1
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
2
|
Jia G, Liu J, Hou X, Jiang Y, Li X. Biological function and small molecule inhibitors of histone deacetylase 11. Eur J Med Chem 2024; 276:116634. [PMID: 38972077 DOI: 10.1016/j.ejmech.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
HDAC11, as a rising star in the histone deacetylase (HDAC) family, has attracted widespread interest in the biomedical field in recent years specially owing to its high defatty-acylase activity compared its innate deacetylase activity. Numerous studies have provided evidence indicating the crucial involvement of HDAC11 in cancers, immune responses, and metabolic processes. Several potent and selective HDAC11 inhibitors have been discovered and identified, which is crucial for exploring the function of HDAC11 and its potential therapeutic applications. Herein, we present a critical overview of the current advances in the biological function of HDAC11 and its inhibitors. We initially discuss the physiological functions of HDAC11 and its pathological roles in relevant diseases. Subsequently, our main focus centers on the design strategy and development process of HDAC11 inhibitors. Additionally, we address significant challenges and outline future directions in this field. This perspective may provide guidance for the further development of HDAC11 inhibitors and their prospects in disease treatment.
Collapse
Affiliation(s)
- Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xinlu Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Zhou H, Hu S, Yan W. Extracellular vesicles as modifiers of epigenomic profiles. Trends Genet 2024; 40:797-809. [PMID: 38845265 DOI: 10.1016/j.tig.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 09/12/2024]
Abstract
Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.
Collapse
Affiliation(s)
- Haifeng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China..
| |
Collapse
|
4
|
Parihar K, Ko SHB, Bradley RP, Taylor P, Ramakrishnan N, Baumgart T, Guo W, Weaver VM, Janmey PA, Radhakrishnan R. Asymmetric crowders and membrane morphology at the nexus of intracellular trafficking and oncology. MECHANOBIOLOGY IN MEDICINE 2024; 2:100071. [PMID: 38899029 PMCID: PMC11185830 DOI: 10.1016/j.mbm.2024.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A definitive understanding of the interplay between protein binding/migration and membrane curvature evolution is emerging but needs further study. The mechanisms defining such phenomena are critical to intracellular transport and trafficking of proteins. Among trafficking modalities, exosomes have drawn attention in cancer research as these nano-sized naturally occurring vehicles are implicated in intercellular communication in the tumor microenvironment, suppressing anti-tumor immunity and preparing the metastatic niche for progression. A significant question in the field is how the release and composition of tumor exosomes are regulated. In this perspective article, we explore how physical factors such as geometry and tissue mechanics regulate cell cortical tension to influence exosome production by co-opting the biophysics as well as the signaling dynamics of intracellular trafficking pathways and how these exosomes contribute to the suppression of anti-tumor immunity and promote metastasis. We describe a multiscale modeling approach whose impact goes beyond the fundamental investigation of specific cellular processes toward actual clinical translation. Exosomal mechanisms are critical to developing and approving liquid biopsy technologies, poised to transform future non-invasive, longitudinal profiling of evolving tumors and resistance to cancer therapies to bring us one step closer to the promise of personalized medicine.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Seung-Hyun B. Ko
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Bradley
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Taylor
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - N. Ramakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Tobias Baumgart
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie M. Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Paul A. Janmey
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Spokeviciute B, Kholia S, Brizzi MF. Chimeric antigen receptor (CAR) T-cell therapy: Harnessing extracellular vesicles for enhanced efficacy. Pharmacol Res 2024; 208:107352. [PMID: 39147005 DOI: 10.1016/j.phrs.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
A cutting-edge approach in cell-based immunotherapy for combating resistant cancer involves genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes. In recent years, these therapies have demonstrated effectiveness, leading to their commercialization and clinical application against certain types of cancer. However, CAR-T therapy faces limitations, such as the immunosuppressive tumour microenvironment (TME) that can render CAR-T cells ineffective, and the adverse side effects of the therapy, including cytokine release syndrome (CRS). Extracellular vesicles (EVs) are a diverse group of membrane-bound particles released into the extracellular environment by virtually all cell types. They are essential for intercellular communication, transferring cargoes such as proteins, lipids, various types of RNAs, and DNA fragments to target cells, traversing biological barriers both locally and systemically. EVs play roles in numerous physiological processes, with those from both immune and non-immune cells capable of modulating the immune system through activation or suppression. Leveraging this capability of EVs to enhance CAR-T cell therapy could represent a significant advancement in overcoming its current limitations. This review examines the current landscape of CAR-T cell immunotherapy and explores the potential role of EVs in augmenting its therapeutic efficacy.
Collapse
Affiliation(s)
| | - Sharad Kholia
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
6
|
Bunn KE, Giese-Byrne BG, Pua HH. Th2 cell extracellular vesicles promote eosinophil survival through the cytokine cargo IL-3 and prolong airway eosinophilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.600647. [PMID: 39211207 PMCID: PMC11361019 DOI: 10.1101/2024.07.23.600647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Extracellular vesicles (EVs) mediate intercellular communication during immune responses. EVs are abundant in respiratory biofluids, and the composition of EVs in the lung changes during inflammation. Objective We aimed to quantify the contribution of T cells to airway EVs in allergic lung inflammation and ascertain their function during a type 2 inflammatory response. Methods Genetic membrane tagging was combined with single vesicle flow cytometry to quantify T cell EVs in the airways of mice challenged with ovalbumin or house dust mite. EVs were purified from T helper type 2 (Th2) cell cultures and their functions on eosinophils assessed by flow cytometry and RNA sequencing. Th2 cell EVs were instilled into the lungs of mice to determine effects on lung eosinophilia. Finally, the function of an EV protein cargo was tested using inhibitors and blocking antibodies. Results T cell EVs are increased in the airways of mice with induced allergic inflammation. EVs secreted by Th2 cells inhibit apoptosis and induce activating pathways in eosinophils in vitro. This effect depends on re-stimulation through the T cell receptor. Th2 cell EVs prolong eosinophilia in vivo during allergic airway inflammation. Th2 cell EVs carry a potent form of the cytokine IL-3 on their surfaces, which inhibits apoptosis by activating Jak1/2-dependent pro-survival programs in eosinophils. Conclusion Th2 cell EVs promote eosinophil survival and prolong eosinophilia during allergic airway inflammation. This function depends on the EV cargo IL-3, supporting a role for EVs as vehicles of cytokine-based communication in lung inflammation. Key Messages T cells secrete extracellular vesicles in the airway during allergic lung inflammation.Th2 cell extracellular vesicles inhibit eosinophil apoptosis and prolong airway eosinophilia during allergic lung inflammation.IL-3 carried on Th2 cell EVs is a functional cargo, supporting a role for cytokine-carrying EVs as drivers of type 2 inflammation. Capsule summary This study supports that T cell extracellular vesicles may be important drivers of eosinophilic inflammation through the cytokine cargo IL-3, offering new insights into pro-inflammatory signaling in the allergic lung of patients with asthma.
