1
|
Riese J, Kleinwort A, Hannemann M, Hähnel C, Kersting S, Schulze T. Sphingosine-1-phosphate receptor type 4 is critically involved in the regulation of peritoneal B-1 cell trafficking and distribution in vivo. Eur J Immunol 2024:e2350882. [PMID: 39344245 DOI: 10.1002/eji.202350882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
B-1 cells are crucially involved in immune defense and regulation of inflammation and autoimmunity. B-1 cells are predominantly located in the peritoneal and pleural cavities, although body cavity B-1 cells recirculate systemically under steady-state conditions. The chemokines CXCL12 and CXCL13 have been identified as the main regulators of peritoneal B-cell trafficking. In mice deficient for sphingosine-1-phosphate receptor 4 (S1PR4), B-1a and B-1b cell numbers are reduced in the peritoneal cavity by an unknown mechanism. In this study, we show that S1PR4-mediated S1P signaling modifies the chemotactic response of peritoneal B cells to CXCL13 and CXCL12 in vitro. In vivo, S1PR4-mediated S1P signaling affects both immigration into and emigration from the peritoneal cavity. Long-term reconstitution experiments of scid mice with wt or s1pr4 -/- peritoneal B cells revealed a distinct distributional pattern in secondary lymphoid organs. As a functional consequence, both plasmatic and mucosal IgM levels, the main product of B-1a cells, are reduced in mice reconstituted with s1pr4 -/- peritoneal cells. In summary, our data identify S1PR4 as the second S1P receptor (besides S1PR1), which is critically involved in the regulation of peritoneal B-1 cell function.
Collapse
Affiliation(s)
- Janik Riese
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annabel Kleinwort
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Maurice Hannemann
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Celine Hähnel
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stephan Kersting
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Tobias Schulze
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Fujisaki K, Okazaki S, Ogawa S, Takeda M, Sugihara E, Imai K, Mizuno S, Takahashi S, Goitsuka R. B Cells of Early-life Origin Defined by RAG2-based Lymphoid Cell Tracking under Native Hematopoietic Conditions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:296-305. [PMID: 38874543 DOI: 10.4049/jimmunol.2400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments. This approach revealed that B-1a cells with a history of RAG2 expression during the embryonic and neonatal periods dominate the adult B-1a compartment, including those in the bone marrow (BM), peritoneal cavity, and spleen. Moreover, the BCR repertoire of B-1a cells with a history of RAG2 expression during the embryonic period was restricted, becoming gradually more diverse during the neonatal period, and then heterogeneous at the adult stage. Furthermore, more than half of plasmablasts/plasma cells in the adult BM had embryonic and neonatal RAG2 expression histories. Moreover, BCR analysis revealed a high relatedness between BM plasmablasts/plasma cells and B-1a cells derived from embryonic and neonatal periods, suggesting that these cell types have a common origin. Taken together, these findings define, under native hematopoietic conditions, the importance in adulthood of B-1a cells generated during the perinatal period.
Collapse
Affiliation(s)
- Keiko Fujisaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miyama Takeda
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Eiji Sugihara
- Open Facility Center and Cancer Center, Fujita Health University, Aichi, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryo Goitsuka
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
3
|
Ma J, Wang X, Jia Y, Tan F, Yuan X, Du J. The roles of B cells in cardiovascular diseases. Mol Immunol 2024; 171:36-46. [PMID: 38763105 DOI: 10.1016/j.molimm.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Damage to the heart can start the repair process and cause cardiac remodeling. B cells play an important role in this process. B cells are recruited to the injured place and activate cardiac remodeling through secreting antibodies and cytokines. Different types of B cells showed specific functions in the heart. Among all types of B cells, heart-associated B cells play a vital role in the heart by secreting TGFβ1. B cells participate in the activation of fibroblasts and promote cardiac fibrosis. Four subtypes of B cells in the heart revealed the relationship between the B cells' heterogeneity and cardiac remodeling. Many cardiovascular diseases like atherosclerosis, heart failure (HF), hypertension, myocardial infarction (MI), and dilated cardiomyopathy (DCM) are related to B cells. The primary mechanisms of these B cell-related activities will be discussed in this review, which may also suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Wang
- Department of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuewang Jia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Dennis E, Murach M, Blackburn CM, Marshall M, Root K, Pattarabanjird T, Deroissart J, Erickson LD, Binder CJ, Bekiranov S, McNamara CA. Loss of TET2 increases B-1 cell number and IgM production while limiting CDR3 diversity. Front Immunol 2024; 15:1380641. [PMID: 38601144 PMCID: PMC11004297 DOI: 10.3389/fimmu.2024.1380641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.
Collapse
Affiliation(s)
- Emily Dennis
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Maria Murach
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Cassidy M.R. Blackburn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Melissa Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Katherine Root
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Tanyaporn Pattarabanjird
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Justine Deroissart
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Christoph J. Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Bekiranov
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Coleen A. McNamara
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Barajas-Mora EM, Feeney AJ. Enhancers within the Ig V Gene Region Orchestrate Chromatin Topology and Regulate V Gene Rearrangement Frequency to Shape the B Cell Receptor Repertoire Specificities. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1613-1622. [PMID: 37983521 PMCID: PMC10662671 DOI: 10.4049/jimmunol.2300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/01/2023] [Indexed: 11/22/2023]
Abstract
Effective Ab-mediated responses depend on a highly diverse Ab repertoire with the ability to bind a wide range of epitopes in disease-causing agents. The generation of this repertoire depends on the somatic recombination of the variable (V), diversity (D), and joining (J) genes in the Ig loci of developing B cells. It has been known for some time that individual V, D, and J gene segments rearrange at different frequencies, but the mechanisms behind this unequal V gene usage have not been well understood. However, recent work has revealed that newly described enhancers scattered throughout the V gene-containing portion of the Ig loci regulate the V gene recombination frequency in a regional manner. Deletion of three of these enhancers revealed that these elements exert many layers of control during V(D)J recombination, including long-range chromatin interactions, epigenetic milieu, chromatin accessibility, and compartmentalization.
