1
|
Attieh RM, Bharati J, Sharma P, Nair G, Ayehu G, Jhaveri KD. Kidney transplant in patients with C3 glomerulopathy. Clin Kidney J 2025; 18:sfaf134. [PMID: 40385590 PMCID: PMC12082085 DOI: 10.1093/ckj/sfaf134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Indexed: 05/20/2025] Open
Abstract
Complement protein 3 (C3) glomerulopathy (C3G) is a rare and progressive kidney disease primarily affecting young individuals and frequently advancing to end-stage kidney disease (ESKD). For ESKD, kidney transplantation remains the optimal treatment option; however, C3G has a high recurrence rate post-transplantation, affecting over two-thirds of transplanted patients. Despite advances in our understanding of C3G, significant gaps persist regarding the optimal timing for transplantation and the best strategies for peri-transplant management. Currently, no clear evidence links functional complement levels to the risk of post-transplant recurrence. Genetic counseling is also complex, due to variable gene penetrance and weak genotype-phenotype correlations, which limit predictive accuracy. Transplant-related factors are believed to significantly influence C3G recurrence, yet there are no established methods for preventing recurrence after transplantation. Eculizumab has shown inconsistent efficacy in managing recurrent C3G. However, new proximal complement inhibitors, such as factor B and C3 inhibitors, are under investigation in clinical trials and show promise. Some of these trials include kidney transplant patients with C3G, and their outcomes could potentially shape future treatment protocols.
Collapse
Affiliation(s)
| | - Joyita Bharati
- Section of Nephrology, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Purva Sharma
- Division of Kidney Disease and Hypertension, Glomerular Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Gayatri Nair
- Division of Kidney Disease and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Gashu Ayehu
- Division of Kidney Disease and Hypertension, Glomerular Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Kenar D Jhaveri
- Division of Kidney Disease and Hypertension, Glomerular Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| |
Collapse
|
2
|
Kamla CE, Meersch-Dini M, Palma LMP. Kidney Injury Following Cardiac Surgery: A Review of Our Current Understanding. Am J Cardiovasc Drugs 2025; 25:337-348. [PMID: 39799538 PMCID: PMC12014718 DOI: 10.1007/s40256-024-00715-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 01/15/2025]
Abstract
Around one-quarter of all patients undergoing cardiac procedures, particularly those on cardiopulmonary bypass, develop cardiac surgery-associated acute kidney injury (CSA-AKI). This complication increases the risk of several serious morbidities and of mortality, representing a significant burden for both patients and the healthcare system. Patients with diminished kidney function before surgery, such as those with chronic kidney disease, are at heightened risk of developing CSA-AKI and have poorer outcomes than patients without preexisting kidney injury who develop CSA-AKI. Several mechanisms are involved in the development of CSA-AKI; injury is primarily thought to result from an amplification loop of inflammation and cell death, with complement and immune system activation, cardiopulmonary bypass, and ischemia-reperfusion injury all contributing to pathogenesis. At present there are no effective, targeted pharmacological therapies for the prevention or treatment of CSA-AKI, although several preclinical trials have shown promise, and clinical trials are under way. Progress in the understanding of the complex pathophysiology of CSA-AKI is needed to improve the development of successful strategies for its prevention, management, and treatment. In this review, we outline our current understanding of CSA-AKI development and management strategies and discuss potential future therapeutic targets under investigation.
Collapse
Affiliation(s)
| | - Melanie Meersch-Dini
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
3
|
Jalal DI, Thurman JM, Smith RJ. Chronic kidney disease enhances alternative pathway activity: a new paradigm. J Clin Invest 2025; 135:e188353. [PMID: 40309771 PMCID: PMC12043098 DOI: 10.1172/jci188353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Reduced kidney function is associated with increased risk of cardiovascular disease in addition to kidney disease progression. Kidney disease is considered an inflammatory state, based on elevated levels of C-reactive protein and inflammatory cytokines. A key mediator of cardiovascular and kidney disease progression in the setting of reduced kidney function is systemic and vascular inflammation. However, the exact pathways that link chronic kidney disease (CKD) with inflammation remain incompletely understood. For decades it has been known that factor D, the main activator of the alternative complement pathway, is increased in the plasma of patients with reduced kidney function. Recent biomarker evidence suggests alternative pathway activation in this setting. CKD, therefore, seems to alter the balance of alternative pathway proteins, promoting inflammation and potentially exacerbating complement-mediated diseases and CKD-associated complications. In this manuscript, we review the impact of reduced kidney function on biomarkers of the alternative complement pathway and the implications of alternative pathway activation on cardiovascular disease and kidney disease progression. Importantly, we highlight the need for ongoing research efforts that may lead to opportunities to target the alternative pathway of complement withx the goal of improving kidney and cardiovascular outcomes in persons with reduced kidney function.
Collapse
Affiliation(s)
- Diana I. Jalal
- Division of Nephrology, Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Center for Access and Delivery Research and Evaluation, Iowa City VA Health Care System, Iowa City, Iowa, USA
| | - Joshua M. Thurman
- Division of Renal Diseases and Hypertension, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Bongoni AK, Kiss B, McRae JL, Salvaris EJ, Fisicaro N, Muntz F, Németh BZ, Nagy ZA, Kocsis A, Gál P, Cowan PJ, Pál G. Targeting the complement lectin pathway with a highly specific MASP-2 inhibitor protects against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2025; 122:e2424754122. [PMID: 40228118 PMCID: PMC12037010 DOI: 10.1073/pnas.2424754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a common complication in several clinical scenarios including kidney transplantation. Mannan-binding lectin-associated serine proteinase (MASP)-2 is essential for activation of the complement lectin pathway, which has been implicated in the pathogenesis of renal IRI and therefore represents a potential therapeutic target. We developed a new, affinity-enhanced MASP-2 inhibitor, EVO24, by directed evolution of the D2 domain of human tissue factor pathway inhibitor. EVO24 was fused with a human IgG1-Fc to create the homodimer EVO24L, which potently and selectively inhibited the lectin pathway in human and mouse serum in vitro. EVO24L was tested in a mouse model of unilateral warm renal IRI. EVO24L administered before and after ischemia significantly protected against IRI, with improved renal function as well as reduced tubular injury and inflammatory cell infiltration at 24 h compared to vehicle-treated mice. Immunofluorescence analyses showed reduced deposition of complement components (C3d, C4d, and C9) and reduced expression of VCAM-1, indicating a decrease in complement activation and endothelial cell activation. Additionally, EVO24L treatment lowered plasma levels of complement C5a, hyaluronan (a marker of endothelial glycocalyx shedding), and the proinflammatory cytokines IL-6 and TNF-α. Our findings indicate that EVO24L inhibits acute inflammatory responses in renal IRI by blocking the lectin pathway, confirming the important role of this pathway in acute ischemic kidney injury and warranting further investigation of EVO24L in clinical settings.
Collapse
Affiliation(s)
- Anjan K. Bongoni
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Jennifer L. McRae
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Evelyn J. Salvaris
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Fenella Muntz
- Bioresources Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Bálint Zoltán Németh
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Andrea Kocsis
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
- Institute of Molecular Life Sciences, Hungarian Research Network, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Péter Gál
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
- Institute of Molecular Life Sciences, Hungarian Research Network, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Peter J. Cowan
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC3052, Australia
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| |
Collapse
|
5
|
Hirose T, Hotta K, Otsuka R, Seino KI. Mechanism and regulation of the complement activity in kidney xenotransplantation. Transplant Rev (Orlando) 2025; 39:100931. [PMID: 40233672 DOI: 10.1016/j.trre.2025.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Xenotransplantation is emerging as one of several potential solutions for addressing organ donor shortages, with significant progress bringing it closer to clinical application. However, challenges remain, particularly concerning complement system dysregulation caused by species differences, as well as xenoantigens and coagulopathy. Complement regulatory proteins expressed on endothelial cells of donor xenografts are less compatible with complement components in recipients. These difficulties contribute to hyperacute rejection, characterized by antibody-mediated complement activation that destroys the graft within 24 h. Moreover, because molecules are incompatible across different species, ischemia-reperfusion injury or infection can easily elicit complement activity via all three pathways, resulting in xenograft loss via complement-mediated vascular injury. Complement activity also stimulate innate and adaptive immune cells. To address this issue, genetic modifications in donor pigs and the development of novel medicines have been tested in preclinical models with promising results. Pigs modified to express human complement-regulating molecules such as CD46, CD55, and CD59 have shown longer kidney xenograft survivals over years in preclinical models with nonhuman primates, paving the way for clinical trials. Anti-complement component agents such as C1 esterase and C5 inhibitors have also been shown to increase xenograft survivals. This review examines the role of the complement system in kidney xenotransplantation, emphasizing new research and clinical trial advancements.
Collapse
Affiliation(s)
- Takayuki Hirose
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan.