Collapse
|
7
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
8
|
Xun J, Hu Z, Wang M, Jiang X, Liu B, Han Y, Gao R, Wu X, Zhang A, Yang S, Wang X, Yu X, Zhang Q. Hydroxygenkwanin suppresses peritoneal metastasis in colorectal cancer by modulating tumor-associated macrophages polarization. Chem Biol Interact 2024; 396:111038. [PMID: 38719169 DOI: 10.1016/j.cbi.2024.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Peritoneal metastasis is an important cause of high mortality and poor prognosis in colorectal cancer (CRC) patients. Therefore, the development of compounds with unique anti-CRC Peritoneal metastasis activities is urgently needed to improve the survival of CRC patients. Hydroxygenkwanin (HGK),a natural flavonoid compound, have been shown to display anti-inflammatory, antioxidant, antitumor, and immunoregulatory effects. Here, we employed CRC peritoneal metastasis mouse model with MC38 cells to examine the antitumor activity of HGK. The result showed that HGK not only inhibited peritoneal metastasis, but also significantly increased the proportion of M1-like macrophages while decreasing the proportion of M2-like macrophages within the tumor microenvironment (TME). Furthermore, we demonstrated that the inhibitory effect of HGK on peritoneal metastasis of CRC depended on macrophages in vitro and in vivo. Moreover, we revealed that HGK promoted the polarization of TAMs into M1-like macrophages and inhibited their polarization into M2-like macrophages in a LPS- or IL-4-induced bone marrow-derived macrophages (BMDMs) model and co-culture system. Finally, we also investigated the regulatory mechanism of HGK on TAMs polarization that HGK may active p-STAT5, p-NF-κB signaling in M1-like macrophages and inhibit p-STAT6, JMJD3, PPARγ expression in M2-like macrophages. Taken together, our findings suggest that HGK is a natural candidate for effective prevention of peritoneal metastasis in colorectal cancer, which provides a potential strategy for clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Zhibo Hu
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Meilin Wang
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Xiaolin Jiang
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Bin Liu
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Yingdi Han
- Graduate School, Tianjin Medical University, Tianjin, 300100, China
| | - Ruifang Gao
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China
| | - Xueliang Wu
- The First Affiliated Hospital of Hebei North University, Hebei, 075000, China
| | - Aimin Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Shimin Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Xiangyang Yu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
9
|
Zhang C, Xiao W, Wang H, Li L, Yang Y, Hao Y, Xu Z, Chen H, Nan W. Exosomes Derived from Mouse Breast Carcinoma Cells Facilitate Diabetic Wound Healing. Tissue Eng Regen Med 2024; 21:571-586. [PMID: 38472732 PMCID: PMC11087414 DOI: 10.1007/s13770-024-00629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Exosomes derived from breast cancer have been reported to play a role in promoting cell proliferation, migration, and angiogenesis, which has the potential to accelerate the healing process of diabetic wounds. The aim of this investigation was to examine the function of exosomes originating from 4T1 mouse breast carcinoma cells (TEXs) in the process of diabetic wound healing. METHODS The assessment of primary mouse skin fibroblasts cell proliferation and migration was conducted through the utilization of CCK-8 and wound healing assays, while the tube formation of HUVECs was evaluated by tube formation assay. High-throughput sequencing, RT-qPCR and cell experiments were used to detect the roles of miR-126a-3p in HUVECs functions in vitro. The in vivo study employed a model of full-thickness excisional wounds in diabetic subjects to explore the potential therapeutic benefits of TEXs. Immunohistochemical and immunofluorescent techniques were utilized to evaluate histological changes in skin tissues. RESULTS The findings suggested that TEXs facilitate diabetic wound healing through the activation of cell migration, proliferation, and angiogenesis. An upregulation of miR-126a-3p has been observed in TEXs, and it has demonstrated efficient transferability from 4T1 cells to HUVEC cells. The activation of the PI3K/Akt pathway has been attributed to miR-126a-3p derived from TEXs. CONCLUSIONS The promotion of chronic wound healing can be facilitated by TEXs through the activation of cellular migration, proliferation, and angiogenesis. The activation of the PI3K/Akt pathway by miR-126a-3p originating from TEXs has been discovered, indicating a potential avenue for enhancing the regenerative capabilities of wounds treated with TEXs.
Collapse
Affiliation(s)
- Chao Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wenchi Xiao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hao Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Linxiao Li
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yan Yang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yongwei Hao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Zhihao Xu
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hongli Chen
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wenbin Nan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
10
|
Kloc M, Halasa M, Ghobrial RM. Macrophage niche imprinting as a determinant of macrophage identity and function. Cell Immunol 2024; 399-400:104825. [PMID: 38648700 DOI: 10.1016/j.cellimm.2024.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Macrophage niches are the anatomical locations within organs or tissues consisting of various cells, intercellular and extracellular matrix, transcription factors, and signaling molecules that interact to influence macrophage self-maintenance, phenotype, and behavior. The niche, besides physically supporting macrophages, imposes a tissue- and organ-specific identity on the residing and infiltrating monocytes and macrophages. In this review, we give examples of macrophage niches and the modes of communication between macrophages and surrounding cells. We also describe how macrophages, acting against their immune defensive nature, can create a hospitable niche for pathogens and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| |
Collapse
|
11
|
Yimin E, Lu C, Zhu K, Li W, Sun J, Ji P, Meng M, Liu Z, Yu C. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience 2024; 27:109350. [PMID: 38500820 PMCID: PMC10945197 DOI: 10.1016/j.isci.2024.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality, with metastasis being the primary determinant of poor prognosis in patients. Investigating the molecular mechanisms underlying CRC metastasis is currently a prominent and challenging area of research. Exosomes, as crucial intercellular communication mediators, facilitate the transfer of metabolic and genetic information from cells of origin to recipient cells. Their roles in mediating information exchange between CRC cells and immune cells, fibroblasts, and other cell types are pivotal in reshaping the tumor microenvironment, regulating key biological processes such as invasion, migration, and formation of pre-metastatic niche. This article comprehensively examines the communication function and mechanism of exosomes derived from different cells in cancer metastasis, while also presenting an outlook on current research advancements and future application prospects. The aim is to offer a distinctive perspective that contributes to accurate diagnosis and rational treatment strategies for CRC.
Collapse
Affiliation(s)
- Yimin E
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Kuixuan Zhu
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650100, Yunan, China
| | - Wenyuan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Jing Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Pengcheng Ji
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Minjie Meng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| |
Collapse
|
12
|
Parihar K, Ko SH, Bradley R, Taylor P, Ramakrishnan N, Baumgart T, Guo W, Weaver VM, Janmey PA, Radhakrishnan R. Free energy calculations for membrane morphological transformations and insights to physical biology and oncology. Methods Enzymol 2024; 701:359-386. [PMID: 39025576 PMCID: PMC11258396 DOI: 10.1016/bs.mie.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we aim to bridge basic molecular and cellular principles surrounding membrane curvature generation with rewiring of cellular signals in cancer through multiscale models. We describe a general framework that integrates signaling with other cellular functions like trafficking, cell-cell and cell-matrix adhesion, and motility. The guiding question in our approach is: how does a physical change in cell membrane configuration caused by external stimuli (including those by the extracellular microenvironment) alter trafficking, signaling and subsequent cell fate? We answer this question by constructing a modeling framework based on stochastic spatial continuum models of cell membrane deformations. We apply this framework to explore the link between trafficking, signaling in the tumor microenvironment, and cell fate. At each stage, we aim to connect the results of our predictions with cellular experiments.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Seung-Hyun Ko
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan Bradley
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Phillip Taylor
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - N Ramakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Tobias Baumgart
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Paul A Janmey