Collapse
Affiliation(s)
- E. Mauricio Barajas-Mora
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA, Current address: Poseida Therapeutics, Inc. San Diego, CA
| | - Ann J. Feeney
- Scripps Research, Department of Immunology and Microbiology, La Jolla, CA 92014
| |
Collapse
|
6
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
7
|
Haas KM. Noncanonical B Cells: Characteristics of Uncharacteristic B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1257-1265. [PMID: 37844278 PMCID: PMC10593487 DOI: 10.4049/jimmunol.2200944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 10/18/2023]
Abstract
B lymphocytes were originally described as a cell type uniquely capable of secreting Abs. The importance of T cell help in Ab production was revealed soon afterward. Following these seminal findings, investigators made great strides in delineating steps in the conventional pathway that B cells follow to produce high-affinity Abs. These studies revealed generalized, or canonical, features of B cells that include their developmental origin and paths to maturation, activation, and differentiation into Ab-producing and memory cells. However, along the way, examples of nonconventional B cell populations with unique origins, age-dependent development, tissue localization, and effector functions have been revealed. In this brief review, features of B-1a, B-1b, marginal zone, regulatory, killer, NK-like, age-associated, and atypical B cells are discussed. Emerging work on these noncanonical B cells and functions, along with the study of their significance for human health and disease, represents an exciting frontier in B cell biology.
Collapse
Affiliation(s)
- Karen M Haas
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
8
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
9
|
Yoshihara T, Okabe Y. Aldh1a2 + fibroblastic reticular cells regulate lymphocyte recruitment in omental milky spots. J Exp Med 2023; 220:213908. [PMID: 36880532 PMCID: PMC9997506 DOI: 10.1084/jem.20221813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Lymphoid clusters in visceral adipose tissue omentum, known as milky spots, play a central role in the immunological defense in the abdomen. Milky spots exhibit hybrid nature between secondary lymph organs and ectopic lymphoid tissues, yet their development and maturation mechanisms are poorly understood. Here, we identified a subset of fibroblastic reticular cells (FRCs) that are uniquely present in omental milky spots. These FRCs were characterized by the expression of retinoic acid-converting enzyme, Aldh1a2, and endothelial cell marker, Tie2, in addition to canonical FRC-associated genes. Diphtheria toxin-mediated ablation of Aldh1a2+ FRCs resulted in the alteration in milky spot structure with a significant reduction in size and cellularity. Mechanistically, Aldh1a2+ FRCs regulated the display of chemokine CXCL12 on high endothelial venules (HEVs), which recruit blood-borne lymphocytes from circulation. We further found that Aldh1a2+ FRCs are required for the maintenance of peritoneal lymphocyte composition. These results illustrate the homeostatic roles of FRCs in the formation of non-classical lymphoid tissues.
Collapse
Affiliation(s)
- Tomomi Yoshihara
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University , Osaka, Japan
| | - Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University , Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University , Osaka, Japan.,Japan Science and Technology Agency , PRESTO, Kawaguchi, Japan
| |
Collapse
|
10
|
Smith FL, Savage HP, Luo Z, Tipton CM, Lee FEH, Apostol AC, Beaudin AE, Lopez DA, Jensen I, Keller S, Baumgarth N. B-1 plasma cells require non-cognate CD4 T cell help to generate a unique repertoire of natural IgM. J Exp Med 2023; 220:e20220195. [PMID: 36811605 PMCID: PMC9960156 DOI: 10.1084/jem.20220195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/01/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Evolutionarily conserved, "natural" (n)IgM is broadly reactive to both self and foreign antigens. Its selective deficiency leads to increases in autoimmune diseases and infections. In mice, nIgM is secreted independent of microbial exposure to bone marrow (BM) and spleen B-1 cell-derived plasma cells (B-1PC), generating the majority of nIgM, or by B-1 cells that remain non-terminally differentiated (B-1sec). Thus, it has been assumed that the nIgM repertoire is broadly reflective of the repertoire of body cavity B-1 cells. Studies here reveal, however, that B-1PC generate a distinct, oligoclonal nIgM repertoire, characterized by short CDR3 variable immunoglobulin heavy chain regions, 7-8 amino acids in length, some public, many arising from convergent rearrangements, while specificities previously associated with nIgM were generated by a population of IgM-secreting B-1 (B-1sec). BM, but not spleen B-1PC, or B-1sec also required the presence of TCRαβ CD4 T cells for their development from fetal precursors. Together, the studies identify important previously unknown characteristics of the nIgM pool.