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Ryo Otsuka
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
He J, Chen Y, Li Y, Feng Y. Molecular mechanisms and therapeutic interventions in acute kidney injury: a literature review. BMC Nephrol 2025; 26:144. [PMID: 40121405 PMCID: PMC11929251 DOI: 10.1186/s12882-025-04077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical challenge characterized by elevated morbidity and a substantial impact on individual health and socioeconomic factors. A comprehensive examination of the molecular pathways behind AKI is essential for its prevention and management. In recent years, vigorous research in the domain of AKI has concentrated on pathophysiological characteristics, early identification, and therapeutic approaches across many aetiologies and highlighted the principal themes of oxidative stress, inflammatory response, apoptosis, necrosis, and immunological response. This review comprehensively reviewed the molecular mechanisms underlying AKI, including oxidative stress, inflammatory pathways, immune cell-mediated injury, activation of the renin-angiotensin-aldosterone (RAAS) system, mitochondrial damage and autophagy, apoptosis, necrosis, etc. Inflammatory pathways are involved in the injuries in all four structural components of the kidney. We also summarized therapeutic techniques and pharmacological agents associated with the aforementioned molecular pathways. This work aims to clarify the molecular mechanisms of AKI thoroughly, offer novel insights for further investigations of AKI, and facilitate the formulation of efficient therapeutic methods to avert the progression of AKI.
Collapse
Affiliation(s)
- Jiajia He
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqin Chen
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China
| | - Yunlin Feng
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China.
| |
Collapse
|
7
|
Kassimatis T, Rahman A, Jaradat F, Douiri A, Delord M, Greenlaw R, Palmer Joyce J, Olsburgh J, Khurram M, Ghazanfar A, Knight S, Friend P, Shah S, Killbride H, Smith R, Sacks S. Multicentre, multi-arm, double-blind randomised placebo-controlled dose-finding trial investigating the safety and Efficacy of MirococePt (APT070) In Reducing delayed graft function In the Kidney ALlograft (EMPIRIKAL-2): study protocol for a randomised controlled trial. BMJ Open 2025; 15:e097029. [PMID: 40050053 PMCID: PMC11887295 DOI: 10.1136/bmjopen-2024-097029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Up to 50% of kidney transplant patients are diagnosed with delayed graft function (DGF) following transplantation-the majority being linked to ischaemia reperfusion injury (IRI). DGF is traditionally defined as the requirement for dialysis during the first week after transplantation and is associated with inferior graft and patient outcomes. Local synthesis of complement components, largely by the renal tubule, plays a critical role in IRI. We have developed Mirococept, a membrane-targeted complement inhibitor, that can be administered to the donor kidney ex vivo prior to transplantation. After administration, Mirococept is retained in the donor organ, thereby minimising the risk of systemic side effects. We previously launched the EMPIRIKAL study aiming to evaluate the efficacy of Mirococept in reducing DGF in deceased-donor kidney transplantation (KT). The funding body recommended termination of the study to allow a dose-saturating study before the next stage of clinical evaluation. This was carried out in a porcine kidney model and led to a revised dosing regimen for EMPIRIKAL-2 (60-180 mg compared with 5-25 mg in the initial trial). The EMPIRIKAL-2 trial (REC 24/NE/0071) aims to identify the most safe and efficacious dose of Mirococept to reduce DGF rate in deceased-donor KT. METHODS AND ANALYSIS EMPIRIKAL-2 is a Phase IIa multicentre double-blind randomised controlled trial (RCT) with an initial safety run. Participants will be recruited from renal departments at National Health Service tertiary hospital sites in the UK. The purpose of the safety run is to assess the tolerance of each of the three proposed Mirococept doses (60, 120 or 180 mg), before the RCT begins. Three patients will be assigned to each treatment dose, starting from the lower dose. The safety run will be considered successful if at least one dose can be taken forward to the RCT for comparison to placebo.If safety is met, 144 participants (36 per arm excluding drop-outs) will be randomised to all doses meeting the safety criteria or placebo on a 1:1:1:1 basis. The primary endpoint is DGF, defined as the requirement for dialysis during the first week after transplantation. Safety evaluation will include the monitoring of laboratory data and the recording of all adverse events. Immunosuppression therapy, antibiotic and antiviral prophylaxis will be administered as per local centre protocols. Enrolment in the RCT is anticipated to take approximately 12 months, and patients will be followed-up for 12 months. ETHICS AND DISSEMINATION The study has been approved by the Northeast - Newcastle and North Tyneside 2 Research Ethics Service Committee, REC reference 24/NE/0071. The results of the study will be reported and disseminated at international conferences and in peer-reviewed scientific journals. Once published, a lay summary of the results will be made available to participants who request this information. TRIAL REGISTRATION NUMBER ISRCTN14279222. Registered on 4 July 2024. PROTOCOL VERSION 2.0 dated 9 May 2024.
Collapse
Affiliation(s)
- Theodoros Kassimatis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- King's Kidney Care, King's College Hospital, London, UK
- Transplant, Renal and Urology Directorate, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alima Rahman
- Clinical Trial Management Service, Research and Development, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Fayyad Jaradat
- Transplant, Renal and Urology Directorate, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Abdel Douiri
- School of Life Course and Population Sciences, King's College London, London, UK
| | - Marc Delord
- School of Life Course and Population Sciences, King's College London, London, UK
| | - Roseanna Greenlaw
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Joanne Palmer Joyce
- Clinical Trial Management Service, Research and Development, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jonathon Olsburgh
- Transplant, Renal and Urology Directorate, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Muhammad Khurram
- Department of Nephrology and Transplantation, The Royal London Hospital, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Simon Knight
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Peter Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Sapna Shah
- King's Kidney Care, King's College Hospital, London, UK
| | - Hannah Killbride
- Kent Kidney Care Centre, East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | - Richard Smith
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Steven Sacks
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Stenson EK, Edelstein CE, You Z, Ostrow A, Endre Z, Miyazaki-Anzai S, Dixon BP, Scott H, Aggarwal N, Thurman JM, Kendrick J. Urine Complement Factor Ba Identifies Persistent Acute Kidney Injury and Organ Failures in Critically Ill Adults. Kidney Int Rep 2025; 10:424-431. [PMID: 39990891 PMCID: PMC11843286 DOI: 10.1016/j.ekir.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction Critically ill adults with acute kidney injury (AKI) have high morbidity and mortality and lack treatment options. We assessed the association between complement activation (urine Ba fragment levels), and AKI and organ failures. Methods A biorepository of critically ill adults was leveraged. AKI staging was based on the Kidney Disease Improving Global Outcomes serum creatinine (sCr) criteria. AKI recovery was defined as sCr reduction to <0.3 mg/dl above baseline within 48 hours after AKI diagnosis. Persistent AKI was defined as need for renal replacement or no sCr recovery. Urine was obtained at intensive care unit (ICU) admission, and at 12 and 24 hours after admission; and urine Ba levels were quantitated via enzyme-linked immunosorbent assay and natural log transformed. Regression analyses were performed to test the association between urine Ba and organ failure outcomes. We adjusted for age and the acute physiology and chronic health evaluation II (APACHE-II) score, which is used to classify ICU severity of illness. Results A total of 439 patients were included: 252 without AKI, 124 with stage 1 AKI, 43 with stage 2 AKI, and 20 with stage 3 AKI. After adjusting for covariates, urine Ba increased as AKI stage increased. Urine Ba was higher in patients with persistent AKI compared with patients with AKI recovery and without AKI. Increased urine Ba was associated with worse organ failure outcomes (fewer ventilator, ICU, and inotrope-free days, and fewer days alive). Conclusion Urine Ba is increased in patients with severe AKI and discriminates between patients who have AKI recovery and patients who develop persistent AKI. A doubling of urine Ba was associated with a 6.6-fold increased odds of persistent AKI. Future studies to validate these findings and to trial complement factor B inhibition are warranted.