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Guo Y, Cui J, Liang X, Chen T, Lu C, Peng T. Pancreatic cancer stem cell-derived exosomal miR-210 mediates macrophage M2 polarization and promotes gemcitabine resistance by targeting FGFRL1. Int Immunopharmacol 2024; 127:111407. [PMID: 38134594 DOI: 10.1016/j.intimp.2023.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Pancreatic cancer (PC) is a serious threat to human health, with most patients diagnosed at the advanced stages of the disease. Treatment with gemcitabine (GEM) leads to PC GEM resistance. In addition, cancer stem cell (CSC)-derived exosomes play an important role in cancer progression. We aimed to investigate the role and mechanism of action of PC stem cell-derived exosomes in PC drug resistance and progression. CSC-derived exosomes increased the proportion of F4/80+/CD86 + cells and levels of M2 polarization factors. miR-210 is expressed in CSC-derived exosomes. Thus, following co-culture, miR-210 was taken up by macrophages. Transfection or the addition of miR-210 mimics increased the proportion of F4/80+/CD206 + cells and levels of M2 polarization factors. Further, the miR-210 targets inhibited the levels of FGFRL1. The FGFRL1 overexpression plasmid also inhibited miR-210-mediated M2 polarization. After co-culture of THP-M2 cells with PC cells and treatment with GEM, the survival rate, migration rate, and levels of MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR in PC cells increased. And THP-M2 increased the tumor volume and MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR levels. Overall, miR-210 from PC stem cell-derived exosome targets and inhibits FGFRL1 to promote macrophage M2 polarization, which activates the p-PI3K/p-AKT/p-mTOR pathway and increases GEM resistance.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Lu
- Department of thyroid and breast surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
15
|
Wu J, Wang X, Li Z, Yi X, Hu D, Wang Q, Zhong T. Small extracellular vesicles promote the formation of the pre-metastatic niche through multiple mechanisms in colorectal cancer. Cell Cycle 2024; 23:131-149. [PMID: 38341861 PMCID: PMC11037293 DOI: 10.1080/15384101.2024.2311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent global malignancies, posing significant threats to human life and health due to its high recurrence and metastatic potential. Small extracellular vesicles (sEVs) released by CRC play a pivotal role in the formation of the pre-metastatic niche (PMN) through various mechanisms, preparing the groundwork for accelerated metastatic invasion. This review systematically describes how sEVs promote CRC metastasis by upregulating inflammatory factors, promoting immunosuppression, enhancing angiogenesis and vascular permeability, promoting lymphangiogenesis and lymphatic network remodeling, determining organophilicity, promoting stromal cell activation and remodeling and inducing the epithelial-to-mesenchymal transition (EMT). Furthermore, we explore potential mechanisms by which sEVs contribute to PMN formation in CRC and propose novel insights for CRC diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qi Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Yue M, Hu S, Sun H, Tuo B, Jia B, Chen C, Wang W, Liu J, Liu Y, Sun Z, Hu J. Extracellular vesicles remodel tumor environment for cancer immunotherapy. Mol Cancer 2023; 22:203. [PMID: 38087360 PMCID: PMC10717809 DOI: 10.1186/s12943-023-01898-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Tumor immunotherapy has transformed neoplastic disease management, yet low response rates and immune complications persist as major challenges. Extracellular vesicles including exosomes have emerged as therapeutic agents actively involved in a diverse range of pathological conditions. Mounting evidence suggests that alterations in the quantity and composition of extracellular vesicles (EVs) contribute to the remodeling of the immune-suppressive tumor microenvironment (TME), thereby influencing the efficacy of immunotherapy. This revelation has sparked clinical interest in utilizing EVs for immune sensitization. In this perspective article, we present a comprehensive overview of the origins, generation, and interplay among various components of EVs within the TME. Furthermore, we discuss the pivotal role of EVs in reshaping the TME during tumorigenesis and their specific cargo, such as PD-1 and non-coding RNA, which influence the phenotypes of critical immune cells within the TME. Additionally, we summarize the applications of EVs in different anti-tumor therapies, the latest advancements in engineering EVs for cancer immunotherapy, and the challenges encountered in clinical translation. In light of these findings, we advocate for a broader understanding of the impact of EVs on the TME, as this will unveil overlooked therapeutic vulnerabilities and potentially enhance the efficacy of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Ming Yue
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Zhu L, Li XJ, Gangadaran P, Jing X, Ahn BC. Tumor-associated macrophages as a potential therapeutic target in thyroid cancers. Cancer Immunol Immunother 2023; 72:3895-3917. [PMID: 37796300 PMCID: PMC10992981 DOI: 10.1007/s00262-023-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, clinical trials, and combinatorial immunotherapy.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiu Juan Li
- Department of Radiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shan-Dong Province, People's Republic of China
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiuli Jing
- Center for Life Sciences Research, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shan-Dong Province, 271000, People's Republic of China.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
18
|
Nan W, Wang F, Wang H, Xiao W, Li L, Zhang C, Zhang Y, Dai L, Xu Z, Wan G, Wang Y, Chen H, Zhang Q, Hao Y. Synergistic wound repair effects of a composite hydrogel for delivering tumor-derived vesicles and S-nitrosoglutathione. J Mater Chem B 2023; 11:9987-10002. [PMID: 37823264 DOI: 10.1039/d3tb01512b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Treating chronic wounds requires transition from proinflammatory M1 to anti-inflammatory M2 dominant macrophages. Based on the role of tumor extracellular vesicles (tEVs) in regulating the phenotypic switching from M1 to M2 macrophages, we propose that tEVs may have a beneficial impact on alleviating the overactive inflammatory microenvironment associated with refractory wounds. On the other hand, as a nitric oxide donor, S-nitrosoglutathione (GSNO) can regulate inflammation, promote angiogenesis, enhance matrix deposition, and facilitate wound healing. In this study, a guar gum-based hydrogel with tEVs and GSNO was designed for the treatment of diabetic refractory wounds. This hybrid hydrogel was formed through the phenyl borate bonds, which can automatically disintegrate in response to the high reactive oxygen species (ROS) level at the site of refractory diabetic wounds, releasing tEVs and GSNO. We conducted a comprehensive evaluation of this hydrogel in vitro, which demonstrated excellent performance. Meanwhile, using a full-thickness excision model in diabetic mice, the wounds exposed to the therapeutic hydrogel healed completely within 21 days. The increased closure rate was associated with macrophage polarization and collagen deposition, accelerated fibroblast proliferation, and increased angiogenesis in the regenerating tissues. Therefore, this multifunctional hybrid hydrogel appears to be promising for clinical applications.
Collapse
Affiliation(s)
- Wenbin Nan
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Fan Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hao Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Wenchi Xiao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Linxiao Li
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Chao Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Yulu Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Linna Dai
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Zhihao Xu
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Guoyun Wan
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Yongxue Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Hongli Chen
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Qiqing Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, 300000, P. R. China
| | - Yongwei Hao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| |
Collapse
|
19
|
Liu Y, Tong X, Hu W, Chen D. HDAC11: A novel target for improved cancer therapy. Biomed Pharmacother 2023; 166:115418. [PMID: 37659201 DOI: 10.1016/j.biopha.2023.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Histone deacetylase 11 (HDAC11) is a unique member of the histone deacetylase family that plays an important role in the regulation of gene expression and protein function. In recent years, research on the role of HDAC11 in tumors has attracted increasing attention. This review summarizes the current knowledge on the subcellular localization, structure, expression, and functions of HDAC11 in tumors, as well as the regulatory mechanisms involved in its network, including ncRNA and substrates. Moreover, we focus on the progress made in targeting HDAC11 to overcome tumor therapy resistance, and the development of HDAC11 inhibitors for cancer treatment. Collectively, this review provides comprehensive insights into the potential clinical implications of HDAC11 for cancer therapy.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Xuechao Tong
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
20
