Abstract
Aging results in a general waning of immunity and enhanced susceptibility to many intracellular pathogens. However, in some instances, aging is accompanied by alternative immune responses that can be equal to, or even more effective, than those of young adults. Brucella spp. are intracellular bacteria and important human and animal pathogens, but there are no data regarding the effect of age on host defense in brucellosis. Young or old adult mice (DBA/2 or BALB/c) were infected with either an attenuated B. abortus strain that over-expressed the Brucella superoxide dismutase (strain RB51-SOD) or a fully virulent strain (strain 2308). Survival, organism burden in the spleen, and immune responses were assessed. All young adult and aged mice survived infection with RB51-SOD (up to 6 x 10(8) cfu) or strain 2308 (up to 8 x 10(8) cfu). Old mice had a lower organism burden in the spleen than young adult mice five or more weeks after infection. Antibody and cytokine responses were Th1-focused in young adult mice, but Th-mixed in older mice, including evidence of the newly defined Th17 subtype immune response. Immunization with the RB51-SOD strain provided protection vs. strain 2308 challenge in young and aged BALB/c, but only young adult DBA/2 mice. Thus, clinical outcomes of Brucella infection in aged mice are equal or superior to those of young adult mice; immune responses in older mice are less-Th1 specific suggesting alternate pathways may contribute to host defense vs. Brucella in aged mice.
Collapse
Affiliation(s)
- Kevin P High
- Section of Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Witowski J, Ksiazek K, Warnecke C, Kuźlan M, Korybalska K, Tayama H, Wiśniewska-Elnur J, Pawlaczyk K, Trómińska J, Breborowicz A, Jörres A. Role of mesothelial cell-derived granulocyte colony-stimulating factor in interleukin-17-induced neutrophil accumulation in the peritoneum. Kidney Int 2007; 71:514-25. [PMID: 17228364 DOI: 10.1038/sj.ki.5002082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies suggest that peritoneal CD4(+) T lymphocytes may control recruitment of polymorphonuclear leukocytes (PMN) during peritonitis by an interleukin-17 (IL-17)-dependent mechanism. IL-17 and granulocyte colony-stimulating factor (G-CSF) have been proposed to form an axis that regulates PMN transmigration. Here we report on the role of G-CSF released by human peritoneal mesothelial cells (HPMCs) in IL-17A-mediated peritoneal PMN accumulation. In vitro exposure of HPMCs to IL-17A resulted in a time- and dose-dependent release of G-CSF. This effect was related to the induction of G-CSF mRNA and mediated through the nuclear factor-kappaB (NF-kappaB) pathway. The novel observation was that IL-17A-stimulated NF-kappaB activation in HPMCs followed a biphasic profile, with an early induction (45 min), followed by the return to basal levels (90 min), and a delayed induction (3 h). Tumor necrosis factor alpha synergistically amplified IL-17A-induced G-CSF production by enhanced NF-kappaB activation and through stabilization of G-CSF mRNA. Intraperitoneal (i.p.) administration of IL-17A in Balb/c mice resulted in increased local levels of G-CSF and selective PMN accumulation. Administration of anti-G-CSF blocking antibody before IL-17A injection significantly reduced the IL-17A-triggered PMN infiltration. This effect occurred despite increased i.p. levels of PMN-specific chemokines KC and macrophage inflammatory protein-2 seen in animals treated with anti-G-CSF antibody. These data demonstrate that the mesothelium-derived G-CSF plays an important role in IL-17A-induced PMN recruitment into the peritoneum.