Collapse
Affiliation(s)
- Erin K. Stenson
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charles E. Edelstein
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zhiying You
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Ostrow
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zoltan Endre
- Department of Nephrology, University of New South Wales Faculty of Medicine, Sydney, New South Wales, Australia
- Department of Nephrology, Prince of Wales Hospital and Community Health Services, Randwick, New South Wales, Australia
| | - Shinobu Miyazaki-Anzai
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bradley P. Dixon
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Halden Scott
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Neil Aggarwal
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Kendrick
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Troise D, Allegra C, Cirolla LA, Mercuri S, Infante B, Castellano G, Stallone G. Exploring Potential Complement Modulation Strategies for Ischemia-Reperfusion Injury in Kidney Transplantation. Antioxidants (Basel) 2025; 14:66. [PMID: 39857400 PMCID: PMC11761266 DOI: 10.3390/antiox14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The complement system plays a crucial role in regulating the inflammatory responses in kidney transplantation, potentially contributing to early decline in kidney function. Ischemia-reperfusion injury (IRI) is among the factors affecting graft outcomes and a primary contributor to delayed graft function. Complement activation, particularly the alternative pathway, participates in the pathogenesis of IRI, involving all kidney compartments. In particular, tubular epithelial cells often acquire a dysfunctional phenotype that can exacerbate complement activation and kidney damage. Currently, complement-modulating drugs are under investigation for the treatment of kidney diseases. Many of these drugs have shown potential therapeutic benefits, but no effective clinical treatments for renal IRI have been identified yet. In this review, we will explore drugs that target complement factors, complement receptors, and regulatory proteins, aiming to highlight their potential value in improving the management of renal IRI.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Costanza Allegra
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Luciana Antonia Cirolla
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
10
|
Holthoff JH, Alge JL, Arthur JM, Ayub F, Bin Homam W, Janech MG, Ravula S, Karakala N. Urinary Complement C3 and Vitamin D-Binding Protein Predict Adverse Outcomes in Patients with Acute Kidney Injury after Cardiac Surgery. Nephron Clin Pract 2024; 149:66-76. [PMID: 39348806 DOI: 10.1159/000540664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/27/2024] [Indexed: 10/02/2024] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is associated with adverse outcomes, including death and dialysis. The goal of this study was to identify prognostic biomarkers of AKI that could be used across multiple phenotypes of AKI and across different species. METHODS Liquid chromatography/tandem mass spectrometry analysis of urine samples from three species (human, rat, and mouse) and four etiologies of AKI identified five potential biomarkers, of which two were validated, complement C3 and vitamin D-binding protein, in a cohort of 157 patients that developed AKI following cardiothoracic surgery. We studied the relationship between the biomarker's concentration in the urine and the development of a composite primary endpoint (stage 3 AKI within 10 days or death within 30 days). RESULTS Of the 153 patients who developed AKI following cardiovascular surgery, 17 met the combined primary outcome. The median concentration of urine complement C3 adjusted to urine creatinine had the best predictive value and was significantly higher in the primary outcome group than in the controls. Similarly, the median concentration of vitamin D-binding protein was higher in the primary outcome group. CONCLUSIONS The studies provide proof in principle that cross-species discovery analyses could be a valuable tool for identifying novel prognostic biomarkers in AKI. Urine complement C3 and vitamin D-binding protein could be promising early predictors of adverse outcomes in patients who develop AKI after cardiac surgery.
Collapse
Affiliation(s)
- Joseph Hunter Holthoff
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA,
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA,
| | - Joseph L Alge
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - John M Arthur
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Fatima Ayub
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wadhah Bin Homam
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Sreelakshmi Ravula
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nithin Karakala
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
11
|
Steggerda JA, Heeger PS. The Promise of Complement Therapeutics in Solid Organ Transplantation. Transplantation 2024; 108:1882-1894. [PMID: 38361233 DOI: 10.1097/tp.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Transplantation is the ideal therapy for end-stage organ failure, but outcomes for all transplant organs are suboptimal, underscoring the need to develop novel approaches to improve graft survival and function. The complement system, traditionally considered a component of innate immunity, is now known to broadly control inflammation and crucially contribute to induction and function of adaptive T-cell and B-cell immune responses, including those induced by alloantigens. Interest of pharmaceutical industries in complement therapeutics for nontransplant indications and the understanding that the complement system contributes to solid organ transplantation injury through multiple mechanisms raise the possibility that targeting specific complement components could improve transplant outcomes and patient health. Here, we provide an overview of complement biology and review the roles and mechanisms through which the complement system is pathogenically linked to solid organ transplant injury. We then discuss how this knowledge has been translated into novel therapeutic strategies to improve organ transplant outcomes and identify areas for future investigation. Although the clinical application of complement-targeted therapies in transplantation remains in its infancy, the increasing availability of new agents in this arena provides a rich environment for potentially transformative translational transplant research.
Collapse
Affiliation(s)
- Justin A Steggerda
- Division of Abdominal Transplant Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
12
|
Erdő-Bonyár S, Rapp J, Subicz R, Böröcz K, Szinger D, Filipánits K, Minier T, Kumánovics G, Czirják L, Berki T, Simon D. Disturbed Complement Receptor Expression Pattern of B Cells Is Enhanced by Toll-like Receptor CD180 Ligation in Diffuse Cutaneous Systemic Sclerosis. Int J Mol Sci 2024; 25:9230. [PMID: 39273179 PMCID: PMC11394765 DOI: 10.3390/ijms25179230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Autoantibody production is a hallmark of systemic sclerosis (SSc) and the most extensively studied role of B cells in the pathogenesis of the disease. However, the potential involvement of innate immune molecules in B-cell dysfunction in SSc is less understood. B-cell activation is an early event in the pathogenesis of SSc and is influenced by complement receptors (CRs) and Toll-like receptors (TLRs), shaping antibody responses. CR2 and CR1 modulate B-cell activation, and the roles of CR3 and CR4 are associated with autoimmune conditions. We investigated the expression of CRs in B cells from patients with the more severe form of the disease, diffuse cutaneous SSc (dcSSc), and the effect of TLR CD180 ligation on their expression. We found no significant difference in the basal expression of CD21 and CD11c in B cells between dcSSc and healthy controls (HCs). However, reduced basal CD11b expression in B cells in dcSSc compared to HCs, accompanied by a decrease in CD35 and an increase in CD11c expression following CD180 ligation may promote plasma cell formation and autoantibody production. Additionally, we searched for correlations between dcSSc-associated anti-DNA topoisomerase I (Scl-70) autoantibody, anti-citrate synthase (CS) natural autoantibody and complement component 3 (C3) levels and found a negative correlation between C3 and anti-CS autoantibody in dcSSc but not in HCs, supporting the hypothesis that natural autoantibodies could activate the complement system contributing to tissue injury in SSc.
Collapse
Affiliation(s)
- Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Judit Rapp
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Rovéna Subicz
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Dávid Szinger
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Kristóf Filipánits
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - Tünde Minier
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - Gábor Kumánovics
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - László Czirják
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary
| |
Collapse
|
13
|
Ponticelli C, Reggiani F, Moroni G. Autophagy: A Silent Protagonist in Kidney Transplantation. Transplantation 2024; 108:1532-1541. [PMID: 37953477 DOI: 10.1097/tp.0000000000004862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Autophagy is a lysosome-dependent regulated mechanism that recycles unnecessary cytoplasmic components. It is now known that autophagy dysfunction may have a pathogenic role in several human diseases and conditions, including kidney transplantation. Both defective and excessive autophagy may induce or aggravate several complications of kidney transplantation, such as ischemia-reperfusion injury, alloimmune response, and immunosuppressive treatment and side effects. Although it is still complicated to measure autophagy levels in clinical practice, more attention should be paid to the factors that may influence autophagy. In kidney transplantation, the association of low doses of a mammalian target of rapamycin inhibitor with low doses of a calcineurin inhibitor may be of benefit for autophagy modulation. However, further studies are needed to explore the role of other autophagy regulators.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
14
|
Abstract
The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic-uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.
Collapse
Affiliation(s)
- Vojtech Petr
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
15
|
Golshayan D, Schwotzer N, Fakhouri F, Zuber J. Targeting the Complement Pathway in Kidney Transplantation. J Am Soc Nephrol 2023; 34:1776-1792. [PMID: 37439664 PMCID: PMC10631604 DOI: 10.1681/asn.0000000000000192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
The complement system is paramount in the clearance of pathogens and cell debris, yet is increasingly recognized as a key component in several pathways leading to allograft injury. There is thus a growing interest in new biomarkers to assess complement activation and guide tailored therapies after kidney transplantation (KTx). C5 blockade has revolutionized post-transplant management of atypical hemolytic uremic syndrome, a paradigm of complement-driven disease. Similarly, new drugs targeting the complement amplification loop hold much promise in the treatment and prevention of recurrence of C3 glomerulopathy. Although unduly activation of the complement pathway has been described after brain death and ischemia reperfusion, any clinical attempts to mitigate the ensuing renal insults have so far provided mixed results. However, the intervention timing, strategy, and type of complement blocker need to be optimized in these settings. Furthermore, the fast-moving field of ex vivo organ perfusion technology opens new avenues to deliver complement-targeted drugs to kidney allografts with limited iatrogenic risks. Complement plays also a key role in the pathogenesis of donor-specific ABO- and HLA-targeted alloantibodies. However, C5 blockade failed overall to improve outcomes in highly sensitized patients and prevent the progression to chronic antibody-mediated rejection (ABMR). Similarly, well-conducted studies with C1 inhibitors in sensitized recipients yielded disappointing results so far, in part, because of subtherapeutic dosage used in clinical studies. The emergence of new complement blockers raises hope to significantly reduce the negative effect of ischemia reperfusion, ABMR, and nephropathy recurrence on outcomes after KTx.