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Mitchell MI, Loudig O. Communicator Extraordinaire: Extracellular Vesicles in the Tumor Microenvironment Are Essential Local and Long-Distance Mediators of Cancer Metastasis. Biomedicines 2023; 11:2534. [PMID: 37760975 PMCID: PMC10526527 DOI: 10.3390/biomedicines11092534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Human tumors are increasingly being described as a complex "ecosystem", that includes many different cell types, secreted growth factors, extracellular matrix (ECM) components, and microvessels, that altogether create the tumor microenvironment (TME). Within the TME, epithelial cancer cells control the function of surrounding stromal cells and the non-cellular ECM components in an intricate orchestra of signaling networks specifically designed for cancer cells to exploit surrounding cells for their own benefit. Tumor-derived extracellular vesicles (EVs) released into the tumor microenvironment are essential mediators in the reprogramming of surrounding stromal cells, which include cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), and tumor endothelial cells (TECs), which are responsible for the promotion of neo-angiogenesis, immune cell evasion, and invasion which are essential for cancer progression. Perhaps most importantly, tumor-derived EVs play critical roles in the metastatic dissemination of tumor cells through their two-fold role in initiating cancer cell invasion and the establishment of the pre-metastatic niche, both of which are vital for tumor cell migration, homing, and colonization at secondary tumor sites. This review discusses extracellular vesicle trafficking within the tumor microenvironment and pre-metastatic niche formation, focusing on the complex role that EVs play in orchestrating cancer-to-stromal cell communication in order to promote the metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
22
|
Zheng X, Sarode P, Weigert A, Turkowski K, Chelladurai P, Günther S, Kuenne C, Winter H, Stenzinger A, Reu S, Grimminger F, Stiewe T, Seeger W, Pullamsetti SS, Savai R. The HDAC2-SP1 Axis Orchestrates Protumor Macrophage Polarization. Cancer Res 2023; 83:2345-2357. [PMID: 37205635 DOI: 10.1158/0008-5472.can-22-1270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Tumor-associated macrophages (TAM), including antitumor M1-like TAMs and protumor M2-like TAMs, are transcriptionally dynamic innate immune cells with diverse roles in lung cancer development. Epigenetic regulators are key in controlling macrophage fate in the heterogeneous tumor microenvironment. Here, we demonstrate that the spatial proximity of HDAC2-overexpressing M2-like TAMs to tumor cells significantly correlates with poor overall survival of lung cancer patients. Suppression of HDAC2 in TAMs altered macrophage phenotype, migration, and signaling pathways related to interleukins, chemokines, cytokines, and T-cell activation. In coculture systems of TAMs and cancer cells, suppressing HDAC2 in TAMs resulted in reduced proliferation and migration, increased apoptosis of cancer cell lines and primary lung cancer cells, and attenuated endothelial cell tube formation. HDAC2 regulated the M2-like TAM phenotype via acetylation of histone H3 and transcription factor SP1. Myeloid cell-specific deletion of Hdac2 and pharmacologic inhibition of class I HDACs in four different murine lung cancer models induced the switch from M2-like to M1-like TAMs, altered infiltration of CD4+ and CD8+ T cells, and reduced tumor growth and angiogenesis. TAM-specific HDAC2 expression may provide a biomarker for lung cancer stratification and a target for developing improved therapeutic approaches. SIGNIFICANCE HDAC2 inhibition reverses the protumor phenotype of macrophages mediated by epigenetic modulation induced by the HDAC2-SP1 axis, indicating a therapeutic option to modify the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Xiang Zheng
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Kati Turkowski
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Prakash Chelladurai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Hauke Winter
- Translational Lung Research Center Heidelberg (TLRC), Member of the DZL; Department of Thoracic Surgery, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | | | - Simone Reu
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Friedrich Grimminger
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| | - Thorsten Stiewe
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Philipps-University, Marburg, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- Department of Internal Medicine, Member of the DZL, Member of the CPI, Justus Liebig University, Giessen, Germany
| |
Collapse
|
23
|
Le Hars M, Castro-Vega LJ, Rajabi F, Tabatadze D, Romero M, Pinskaya M, Groisman I. Pro-tumorigenic role of lnc-ZNF30-3 as a sponge counteracting miR-145-5p in prostate cancer. Biol Direct 2023; 18:38. [PMID: 37434219 PMCID: PMC10334624 DOI: 10.1186/s13062-023-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Prostate cancer remains one of the deadliest neoplasms in developed countries. Identification of new molecular markers that predict the onset and progression of the disease could improve its clinical management. Low miR-145-5p expression is consistently found in primary tumors and metastases, but the regulatory mechanisms governing its functions remain largely unknown. METHODS Bioinformatics analysis was conducted to identify [1] a set of novel potential competing endogenous lncRNAs for sponging of miRNA-145-5p in prostate cancer and [2] miR-145-5p and other EMT-related miRNAs response elements in lnc-ZNF30-3. Quantification of miR-145-5p, lnc-ZNF30-3, and TWIST1 expression levels in tumor tissues in RNA sequencing datasets of our and TCGA PRAD cohorts revealed a correlation with clinical outcome of prostate cancer patients. Biochemical and cell biology approaches, such as RNA pull-down, western blot, immunostaining, and wound healing assays were used for evaluation of the impact of TWIST1/miR-145/ lnc-ZNF30-3 interactions in prostate cancer cells altered in miRNA and lncRNA expression. RESULTS We identified a few potential lncRNA sponges of miR-145-5p, including lnc-ZNF30-3. It contains five response elements for miR-145-5p, but also other miRNAs targeting EMT transcription factors. Lnc-ZNF30-3 is significantly upregulated in prostate cancer cell lines and tumor tissues, and its high expression is correlated with poor patient prognosis. We demonstrated that lnc-ZNF30-3 is associated with AGO2 and specifically interacts with the miR-145-5p seed region. Knockdown of lnc-ZNF30-3 results in decreased migration of prostate cancer cells and downregulation of EMT drivers such as TWIST1 and ZEB1 at both the RNA and protein levels. These phenotypic and molecular features of lnc-ZNF30-3-depleted cells are partially rescued by miR-145-5p inhibition. CONCLUSIONS Collectively, our results point to lnc-ZNF30-3 as a novel competing endogenous lncRNA for miR-145-5p and other miRNAs that target TWIST1 as well as other EMT transcription factors. Prostate cancer patients with high lncRNA expression in primary tumors show lower survival rate suggesting that lnc-ZNF30-3 may contribute to prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Matthieu Le Hars
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France
| | - Luis Jaime Castro-Vega
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U1127, CNRS UMR7225, Sorbonne Universités, Paris, France
| | - Fatemeh Rajabi
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France
- Cancer Genomics lab, Inserm U981, Gustave Roussy Cancer Center Grand Paris, Villejuif, France
| | | | - Martha Romero
- Department of Pathology, Hospital Universitario-Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Marina Pinskaya
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France.
| | - Irina Groisman
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France.
- Cancer Genomics lab, Inserm U981, Gustave Roussy Cancer Center Grand Paris, Villejuif, France.
| |
Collapse
|
24
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
25
|
Mendivil-Alvarado H, Limon-Miro AT, Carvajal-Millan E, Lizardi-Mendoza J, Mercado-Lara A, Coronado-Alvarado CD, Rascón-Durán ML, Anduro-Corona I, Talamás-Lara D, Rascón-Careaga A, Astiazarán-García H. Extracellular Vesicles and Their Zeta Potential as Future Markers Associated with Nutrition and Molecular Biomarkers in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076810. [PMID: 37047783 PMCID: PMC10094966 DOI: 10.3390/ijms24076810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
A nutritional intervention promotes the loss of body and visceral fat while maintaining muscle mass in breast cancer patients. Extracellular vesicles (EVs) and their characteristics can be potential biomarkers of disease. Here, we explore the changes in the Zeta potential of EVs; the content of miRNA-30, miRNA-145, and miRNA-155; and their association with body composition and biomarkers of metabolic risk in breast cancer patients, before and 6 months after a nutritional intervention. Clinicopathological data (HER2neu, estrogen receptor, and Ki67), anthropometric and body composition data, and plasma samples were available from a previous study. Plasma EVs were isolated and characterized in 16 patients. The expression of miRNA-30, miRNA-145, and miRNA-155 was analyzed. The Zeta potential was associated with HER2neu (β = 2.1; p = 0.00), Ki67 (β = -1.39; p = 0.007), estrogen positive (β = 1.57; p = 0.01), weight (β = -0.09; p = 0.00), and visceral fat (β = 0.004; p = 0.00). miRNA-30 was associated with LDL (β = -0.012; p = 0.01) and HDL (β = -0.02; p = 0.05). miRNA-155 was associated with visceral fat (β = -0.0007; p = 0.05) and Ki67 (β = -0.47; p = 0.04). Our results reveal significant associations between the expression of miRNA-30 and miRNA-155 and the Zeta potential of the EVs with biomarkers of metabolic risk and disease prognosis in women with breast cancer; particularly, the Zeta potential of EVs can be a new biomarker sensitive to changes in the nutritional status and breast cancer progression.