Collapse
Affiliation(s)
- Fauna L. Smith
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
| | - Hannah P. Savage
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
| | - Zheng Luo
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F. Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - April C. Apostol
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Diego A. Lopez
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Ingvill Jensen
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Stefan Keller
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
11
|
Bhat KH, Priyadarshi S, Naiyer S, Qu X, Farooq H, Kleiman E, Xu J, Lei X, Cantillo JF, Wuerffel R, Baumgarth N, Liang J, Feeney AJ, Kenter AL. An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation. Nat Commun 2023; 14:1225. [PMID: 36869028 PMCID: PMC9984487 DOI: 10.1038/s41467-023-36414-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
The mouse Igh locus is organized into a developmentally regulated topologically associated domain (TAD) that is divided into subTADs. Here we identify a series of distal VH enhancers (EVHs) that collaborate to configure the locus. EVHs engage in a network of long-range interactions that interconnect the subTADs and the recombination center at the DHJH gene cluster. Deletion of EVH1 reduces V gene rearrangement in its vicinity and alters discrete chromatin loops and higher order locus conformation. Reduction in the rearrangement of the VH11 gene used in anti-PtC responses is a likely cause of the observed reduced splenic B1 B cell compartment. EVH1 appears to block long-range loop extrusion that in turn contributes to locus contraction and determines the proximity of distant VH genes to the recombination center. EVH1 is a critical architectural and regulatory element that coordinates chromatin conformational states that favor V(D)J rearrangement.
Collapse
Affiliation(s)
- Khalid H Bhat
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore-193201, Wadoora, India
| | - Saurabh Priyadarshi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Xinyan Qu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Medpace, Cincinnati, Ohio, 45227, USA
| | - Hammad Farooq
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Eden Kleiman
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Crown Bioscience, San Diego, CA, 92127, USA
| | - Jeffery Xu
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Brookwood Baptist Health General Surgery Residency, Birmingham, AL, 35211, USA
| | - Xue Lei
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jose F Cantillo
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Immunotek, S.L. Alcala de Henares, Spain
| | - Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- 10441 Circle Dr. Apt 47C, Oak Lawn, IL, 60453, USA
| | - Nicole Baumgarth
- W. Harry Feinstone Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
| | - Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA.
| |
Collapse
|
12
|
Srikakulapu P, Pattarabanjird T, Upadhye A, Bontha SV, Osinski V, Marshall MA, Garmey J, Deroissart J, Prohaska TA, Witztum JL, Binder CJ, Holodick NE, Rothstein TL, McNamara CA. B-1b Cells Have Unique Functional Traits Compared to B-1a Cells at Homeostasis and in Aged Hyperlipidemic Mice With Atherosclerosis. Front Immunol 2022; 13:909475. [PMID: 35935999 PMCID: PMC9353528 DOI: 10.3389/fimmu.2022.909475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Immunoglobulin M (IgM) to oxidation specific epitopes (OSE) are inversely associated with atherosclerosis in mice and humans. The B-1b subtype of B-1 cells secrete IgM to OSE, and unlike B-1a cells, are capable of long-lasting IgM memory. What attributes make B-1b cells different than B-1a cells is unknown. Our objectives were to determine how B-1b cells produce more IgM compared to B-1a cells at homeostatic condition and to see the differences in the B-1a and B-1b cell distribution and IgM CDR-H3 sequences in mice with advanced atherosclerosis. Here, in-vivo studies demonstrated greater migration to spleen, splenic production of IgM and plasma IgM levels in ApoE-/-Rag1-/- mice intraperitoneally injected with equal numbers of B-1b compared to B-1a cells. Bulk RNA seq analysis and flow cytometry of B-1a and B-1b cells identified CCR6 as a chemokine receptor more highly expressed on B-1b cells compared to B-1a. Knockout of CCR6 resulted in reduced B-1b cell migration to the spleen. Moreover, B-1b cell numbers were significantly higher in spleen of aged atherosclerotic ApoE-/- mice compared to young ApoE-/- mice. Single cell sequencing results of IgHM in B-1a and B-1b cells from peritoneal cavity and spleen of atherosclerotic aged ApoE-/- mice revealed significantly more N additions at the V-D and D-J junctions, greater diversity in V region usage and CDR-H3 sequences in B-1b compared to B-1a cells. In summary, B-1b cells demonstrated enhanced CCR6-mediated splenic migration, IgM production, and IgM repertoire diversification compared to B-1a cells. These findings suggest that potential strategies to selectively augment B-1b cell numbers and splenic trafficking could lead to increased and more diverse IgM targeting OSE to limit atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,*Correspondence: Prasad Srikakulapu, ; Coleen A. McNamara,
| | | | - Aditi Upadhye
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Sai Vineela Bontha
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - Victoria Osinski
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - James Garmey
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas A. Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Joseph L. Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nichol E. Holodick
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Prasad Srikakulapu, ; Coleen A. McNamara,
| |
Collapse
|
13
|
Ma L, Ouyang H, Su A, Zhang Y, Pang D, Zhang T, Sun R, Wang W, Xie Z, Lv D. AbSE Workflow: Rapid Identification of the Coding Sequence and Linear Epitope of the Monoclonal Antibody at the Single-cell Level. ACS Synth Biol 2022; 11:1856-1864. [PMID: 35503752 DOI: 10.1021/acssynbio.2c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibody (mAb) has been widely used in immunity research and disease diagnosis and therapy. Antibody sequence and epitope are the prerequisites and basis of mAb applications, which determine the properties of antibodies and make the preparation of antibody-based molecules controllable and reliable. Here, we present the antibody sequence and epitope identification (AbSE) workflow, a time-saving and cost-effective route for rapid determination of antibody sequence and linear epitope of mAb even at the single-cell level. The feasibility and accuracy of the AbSE workflow were demonstrated through the identification and validation of the coding sequence and epitope of antihuman serum albumin (antiHSA) mAb. It can be inferred that the AbSE workflow is a powerful and universal approach for paired antibody-epitope sequence identification. It may characterize antibodies not only on a single hybridoma cell but also on any other antibody-secreting cells.