Collapse
Affiliation(s)
- Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nora Schwotzer
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien Zuber
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| |
Collapse
|
16
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
17
|
Xing Z, Gong K, Hu N, Chen Y. The Reduction of Uromodulin, Complement Factor H, and Their Interaction Is Associated with Acute Kidney Injury to Chronic Kidney Disease Transition in a Four-Time Cisplatin-Injected Rat Model. Int J Mol Sci 2023; 24:ijms24076636. [PMID: 37047611 PMCID: PMC10095257 DOI: 10.3390/ijms24076636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Uromodulin is recognized as a protective factor during AKI-to-CKD progression, but the mechanism remains unclear. We previously reported that uromodulin interacts with complement factor H (CFH) in vitro, and currently aimed to study the expression and interaction evolution of uromodulin and CFH during AKI-to-CKD transition. We successfully established a rat model of AKI-to-CKD transition induced by a four-time cisplatin treatment. The blood levels of BUN, SCR, KIM-1 and NGAL increased significantly during the acute injury phase and exhibited an uptrend in chronic progression. PAS staining showed the nephrotoxic effects of four-time cisplatin injection on renal tubules, and Sirius red highlighted the increasing collagen fiber. Protein and mRNA levels of uromodulin decreased while urine levels increased in acute renal injury on chronic background. An extremely diminished level of uromodulin correlated with severe renal fibrosis. RNA sequencing revealed an upregulation of the alternative pathway in the acute stage. Renal CFH gene expression showed an upward tendency, while blood CFH localized less, decreasing the abundance of CFH in kidney and following sustained C3 deposition. A co-IP assay detected the linkage between uromodulin and CFH. In the model of AKI-to-CKD transition, the levels of uromodulin and CFH decreased, which correlated with kidney dysfunction and fibrosis. The interaction between uromodulin and CFH might participate in AKI-to-CKD transition.
Collapse
Affiliation(s)
- Zheyu Xing
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| | - Kunjing Gong
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| | - Nan Hu
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| | - Yuqing Chen
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Institute of Nephrology, Peking University, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, China
| |
Collapse
|
18
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
19
|
Stenson EK, Edelstein CL, You Z, Miyazaki-Anzai S, Thurman JM, Dixon BP, Zappitelli M, Goldstein SL, Akcan Arikan A, Kendrick J. Urine Complement Factor Ba Is Associated with AKI in Critically Ill Children. KIDNEY360 2023; 4:326-332. [PMID: 36758197 PMCID: PMC10103361 DOI: 10.34067/kid.0000000000000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
Key Points Complement activation, specifically factor B, is implicated in AKI pathogenesis in animal models. Urine Ba (an activation fragment of factor B) was significantly higher in critically ill children with stage 3 AKI and sepsis-AKI. If larger studies show similar association between urine Ba and AKI severity, clinical trials of factor B inhibition are warranted. Background: Critically ill children with AKI have high morbidity and mortality rates and lack treatment options. Complement activation is implicated in AKI pathogenesis, which could be treated with complement-targeted therapeutics. We assessed for an association between urine Ba, an activation fragment of the alternative complement pathway, and AKI in a large cohort of critically ill children. Methods: A biorepository of children requiring mechanical ventilation was leveraged. AKI was based on pediatric version of the RIFLE criteria—stage 1: 25% decreased eGFR or urine output (UOP) <0.5ml/kg per hour for 8 hours; stage 2: 50% decreased eGFR or UOP <0.5 ml/kg per hour for 16 hours; stage 3: 75% decreased eGFR or UOP <0.3ml/kg per hour for 24 hours or anuric for 12 hours. ELISAs were performed to quantitate urine Ba values. Log Ba was used in ANOVA with pairwise comparison by the Tukey method. Logistic regression was performed to test the association between urine Ba and AKI diagnosis. Results: Seventy-three patients were included, of which 56 had AKI: 26 (46%) stage 1, 16 (29%) stage 2, and 14 (25%) stage 3. Ba was significantly higher in patients with stage 3 AKI compared with all other stages. Ba was higher in sepsis-associated AKI compared with non–sepsis-associated AKI. Multivariate analysis included urine Ba, urine IL-18, urine NGAL, sepsis, and Pediatric Risk of Mortality Scores-II (an estimate of illness severity) and showed a significant association between urine Ba and AKI (odds ratio 1.57, 95% confidence interval, 1.13 to 2.20; P 0.007). Conclusion: Urine Ba is significantly increased in patients with AKI compared with patients without AKI. In patients with similar illness severity, a doubling of urine Ba level was associated with a 57% increase in AKI diagnosis of any stage. Further studies are needed to study complement inhibition in treatment or prevention of AKI in critically ill children.
Collapse
Affiliation(s)
- Erin K. Stenson
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Charles L. Edelstein
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Zhiying You
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Joshua M. Thurman
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Bradley P. Dixon
- Renal Section, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael Zappitelli
- Division of Paediatric Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stuart L. Goldstein
- Center for Acute Care Nephrology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ayse Akcan Arikan
- Divisions of Pediatric Critical Care and Renal, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Jessica Kendrick
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
20
|
Tu H, Li YL. Inflammation balance in skeletal muscle damage and repair. Front Immunol 2023; 14:1133355. [PMID: 36776867 PMCID: PMC9909416 DOI: 10.3389/fimmu.2023.1133355] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Responding to tissue injury, skeletal muscles undergo the tissue destruction and reconstruction accompanied with inflammation. The immune system recognizes the molecules released from or exposed on the damaged tissue. In the local minor tissue damage, tissue-resident macrophages sequester pro-inflammatory debris to prevent initiation of inflammation. In most cases of the skeletal muscle injury, however, a cascade of inflammation will be initiated through activation of local macrophages and mast cells and recruitment of immune cells from blood circulation to the injured site by recongnization of damage-associated molecular patterns (DAMPs) and activated complement system. During the inflammation, macrophages and neutrophils scavenge the tissue debris to release inflammatory cytokines and the latter stimulates myoblast fusion and vascularization to promote injured muscle repair. On the other hand, an abundance of released inflammatory cytokines and chemokines causes the profound hyper-inflammation and mobilization of immune cells to trigger a vicious cycle and lead to the cytokine storm. The cytokine storm results in the elevation of cytolytic and cytotoxic molecules and reactive oxygen species (ROS) in the damaged muscle to aggravates the tissue injury, including the healthy bystander tissue. Severe inflammation in the skeletal muscle can lead to rhabdomyolysis and cause sepsis-like systemic inflammation response syndrome (SIRS) and remote organ damage. Therefore, understanding more details on the involvement of inflammatory factors and immune cells in the skeletal muscle damage and repair can provide the new precise therapeutic strategies, including attenuation of the muscle damage and promotion of the muscle repair.
Collapse
|
21
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
22
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
23
|
Nauser CL, Sacks SH. Local complement synthesis-A process with near and far consequences for ischemia reperfusion injury and transplantation. Immunol Rev 2023; 313:320-326. [PMID: 36200881 DOI: 10.1111/imr.13144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The model of the solid organ as a target for circulating complement deposited at the site of injury, for many years concealed the broader influence of complement in organ transplantation. The study of locally synthesized complement especially in transplantation cast new light on complement's wider participation in ischaemia-reperfusion injury, the presentation of donor antigen and finally rejection. The lack of clarity, however, has persisted as to which complement activation pathways are involved and how they are triggered, and above all whether the distinction is relevant. In transplantation, the need for clarity is heightened by the quest for precision therapies in patients who are already receiving potent immunosuppressives, and because of the opportunity for well-timed intervention. This review will present new evidence for the emerging role of the lectin pathway, weighed alongside the longer established role of the alternative pathway as an amplifier of the complement system, and against contributions from the classical pathway. It is hoped this understanding will contribute to the debate on precisely targeted versus broadly acting therapeutic innovation within the aim to achieve safe long term graft acceptance.