Collapse
Affiliation(s)
| | - Ana Teresa Limon-Miro
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Elizabeth Carvajal-Millan
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Jaime Lizardi-Mendoza
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Araceli Mercado-Lara
- Undersecretariat of Prevention and Health Promotion, Secretary of Health of the Government of Mexico, Mexico City 11570, Mexico
| | | | - María L Rascón-Durán
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Iván Anduro-Corona
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Daniel Talamás-Lara
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Mexico City 14330, Mexico
| | - Antonio Rascón-Careaga
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Humberto Astiazarán-García
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
26
|
Sun Y, Xiao W, Yu Y, Jiang Y, Xiao Z, Huang D, Zhong T, Li J, Xiang X, He Y, Li Z. Colorectal cancer-derived extracellular vesicles containing HSP70 enhance macrophage phagocytosis by up-regulating MARCO expression. Exp Cell Res 2023; 426:113565. [PMID: 36958650 DOI: 10.1016/j.yexcr.2023.113565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
In recent years, we have realized that extracellular vesicles (EVs) play a critical role in regulating the intercellular communication between tumor and immune cells in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (TDEVs) profoundly affect the functional changes of tumor-associated macrophages (TAMs) and promote their M2 polarization. Meanwhile, macrophages have a strong phagocytic ability in phagocytosing apoptotic cells. Especially in the course of chemotherapy or radiotherapy, TAMs can phagocytose and remove apoptotic tumor cells, showing anti-inflammatory and pro-tumor effects. However, the underlying mechanisms by which TDEVs regulate macrophage phagocytosis of apoptotic tumor cells have not been fully elucidated. In this study, we focused on the effect of colorectal cancer-derived extracellular vesicles (CRC-EVs) on macrophages. We demonstrated that CRC-EVs enhanced macrophage phagocytosis of apoptotic CRC cells. We then determined that heat shock protein 70 (HSP70) carried in CRC-EVs was responsible for this effect by using mass spectrometry-based proteomic analysis and the CRISPR-Cas9 system. Through transcriptome sequencing of macrophages, we found that the enhanced phagocytosis of macrophages was mainly due to the up-regulation of the macrophage receptor with collagenous structure (MARCO). In addition, we confirmed that the up-regulation of MARCO was mediated by the AKT-STAT3 signaling pathway. Taken together, this study revealed a novel EVs-mediated macrophage phagocytosis mechanism involved in the clearance of apoptotic tumor cells in TME. Targeting TDEVs may have potential therapeutic applications in tumor treatment.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Digestive Cancer Research; Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenjun Xiao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuchen Jiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhijie Xiao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Defa Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341004, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341004, China
| | - Jiang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research; Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
27
|
Wadhonkar K, Singh N, Heralde FM, Parihar SP, Hirani N, Baig MS. Exosome-derived miRNAs regulate macrophage-colorectal cancer cell cross-talk during aggressive tumor development. COLORECTAL CANCER 2023. [DOI: 10.2217/crc-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Colorectal cancer is one of the leading causes of death worldwide. Its incidence and mortality have significantly increased during the past few years. Colorectal cancer cells cross-talk with other cells through exosomes in their tumor microenvironment. The miRNAs containing exosomes are responsible for tumor growth, invasion, and metastasis. Multiple studies have shown that exosomal miRNAs are key players in the crosstalk between cancerous, immune, and stromal cells during colorectal cancer development. They help in the establishment of the tumorigenic microenvironment by reprogramming macrophages towards a pro-tumorigenic phenotype. In this review, we discussed various exosomal miRNAs derived both from colorectal cancer cells and macrophages that promote or inhibit cancer aggression. We also discussed various miRNA-based therapeutic approaches to inhibit cancer progression.
Collapse
Affiliation(s)
- Khandu Wadhonkar
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol-453552, Indore, India
| | - Neha Singh
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol-453552, Indore, India
| | - Francisco M Heralde
- Department of Biochemistry & Molecular Biology, College of Medicine, University of the Philippines-Manila, Manila 1000, Philippines
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) & Institute of Infectious Diseases & Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Department of Biochemistry, Human Metabolomics, Faculty of Natural & Agricultural Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol-453552, Indore, India
| |
Collapse
|
28
|
Stefańska K, Józkowiak M, Angelova Volponi A, Shibli JA, Golkar-Narenji A, Antosik P, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Dzięgiel P, Podhorska-Okołów M, Zabel M, Dyszkiewicz-Konwińska M, Kempisty B. The Role of Exosomes in Human Carcinogenesis and Cancer Therapy-Recent Findings from Molecular and Clinical Research. Cells 2023; 12:cells12030356. [PMID: 36766698 PMCID: PMC9913699 DOI: 10.3390/cells12030356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Exosomes are biological nanoscale spherical lipid bilayer vesicles, 40-160 nm in diameter, produced by most mammalian cells in both physiological and pathological conditions. Exosomes are formed via the endosomal sorting complex required for transport (ESCRT). The primary function of exosomes is mediating cell-to-cell communication. In terms of cancer, exosomes play important roles as mediators of intercellular communication, leading to tumor progression. Moreover, they can serve as biomarkers for cancer detection and progression. Therefore, their utilization in cancer therapies has been suggested, either as drug delivery carriers or as a diagnostic tool. However, exosomes were also reported to be involved in cancer drug resistance via transferring information of drug resistance to sensitive cells. It is important to consider the current knowledge regarding the role of exosomes in cancer, drug resistance, cancer therapies, and their clinical application in cancer therapies.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Cellivia 3 S.A., 61-623 Poznan, Poland
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, London WC2R 2LS, UK
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos 07030-010, Brazil
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Marta Dyszkiewicz-Konwińska
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
29
|
Tien FM, Lu HH, Lin SY, Tsai HC. Epigenetic remodeling of the immune landscape in cancer: therapeutic hurdles and opportunities. J Biomed Sci 2023; 30:3. [PMID: 36627707 PMCID: PMC9832644 DOI: 10.1186/s12929-022-00893-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The tumor immune microenvironment represents a sophisticated ecosystem where various immune cell subtypes communicate with cancer cells and stromal cells. The dynamic cellular composition and functional characteristics of the immune landscape along the trajectory of cancer development greatly impact the therapeutic efficacy and clinical outcome in patients receiving systemic antitumor therapy. Mounting evidence has suggested that epigenetic mechanisms are the underpinning of many aspects of antitumor immunity and facilitate immune state transitions during differentiation, activation, inhibition, or dysfunction. Thus, targeting epigenetic modifiers to remodel the immune microenvironment holds great potential as an integral part of anticancer regimens. In this review, we summarize the epigenetic profiles and key epigenetic modifiers in individual immune cell types that define the functional coordinates of tumor permissive and non-permissive immune landscapes. We discuss the immunomodulatory roles of current and prospective epigenetic therapeutic agents, which may open new opportunities in enhancing cancer immunotherapy or overcoming existing therapeutic challenges in the management of cancer.
Collapse
Affiliation(s)
- Feng-Ming Tien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Shu-Yung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsing-Chen Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1 Jen Ai Road Section 1, Rm542, Taipei, 100233, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| |
Collapse
|
30
|
Basak M, Chaudhary DK, Takahashi RU, Yamamoto Y, Tiwari S, Tahara H, Mittal A. Immunocyte Derived Exosomes: Insight into the Potential Chemo-immunotherapeutic Nanocarrier Targeting the Tumor Microenvironment. ACS Biomater Sci Eng 2023; 9:20-39. [PMID: 36524837 DOI: 10.1021/acsbiomaterials.2c00893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
"Cancer" is a dreadful immune-pathological condition that is characterized by anti-inflammatory and tumorigenic responses, elicited by the infiltrating immune cells in the vicinity of an uncontrollably proliferative tumor in the tumor microenvironment (TME). The TME offers a conducive microenvironment that supports cancer cell survival by modulating the host immune defense. Recent advancement in exosomal research has shown exosomes, originating from immune cells as well as the cancer cells, have immense potential for suppressing cancer progression and survival in the TME. Additionally, exosomes, irrespective of their diverse sources, have been reported to be efficient nanocarriers for cancer therapeutics with the ability for targeted delivery due to their biogenic nature, ease of cellular uptake, and scope for functionalization with biomolecules like peptides, aptamers, targeting ligands, etc. Immune cell-derived exosomes per se have been found efficacious against cancer owing to their immune-stimulant properties (in either naive or antigen primed form) even without loading any of cancer therapeutics or targeting ligand conjugation. Nevertheless, exosomes are being primarily explored as nanovesicular carriers for therapeutic molecules with different loading and targeting strategies, and the synergism between immunotherapeutic behavior of exosomes and the anticancer effect of the therapeutic molecules is yet to be explored. Hence, this review focuses specifically on the possible strategies to modulate the immunological nature of the source immune cells to obtain immune stimulant exosomes and bring these into the spotlight as chemo-immunotherapeutic nanovesicles, that can easily target and modulate the TME.
Collapse
Affiliation(s)
- Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Dharmendra Kumar Chaudhary
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Swasti Tiwari
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.,Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
31
|
Sanhueza S, Simón L, Cifuentes M, Quest AFG. The Adipocyte-Macrophage Relationship in Cancer: A Potential Target for Antioxidant Therapy. Antioxidants (Basel) 2023; 12:126. [PMID: 36670988 PMCID: PMC9855200 DOI: 10.3390/antiox12010126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Obesity has emerged as a major public health concern with a staggering 39% worldwide prevalence as of 2021. Given the magnitude of the problem and considering its association with chronic low-grade systemic inflammation, it does not come as a surprise that obesity is now considered one of the major risk factors for the development of several chronic diseases, such as diabetes, cardiovascular problems, and cancer. Adipose tissue dysfunction in obesity has taken center stage in understanding how changes in its components, particularly adipocytes and macrophages, participate in such processes. In this review, we will initially focus on how changes in adipose tissue upon excess fat accumulation generate endocrine signals that promote cancer development. Moreover, the tumor microenvironment or stroma, which is also critical in cancer development, contains macrophages and adipocytes, which, in reciprocal paracrine communication with cancer cells, generate relevant signals. We will discuss how paracrine signaling in the tumor microenvironment between cancer cells, macrophages, and adipocytes favors cancer development and progression. Finally, as reactive oxygen species participate in many of these signaling pathways, we will summarize the information available on how antioxidants can limit the effects of endocrine and paracrine signaling due to dysfunctional adipose tissue components in obesity.