Collapse
Affiliation(s)
- Lerong Ma
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - HongSheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen 518100, China
| | - Ang Su
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Tao Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ruize Sun
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wentao Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zicong Xie
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Dongmei Lv
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
14
|
Webster SE, Ryali B, Clemente MJ, Tsuji NL, Holodick NE. Sex Influences Age-Related Changes in Natural Antibodies and CD5 + B-1 Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1755-1771. [PMID: 35256511 PMCID: PMC8976758 DOI: 10.4049/jimmunol.2101150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022]
Abstract
Natural Abs are primarily produced by B-1 cells and are essential for protection against Streptococcus pneumoniae The incidence and mortality rate for pneumococcal infection increases dramatically after age 65, disproportionately affecting males in both human and murine systems. To date, there is a significant gap in our understanding of the relationship among sex, aging, natural IgM efficacy, and the natural IgM repertoire. Our investigation demonstrates that the protective capacity of serum IgM against pneumococcal infection is maintained in IgM obtained from aged female mice but absent in IgM from aged male mice. To understand this difference in protective capacity, we examined serum Ig, discovering that the protective change was not associated with shifts in levels of phosphorylcholine (PC)- or pneumococcal capsular polysaccharide serotype 3-specific IgM. Interestingly, we observed that aged females have an increase in the total number of CD5+ B-1 cells, higher serum IL-5 levels, and a larger percentage of aged female CD5+ B-1 cells that express CD86 as compared with aged males. Furthermore, single-cell IgM repertoire analysis from peritoneal PC+, splenic PC+, and bone marrow CD5+ B-1 cell subsets demonstrated greater diversity with age and a higher level of germline status in female mice than previously observed in studies of aged male mice. Aged female CD5+ B-1 cells also expressed higher levels of transcripts associated with cell activity and self-renewal, such as Nanog and Hmga2 Taken together, these data indicate that females maintain a more diverse and active CD5+ B-1 cell pool and natural IgM repertoire, which has implications for sex-related susceptibility to infection and disease.
Collapse
Affiliation(s)
- Sarah E Webster
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Brinda Ryali
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Medicine, Rush University Medical Center, Chicago, IL; and
| | - Michael J Clemente
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Flow Cytometry and Imaging Core, Western Michigan Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Naomi L Tsuji
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Nichol E Holodick
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI; .,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| |
Collapse
|
15
|
Osinski V, Srikakulapu P, Haider YM, Marshall MA, Ganta VC, Annex BH, McNamara CA. Loss of Id3 (Inhibitor of Differentiation 3) Increases the Number of IgM-Producing B-1b Cells in Ischemic Skeletal Muscle Impairing Blood Flow Recovery During Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2022; 42:6-18. [PMID: 34809449 PMCID: PMC8702457 DOI: 10.1161/atvbaha.120.315501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Neovascularization can maintain and even improve tissue perfusion in the setting of limb ischemia during peripheral artery disease. The molecular and cellular mechanisms mediating this process are incompletely understood. We investigate the potential role(s) for Id3 (inhibitor of differentiation 3) in regulating blood flow in a murine model of hindlimb ischemia (HLI). Approach and Results: HLI was modeled through femoral artery ligation and resection and blood flow recovery was quantified by laser Doppler perfusion imaging. Mice with global Id3 deletion had significantly impaired perfusion recovery at 14 and 21 days of HLI. Endothelial- or myeloid cell-specific deletion of Id3 revealed no effect on perfusion recovery while B-cell-specific knockout of Id3 (Id3BKO) revealed a significant attenuation of perfusion recovery. Flow cytometry revealed no differences in ischemia-induced T cells or myeloid cell numbers at 7 days of HLI, yet there was a significant increase in B-1b cells in Id3BKO. Consistent with these findings, ELISA (enzyme-linked immunoassay) demonstrated increases in skeletal muscle and plasma IgM. In vitro experiments demonstrated reduced proliferation and increased cell death when endothelial cells were treated with conditioned media from IgM-producing B-1b cells and tibialis anterior muscles in Id3BKO mice showed reduced density of total CD31+ and αSMA+CD31+ vessels. CONCLUSIONS This study is the first to demonstrate a role for B-cell-specific Id3 in maintaining blood flow recovery during HLI. Results suggest a role for Id3 in promoting blood flow during HLI and limiting IgM-expressing B-1b cell expansion. These findings present new mechanisms to investigate in peripheral artery disease pathogenesis.