Collapse
|
24
|
Vonbrunn E, Büttner-Herold M, Amann K, Daniel C. Complement Inhibition in Kidney Transplantation: Where Are We Now? BioDrugs 2023; 37:5-19. [PMID: 36512315 PMCID: PMC9836999 DOI: 10.1007/s40259-022-00567-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal disease. Although progress has been made in the field of transplantation medicine in recent decades in terms of surgical techniques and immunosuppression, long-term organ survival remains a challenge. Also, for reasons of organ shortage, there is an unmet need for new therapeutic approaches to improve the long-term survival of transplants. There is increasing evidence that the complement system plays a crucial role in various pathological events after transplantation, including ischemia/reperfusion injury as well as rejection episodes. The complement system is part of the innate immune system and plays a crucial role in the defense against pathogens but is also involved in tissue homeostasis. However, the tightly regulated complement system can become dysregulated or activated by non-infectious stimuli, then targeting the organism's own cells and leading to inflammatory tissue damage that exacerbates injury. In this review, we will highlight the role of the complement system after transplantation and discuss ongoing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| |
Collapse
|
25
|
Renner B, Laskowski J, Poppelaars F, Ferreira VP, Blaine J, Antonioli AH, Hannan JP, Kovacs JM, van Kooten C, You Z, Pickering MC, Holers VM, Thurman JM. Factor H related proteins modulate complement activation on kidney cells. Kidney Int 2022; 102:1331-1344. [PMID: 36063874 PMCID: PMC9691546 DOI: 10.1016/j.kint.2022.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Complement activation at a particular location is determined by the balance of activating and inhibitory proteins. Factor H is a key regulator of the alternative pathway of complement, and genetic or acquired impairments in Factor H are associated with glomerular injury. The human Factor H-related proteins (FHRs) comprise a family of five proteins that are structurally related to Factor H. Variations in the genes or expression levels of the FHRs are also associated with glomerular disease, although the mechanisms of glomerular protection/injury are incompletely understood. To explore the role of the FHRs on complement regulation/dysregulation in the kidney, we expressed and purified recombinant murine FHRs (FHRs A, B, C and E). These four distinct FHRs contain binding regions with high amino acid sequence homology to binding regions within Factor H, but we observed different interactions of the FHRs with Factor H binding ligands, including heparin and C3d. There was differential binding of the FHRs to the resident kidney cell types (mesangial, glomerular endothelial, podocytes, and tubular epithelial). All four FHRs caused complement dysregulation on kidney cell surfaces in vitro, although the magnitude of the effect differed among the FHRs and also varied among the different kidney cells. However, only FHR E caused glomerular complement dysregulation when injected in vivo but did not exacerbate injury when injected into mice with ischemic acute kidney injury, an alternative pathway-mediated model. Thus, our experiments demonstrate that the FHRs have unique, and likely context-dependent, effects on the different cell types within the kidney.
Collapse
Affiliation(s)
- Brandon Renner
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer Laskowski
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Felix Poppelaars
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Judith Blaine
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jonathan P Hannan
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - James M Kovacs
- Department of Chemistry and Biochemistry, University of Colorado Springs, Colorado Springs, Colorado, USA
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Zhiying You
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
26
|
Delaura IF, Gao Q, Anwar IJ, Abraham N, Kahan R, Hartwig MG, Barbas AS. Complement-targeting therapeutics for ischemia-reperfusion injury in transplantation and the potential for ex vivo delivery. Front Immunol 2022; 13:1000172. [PMID: 36341433 PMCID: PMC9626853 DOI: 10.3389/fimmu.2022.1000172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023] Open
Abstract
Organ shortages and an expanding waitlist have led to increased utilization of marginal organs. All donor organs are subject to varying degrees of IRI during the transplant process. Extended criteria organs, including those from older donors and organs donated after circulatory death are especially vulnerable to ischemia-reperfusion injury (IRI). Involvement of the complement cascade in mediating IRI has been studied extensively. Complement plays a vital role in the propagation of IRI and subsequent recruitment of the adaptive immune elements. Complement inhibition at various points of the pathway has been shown to mitigate IRI and minimize future immune-mediated injury in preclinical models. The recent introduction of ex vivo machine perfusion platforms provides an ideal window for therapeutic interventions. Here we review the role of complement in IRI by organ system and highlight potential therapeutic targets for intervention during ex vivo machine preservation of donor organs.
Collapse
Affiliation(s)
- Isabel F. Delaura
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Imran J. Anwar
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Nader Abraham
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Riley Kahan
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Matthew G. Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, United States
| | - Andrew S. Barbas
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
27
|
Stenson EK, Kendrick J, Dixon B, Thurman JM. The complement system in pediatric acute kidney injury. Pediatr Nephrol 2022; 38:1411-1425. [PMID: 36203104 PMCID: PMC9540254 DOI: 10.1007/s00467-022-05755-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 10/24/2022]
Abstract
The complement cascade is an important part of the innate immune system. In addition to helping the body to eliminate pathogens, however, complement activation also contributes to the pathogenesis of a wide range of kidney diseases. Recent work has revealed that uncontrolled complement activation is the key driver of several rare kidney diseases in children, including atypical hemolytic uremic syndrome and C3 glomerulopathy. In addition, a growing body of literature has implicated complement in the pathogenesis of more common kidney diseases, including acute kidney injury (AKI). Complement-targeted therapeutics are in use for a variety of diseases, and an increasing number of therapeutic agents are under development. With the implication of complement in the pathogenesis of AKI, complement-targeted therapeutics could be trialed to prevent or treat this condition. In this review, we discuss the evidence that the complement system is activated in pediatric patients with AKI, and we review the role of complement proteins as biomarkers and therapeutic targets in patients with AKI.
Collapse
Affiliation(s)
- Erin K. Stenson
- grid.430503.10000 0001 0703 675XSection of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, 13121 E 17th Avenue, MS8414, Aurora, CO 80045 USA
| | - Jessica Kendrick
- grid.430503.10000 0001 0703 675XDivision of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO USA
| | - Bradley Dixon
- grid.430503.10000 0001 0703 675XRenal Section, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO USA
| | - Joshua M. Thurman
- grid.430503.10000 0001 0703 675XDivision of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO USA
| |
Collapse
|
28
|
Ponticelli C, Reggiani F, Moroni G. Delayed Graft Function in Kidney Transplant: Risk Factors, Consequences and Prevention Strategies. J Pers Med 2022; 12:jpm12101557. [PMID: 36294695 PMCID: PMC9605016 DOI: 10.3390/jpm12101557] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background. Delayed graft function is a frequent complication of kidney transplantation that requires dialysis in the first week posttransplant. Materials and Methods. We searched for the most relevant articles in the National Institutes of Health library of medicine, as well as in transplantation, pharmacologic, and nephrological journals. Results. The main factors that may influence the development of delayed graft function (DGF) are ischemia–reperfusion injury, the source and the quality of the donated kidney, and the clinical management of the recipient. The pathophysiology of ischemia–reperfusion injury is complex and involves kidney hypoxia related to the duration of warm and cold ischemia, as well as the harmful effects of blood reperfusion on tubular epithelial cells and endothelial cells. Ischemia–reperfusion injury is more frequent and severe in kidneys from deceased donors than in those from living donors. Of great importance is the quality and function of the donated kidney. Kidneys from living donors and those with normal function can provide better results. In the peri-operative management of the recipient, great attention should be paid to hemodynamic stability and blood pressure; nephrotoxic medicaments should be avoided. Over time, patients with DGF may present lower graft function and survival compared to transplant recipients without DGF. Maladaptation repair, mitochondrial dysfunction, and acute rejection may explain the worse long-term outcome in patients with DGF. Many different strategies meant to prevent DGF have been evaluated, but only prolonged perfusion of dopamine and hypothermic machine perfusion have proven to be of some benefit. Whenever possible, a preemptive transplant from living donor should be preferred.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Correspondence:
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
29
|
Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 2022; 12:3767-3780. [PMID: 36073750 DOI: 10.1002/cphy.c210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.
Collapse
Affiliation(s)
- Luis A Juncos
- Division of Nephrology, Central Arkansas Veterans' Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick M Wieruszewski
- Division of Hospital Pharmacy, Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
31
|
Chan WH, Hsu YJ, Cheng CP, Chou KN, Chen CL, Huang SM, Kan WC, Chiu YL. Assessing the Global Impact on the Mouse Kidney After Traumatic Brain Injury: A Transcriptomic Study. J Inflamm Res 2022; 15:4833-4851. [PMID: 36042866 PMCID: PMC9420446 DOI: 10.2147/jir.s375088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose In this study, we use animal models combined with bioinformatics strategies to investigate the potential changes in overall renal transcriptional expression after traumatic brain injury. Methods Microarray analysis was performed after kidney acquisition using unilateral controlled cortical impact as the primary mouse TBI model. Multi-oriented gene set enrichment analysis was performed for differentially expressed genes. Results The results showed that TBI affected the gene set associated with mitochondria function in kidney cells, and a negative enrichment of gene sets associated with immune cell migration and epidermal development was also observed. Analysis of the disease phenotype gene set revealed that differential expression of mitochondria-related genes was associated with lactate metabolism. Alternatively, activation and adhesion of immune cells associated with the complement system may promote autoinflammation in kidney tissue. The simulated immune cell infiltration analysis showed an increase in the proportion of activated memory CD4 T cells and a decrease in the proportion of resting memory CD4 T cells, suggesting that activated memory CD4 T cell infiltration may be involved in the inflammation of renal tissue and cause damage to renal cells, such as principal cells, mesangial cells and loops of Henle cells. Conclusion This study is the first to reveal the effects of brain trauma on the kidney. TBI may affect the expression of mitochondria function-related gene sets in renal cells by increasing lactate. It may also affect renal mesangial cells by inducing increased infiltration of immune cells through mechanisms related to complement system activation or autoimmune antibodies.