Collapse
Affiliation(s)
- Sofía Sanhueza
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Layla Simón
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| |
Collapse
|
32
|
Meng Q, Deng Y, Lu Y, Wu C, Tang S. Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol 2023; 149:423-439. [PMID: 36378341 DOI: 10.1007/s00432-022-04432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that perform post-transcriptional gene regulation. This review focuses on the role of tumor cell-derived miRNAs in the regulation of the tumor microenvironment (TME) via receptor cell recoding, including angiogenesis, expression of immunosuppressive molecules, formation of radiation resistance, and chemoresistance. Furthermore, we discuss the potential of these molecules as adjuvant therapies in combination with chemotherapy, radiotherapy, or immunotherapy, as well as their advantages as efficacy predictors for personalized therapy. MiRNA-based therapeutic agents for tumors are currently in clinical trials, and while challenges remain, additional research on tumor-derived miRNAs is warranted, which may provide significant clinical benefits to cancer patients.
Collapse
Affiliation(s)
- Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Yaoming Deng
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Yu Lu
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Chunfeng Wu
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China.,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China
| | - Shifu Tang
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou, China. .,Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou, China.
| |
Collapse
|
33
|
Chen QY, Gao B, Tong D, Huang C. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552:215979. [PMID: 36306939 DOI: 10.1016/j.canlet.2022.215979] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
In concert with hijacking key genes to drive tumor progression, cancer cells also have the unique ability to dynamically interact with host microenvironment and discreetly manipulate the surrounding stroma, also known as the tumor microenvironment (TME), to provide optimal conditions for tumor cells to thrive and evade host immunity. Complex cellular crosstalk and molecular signaling between cancer cells, surrounding non-malignant cells, and non-cellular components are involved in this process. While intercellular communication traditionally centers around chemokines, cytokines, inflammatory mediators, and growth factors, emerging pathways involving extracellular vesicles (EVs) are gaining increasing attention. The immunosuppressive TME is created and maintained in part by the large abundance of tumor-associated macrophages (TMAs), which are associated with drug resistance, poor prognosis, and have emerged as potential targets for cancer immunotherapy. TMAs are highly dynamic, and can be polarized into either M1 or M2-like macrophages. EVs are efficient cell-cell communication molecules that have been catapulted to the center of TMA polarization. In this article, we provide detailed examination of the determinative role of EVs in sustaining the TME through mediating crosstalk between tumor cells and tumor-associated macrophages.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Beibei Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Environmenta and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
34
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
35
|
Wang J, Long R, Han Y. The role of exosomes in the tumour microenvironment on macrophage polarisation. Biochim Biophys Acta Rev Cancer 2022; 1877:188811. [DOI: 10.1016/j.bbcan.2022.188811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
|
36
|
Zhou X, Chen B, Zhang Z, Huang Y, Li J, Wei Q, Cao D, Ai J. Crosstalk between Tumor-Associated Macrophages and MicroRNAs: A Key Role in Tumor Microenvironment. Int J Mol Sci 2022; 23:13258. [PMID: 36362044 PMCID: PMC9653885 DOI: 10.3390/ijms232113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
As an in-depth understanding of immunotherapy continues to grow, current anticancer therapy research is increasingly focused on the tumor microenvironment (TME). MicroRNAs (miRNAs) play crucial roles in the regulation of genetic information and expression and mediate interactions between tumor cells and components in the TME, such as tumor-associated macrophages (macrophages). Macrophages are abundant in the TME, and their different polarization directions can promote or inhibit tumor growth and progression. By regulating biological behaviors, such as macrophage recruitment, infiltration, and polarization, miRNAs can affect various molecular pathways to regulate tumor progression and treatment response. In this review, we discuss in detail the effects of macrophages on tumors and the multifaceted effects of miRNAs on macrophages. We also discuss the potential clinical applications and prospects of targeted therapy based on miRNAs, novel clinical biomarkers, and drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehong Cao
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Zmigrodzka M, Witkowska-Pilaszewicz O, Pingwara R, Pawlak A, Winnicka A. Canine B Cell Lymphoma- and Leukemia-Derived Extracellular Vesicles Moderate Differentiation and Cytokine Production of T and B Cells In Vitro. Int J Mol Sci 2022; 23:ijms23179831. [PMID: 36077229 PMCID: PMC9456052 DOI: 10.3390/ijms23179831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are formed in physiological and pathological conditions by almost all mammalian cells. They are known as submicron “molecules” that transport and horizontally transfer their cargo from maternal cells to donor cells. Moreover, cancer cells produce tumor-derived EVs (TEVs), which are present in blood of patients with solid tumors and those with hematological malignancies. Their role in evading immune system surveillance and induction of immunosuppression in hematological cancer is limited. According to the authors’ best knowledge, there is no information about the impact of TEVs from canine lymphoma (CLBL-1) and leukemia (CLB70) on lymphocytes isolated from peripheral blood mononuclear cells (PBMCs). In conclusion, we demonstrate in in vitro experiments that CLBL-1 EVs and CLB70 EVs are effectively taken up by T and B lymphocytes. TEVs decrease the percentage of B lymphocytes and increase that of T lymphocytes, and change T cells’ phenotype into the effector memory (EM) or terminally differentiated effector memory (TEMRA) subtype after in vitro co-culturing. Moreover, CLBL70 EVs have pro-tumorogenic properties by inhibiting the production of CD8+IL-17+ cells.
Collapse
Affiliation(s)
- Magdalena Zmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, CK Norwida 31, 50-375 Wroclaw, Poland
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-787 Warsaw, Poland
| |
Collapse
|
38
|
Parihar K, Nukpezah J, Iwamoto DV, Janmey PA, Radhakrishnan R. Data driven and biophysical insights into the regulation of trafficking vesicles by extracellular matrix stiffness. iScience 2022; 25:104721. [PMID: 35865140 PMCID: PMC9293776 DOI: 10.1016/j.isci.2022.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Biomechanical signals from remodeled extracellular matrix (ECM) promote tumor progression. Here, we show that cell-matrix and cell-cell communication may be inherently linked and tuned through mechanisms of mechanosensitive biogenesis of trafficking vesicles. Pan-cancer analysis of cancer cells' mechanical properties (focusing primarily on cell stiffness) on substrates of varied stiffness and composition elucidated a heterogeneous cellular response to mechanical stimuli. Through machine learning, we identified a fingerprint of cytoskeleton-related proteins that accurately characterize cell stiffness in different ECM conditions. Expression of their respective genes correlates with patient prognosis across different tumor types. The levels of selected cytoskeleton proteins indicated that cortical tension mirrors the increase (or decrease) in cell stiffness with a change in ECM stiffness. A mechanistic biophysical model shows that the tendency for curvature generation by curvature-inducing proteins has an ultrasensitive dependence on cortical tension. This study thus highlights the effect of ECM stiffness, mediated by cortical tension, in modulating vesicle biogenesis.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Nukpezah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel V. Iwamoto
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Abstract
The twenty-first century has witnessed major developments in the field of extracellular vesicle (EV) research, including significant steps towards defining standard criteria for the separation and detection of EVs. The recent recognition that EVs have the potential to function as biomarkers or as therapeutic tools has attracted even greater attention to their study. With this progress in mind, an updated comprehensive overview of the roles of EVs in the immune system is timely. This Review summarizes the roles of EVs in basic processes of innate and adaptive immunity, including inflammation, antigen presentation, and the development and activation of B cells and T cells. It also highlights key progress related to deciphering the roles of EVs in antimicrobial defence and in allergic, autoimmune and antitumour immune responses. It ends with a focus on the relevance of EVs to immunotherapy and vaccination, drawing attention to ongoing or recently completed clinical trials that aim to harness the therapeutic potential of EVs.