Collapse
Affiliation(s)
- J Witowski
- Department of Pathophysiology, University Medical School, Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang T, Tian L, Haino M, Gao JL, Lake R, Ward Y, Wang H, Siebenlist U, Murphy PM, Kelly K. Improved antibacterial host defense and altered peripheral granulocyte homeostasis in mice lacking the adhesion class G protein receptor CD97. Infect Immun 2006; 75:1144-53. [PMID: 17158902 PMCID: PMC1828551 DOI: 10.1128/iai.00869-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CD97 is a member of the adhesion family of G protein-coupled receptors. Alternatively spliced forms of CD97 bind integrins alpha5beta1 and alphavbeta3, decay accelerating factor, or dermatan sulfate. CD97 is expressed on myeloid cells at high levels and a variety of other cell types at lower levels. Little is known about the physiological function of CD97. To begin dissecting the function of CD97, we evaluated the immune response of CD97 null mice to systemic infection by Listeria monocytogenes. CD97 null mice were significantly more resistant to listeriosis than matched wild-type mice. A major determinant of the difference in survival appeared to be the comparatively more robust accumulation of granulocytes in the blood and in infected livers of CD97 null mice within 18 h of inoculation, correlating with a decrease in the number of bacteria. CD97 null mice also displayed a mild granulocytosis in the nonchallenged state. Because there is a strong suggestion that CD97 functions in an adhesive capacity, we examined the migratory properties of granulocytes in CD97 null mice. In chimeric animals, CD97 null and wild-type granulocytes migrated similarly, as determined by inflammation-induced emigration from the bone marrow and accumulation in the peritoneum. Granulocyte development in the bone marrow of CD97 null mice was comparable to that of wild-type mice, and CD97 deficiency did not appear to stimulate granulocytosis secondary to peripheral inflammation and resultant granulocyte colony-stimulating factor induction, unlike various other models of adhesion deficiencies. Our results suggest that CD97 plays a role in peripheral granulocyte homeostasis.
Collapse
Affiliation(s)
- Tao Wang
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Auttachoat W, Zheng JF, Chi RP, Meng A, Guo TL. Differential surface expression of CD18 and CD44 by neutrophils in bone marrow and spleen contributed to the neutrophilia in thalidomide-treated female B6C3F1 mice. Toxicol Appl Pharmacol 2006; 218:227-37. [PMID: 17208262 PMCID: PMC1855090 DOI: 10.1016/j.taap.2006.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/08/2006] [Accepted: 11/15/2006] [Indexed: 01/29/2023]
Abstract
Previously, we have reported that thalidomide (Thd) can enhance neutrophil function in female B6C3F1 mice. The present study was intended to evaluate the mechanisms underlying the enhanced neutrophil responses following Thd treatment intraperitoneally (100 mg/kg) for 14 or 28 days. Treatment with Thd increased the numbers of neutrophils in the spleen, peripheral blood, bone marrow, peritoneal cavity and lungs of female B6C3F1 mice when compared to the vehicle control mice. Thd treatment for 14 days increased the percentage and the number of neutrophils in the spleen in the first 8 h (peaking at 2 h) after the last Thd treatment, and it returned to the baseline after 24 h. However, Thd treatment for 28 days increased the percentage and number of neutrophils in the spleen even at the 24-h time point after the last Thd treatment. These neutrophils were demonstrated to be functional by the myeloperoxidase activity assay. Further studies have ruled out the possibility of an increased bone marrow granulopoiesis following Thd treatment. Flow cytometric analysis of the surface expression of adhesion molecules suggested that Thd treatment for either 14 or 28 days decreased the surface expression of either CD18 or CD44 by bone marrow neutrophils. On the other hand, the surface expression of both CD18 and CD44 by splenic neutrophils was increased following Thd treatment for 28 days but not for 14 days. No effect was produced for other cell surface molecules such as CD62L and CD11a. It was possible that decreased surface expressions of CD18 and CD44 facilitated neutrophils' release from the bone marrow; increased surface expressions of CD44 and CD18 by splenic neutrophils after 28 days of Thd treatment increased their ability to remain in the periphery. Taken together, Thd treatment increased neutrophils in female B6C3F1 mice, at least partially, through differentially modulating the surface expression of CD18 and CD44 by the neutrophils in the bone marrow and spleen.
Collapse
Affiliation(s)
- Wimolnut Auttachoat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-6013
| | - Jian Feng Zheng
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-6013
| | - Rui P. Chi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-6013
| | - Andrew Meng
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-6013
| | - Tai L. Guo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-6013
- To whom correspondence should be addressed: Tai L. Guo, Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, Virginia 23298-6013. Phone (804) 828-6732, Fax: (804) 828-5604, E-mail:
| |
Collapse
|
38
|
Ghosh S, Chackerian AA, Parker CM, Ballantyne CM, Behar SM. The LFA-1 adhesion molecule is required for protective immunity during pulmonary Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:4914-22. [PMID: 16585587 DOI: 10.4049/jimmunol.176.8.4914] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Host immunity to Mycobacterium tuberculosis is mediated by T cells that recognize and activate infected macrophages to control intracellular bacterial replication. The early appearance of T cells in the lungs of infected mice correlates with greater resistance to infection. However, it is unknown whether the trafficking of T cells to the lung following infection is dependent upon the expression of certain adhesion molecules. To address this question, we infected knockout (KO) mice that have defective expression of CD11a, CD11b, CD18, CD62, CD103, or beta7. We found that the integrins CD11a and CD18 are absolutely required for host resistance following infection with aerosolized M. tuberculosis. Although Ag-specific T cells are generated following infection of CD11a KO mice, T cell priming is delayed, T cell trafficking to the lung is impaired, and fewer ESAT6-specific CD4+ T cells are found in the lungs of CD11a KO mice compared with control mice. Thus, LFA-1 (CD11a/CD18) plays an essential role in immunity to M. tuberculosis infection.