Collapse
Affiliation(s)
- Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Chiao-Pei Cheng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Kuan-Nien Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan, Republic of China.,Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Wei-Chih Kan
- Department of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan City, Taiwan, Republic of China.,Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan City, Taiwan, Republic of China
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| |
Collapse
|
32
|
Vivarelli M, van de Kar N, Labbadia R, Diomedi-Camassei F, Thurman JM. A clinical approach to children with C3 glomerulopathy. Pediatr Nephrol 2022; 37:521-535. [PMID: 34002292 DOI: 10.1007/s00467-021-05088-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
C3 glomerulopathy is a relatively new clinical entity that represents a challenge both to diagnose and to treat. As new therapeutic agents that act as complement inhibitors become available, many with an oral formulation, a better understanding of this disease and of the underlying complement dysregulation driving it has become increasingly useful to optimize patient care. Moreover, recent advances in research have clarified the role of complement in other glomerular diseases in which its role was less established, namely in immune-complex membranoproliferative glomerulonephritis (IC-MPGN), ANCA-vasculitis, IgA nephropathy, and idiopathic membranous nephropathy. Complement inhibitors are being studied in adult and adolescent clinical trials for these indications. This review summarizes current knowledge and future perspectives on every aspect of the diagnosis and management of C3 glomerulopathy and elucidates current understanding of the role of complement in this condition and in other glomerular diseases in children. An overview of ongoing trials involving therapeutic agents targeting complement in glomerular diseases is also provided.
Collapse
Affiliation(s)
- Marina Vivarelli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy.
| | - Nicole van de Kar
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Raffaella Labbadia
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy
| | | | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
33
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
34
|
Cortes C, Desler C, Mazzoli A, Chen JY, Ferreira VP. The role of properdin and Factor H in disease. Adv Immunol 2022; 153:1-90. [PMID: 35469595 DOI: 10.1016/bs.ai.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.
Collapse
Affiliation(s)
- Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Caroline Desler
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Amanda Mazzoli
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Jin Y Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
35
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Howard MC, Nauser CL, Farrar CA, Sacks SH. Complement in ischaemia-reperfusion injury and transplantation. Semin Immunopathol 2021; 43:789-797. [PMID: 34757496 PMCID: PMC8579729 DOI: 10.1007/s00281-021-00896-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023]
Abstract
Until recently, the only known condition in which complement could mediate transplant injury was the rare occurrence of antibody-mediated rejection, in which the original concept of antibody immunity against the transplant was supported by complementary proteins present in the serum. This has changed within the last two decades because of evidence that the processes of ischaemia–reperfusion injury followed by T cell–mediated rejection are also critically dependent on components generated by the complement system. We now have a clearer understanding of the complement triggers and effectors that mediate injury, and a detailed map of their local sites of production and activation in the kidney. This is providing helpful guidelines as to how these harmful processes that restrict transplant outcomes can be targeted for therapeutic benefit. Here we review some of the recent advances highlighting relevant therapeutic targets.
Collapse
Affiliation(s)
- Mark C Howard
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Christopher L Nauser
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Conrad A Farrar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Steven H Sacks
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, 5thFloor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
37
|
Bongoni AK, Vikstrom IB, McRae JL, Salvaris EJ, Fisicaro N, Pearse MJ, Wymann S, Rowe T, Morelli AB, Hardy MP, Cowan PJ. A potent truncated form of human soluble CR1 is protective in a mouse model of renal ischemia-reperfusion injury. Sci Rep 2021; 11:21873. [PMID: 34750424 PMCID: PMC8575974 DOI: 10.1038/s41598-021-01423-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
The complement system is a potent mediator of ischemia–reperfusion injury (IRI), which detrimentally affects the function and survival of transplanted kidneys. Human complement receptor 1 (HuCR1) is an integral membrane protein that inhibits complement activation by blocking the convertases that activate C3 and C5. We have previously reported that CSL040, a truncated form of recombinant soluble HuCR1 (sHuCR1), has enhanced complement inhibitory activity and improved pharmacokinetic properties compared to the parent molecule. Here, we compared the capacity of CSL040 and full-length sHuCR1 to suppress complement-mediated organ damage in a mouse model of warm renal IRI. Mice were treated with two doses of CSL040 or sHuCR1, given 1 h prior to 22 min unilateral renal ischemia and again 3 h later. 24 h after reperfusion, mice treated with CSL040 were protected against warm renal IRI in a dose-dependent manner, with the highest dose of 60 mg/kg significantly reducing renal dysfunction, tubular injury, complement activation, endothelial damage, and leukocyte infiltration. In contrast, treatment with sHuCR1 at a molar equivalent dose to 60 mg/kg CSL040 did not confer significant protection. Our results identify CSL040 as a promising therapeutic candidate to attenuate renal IRI and demonstrate its superior efficacy over full-length sHuCR1 in vivo.
Collapse
Affiliation(s)
- Anjan K Bongoni
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia.
| | | | - Jennifer L McRae
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia
| | - Evelyn J Salvaris
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia
| | | | | | - Tony Rowe
- CSL Limited, Melbourne, VIC, 3052, Australia
| | | | | | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, PO Box 2900, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
38
|
Stenson EK, You Z, Reeder R, Norris J, Scott HF, Dixon BP, Thurman JM, Frazer-Abel A, Mourani P, Kendrick J. Complement Activation Fragments Are Increased in Critically Ill Pediatric Patients with Severe AKI. KIDNEY360 2021; 2:1884-1891. [PMID: 35419539 PMCID: PMC8986038 DOI: 10.34067/kid.0004542021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 02/04/2023]
Abstract
Background Children who are critically ill with AKI suffer from high morbidity and mortality rates, and lack treatment options. Emerging evidence implicates the role of complement activation in AKI pathogenesis, which could potentially be treated with complement inhibitors. The purpose of this study is to evaluate the association between complement activation fragments and severity of AKI in children who are critically ill. Methods A biorepository of samples from children who are critically ill from a prior multisite study was leveraged to identify children with stage 3 AKI and matched to patients without AKI on the basis of PELOD-2 (illness severity) scores. Specimens were analyzed for plasma and urine complement activation fragments of factor B, C3a, C4a, and sC5b-9. The primary outcomes were MAKE30 and severe AKI rates. Results In total, 14 patients with stage 3 AKI (five requiring RRT) were matched to 14 patients without AKI. Urine factor Ba and plasma C4a levels increased stepwise as severity of AKI increased, from no AKI to stage 3 AKI, to stage 3 AKI with RRT need. Plasma C4a levels were independently associated with increased risk of MAKE30 outcomes (OR, 3.2; IQR, 1.1-8.9), and urine Ba (OR, 1.9; IQR, 1.1-3.1), plasma Bb (OR, 2.7; IQR, 1.1-6.8), C4a (OR, 13.0; IQR, 1.6-106.6), and C3a (OR, 3.3; IQR, 1.3-8.4) were independently associated with risk of severe stage 2-3 AKI on day 3 of admission. Conclusions Multiple complement fragments increase as magnitude of AKI severity increases. Very high levels of urine Ba or plasma C4a may identify patients at risk for severe AKI, hemodialysis, and MAKE30 outcomes. The fragments may be useful as a functional biomarker of complement activation and may identify those patients to study complement inhibition to treat or prevent AKI in children who are critically ill. These findings suggest the need for further specific investigations of the role of complement activation in children who are critically ill and at risk of AKI.
