1
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Feng R, Liu C, Cui Z, Liu Z, Zhang Y. Sphingosine 1-phosphate combining with S1PR4 promotes regulatory T cell differentiation related to FAO through Nrf2/PPARα. Scand J Immunol 2023; 98:e13322. [PMID: 39007959 DOI: 10.1111/sji.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 07/16/2024]
Abstract
Metabolism and metabolic processes have long been considered to shape the tumour immunosuppressive microenvironment. Recent research has demonstrated that T regulatory cells (Tregs) display high rates of fatty acid oxidation (FAO) and a relatively low rate of glycolysis. Sphingosine 1-phosphate (S1P), which is a G protein signalling activator involved in immune regulation and FAO modulation, has been implicated in Treg differentiation. However, the precise relation between Treg differentiation and S1P remains unclear. In this study, we isolated naïve CD4+ T cells from the spleens of 6-8-week-old BALB/c mice using magnetic bead sorting, which was used in our study for Treg differentiation. S1P stimulation was performed during Treg differentiation. We examined the oxygen consumption and palmitic acid metabolism of the differentiated Tregs and evaluated the expression levels of various proteins, including Nrf2, CPT1A, Glut1, ACC1 and PPARα, through Western blotting. Our results demonstrate that S1P promotes Treg differentiation and enhances FAO, and that the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and peroxisome proliferator-activated receptor α (PPARα) is upregulated. Furthermore, Nrf2 or PPARα knockdown dampened the Treg differentiation and FAO that were promoted by S1P, confirming that S1P can bind with S1PR4 to promote Treg differentiation through the Nrf2/PPARα signalling pathway, which may be related to FAO facilitation.
Collapse
Affiliation(s)
- Rui Feng
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Chuang Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
3
|
Kurzhagen JT, Noel S, Lee K, Sadasivam M, Gharaie S, Ankireddy A, Lee SA, Newman-Rivera A, Gong J, Arend LJ, Hamad AR, Reddy SP, Rabb H. T Cell Nrf2/Keap1 Gene Editing Using CRISPR/Cas9 and Experimental Kidney Ischemia-Reperfusion Injury. Antioxid Redox Signal 2023; 38:959-973. [PMID: 36734409 PMCID: PMC10171956 DOI: 10.1089/ars.2022.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Johanna T. Kurzhagen
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjeev Noel
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungho Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sepideh Gharaie
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aparna Ankireddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Sul A. Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Newman-Rivera
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Gong
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abdel R.A. Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sekhar P. Reddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
- Department of Pathology, and University of Illinois, Chicago, Illinois, USA
- University of Illinois Cancer Center, University of Illinois, Chicago, Illinois, USA
| | - Hamid Rabb
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Li N, Du H, Mao L, Xu G, Zhang M, Fan Y, Dong X, Zheng L, Wang B, Qin X, Jiang X, Chen C, Zou Z, Zhang J. Reciprocal regulation of NRF2 by autophagy and ubiquitin-proteasome modulates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology 2022; 20:270. [PMID: 35690781 PMCID: PMC9188091 DOI: 10.1186/s12951-022-01486-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
NRF2 is the key antioxidant molecule to maintain redox homeostasis, however the intrinsic mechanisms of NRF2 activation in the context of nanoparticles (NPs) exposure remain unclear. In this study, we revealed that copper oxide NPs (CuONPs) exposure activated NRF2 pathway in vascular endothelial cells. NRF2 knockout remarkably aggravated oxidative stress, which were remarkably mitigated by ROS scavenger. We also demonstrated that KEAP1 (the negative regulator of NRF2) was not primarily involved in NRF2 activation in that KEAP1 knockdown did not significantly affect CuONPs-induced NRF2 activation. Notably, we demonstrated that autophagy promoted NRF2 activation as evidenced by that ATG5 knockout or autophagy inhibitors significantly blocked NRF2 pathway. Mechanically, CuONPs disturbed ubiquitin–proteasome pathway and consequently inhibited the proteasome-dependent degradation of NRF2. However, autophagy deficiency reciprocally promoted proteasome activity, leading to the acceleration of degradation of NRF2 via ubiquitin–proteasome pathway. In addition, the notion that the reciprocal regulation of NRF2 by autophagy and ubiquitin–proteasome was further proven in a CuONPs pulmonary exposure mice model. Together, this study uncovers a novel regulatory mechanism of NRF2 activation by protein degradation machineries in response to CuONPs exposure, which opens a novel intriguing scenario to uncover therapeutic strategies against NPs-induced vascular injury and disease. CuONPs exposure activates NRF2 signaling in vascular endothelial cells and mouse thoracic aorta. KEAP1 is dispensable for NRF2 activation in CuONPs-treated vascular endothelial cells. CuONPs-induced autophagy facilitates NRF2 activation in vascular endothelial cells and mouse thoracic aorta. Autophagy and ubiquitin–proteasome reciprocally regulate NRF2 activation in CuONPs-treated vascular endothelial cells and mouse thoracic aorta.