Collapse
Affiliation(s)
- Shamik Ghosh
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
39
|
Pongcharoen S, Niumsup P, Sanguansermsri D, Supalap K, Butkhamchot P. The Effect of Interleukin-17 on the Proliferation and Invasion of JEG-3 Human Choriocarcinoma Cells. Am J Reprod Immunol 2006; 55:291-300. [PMID: 16533341 DOI: 10.1111/j.1600-0897.2006.00366.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PROBLEM As there has been a study in mice showing the expression of IL-17 by decidual cells and the status of IL-17 receptor expression in human pregnancy is not known, we hypothesized that IL-17 may regulate human trophoblast proliferation and invasion. METHOD OF STUDY JEG-3 cell line was used as a model for human trophoblast. Immunohistochemitry and reverse transcriptase polymerase chain reaction techniques were used to identify IL-17 receptor protein and mRNA, respectively. The effects of IL-17 on JEG-3 cell proliferation and invasion were tested using the BrdU incorporation and the Matrigel invasion assays, respectively. RESULTS IL-17 increased the invasive capacity of JEG-3 cells but had no effect on the proliferation and multinucleated formation of JEG-3 cells. CONCLUSION In this JEG-3 cell model of human trophoblast, the IL-17R and IL-17 may have a regulatory role in trophoblast invasion.
Collapse
Affiliation(s)
- Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand.
| | | | | | | | | |
Collapse
|
40
|
Pasche B, Kalaydjiev S, Franz TJ, Kremmer E, Gailus-Durner V, Fuchs H, Hrabé de Angelis M, Lengeling A, Busch DH. Sex-dependent susceptibility to Listeria monocytogenes infection is mediated by differential interleukin-10 production. Infect Immun 2005; 73:5952-60. [PMID: 16113316 PMCID: PMC1231091 DOI: 10.1128/iai.73.9.5952-5960.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well documented that sex-dependent factors affect susceptibility to infection, with most mouse models demonstrating higher resistance in females. We made the unexpected observation that infection with the intracellular bacterium Listeria monocytogenes showed an opposite pattern in several commonly used inbred mouse strains: female C57BL/6J, BALB/c, C3H/HeN, and CBA/J mice were significantly more susceptible to Listeria infection. The pronounced sensitivity of females to Listeria, which was revealed by significantly higher lethality rates, correlated also with increased bacterial numbers in organ tissues (spleen and liver) and several immunological changes in peripheral blood samples. Surprisingly, increased severity of infection in females was associated with elevated interleukin-10 (IL-10) levels in plasma. Experiments using Il10 knockout mice, for which no differences between the susceptibilities of males and females to Listeria infection could be detected, confirmed the important role of this immunosuppressive cytokine for the outcome of disease. Our findings are likely to have clinical relevance, since similar sex differences with regard to infection with Listeria monocytogenes and other intracellular pathogens have been reported for humans.
Collapse
Affiliation(s)
- Bastian Pasche
- Division of Microbiology, German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 2005; 22:285-94. [PMID: 15780986 DOI: 10.1016/j.immuni.2005.01.011] [Citation(s) in RCA: 722] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/30/2004] [Accepted: 01/12/2005] [Indexed: 02/08/2023]
Abstract
Homeostatic regulation of neutrophil production is thought to match neutrophil elimination to maintain approximately constant numbers in the blood. Here, we show that IL-17, a cytokine that regulates granulopoiesis through G-CSF, is made by gammadelta T cells and unconventional alphabeta T cells. These neutrophil-regulatory T cells (Tn) are expanded in mice that lack leukocyte adhesion molecules, which have neutrophilia and defective neutrophil trafficking. Normal neutrophils migrate to tissues, where they become apoptotic and are phagocytosed by macrophages and dendritic cells. This curbs phagocyte secretion of IL-23, a cytokine controlling IL-17 production by Tn cells. Adoptive transfer of wild-type, but not adhesion molecule-deficient, neutrophils into mice deficient in beta2 integrins transiently decreases neutrophilia and reduces levels of serum IL-17. Antibody blockade of the p40 subunit of IL-23 reduces neutrophil numbers in wild-type mice. These findings identify a major homeostatic mechanism for the regulation of neutrophil production in vivo.