Collapse
Affiliation(s)
- Erin K. Stenson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine, Aurora, Colorado
| | - Zhiying You
- Division of Renal Disease and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Jesse Norris
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Halden F. Scott
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Pediatrics, Section of Pediatric Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Bradley P. Dixon
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Pediatrics, Section of Pediatric Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| | - Joshua M. Thurman
- Division of Renal Disease and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ashley Frazer-Abel
- Department of Pediatrics, Exsera BioLabs, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Mourani
- Division of Critical Care Medicine, Arkansas Children’s Hospital, Little Rock, Arkansas
| | - Jessica Kendrick
- Division of Renal Disease and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
39
|
Wu Y, Zwaini ZD, Brunskill NJ, Zhang X, Wang H, Chana R, Stover CM, Yang B. Properdin Deficiency Impairs Phagocytosis and Enhances Injury at Kidney Repair Phase Post Ischemia-Reperfusion. Front Immunol 2021; 12:697760. [PMID: 34552582 PMCID: PMC8450566 DOI: 10.3389/fimmu.2021.697760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Properdin, a positive regulator of complement alternative pathway, participates in renal ischemia–reperfusion (IR) injury and also acts as a pattern-recognition molecule affecting apoptotic T-cell clearance. However, the role of properdin in tubular epithelial cells (TECs) at the repair phase post IR injury is not well defined. This study revealed that properdin knockout (PKO) mice exhibited greater injury in renal function and histology than wild-type (WT) mice post 72-h IR, with more apoptotic cells and macrophages in tubular lumina, increased active caspase-3 and HMGB1, but better histological structure at 24 h. Raised erythropoietin receptor by IR was furthered by PKO and positively correlated with injury and repair markers. Properdin in WT kidneys was also upregulated by IR, while H2O2-increased properdin in TECs was reduced by its small-interfering RNA (siRNA), with raised HMGB1 and apoptosis. Moreover, the phagocytic ability of WT TECs, analyzed by pHrodo Escherichia coli bioparticles, was promoted by H2O2 but inhibited by PKO. These results were confirmed by counting phagocytosed H2O2-induced apoptotic TECs by in situ end labeling fragmented DNAs but not affected by additional serum with/without properdin. Taken together, PKO results in impaired phagocytosis at the repair phase post renal IR injury. Properdin locally produced by TECs plays crucial roles in optimizing damaged cells and regulating phagocytic ability of TECs to effectively clear apoptotic cells and reduce inflammation.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Basic Medical Research Centre, Medical School of Nantong University, Nantong, China
| | - Zinah D Zwaini
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Nigel J Brunskill
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyue Zhang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Hui Wang
- Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ravinder Chana
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Cordula M Stover
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Nantong-Leicester Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
40
|
Katsoulis O, Georgiadou A, Cunnington AJ. Immunopathology of Acute Kidney Injury in Severe Malaria. Front Immunol 2021; 12:651739. [PMID: 33968051 PMCID: PMC8102819 DOI: 10.3389/fimmu.2021.651739] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a common feature of severe malaria, and an independent risk factor for death. Previous research has suggested that an overactivation of the host inflammatory response is at least partly involved in mediating the kidney damage observed in P. falciparum patients with AKI, however the exact pathophysiology of AKI in severe malaria remains unknown. The purpose of this mini-review is to describe how different aspects of malaria pathology, including parasite sequestration, microvascular obstruction and extensive intravascular hemolysis, may interact with each other and contribute to the development of AKI in severe malaria, by amplifying the damaging effects of the host inflammatory response. Here, we highlight the importance of considering how the systemic effects and multi-organ involvement of malaria are intertwined with the localized effects on the kidney.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Hevey R, Pouw RB, Harris C, Ricklin D. Sweet turning bitter: Carbohydrate sensing of complement in host defence and disease. Br J Pharmacol 2020; 178:2802-2822. [PMID: 33140840 DOI: 10.1111/bph.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a major role in threat recognition and in orchestrating responses to microbial intruders and accumulating debris. This immune surveillance is largely driven by lectins that sense carbohydrate signatures on foreign, diseased and healthy host cells and act as complement activators, regulators or receptors to shape appropriate immune responses. While carbohydrate sensing protects our bodies, misguided or impaired recognition can contribute to disease. Moreover, pathogenic microbes have evolved to evade complement by mimicking host signatures. While complement is recognized as a disease factor, we only slowly start to appreciate the role of carbohydrate interactions in the underlying processes. A better understanding of complement's sweet side will contribute to a better description of disease mechanisms and enhanced diagnostic and therapeutic options. This review introduces the key components in complement-mediated carbohydrate sensing, discusses their role in health and disease, and touches on the potential effects of carbohydrate-related disease intervention. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Claire Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
42
|
Dellepiane S, Leventhal JS, Cravedi P. T Cells and Acute Kidney Injury: A Two-Way Relationship. Front Immunol 2020; 11:1546. [PMID: 32765535 PMCID: PMC7379378 DOI: 10.3389/fimmu.2020.01546] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Acute Kidney Injury (AKI) complicates up to 10% of hospital admissions substantially increasing patient morbidity and mortality. Experimental evidence supports that AKI initiation and maintenance results from immune-mediated damage. Exogenous injury sources directly damage renal cells which produce pro-inflammatory mediators recruiting immune cells and furthering kidney injury. Many AKI studies focus on activation of innate immunity; major components include complement pathways, neutrophils, and monocytes. Recently, growing evidence emphasizes T lymphocytes role in affecting AKI pathogenesis and magnitude. In particular, T helper 17 lymphocytes enhance tissue injury by recruiting neutrophils and other inflammatory cells, while regulatory T cells conversely reduce renal injury and facilitate repair. Intriguingly, evidence supports local parenchymal-T cell interactions as essential to producing T cell phenotypic changes affecting long-term kidney and patient survival. Herein, we review T cells effects on AKI and patient outcomes and discuss related new therapeutic approaches to improve outcomes of affected individuals.
Collapse
Affiliation(s)
- Sergio Dellepiane
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S Leventhal
- Division of Nephrology, White Plains Hospital, White Plains, NY, United States
| | - Paolo Cravedi
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
43
|
Zhao F, Wang X, Liang T, Bao D, Wang Y, Du Y, Li H, Du J, Chen A, Fu Z, Xie Z, Liang G. Effect of Hyperbaric Oxygen on Tissue Damage and Expression of Adhesion Molecules and C3 in a Rat Model of Renal Ischemia-Reperfusion Injury After Kidney Transplantation. Ann Transplant 2020; 25:e919385. [PMID: 32499475 PMCID: PMC7297207 DOI: 10.12659/aot.919385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the protective effect and mechanism of hyperbaric oxygen (HBO) in a rat model of renal ischemia-reperfusion injury following kidney transplantation. MATERIAL AND METHODS Sprague Dawley rats were randomly divided into 3 groups (n=18): sham group, kidney transplantation group, and HBO treatment group. Six rats in each group were sacrificed at 1, 3, and 5 hours after reperfusion, and serum and renal tissue were then collected. The serum creatinine levels and histopathological changes of the renal tissue were detected. ICAM-1, VCAM-1, and C3 expression levels were also detected by immunohistochemical staining or real-time polymerase chain reaction. RESULTS Renal function was damaged in the kidney transplantation group and the HBO treatment group compared with sham group (P<0.05). Renal histopathological changes, including tubular cell swelling, tubular dilatation, and hyaline casts, were remarkably reduced in the HBO treatment group compared to the kidney transplantation group. In the immunohistochemical examination, the expression levels of ICAM-1, VCAM-1, and C3 were obviously increased in the kidney transplantation group and the HBO treatment group; moreover, the levels in the HBO treatment group were significantly lower than in the kidney transplantation group (P<0.05). In addition, the ICAM-1 and C3 mRNA levels were increased in the kidney transplantation group and HBO treatment group, but the levels of in the HBO treatment group them were significantly decreased compared to the kidney transplantation group that at 3 and 5 hours after reperfusion (P<0.05). CONCLUSIONS HBO treatment exerted a protective effect on renal function through inhibition of adhesion molecule overexpression and complement system activation in a rat model of renal ischemia-reperfusion injury after kidney transplantation.
Collapse
Affiliation(s)
- Faliang Zhao
- Medical College of Soochow University, Suzhou, Jiangsu, China (mainland).,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Xin Wang
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Tiancai Liang
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Dingsu Bao
- Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Yuanliang Wang
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Yang Du
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Hao Li
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Jiang Du
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Anjian Chen
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Zifeng Fu
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Zhihui Xie
- Department of Hyperbaric Oxygen, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Guobiao Liang
- Medical College of Soochow University, Suzhou, Jiangsu, China (mainland).,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| |
Collapse
|
44
|
Danobeitia JS, Zens TJ, Chlebeck PJ, Zitur LJ, Reyes JA, Eerhart MJ, Coonen J, Capuano S, D’Alessandro AM, Torrealba JR, Burguete D, Brunner K, Amersfoort E, Ponstein-Simarro Doorten Y, Van Kooten C, Jankowska-Gan E, Burlingham W, Sullivan J, Djamali A, Pozniak M, Yankol Y, Fernandez LA. Targeted donor complement blockade after brain death prevents delayed graft function in a nonhuman primate model of kidney transplantation. Am J Transplant 2020; 20:1513-1526. [PMID: 31922336 PMCID: PMC7261643 DOI: 10.1111/ajt.15777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/25/2023]
Abstract
Delayed graft function (DGF) in renal transplant is associated with reduced graft survival and increased immunogenicity. The complement-driven inflammatory response after brain death (BD) and posttransplant reperfusion injury play significant roles in the pathogenesis of DGF. In a nonhuman primate model, we tested complement-blockade in BD donors to prevent DGF and improve graft survival. BD donors were maintained for 20 hours; kidneys were procured and stored at 4°C for 43-48 hours prior to implantation into ABO-compatible, nonsensitized, MHC-mismatched recipients. Animals were divided into 3 donor-treatment groups: G1 - vehicle, G2 - rhC1INH+heparin, and G3 - heparin. G2 donors showed significant reduction in classical complement pathway activation and decreased levels of tumor necrosis factor α and monocyte chemoattractant protein 1. DGF was diagnosed in 4/6 (67%) G1 recipients, 3/3 (100%) G3 recipients, and 0/6 (0%) G2 recipients (P = .008). In addition, G2 recipients showed superior renal function, reduced sC5b-9, and reduced urinary neutrophil gelatinase-associated lipocalin in the first week posttransplant. We observed no differences in incidence or severity of graft rejection between groups. Collectively, the data indicate that donor-management targeting complement activation prevents the development of DGF. Our results suggest a pivotal role for complement activation in BD-induced renal injury and postulate complement blockade as a promising strategy for the prevention of DGF after transplantation.