Collapse
Affiliation(s)
- Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hang Du
- Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ge Xu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengling Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yinzhen Fan
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Wang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
5
|
Renken S, Nakajima T, Magalhaes I, Mattsson J, Lundqvist A, Arnér ESJ, Kiessling R, Wickström SL. Targeting of Nrf2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress. J Immunother Cancer 2022; 10:jitc-2021-004458. [PMID: 35738800 PMCID: PMC9226989 DOI: 10.1136/jitc-2021-004458] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background Adoptive cell therapy using cytotoxic lymphocytes is an efficient immunotherapy against solid and hematological cancers. However, elevated levels of reactive oxygen species (ROS) in the hostile tumor microenvironment can impair NK cell and T cell function. Auranofin, a gold (I)-containing phosphine compound, is a strong activator of the transcription factor Nrf2. Nrf2 controls a wide range of downstream targets important for the cells to obtain increased resistance to ROS. In this study, we present a strategy using auranofin to render human cytotoxic lymphocytes resistant toward oxidative stress. Methods Melanoma patient-derived tumor infiltrating lymphocytes (TIL) and healthy donor-derived NK cells and CD19-directed CAR T cells were pretreated with a low dose of auranofin. Their resistance toward oxidative stress was assessed by measuring antitumoral responses (killing-assay, degranulation/CD107a, cytokine production) and intracellular ROS levels (flow cytometry) in conditions of oxidative stress. To confirm that the effects were Nrf2 dependent, the transcription level of Nrf2-driven target genes was analyzed by qPCR. Results Pretreatment of human TIL and NK cells ex vivo with a low-dose auranofin significantly lowered their accumulation of intracellular ROS and preserved their antitumoral activity despite high H2O2 levels or monocyte-derived ROS. Furthermore, auranofin pretreatment of CD19 CAR-T cells or TIL increased their elimination of CD19 +tumor cells or autologous tumor spheroids, respectively, especially during ROS exposure. Analysis of Nrf2-driven target genes revealed that the increased resistance against ROS was Nrf2 dependent. Conclusion These novel findings suggest that Nrf2 activation in human cytotoxic lymphocytes could be used to enhance the efficacy of adoptive cell therapy.
Collapse
Affiliation(s)
- Stefanie Renken
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Takahiro Nakajima
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Selenoprotein Research and National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Stina Linnea Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden .,Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Tretter V, Hochreiter B, Zach ML, Krenn K, Klein KU. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int J Mol Sci 2021; 23:ijms23010106. [PMID: 35008532 PMCID: PMC8745322 DOI: 10.3390/ijms23010106] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Living organisms use a large repertoire of anabolic and catabolic reactions to maintain their physiological body functions, many of which include oxidation and reduction of substrates. The scientific field of redox biology tries to understand how redox homeostasis is regulated and maintained and which mechanisms are derailed in diverse pathological developments of diseases, where oxidative or reductive stress is an issue. The term “oxidative stress” is defined as an imbalance between the generation of oxidants and the local antioxidative defense. Key mediators of oxidative stress are reactive species derived from oxygen, nitrogen, and sulfur that are signal factors at physiological concentrations but can damage cellular macromolecules when they accumulate. However, therapeutical targeting of oxidative stress in disease has proven more difficult than previously expected. Major reasons for this are the very delicate cellular redox systems that differ in the subcellular compartments with regard to their concentrations and depending on the physiological or pathological status of cells and organelles (i.e., circadian rhythm, cell cycle, metabolic need, disease stadium). As reactive species are used as signaling molecules, non-targeted broad-spectrum antioxidants in many cases will fail their therapeutic aim. Precision medicine is called to remedy the situation.