Collapse
Affiliation(s)
- Victoria Osinski
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Prasad Srikakulapu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Young Min Haider
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Melissa A. Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Vijay C. Ganta
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
| | - Brian H. Annex
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
16
|
Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc Res 2021; 117:2544-2562. [PMID: 34450620 DOI: 10.1093/cvr/cvab285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immune mechanisms are critically involved in the pathogenesis of atherosclerosis and its clinical manifestations. Associations of specific antibody levels and defined B cell subsets with cardiovascular disease activity in humans as well as mounting evidence from preclinical models demonstrate a role of B cells and humoral immunity in atherosclerotic cardiovascular disease. These include all aspects of B cell immunity, the generation of antigen-specific antibodies, antigen presentation and co-stimulation of T cells, as well as production of cytokines. Through their impact on adaptive and innate immune responses and the regulation of many other immune cells, B cells mediate both protective and detrimental effects in cardiovascular disease. Several antigens derived from (oxidised) lipoproteins, the vascular wall and classical autoantigens have been identified. The unique antibody responses they trigger and their relationship with atherosclerotic cardiovascular disease are reviewed. In particular, we focus on the different effector functions of specific IgM, IgG, and IgE antibodies and the cellular responses they trigger and highlight potential strategies to target B cell functions for therapy.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Unversité Paris Descartes, Sorbonne Paris Cité, Paris France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Perez-Chacon G, Zapata JM. The Traf2DNx BCL2-tg Mouse Model of Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Recapitulates the Biased IGHV Gene Usage, Stereotypy, and Antigen-Specific HCDR3 Selection of Its Human Counterpart. Front Immunol 2021; 12:627602. [PMID: 33912159 PMCID: PMC8072112 DOI: 10.3389/fimmu.2021.627602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL)/Small lymphocytic lymphoma (SLL) is a heterogeneous disease consisting of at least two separate subtypes, based on the mutation status of the immunoglobulin heavy chain variable gene (IGHV) sequence. Exposure to antigens seems to play a role in malignant transformation and in the selection and expansion of more aggressive CLL clones. Furthermore, a biased usage of particular IGHV gene subgroups and the existence of stereotyped B-cell receptors (BCRs) are distinctive characteristics of human CLL. We have previously described that Traf2DN/BCL2 double-transgenic (tg, +/+) mice develop CLL/SLL with high incidence with aging. In this model, TNF-Receptor Associated Factor (TRAF)-2 deficiency cooperates with B cell lymphoma (BCL)-2 in promoting CLL/SLL in mice by specifically enforcing marginal zone (MZ) B cell differentiation and rendering B cells independent of BAFF for survival. In this report, we have performed the sequencing of the IGHV-D-J rearrangements of B cell clones from the Traf2DN/BCL2-tg+/+ mice with CLL/SLL. The results indicate that these mice develop oligoclonal and monoclonal B cell expansions. Allotransplantation of the oligoclonal populations into immunodeficient mice resulted in the preferential expansion of one of the parental clones. The analysis of the IGHV sequences indicated that 15% were mutated (M) and 85% unmutated (UM). Furthermore, while the Traf2DN/BCL2-tg-/- (wild-type), -/+ (BCL2 single-tg) and +/- (Traf2DNDN single-tg) littermates showed the expression of various IGHV gene subgroups, the CLL/SLL expanded clones from the Traf2DN/BCL2-tg+/+ (double-transgenic) mice showed a more restricted IGHV gene subgroup usage and an overrepresentation of particular IGHV genes. In addition, the HCDR3-encoded protein sequence indicates the existence of stereotyped immunoglobulin (Ig) in the BCRs and strong similarities with BCR recognizing autoantigens and pathogen-associated antigens. Altogether, these results highlight the remarkable similarities between the CLL/SLL developed by the Traf2DN/BCL2-tg+/+ mice and its human counterpart.
Collapse
Affiliation(s)
- Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| |
Collapse
|
18
|
Izraelson M, Metsger M, Davydov AN, Shagina IA, Dronina MA, Obraztsova AS, Miskevich DA, Mamedov IZ, Volchkova LN, Nakonechnaya TO, Shugay M, Bolotin DA, Staroverov DB, Sharonov GV, Kondratyuk EY, Zagaynova EV, Lukyanov S, Shams I, Britanova OV, Chudakov DM. Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. NATURE AGING 2021; 1:179-189. [PMID: 37118630 DOI: 10.1038/s43587-021-00029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 04/30/2023]
Abstract
A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice. The T-cell repertoire remains diverse throughout the Spalax lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as Spalax ages. The thymus shrinks as in mice and humans, while interleukin-7 and interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The Spalax adaptive immune system thus appears biased towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones-a unique organizational strategy that potentially underlies this animal's extraordinary longevity and healthy aging.
Collapse
Affiliation(s)
- M Izraelson
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Metsger
- Central European Institute of Technology, Brno, Czech Republic
| | - A N Davydov
- Central European Institute of Technology, Brno, Czech Republic
| | - I A Shagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Dronina
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A S Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - D A Miskevich
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - I Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Brno, Czech Republic
| | - L N Volchkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - T O Nakonechnaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D A Bolotin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D B Staroverov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G V Sharonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Y Kondratyuk
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - E V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - S Lukyanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I Shams
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - O V Britanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - D M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- Central European Institute of Technology, Brno, Czech Republic.