Collapse
Affiliation(s)
- Matthew A Stark
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
42
|
Shen F, Ruddy MJ, Plamondon P, Gaffen SL. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-alpha-induced genes in bone cells. J Leukoc Biol 2004; 77:388-99. [PMID: 15591425 DOI: 10.1189/jlb.0904490] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The novel cytokine interleukin (IL)-17 has been implicated in many infectious and autoimmune settings, especially rheumatoid arthritis. Consistent with its proinflammatory effects on bone, osteoblast cells are highly responsive to IL-17, particularly in combination with other inflammatory cytokines. To better understand the spectrum of activities controlled by IL-17, we globally profiled genes regulated by IL-17 and tumor necrosis factor alpha (TNF-alpha) in the preosteoblast cell line MC3T3-E1. Using Affymetrix microarrays, 80-90 genes were up-regulated, and 19-50 genes were down-regulated with IL-17 and TNF-alpha as compared with TNF-alpha alone. These included proinflammatory chemokines and cytokines, inflammatory genes, transcriptional regulators, bone-remodeling genes, signal transducers, cytoskeletal genes, genes involved in apoptosis, and several unknown or unclassified genes. The CXC family chemokines were most dramatically induced by IL-17 and TNF-alpha, confirming the role of IL-17 as a potent mediator of inflammation and neutrophil recruitment. Several transcription factor-related genes involved in inflammatory gene expression were also enhanced, including molecule possessing ankyrin repeats induced by lipopolysaccharide/inhibitor of kappaBzeta (MAIL/kappaBzeta), CCAAT/enhancer-binding protein delta (C/EBPdelta), and C/EBPbeta. We also identified the acute-phase gene lipocalin-2 (LCN2/24p3) as a novel IL-17 target, which is regulated synergistically by TNF-alpha and IL-17 at the level of its promoter. A similar but not identical pattern of genes was induced by IL-17 and TNF-alpha in ST2 bone marrow stromal cells and murine embryonic fibroblasts. This study provides a profile of genes regulated by IL-17 and TNF-alpha in osteoblasts and suggests that in bone, the major function of IL-17 is to cooperate and/or synergize with other cytokines to amplify inflammation.
Collapse
Affiliation(s)
- Fang Shen
- Department of Oral Biology, University at Buffalo, State University of New York, 36 Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
43
|
Boyartchuk V, Rojas M, Yan BS, Jobe O, Hurt N, Dorfman DM, Higgins DE, Dietrich WF, Kramnik I. The host resistance locus sst1 controls innate immunity to Listeria monocytogenes infection in immunodeficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:5112-20. [PMID: 15470055 DOI: 10.4049/jimmunol.173.8.5112] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological, clinical, and experimental approaches have convincingly demonstrated that host resistance to infection with intracellular pathogens is significantly influenced by genetic polymorphisms. Using a mouse model of infection with virulent Mycobacterium tuberculosis (MTB), we have previously identified the sst1 locus as a genetic determinant of host resistance to tuberculosis. In this study we demonstrate that susceptibility to another intracellular pathogen, Listeria monocytogenes, is also influenced by the sst1 locus. The contribution of sst1 to anti-listerial immunity is much greater in immunodeficient scid mice, indicating that this locus controls innate immunity and becomes particularly important when adaptive immunity is significantly depressed. Similar to our previous observations using infection with MTB, the resistant allele of sst1 prevents formation of necrotic infectious lesions in vivo. We have shown that macrophages obtained from sst1-resistant congenic mice possess superior ability to kill L. monocytogenes in vitro. The bactericidal effect of sst1 is dependent on IFN-gamma activation and reactive oxygen radical production by activated macrophages after infection, but is independent of NO production. It is possible that there is a single gene that controls common IFN-dependent macrophage function, which is important in the pathogenesis of infections caused by both MTB and L. monocytogenes. However, host resistance to the two pathogens may be controlled by two different polymorphic genes encoded within the sst1 locus. The polymorphic gene(s) encoded within the sst1 locus that controls macrophage interactions with the two intracellular pathogens remains to be elucidated.