Collapse
Affiliation(s)
- Juan S. Danobeitia
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tiffany J. Zens
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter J. Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura J. Zitur
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jose A. Reyes
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Michael J. Eerhart
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer Coonen
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Saverio Capuano
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony M. D’Alessandro
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jose R. Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel Burguete
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Brunner
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | - Cees Van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewa Jankowska-Gan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William Burlingham
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jeremy Sullivan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Arjang Djamali
- Department of Medicine, Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Myron Pozniak
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yucel Yankol
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Luis A. Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
45
|
Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front Immunol 2020; 11:734. [PMID: 32457738 PMCID: PMC7221190 DOI: 10.3389/fimmu.2020.00734] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The aberrant activation of complement system in several kidney diseases suggests that this pillar of innate immunity has a critical role in the pathophysiology of renal damage of different etiologies. A growing body of experimental evidence indicates that complement activation contributes to the pathogenesis of acute kidney injury (AKI) such as delayed graft function (DGF) in transplant patients. AKI is characterized by the rapid loss of the kidney's excretory function and is a complex syndrome currently lacking a specific medical treatment to arrest or attenuate progression in chronic kidney disease (CKD). Recent evidence suggests that independently from the initial trigger (i.e., sepsis or ischemia/reperfusions injury), an episode of AKI is strongly associated with an increased risk of subsequent CKD. The AKI-to-CKD transition may involve a wide range of mechanisms including scar-forming myofibroblasts generated from different sources, microvascular rarefaction, mitochondrial dysfunction, or cell cycle arrest by the involvement of epigenetic, gene, and protein alterations leading to common final signaling pathways [i.e., transforming growth factor beta (TGF-β), p16 ink4a , Wnt/β-catenin pathway] involved in renal aging. Research in recent years has revealed that several stressors or complications such as rejection after renal transplantation can lead to accelerated renal aging with detrimental effects with the establishment of chronic proinflammatory cellular phenotypes within the kidney. Despite a greater understanding of these mechanisms, the role of complement system in the context of the AKI-to-CKD transition and renal inflammaging is still poorly explored. The purpose of this review is to summarize recent findings describing the role of complement in AKI-to-CKD transition. We will also address how and when complement inhibitors might be used to prevent AKI and CKD progression, therefore improving graft function.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
46
|
Frederiksen K, Krag AE, Larsen JB, Kiil BJ, Thiel S, Hvas AM. Remote ischemic preconditioning does not influence lectin pathway protein levels in head and neck cancer patients undergoing surgery. PLoS One 2020; 15:e0230411. [PMID: 32267878 PMCID: PMC7141620 DOI: 10.1371/journal.pone.0230411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer patients who undergo tumor removal, and reconstructive surgery by transfer of a free tissue flap, are at high risk of surgical site infection and ischemia-reperfusion injury. Complement activation through the lectin pathway (LP) may contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) is a recent experimental treatment targeting ischemia-reperfusion injury. The study aims were to investigate LP protein plasma levels in head and neck cancer patients compared with healthy individuals, to explore whether RIPC affects LP protein levels in head and neck cancer surgery, and finally to examine the association between postoperative LP protein levels and the risk of surgical site infection. METHODS Head and neck cancer patients (n = 60) undergoing tumor resection and reconstructive surgery were randomized 1:1 to RIPC or sham intervention administered intraoperatively. Blood samples were obtained preoperatively, 6 hours after RIPC/sham, and on the first postoperative day. LP protein plasma levels were measured utilizing time-resolved immunofluorometric assays. RESULTS H-ficolin and M-ficolin levels were significantly increased in cancer patients compared with healthy individuals (both P ≤ 0.02). Conversely, mannan-binding lectin (MBL)-associated serine protease (MASP)-1, MASP-3, collectin liver-1 (CL-L1), and MBL-associated protein of 44 kilodalton (MAp44) levels were decreased in cancer patients compared with healthy individuals (all P ≤ 0.04). A significant reduction in all LP protein levels was observed after surgery (all P < 0.001); however, RIPC did not affect LP protein levels. No difference was demonstrated in postoperative LP protein levels between patients who developed surgical site infection and patients who did not (all P > 0.13). CONCLUSIONS The LP was altered in head and neck cancer patients. LP protein levels were reduced after surgery, but intraoperative RIPC did not influence the LP. Postoperative LP protein levels were not associated with surgical site infection.
Collapse
Affiliation(s)
- Kristine Frederiksen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Engel Krag
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Birgitte Jul Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
48
|
Thurman JM. Complement and the Kidney: An Overview. Adv Chronic Kidney Dis 2020; 27:86-94. [PMID: 32553250 DOI: 10.1053/j.ackd.2019.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
The complement cascade was first recognized as a downstream effector system of antibody-mediated cytotoxicity. Consistent with this view, it was discovered in the 1960s that complement is activated in the glomeruli of patients with immune complex glomerulonephritis. More recently, research has shown that complement system has many additional functions relating to regulation of the immune response, homeostasis, and metabolism. It has also become clear that the complement system is important to the pathogenesis of many non-immune complex mediated kidney diseases. In fact, in atypical hemolytic uremic syndrome and C3 glomerulopathy, uncontrolled complement activation is the primary driver of disease. Complement activation generates multiple pro-inflammatory fragments, and if not properly controlled it can cause fulminant tissue injury. Furthermore, the mechanisms of complement activation and complement-mediated injury vary from disease to disease. Many new drugs that target the complement cascade are in clinical development, so it is important to fully understand the biology of the complement system and its role in disease.
Collapse
|
49
|
Boysen L, Viuff BM, Landsy LH, Price SA, Raymond JT, Lykkesfeldt J, Lauritzen B. Formation and glomerular deposition of immune complexes in mice administered bovine serum albumin: Evaluation of dose, frequency, and biomarkers. J Immunotoxicol 2019; 16:191-200. [DOI: 10.1080/1547691x.2019.1680776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lykke Boysen
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
- Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Birgitte M. Viuff
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Lone H. Landsy
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| | | | | | - Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Brian Lauritzen
- Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
50
|
Jager NM, van Zanden JE, Subías M, Leuvenink HGD, Daha MR, Rodríguez de Córdoba S, Poppelaars F, Seelen MA. Blocking Complement Factor B Activation Reduces Renal Injury and Inflammation in a Rat Brain Death Model. Front Immunol 2019; 10:2528. [PMID: 31736957 PMCID: PMC6838866 DOI: 10.3389/fimmu.2019.02528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: The majority of kidneys used for transplantation are retrieved from brain-dead organ donors. In brain death, the irreversible loss of brain functions results in hemodynamic instability, hormonal changes and immunological activation. Recently, brain death has been shown to cause activation of the complement system, which is adversely associated with renal allograft outcome in recipients. Modulation of the complement system in the brain-dead donor might be a promising strategy to improve organ quality before transplantation. This study investigated the effect of an inhibitory antibody against complement factor B on brain death-induced renal inflammation and injury. Method: Brain death was induced in male Fischer rats by inflating a balloon catheter in the epidural space. Anti-factor B (anti-FB) or saline was administered intravenously 20 min before the induction of brain death (n = 8/group). Sham-operated rats served as controls (n = 4). After 4 h of brain death, renal function, renal injury, and inflammation were assessed. Results: Pretreatment with anti-FB resulted in significantly less systemic and local complement activation than in saline-treated rats after brain death. Moreover, anti-FB treatment preserved renal function, reflected by significantly reduced serum creatinine levels compared to saline-treated rats after 4 h of brain death. Furthermore, anti-FB significantly attenuated histological injury, as seen by reduced tubular injury scores, lower renal gene expression levels (>75%) and renal deposition of kidney injury marker-1. In addition, anti-FB treatment significantly prevented renal macrophage influx and reduced systemic IL-6 levels compared to saline-treated rats after brain death. Lastly, renal gene expression of IL-6, MCP-1, and VCAM-1 were significantly reduced in rats treated with anti-FB. Conclusion: This study shows that donor pretreatment with anti-FB preserved renal function, reduced renal damage and inflammation prior to transplantation. Therefore, inhibition of factor B in organ donors might be a promising strategy to reduce brain death-induced renal injury and inflammation.
Collapse
Affiliation(s)
- Neeltina M Jager
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Judith E van Zanden
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marta Subías
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|