| |
Collapse
|
19
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
20
|
Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2020; 109:717-729. [PMID: 32881077 DOI: 10.1002/jlb.5mir0720-271rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Tsuji N, Rothstein TL, Holodick NE. Antigen Receptor Specificity and Cell Location Influence the Diversification and Selection of the B-1a Cell Pool with Age. THE JOURNAL OF IMMUNOLOGY 2020; 205:741-759. [PMID: 32561570 DOI: 10.4049/jimmunol.1901302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/20/2020] [Indexed: 01/18/2023]
Abstract
B-1a cells provide immediate and essential protection from infection through production of natural Ig, which is germline-like due to minimal insertion of N region additions. We have previously demonstrated peritoneal B-1a cell-derived phosphorylcholine-specific and total IgM moves away from germline (as evidenced by an increase in N-additions) with age as a result of selection. In young mice, anti-phosphatidylcholine Abs, like anti-phosphorylcholine Abs, contain few N-additions, and have been shown to be essential in protection from bacterial sepsis. In this study, we demonstrate the germline-like status of phosphatidylcholine (PtC)-specific (PtC+) peritoneal B-1a cell IgM does not change with age. In direct contrast, the splenic PtC+ B-1a cell population does not preserve its IgM germline status in the aged mice. Furthermore, splenic PtC+ B-1a cells displayed more diverse variable gene segments of the H chain (VH) use in both the young and aged mice as compared with peritoneal PtC+ B-1a cells. Whereas the peritoneal PtC+ population increased VH12 use with age, we observed differential use of VH11, VH12, and VH2 between the peritoneal and splenic PtC+ populations with age. These results suggest disparate selection pressures occur with age upon B-1a cells expressing different specificities in distinct locations. Overall, these results illuminate the need to further elucidate how B-1a cells are influenced over time in terms of production and selection, both of which contribute to the actual and available natural IgM repertoire with increasing age. Such studies would aid in the development of more effective vaccination and therapeutic strategies in the aged population.
Collapse
Affiliation(s)
- Naomi Tsuji
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007; and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007; and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007
| | - Nichol E Holodick
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007; and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007
| |
Collapse
|
22
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
23
|
Upadhye A, Marshall M, Garmey JC, Bender TP, McNamara C. Retroviral Overexpression of CXCR4 on Murine B-1a Cells and Adoptive Transfer for Targeted B-1a Cell Migration to the Bone Marrow and IgM Production. J Vis Exp 2020. [PMID: 32538902 DOI: 10.3791/61003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As cell function is influenced by niche-specific factors in the cellular microenvironment, methods to dissect cell localization and migration can provide further insight on cell function. B-1a cells are a unique B cell subset in mice that produce protective natural IgM antibodies against oxidation-specific epitopes that arise during health and disease. B-1a cell IgM production differs depending on B-1a cell location, and therefore it becomes useful from a therapeutic standpoint to target B-1a localization to niches supportive of high antibody production. Here we describe a method to target B-1a cell migration to the bone marrow by retroviral-mediated overexpression of the C-X-C motif chemokine receptor 4 (CXCR4). Gene induction in primary murine B cells can be challenging and typically yields low transfection efficiencies of 10-20% depending on technique. Here we demonstrate that retroviral transduction of primary murine B-1a cells results in 30-40% transduction efficiency. This method utilizes adoptive cell transfer of transduced B-1a cells into B cell-deficient recipient mice so that donor B-1a cell migration and localization can be visualized. This protocol can be modified for other retroviral constructs and can be used in diverse functional assays post-adoptive transfer, including analysis of donor cell or host cell phenotype and function, or analysis of soluble factors secreted post B-1a cell transfer. The use of distinct donor and recipient mice differentiated by CD45.1 and CD45.2 allotype and the presence of a GFP reporter within the retroviral plasmid could also enable detection of donor cells in other, immune-sufficient mouse models containing endogenous B cell populations.
Collapse
Affiliation(s)
- Aditi Upadhye
- Department of Microbiology, Immunology, Cancer Biology, University of Virginia
| | | | | | - Timothy P Bender
- Beirne B. Carter Center for Immunology Research, University of Virginia
| | | |
Collapse
|
24
|
Zelazowska MA, Dong Q, Plummer JB, Zhong Y, Liu B, Krug LT, McBride KM. Gammaherpesvirus-infected germinal center cells express a distinct immunoglobulin repertoire. Life Sci Alliance 2020; 3:3/3/e201900526. [PMID: 32029571 PMCID: PMC7012147 DOI: 10.26508/lsa.201900526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Germinal center B cells infected with gammaherpesvirus display altered repertoire with biased usage of lambda light chain and skewed utilization of IGHV genes. The gammaherpesviruses (γHVs), human Kaposi sarcoma-associated herpesvirus (KSHV), EBV, and murine γHV68 are prevalent infections associated with lymphocyte pathologies. After primary infection, EBV and γHV68 undergo latent expansion in germinal center (GC) B cells and persists in memory cells. The GC reaction evolves and selects antigen-specific B cells for memory development but whether γHV passively transients or manipulates this process in vivo is unknown. Using the γHV68 infection model, we analyzed the Ig repertoire of infected and uninfected GC cells from individual mice. We found that infected cells displayed the hallmarks of affinity maturation, hypermutation, and isotype switching but underwent clonal expansion. Strikingly, infected cells displayed distinct repertoire, not found in uninfected cells, with recurrent utilization of certain Ig heavy V segments including Ighv10-1. In a manner observed with KSHV, γHV68 infected cells also displayed lambda light chain bias. Thus, γHV68 subverts GC selection to expand in a specific B cell subset during the process that develops long-lived immunologic memory.