Collapse
|
40
|
Li M, He L, Zhu J, Zhang P, Liang S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 2022; 12:85. [PMID: 35672862 PMCID: PMC9172100 DOI: 10.1186/s13578-022-00823-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/29/2022] [Indexed: 02/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant, nearly accounting for 30–50% of stromal cells in the tumor microenvironment. TAMs exhibit an immunosuppressive M2-like phenotype in advanced cancer, which plays a crucial role in tumor growth, invasion and migration, angiogenesis and immunosuppression. Consequently, the TAM-targeting therapies are particularly of significance in anti-cancer strategies. The application of TAMs as anti-cancer targets is expected to break through traditional tumor-associated therapies and achieves favorable clinical effect. However, the heterogeneity of TAMs makes the strategy of targeting TAMs variable and uncertain. Discovering the subset specificity of TAMs might be a future option for targeting TAMs therapy. Herein, the review focuses on highlighting the different modalities to modulate TAM’s functions, including promoting the phagocytosis of TAMs, TAMs depletion, blocking TAMs recruitment, TAMs reprogramming and suppressing immunosuppressive tumor microenvironment. We also discuss about several ways to improve the efficacy of TAM-targeting therapy from the perspective of combination therapy and specificity of TAMs subgroups.
Collapse
Affiliation(s)
- Mengjun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Linye He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.,Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.
| |
Collapse
|
41
|
Abstract
Tumor-associated macrophages (TAMs) are abundant, nearly accounting for 30-50% of stromal cells in the tumor microenvironment. TAMs exhibit an immunosuppressive M2-like phenotype in advanced cancer, which plays a crucial role in tumor growth, invasion and migration, angiogenesis and immunosuppression. Consequently, the TAM-targeting therapies are particularly of significance in anti-cancer strategies. The application of TAMs as anti-cancer targets is expected to break through traditional tumor-associated therapies and achieves favorable clinical effect. However, the heterogeneity of TAMs makes the strategy of targeting TAMs variable and uncertain. Discovering the subset specificity of TAMs might be a future option for targeting TAMs therapy. Herein, the review focuses on highlighting the different modalities to modulate TAM's functions, including promoting the phagocytosis of TAMs, TAMs depletion, blocking TAMs recruitment, TAMs reprogramming and suppressing immunosuppressive tumor microenvironment. We also discuss about several ways to improve the efficacy of TAM-targeting therapy from the perspective of combination therapy and specificity of TAMs subgroups.
Collapse
Affiliation(s)
- Mengjun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Linye He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.
| |
Collapse
|
42
|
Li R, Wu X, Zhao P, Xue K, Li J. A pan-cancer analysis identifies HDAC11 as an immunological and prognostic biomarker. FASEB J 2022; 36:e22326. [PMID: 35657209 DOI: 10.1096/fj.202101742rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Histone deacetylase 11 (HDAC11) is aberrantly expressed in many types of cancer, and such abnormalities are associated with tumor immunity and heterogeneous clinical outcomes. Here, we explore the prognostic value and immunological function of HDAC11 across 33 cancer types. We observe HDAC11 is aberrantly expressed in 25 cancer types and positively or negatively associated with prognosis in different cancers. HDAC11 played a protective prognostic role in KIRP, KIRC, LGG, PCPG, READ, and UVM, which was contrary to the conventional opinion that HDAC11 was an oncogenic gene. Moreover, HDAC11 is negatively associated with tumor immune components, most immune checkpoint genes, and key cytokine expression. HDAC11 is correlated with tumor mutational burden in 11 cancer types and with microsatellite instability in 9 cancer types, suggesting HDAC11 may affect a patient's response to immune checkpoint inhibitor (ICI) therapy. In addition, HDAC11 is negatively correlated with the drug sensitivity of oxaliplatin, carmustine, ifosfamide, imexon, lomustine, and BN-2629, indicating the potential synergy between HDAC11 inhibitors and these anti-tumor drugs. In vitro assays indicate that HDAC11 inhibitor SIS17 combined with oxaliplatin shows a synergistic cytotoxic role in K562 cells while SIS17 has an antagonistic effect on the cytotoxic role of oxaliplatin in 769P cells. HDAC11 is also associated with hallmark pathways, including epithelial mesenchymal transition, IL-6/JAK/STAT3, and allograft rejection pathways. Overall, we provide clues regarding the key role of HDAC11 in multiple cancers.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Wu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ping Zhao
- Department of Biology, University of North Alabama, Florence, Alabama, USA
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Lu D, Ma Z, Huang D, Zhang J, Li J, Zhi P, Zhang L, Feng Y, Ge X, Zhai J, Jiang M, Zhou X, Simone CB, Neal JW, Patel SR, Yan X, Hu Y, Wang J. Clinicopathological characteristics and prognostic significance of HDAC11 protein expression in non-small cell lung cancer: a retrospective study. Transl Lung Cancer Res 2022; 11:1119-1131. [PMID: 35832445 PMCID: PMC9271448 DOI: 10.21037/tlcr-22-403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 12/09/2022]
Abstract
Background Although the prognosis of non-small cell lung cancer (NSCLC) can be assessed based on pathological type, disease stage and inflammatory indicators, the prognostic scoring model of NSCLC still needs to improve. HDAC11 is associated with poor prognosis of partial tumors, but its prognostic relationship with NSCLC is poorly understood. In this study, the role of HDAC11 in NSCLC was studied to evaluate relationship with disease prognosis and potential therapeutic target. Methods The clinicopathological and paracancerous tissues of patients with NSCLC primarily diagnosed in Tangdu Hospital from 2009 to 2013 were collected. Follow-up of patients were made every three months and the last follow-up period was December 2018. The expression of HDAC11 was assessed by immunohistochemistry (IHC). Then, weighted gene co-expression network analysis (WGCNA) was used to analyze the relationship between HDAC11 expression and the prognosis of lung adenocarcinoma (LUAD) patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Kaplan-Meier plotter database was used to verify the connection between hub genes and tumor stage and prognosis. We accessed the relationship between HDAC11 expression and clinicopathological features, and impact on the prognosis. Results The study assessed 326 patients with NSCLC. Compared with adjacent tissues, HDAC11 expression was upregulated (HR =1.503, 95% CI: 1.172 to 1.927, P=0.001). Kaplan-Meier survival analyses showed that HDAC11 expression was closely related to OS of NSCLC patients (P=0.0011). Univariate and multivariate analyses showed that the independent risk factors of OS were clinical stage, HDAC11 expression, and HDAC11 differentiation (all P≤0.001). HDAC11 was significantly associated with prognosis in LUAD. A total of 1,174 differential genes and WGCNA were obtained to construct a co-expression network in LUAD. The GO and KEGG pathway enrichment analyses showed the relevance with staphylococcus aureus infection, NOD-like receptor signaling pathway, and others. The results of LUAD survival analysis showed that HDAC11-related genes NKX2-5 and FABP7 were significantly associated with LUAD prognosis. Conclusions The high expression of HDAC11 is related to the poor prognosis of LUAD, and it is expected to become a therapeutic target and prognostic evaluation therapy for LUAD in the future. However, the relevant results need to be further studied and verified.