Collapse
Affiliation(s)
- Victor Boyartchuk
- Program in Gene Function and Expression, University of Massachusetts Medical School, Boston 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Listeria monocytogenes is a Gram-positive bacterium that is often used to study the mammalian immune response to infection because it is easy to culture, is relatively safe to work with and causes a highly predictable infection in laboratory mice. The broad application of this mouse model has resulted in a torrent of studies characterizing the contributions of different cytokines, receptors, adaptors and effector molecules to resistance against infection with Listeria monocytogenes. These studies, which are yielding one of the most comprehensive pictures of the 'battle' between host and microorganism, are reviewed here.
Collapse
Affiliation(s)
- Eric G Pamer
- Infectious Disease Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Immunology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
45
|
Flick MJ, Du X, Witte DP, Jirousková M, Soloviev DA, Busuttil SJ, Plow EF, Degen JL. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 2004; 113:1596-606. [PMID: 15173886 PMCID: PMC419487 DOI: 10.1172/jci20741] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 03/30/2004] [Indexed: 11/17/2022] Open
Abstract
The leukocyte integrin alpha(M)beta(2)/Mac-1 appears to support the inflammatory response through multiple ligands, but local engagement of fibrin(ogen) may be particularly important for leukocyte function. To define the biological significance of fibrin(ogen)-alpha(M)beta(2) interaction in vivo, gene-targeted mice were generated in which the alpha(M)beta(2)-binding motif within the fibrinogen gamma chain (N(390)RLSIGE(396)) was converted to a series of alanine residues. Mice carrying the Fibgamma(390-396A) allele maintained normal levels of fibrinogen, retained normal clotting function, supported platelet aggregation, and never developed spontaneous hemorrhagic events. However, the mutant fibrinogen failed to support alpha(M)beta(2)-mediated adhesion of primary neutrophils, macrophages, and alpha(M)beta(2)-expressing cell lines. The elimination of the alpha(M)beta(2)-binding motif on fibrin(ogen) severely compromised the inflammatory response in vivo as evidenced by a dramatic impediment in leukocyte clearance of Staphylococcus aureus inoculated into the peritoneal cavity. This defect in bacterial clearance was due not to diminished leukocyte trafficking but rather to a failure to fully implement antimicrobial functions. These studies definitively demonstrate that fibrin(ogen) is a physiologically relevant ligand for alpha(M)beta(2), integrin engagement of fibrin(ogen) is critical to leukocyte function and innate immunity in vivo, and the biological importance of fibrinogen in regulating the inflammatory response can be appreciated outside of any alteration in clotting function.
Collapse
Affiliation(s)
- Matthew J Flick
- Children's Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Emoto M, Miyamoto M, Emoto Y, Yoshizawa I, Brinkmann V, van Rooijen N, Kaufmann SHE. Highly biased type 1 immune responses in mice deficient in LFA-1 in Listeria monocytogenes infection are caused by elevated IL-12 production by granulocytes. THE JOURNAL OF IMMUNOLOGY 2004; 171:3970-6. [PMID: 14530315 DOI: 10.4049/jimmunol.171.8.3970] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LFA-1 (CD11a/CD18) plays a key role in various inflammatory responses. Here we show that the acquired immune response to Listeria monocytogenes is highly biased toward type 1 in the absence of LFA-1. At the early stage of listeriosis, numbers of IFN-gamma producers in the liver and spleen of LFA-1(-/-) mice were markedly increased compared with heterozygous littermates and Valpha14(+)NKT cell-deficient mice, and NK cells were major IFN-gamma producers. Numbers of IL-12 producers were also markedly elevated in LFA-1(-/-) mice compared with heterozygous littermates, and endogenous IL-12 neutralization impaired IFN-gamma production by NK cells. Granulocyte depletion diminished numbers of IL-12 producers and IFN-gamma-secreting NK cells in the liver of LFA-1(-/-) mice. Granulocytes from the liver of L. monocytogenes-infected LFA-1(-/-) mice were potent IL-12 producers. Thus, in the absence of LFA-1, granulocytes are a major source of IL-12 at the early stage of listeriosis. We assume that highly biased type 1 immune responses in LFA-1(-/-) mice are caused by increased levels of IL-12 from granulocytes and that granulocytes play a major role in IFN-gamma secretion by NK cells. In conclusion, LFA-1 regulates type 1 immune responses by controlling prompt infiltration of IL-12-producing granulocytes into sites of inflammation.