Collapse
Affiliation(s)
- Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Qiwen Dong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
25
|
Upadhye A, Sturek JM, McNamara CA. 2019 Russell Ross Memorial Lecture in Vascular Biology: B Lymphocyte-Mediated Protective Immunity in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:309-322. [PMID: 31852222 PMCID: PMC7398219 DOI: 10.1161/atvbaha.119.313064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022]
Abstract
Atherosclerosis-the major underlying pathology of cardiovascular disease-is characterized by accumulation and subsequent oxidative modification of lipoproteins within the artery wall, leading to inflammatory cell infiltration and lesion formation that can over time result in arterial stenosis, ischemia, and downstream adverse events. The contribution of innate and adaptive immunity to atherosclerosis development is well established, and B cells have emerged as important modulators of both pro- and anti-inflammatory effects in atherosclerosis. Murine B cells can broadly be divided into 2 subsets: (1) B-2 cells, which are bone marrow derived and include conventional follicular and marginal zone B cells, and (2) B-1 cells, which are largely fetal liver derived and persist in adults through self-renewal. B-cell subsets are developmentally, functionally, and phenotypically distinct with unique subset-specific contributions to atherosclerosis development. Mechanisms whereby B cells regulate vascular inflammation and atherosclerosis will be discussed with a particular emphasis on B-1 cells. B-1 cells have a protective role in atherosclerosis that is mediated in large part by IgM antibody production. Accumulating evidence over the last several years has pointed to a previously underappreciated heterogeneity in B-1 cell populations, which may have important implications for understanding atherosclerosis development and potential targeted therapeutic approaches. This heterogeneity within atheroprotective innate B-cell subsets will be highlighted.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
| | - Jeffrey M Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine (J.M.S.), University of Virginia School of Medicine, Charlottesville
| | - Coleen A McNamara
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
- Division of Cardiovascular Medicine (C.A.M.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
26
|
Cherepanova OA, Srikakulapu P, Greene ES, Chaklader M, Haskins RM, McCanna ME, Bandyopadhyay S, Ban B, Leitinger N, McNamara CA, Owens GK. Novel Autoimmune IgM Antibody Attenuates Atherosclerosis in IgM Deficient Low-Fat Diet-Fed, but Not Western Diet-Fed Apoe-/- Mice. Arterioscler Thromb Vasc Biol 2020; 40:206-219. [PMID: 31645128 PMCID: PMC7006879 DOI: 10.1161/atvbaha.119.312771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidized phospholipids (OxPL), such as the oxidized derivatives of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine, and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine, have been shown to be the principal biologically active components of minimally oxidized LDL (low-density lipoprotein). The role of OxPL in cardiovascular diseases is well recognized, including activation of inflammation within vascular cells. Atherosclerotic Apoe-/- mice fed a high-fat diet develop antibodies to OxPL, and hybridoma B-cell lines producing natural anti-OxPL autoantibodies have been successfully generated and characterized. However, as yet, no studies have been reported demonstrating that treatment with OxPL neutralizing antibodies can be used to prevent or reverse advanced atherosclerosis. Approach and Results: Here, using a screening against 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine/1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine, we generated a novel IgM autoantibody, 10C12, from the spleens of Apoe-/- mice fed a long-term Western diet, that demonstrated potent OxPL neutralizing activity in vitro and the ability to inhibit macrophage accumulation within arteries of Apoe-/- mice fed a Western diet for 4 weeks. Of interest, 10C12 failed to inhibit atherosclerosis progression in Apoe-/- mice treated between 18 and 26 weeks of Western diet feeding likely due at least in part to high levels of endogenous anti-OxPL antibodies. However, 10C12 treatment caused a 40% decrease in lipid accumulation within aortas of secreted IgM deficient, sIgM-/-Apoe-/-, mice fed a low-fat diet, when the antibody was administrated between 32-40 weeks of age. CONCLUSIONS Taken together, these results provide direct evidence showing that treatment with a single autoimmune anti-OxPL IgM antibody during advanced disease stages can have an atheroprotective outcome.
Collapse
Affiliation(s)
- Olga A. Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, USA
| | - Prasad Srikakulapu
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth S. Greene
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Malay Chaklader
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, USA
| | - Ryan M. Haskins
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mary E. McCanna
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core, Research Core Services, Lerner Research Institute, Cleveland Clinic, USA
| | - Bhupal Ban
- Antibody Engineering and Technology Core, University of Virginia, USA
- Department of Cell Biology, University of Virginia, USA
- Indiana Biosciences Research Institute, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
27
|
Blandino R, Baumgarth N. Secreted IgM: New tricks for an old molecule. J Leukoc Biol 2019; 106:1021-1034. [PMID: 31302940 PMCID: PMC6803036 DOI: 10.1002/jlb.3ri0519-161r] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
Secreted IgM (sIgM) is a multifunctional evolutionary conserved antibody that is critical for the maintenance of tissue homeostasis as well as the development of fully protective humoral responses to pathogens. Constitutive secretion of self- and polyreactive natural IgM, produced mainly by B-1 cells, provides a circulating antibody that engages with autoantigens as well as invading pathogens, removing apoptotic and other cell debris and initiating strong immune responses. Pathogen-induced IgM production by B-1 and conventional B-2 cells strengthens this early, passive layer of IgM-mediated immune defense and regulates subsequent IgG production. The varied effects of secreted IgM on immune homeostasis and immune defense are facilitated through its binding to numerous different cell types via different receptors. Recent studies identified a novel function for pentameric IgM, namely as a transporter for the effector protein ″apoptosis-inhibitor of macrophages″ (AIM/CD5L). This review aims to provide a summary of the known functions and effects of sIgM on immune homeostasis and immune defense, and its interaction with its various receptors, and to highlight the many critical immune regulatory functions of this ancient and fascinating immunoglobulin.