Collapse
Affiliation(s)
- Di Lu
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Di Huang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jundong Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhi
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Shanxi Medical University, Taiyuan, China
| | - Lizhong Zhang
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Shanxi Medical University, Taiyuan, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangwei Ge
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jinzhao Zhai
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Zhou
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shruti Rajesh Patel
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Vadla GP, Daghat B, Patterson N, Ahmad V, Perez G, Garcia A, Manjunath Y, Kaifi JT, Li G, Chabu CY. Combining plasma extracellular vesicle Let-7b-5p, miR-184 and circulating miR-22-3p levels for NSCLC diagnosis and drug resistance prediction. Sci Rep 2022; 12:6693. [PMID: 35461372 PMCID: PMC9035169 DOI: 10.1038/s41598-022-10598-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Low-dose computed tomography (LDCT) Non-Small Cell Lung (NSCLC) screening is associated with high false-positive rates, leading to unnecessary expensive and invasive follow ups. There is a need for minimally invasive approaches to improve the accuracy of NSCLC diagnosis. In addition, NSCLC patients harboring sensitizing mutations in epidermal growth factor receptor EGFR (T790M, L578R) are treated with Osimertinib, a potent tyrosine kinase inhibitor (TKI). However, nearly all patients develop TKI resistance. The underlying mechanisms are not fully understood. Plasma extracellular vesicle (EV) and circulating microRNA (miRNA) have been proposed as biomarkers for cancer screening and to inform treatment decisions. However, the identification of highly sensitive and broadly predictive core miRNA signatures remains a challenge. Also, how these systemic and diverse miRNAs impact cancer drug response is not well understood. Using an integrative approach, we examined plasma EV and circulating miRNA isolated from NSCLC patients versus screening controls with a similar risk profile. We found that combining EV (Hsa-miR-184, Let-7b-5p) and circulating (Hsa-miR-22-3p) miRNAs abundance robustly discriminates between NSCLC patients and high-risk cancer-free controls. Further, we found that Hsa-miR-22-3p, Hsa-miR-184, and Let-7b-5p functionally converge on WNT/βcatenin and mTOR/AKT signaling axes, known cancer therapy resistance signals. Targeting Hsa-miR-22-3p and Hsa-miR-184 desensitized EGFR-mutated (T790M, L578R) NSCLC cells to Osimertinib. These findings suggest that the expression levels of circulating hsa-miR-22-3p combined with EV hsa-miR-184 and Let-7b-5p levels potentially define a core biomarker signature for improving the accuracy of NSCLC diagnosis. Importantly, these biomarkers have the potential to enable prospective identification of patients who are at risk of responding poorly to Osimertinib alone but likely to benefit from Osimertinib/AKT blockade combination treatments.
Collapse
Affiliation(s)
- G P Vadla
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - B Daghat
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - N Patterson
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - V Ahmad
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - G Perez
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - A Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Y Manjunath
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - J T Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - G Li
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - C Y Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA.
| |
Collapse
|
45
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
46
|
Xavier CP, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 2022; 62:100833. [PMID: 35429792 DOI: 10.1016/j.drup.2022.100833] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
|
47
|
Extracellular vesicles and PDL1 suppress macrophages inducing therapy resistance in TP53-deficient B-cell malignancies. Blood 2022; 139:3617-3629. [PMID: 35344582 DOI: 10.1182/blood.2021014007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic alterations in the DNA Damage Response (DDR) pathway are a frequent mechanism of resistance to CIT in B-cell malignancies. We have previously shown that the synergy of CIT relies on secretory crosstalk elicited by chemotherapy between the tumour cells and macrophages. Here, we show that loss of multiple different members of the DDR pathway inhibits macrophage phagocytic capacity in vitro and in vivo. Particularly loss of TP53 led to decreased phagocytic capacity ex vivo across multiple B-cell malignancies. We demonstrate via in vivo cyclophosphamide treatment using the Eµ-TCL1 mouse model that loss of macrophage phagocytic capacity in Tp53-deleted leukemia is driven by a significant downregulation of a phagocytic transcriptomic signature using scRNA-Seq. By analysing the tumour B-cell proteome, we identified a TP53 specific upregulation of proteins associated with extracellular vesicles (EV). We abrogated EV biogenesis in tumour B-cells via CRISPR-knockout (KO) of RAB27A and confirmed that the EVs from TP53-deleted lymphoma cells were responsible for the reduced phagocytic capacity and the in vivo CIT resistance. Furthermore, we observed that TP53 loss led to an upregulation of both PD-L1 cell surface expression and secretion of EVs by lymphoma cells. Disruption of EV bound PD-L1 by anti-PD-L1 antibodies or PD-L1 CRISPR-KO improved macrophage phagocytic capacity and in vivo therapy response. Thus, we demonstrate enhanced EV-release and increased PD-L1 expression in TP53-deficient B-cell lymphomas as novel mechanisms of macrophage function alteration in CIT resistance. This study indicates the use of checkpoint inhibition in the combination treatment of B-cell malignancies with TP53 loss.
Collapse
|
48
|
Exosomal non-coding RNAs: Emerging roles in bilateral communication between cancer cells and macrophages. Mol Ther 2022; 30:1036-1053. [PMID: 34864204 PMCID: PMC8899606 DOI: 10.1016/j.ymthe.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a dynamic network of cellular organization that comprises diverse cell types and significantly contributes to cancer development. As pivotal immune stromal cells in the TME, macrophages are extensively heterogeneous and exert both antitumor and protumor functions. Exosomes are nanosized extracellular membranous vesicles with diameters between 30 and 150 nm. By transferring multiple bioactive substances such as proteins, lipids, and nucleic acids, exosomes play an important role in the communication between cells. Recently, growing evidence has demonstrated that non-coding RNAs (ncRNAs) are enriched in exosomes and that exosomal ncRNAs are involved in the crosstalk between cancer cells and macrophages. Furthermore, circulating exosomal ncRNAs can be detected in biofluids, serving as promising noninvasive biomarkers for the early diagnosis and prognostic prediction of cancer. Exosome-based therapies are emerging as potent strategies that can be utilized to alleviate tumor progression. Herein, the present knowledge of exosomal ncRNAs and their vital roles in regulating the interplay between cancer cells and macrophages, as well as their clinical applications are summarized.
Collapse
|
49
|
Li Y, Chen Z, Han J, Ma X, Zheng X, Chen J. Functional and Therapeutic Significance of Tumor-Associated Macrophages in Colorectal Cancer. Front Oncol 2022; 12:781233. [PMID: 35186730 PMCID: PMC8847181 DOI: 10.3389/fonc.2022.781233] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The role of the tumor microenvironment (TME) in the progression of colorectal cancer (CRC) and its acquisition of resistance to treatment become the research hotspots. As an important component of TME, the tumor-associated macrophages (TAMs) regulate multiple critical oncogenic processes, namely, occurrence, proliferation, metastasis, and drug resistance in CRC. In this review, we have discussed the functional and therapeutic significance of TAMs in CRC. M1 macrophages act as the tumor suppressor while M2 macrophages promote CRC. The polarization of TAMs is mainly regulated by the pathways such as NFKB1 pathways, STAT3 pathways, WNT5A pathways, and PI3K pathways in CRC. Furthermore, the M2 polarization of TAMs is not only controllable but also reversible. Finally, we provide insights into the TAMs-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jiahao Han
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaochen Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xin Zheng
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
50
|
The role of exosomal miR-181b in the crosstalk between NSCLC cells and tumor-associated macrophages. Genes Genomics 2022; 44:1243-1258. [PMID: 35150402 DOI: 10.1007/s13258-022-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND It has been reported that tumor-associated macrophages (TAMs) participate in modulating the progression of cancer in the tumor microenvironment. However, the crosstalk between TAMs and non-small cell lung cancer (NSCLC) is still unclear. OBJECTIVE We investigated whether NSCLC-derived exosomes could affect TAMs, which feedback modulated progression of NSCLC. METHODS MiR-181b expression was measured by RT-PCR. Human THP-1 monocyte was differentiated into macrophages with phorbol myristate acetate, which were further identified by transmission electron microscopy and western blot. Macrophage M1 and M2 polarizations were detected by flow cytometry, RT-PCR and western blot. Proliferation, migration, and invasion of NSCLC cells treated with conditioned mediums were detected by EdU and Transwell assays. RESULTS We demonstrated that miR-181b was up-regulated in exosomes derived from NSCLC patients' serum and NSCLC cells. MiR-181b could be transferred to macrophages via exosomes in the co-culture system of macrophages and NSCLC cells, which promoted macrophage M2 polarization. Further examinations revealed that exosomes derived from NSCLC cells could enhanced macrophage M2 polarizations by regulating miR-181b/JAK2/STAT3 axis, and silencing miR-181b in NSCLC cells and JAK2 inhibitor used in macrophages could reverse the effects. Importantly, the conditioned medium of macrophages treated with NSCLC cell-derived exosomes could promote NSCLC cell proliferation, migration, and invasion. Silencing miR-181b in NSCLC cells and JAK2 inhibitor used in macrophages could block the effects. CONCLUSIONS All of these results indicated that exosomal miR-181b participated in the crosstalk between NSCLC cells and TAMs, providing potential therapeutic targets for NSCLC.
Collapse
|