Collapse
Affiliation(s)
- Masashi Emoto
- Department of Immunology, Max-Planck- Institute for Infection Biology, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wu H, Prince JE, Brayton CF, Shah C, Zeve D, Gregory SH, Smith CW, Ballantyne CM. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes. Infect Immun 2003; 71:5986-93. [PMID: 14500519 PMCID: PMC201099 DOI: 10.1128/iai.71.10.5986-5993.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 06/03/2003] [Accepted: 06/27/2003] [Indexed: 11/20/2022] Open
Abstract
Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P < 0.01). Quantitative organ culture showed that numbers of Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.
Collapse
Affiliation(s)
- Huaizhu Wu
- Section of Atherosclerosis, Department of Medicine, Baylor College of Medicine, 6565 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Emoto M, Emoto Y, Brinkmann V, Miyamoto M, Yoshizawa I, Stäber M, van Rooijen N, Hamann A, Kaufmann SHE. Increased resistance of LFA-1-deficient mice to lipopolysaccharide-induced shock/liver injury in the presence of TNF-alpha and IL-12 is mediated by IL-10: a novel role for LFA-1 in the regulation of the proinflammatory and anti-inflammatory cytokine balance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:584-93. [PMID: 12847222 DOI: 10.4049/jimmunol.171.2.584] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Challenge with low doses of LPS together with D-galactosamine causes severe liver injury, resulting in lethal shock (low dose LPS-induced shock). We examined the role of LFA-1 in low dose LPS-induced shock. LFA-1(-/-) mice were more resistant to low dose LPS-induced shock/liver injury than their heterozygous littermates, although serum levels of TNF-alpha and IL-12 were higher in these mice. C57BL/6 mice were not rescued from lethal effects of LPS by depletion of NK1(+) cells, granulocytes, or macrophages, and susceptibility of NKT cell-deficient mice was comparable to that of controls. High numbers of platelets were detected in the liver of LFA-1(+/-) mice after low dose LPS challenge, whereas liver accumulation of platelets was only marginal in LFA-1(-/-) mice. Following low dose LPS challenge, serum levels of IL-10 were higher in LFA-1(-/-) mice than in LFA-1(+/-) mice, and susceptibility to low dose LPS-induced shock as well as platelet accumulation in the liver of LFA-1(-/-) mice were markedly increased by IL-10 neutralization. Serum levels of IL-10 in LFA-1(+/-) mice were only marginally affected by macrophage depletion. However, in LFA-1(-/-) mice macrophage depletion markedly reduced serum levels of IL-10, and as a corollary, susceptibility of LFA-1(-/-) mice to low dose LPS-induced shock was markedly elevated despite the fact that TNF-alpha levels were also diminished. We conclude that LFA-1 participates in LPS-induced lethal shock/liver injury by regulating IL-10 secretion from macrophages and that IL-10 plays a decisive role in resistance to shock/liver injury. Our data point to a novel role of LFA-1 in control of the proinflammatory/anti-inflammatory cytokine network.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Clodronic Acid/administration & dosage
- Cytokines/biosynthesis
- Cytokines/metabolism
- Dose-Response Relationship, Immunologic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Female
- Granulocytes/immunology
- Granulocytes/metabolism
- Immunity, Innate/genetics
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Injections, Intravenous
- Interleukin-10/blood
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-10/physiology
- Interleukin-12/blood
- Interleukin-12/physiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytosis/genetics
- Leukocytosis/immunology
- Leukocytosis/pathology
- Lipopolysaccharides/administration & dosage
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Lymphocyte Function-Associated Antigen-1/genetics
- Lymphocyte Function-Associated Antigen-1/physiology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Platelet Count
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Shock, Septic/genetics
- Shock, Septic/immunology
- Shock, Septic/mortality
- Shock, Septic/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/physiology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Masashi Emoto
- Department of Immunology and. Central Core Facility Microscopy, Max-Planck-Institute for Infection Biology, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|