Collapse
Affiliation(s)
- Rebecca Blandino
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
| | - Nicole Baumgarth
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
- Dept. Pathology, Microbiology & Immunology, University of California, Davis
| |
Collapse
|
28
|
Upadhye A, Srikakulapu P, Gonen A, Hendrikx S, Perry HM, Nguyen A, McSkimming C, Marshall MA, Garmey JC, Taylor AM, Bender TP, Tsimikas S, Holodick NE, Rothstein TL, Witztum JL, McNamara CA. Diversification and CXCR4-Dependent Establishment of the Bone Marrow B-1a Cell Pool Governs Atheroprotective IgM Production Linked to Human Coronary Atherosclerosis. Circ Res 2019; 125:e55-e70. [PMID: 31549940 DOI: 10.1161/circresaha.119.315786] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE B-1 cell-derived natural IgM antibodies against oxidation-specific epitopes on low-density lipoprotein are anti-inflammatory and atheroprotective. Bone marrow (BM) B-1a cells contribute abundantly to IgM production, yet the unique repertoire of IgM antibodies generated by BM B-1a and the factors maintaining the BM B-1a population remain unexplored. CXCR4 (C-X-C motif chemokine receptor 4) has been implicated in human cardiovascular disease and B-cell homeostasis, yet the role of B-1 cell CXCR4 in regulating atheroprotective IgM levels and human cardiovascular disease is unknown. OBJECTIVE To characterize the BM B-1a IgM repertoire and to determine whether CXCR4 regulates B-1 production of atheroprotective IgM in mice and humans. METHODS AND RESULTS Single-cell sequencing demonstrated that BM B-1a cells from aged ApoE-/- mice with established atherosclerosis express a unique repertoire of IgM antibodies containing increased nontemplate-encoded nucleotide additions and a greater frequency of unique heavy chain complementarity determining region 3 sequences compared with peritoneal cavity B-1a cells. Some complementarity determining region 3 sequences were common to both compartments suggesting B-1a migration between compartments. Indeed, mature peritoneal cavity B-1a cells migrated to BM in a CXCR4-dependent manner. Furthermore, BM IgM production and plasma IgM levels were reduced in ApoE-/- mice with B-cell-specific knockout of CXCR4, and overexpression of CXCR4 on B-1a cells increased BM localization and plasma IgM against oxidation specific epitopes, including IgM specific for malondialdehyde-modified LDL (low-density lipoprotein). Finally, in a 50-subject human cohort, we find that CXCR4 expression on circulating human B-1 cells positively associates with plasma levels of IgM antibodies specific for malondialdehyde-modified LDL and inversely associates with human coronary artery plaque burden and necrosis. CONCLUSIONS These data provide the first report of a unique BM B-1a cell IgM repertoire and identifies CXCR4 expression as a critical factor selectively governing BM B-1a localization and production of IgM against oxidation specific epitopes. That CXCR4 expression on human B-1 cells was greater in humans with low coronary artery plaque burden suggests a potential targeted approach for immune modulation to limit atherosclerosis.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville
| | - Prasad Srikakulapu
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Ayelet Gonen
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Sabrina Hendrikx
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Heather M Perry
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Anh Nguyen
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Chantel McSkimming
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Melissa A Marshall
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - James C Garmey
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Angela M Taylor
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Timothy P Bender
- Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Nichol E Holodick
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Thomas L Rothstein
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Coleen A McNamara
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| |
Collapse
|
29
|
Abstract
B-1 cells represent an innate-like early-developing B cell population, whose existence as an independent lymphocyte subset has been questioned in the past. Recent molecular and lineage tracing studies have not only confirmed their unique origins and differentiation paths, they have also provided a rationale for their distinctive functionalities compared to conventional B cells. This review summarizes our current understanding of B-1 cell development, and the activation events that regulate B-1 cell responses to self and foreign antigens. We discuss the unresolved question to what extent BCR engagement, that is, antigen-specificity versus innate signaling contributes to B-1 cell's participation in tissue homeostasis and immune defense as providers of 'natural' and antigen-induced antibody responses, and as cytokine-producing immune regulators.
Collapse
|
30
|
Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. THE JOURNAL OF IMMUNOLOGY 2018; 201:2502-2509. [PMID: 30217829 DOI: 10.4049/jimmunol.1800708] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022]
Abstract
Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq). However, Ig-seq outputs are currently fragmented across repositories and tend to be presented as raw nucleotide reads, which means nontrivial effort is required to reuse the data for analysis. To address this issue, we have collected Ig-seq outputs from 55 studies, covering more than half a billion Ab sequences across diverse immune states, organisms (primarily human and mouse), and individuals. We have sorted, cleaned, annotated, translated, and numbered these sequences and make the data available via our Observed Antibody Space (OAS) resource at http://antibodymap.org The data within OAS will be regularly updated with newly released Ig-seq datasets. We believe OAS will facilitate data mining of immune repertoires for improved understanding of the immune system and development of better biotherapeutics.
Collapse
Affiliation(s)
- Aleksandr Kovaltsuk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Jinwoo Leem
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | | | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| |
Collapse
|