Collapse
|
7
|
Sugawara S, El-Diwany R, Cohen LK, Rousseau KE, Williams CYK, Veenhuis RT, Mehta SH, Blankson JN, Thomas DL, Cox AL, Balagopal A. People with HIV-1 demonstrate type 1 interferon refractoriness associated with upregulated USP18. J Virol 2021; 95:JVI.01777-20. [PMID: 33658340 PMCID: PMC8139647 DOI: 10.1128/jvi.01777-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
HIV-1 infection persists in humans despite expression of antiviral type 1 interferons (IFN). Even exogenous administration of IFNα only marginally reduces HIV-1 abundance, raising the hypothesis that people living with HIV-1 (PLWH) are refractory to type 1 IFN. We demonstrated type 1 IFN refractoriness in CD4+ and CD8+ T cells isolated from HIV-1 infected persons by detecting diminished STAT1 phosphorylation (pSTAT1) and interferon-stimulated gene (ISG) induction upon type 1 IFN stimulation compared to healthy controls. Importantly, HIV-1 infected people who were virologically suppressed with antiretrovirals also showed type 1 IFN refractoriness. We found that USP18 levels were elevated in people with refractory pSTAT1 and ISG induction and confirmed this finding ex vivo in CD4+ T cells from another cohort of HIV-HCV coinfected persons who received exogenous pegylated interferon-α2b in a clinical trial. We used a cell culture model to recapitulate type 1 IFN refractoriness in uninfected CD4+ T cells that were conditioned with media from HIV-1 inoculated PBMCs, inhibiting de novo infection with antiretroviral agents. In this model, RNA interference against USP18 partly restored type 1 IFN responses in CD4+ T cells. We found evidence of type 1 IFN refractoriness in PLWH irrespective of virologic suppression that was associated with upregulated USP18, a process that might be therapeutically targeted to improve endogenous control of infection.ImportancePeople living with HIV-1 (PLWH) have elevated constitutive expression of type 1 interferons (IFN). However, it is unclear whether this impacts downstream innate immune responses. We identified refractory responses to type 1 IFN stimulation in T cells from PLWH, independent of antiretroviral treatment. Type 1 IFN refractoriness was linked to elevated USP18 levels in the same cells. Moreover, we found that USP18 levels predicted the anti-HIV-1 effect of type 1 IFN-based therapy on PLWH. In vitro, we demonstrated that refractory type 1 IFN responses were transferrable to HIV-1 uninfected target CD4+ T cells, and this phenomenon was mediated by type 1 IFN from HIV-1 infected cells. Type 1 IFN responses were partially restored by USP18 knockdown. Our findings illuminate a new mechanism by which HIV-1 contributes to innate immune dysfunction in PLWH, through the continuous production of type 1 IFN that induces a refractory state of responsiveness.
Collapse
Affiliation(s)
- Sho Sugawara
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ramy El-Diwany
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura K Cohen
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly E Rousseau
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Rebecca T Veenhuis
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Joel N Blankson
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David L Thomas
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L Cox
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashwin Balagopal
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Gunne S, Heinicke U, Parnham MJ, Laux V, Zacharowski K, von Knethen A. Nrf2-A Molecular Target for Sepsis Patients in Critical Care. Biomolecules 2020; 10:biom10121688. [PMID: 33348637 PMCID: PMC7766194 DOI: 10.3390/biom10121688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
The transcription factor NF-E2 p45-related factor 2 (Nrf2) is an established master regulator of the anti-oxidative and detoxifying cellular response. Thus, a role in inflammatory diseases associated with the generation of large amounts of reactive oxygen species (ROS) seems obvious. In line with this, data obtained in cell culture experiments and preclinical settings have shown that Nrf2 is important in regulating target genes that are necessary to ensure cellular redox balance. Additionally, Nrf2 is involved in the induction of phase II drug metabolizing enzymes, which are important both in degrading and converting drugs into active forms, and into putative carcinogens. Therefore, Nrf2 has also been implicated in tumorigenesis. This must be kept in mind when new therapy approaches are planned for the treatment of sepsis. Therefore, this review highlights the function of Nrf2 in sepsis with a special focus on the translation of rodent-based results into sepsis patients in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Sandra Gunne
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
| | - Andreas von Knethen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; (S.G.); (M.J.P.); (V.L.)
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (U.H.); (K.Z.)
- Correspondence: ; Tel.: +49-69-6301-87824
| |
Collapse
|
9
|
AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 2020; 33:1171-1187. [PMID: 32651850 DOI: 10.1007/s40620-020-00793-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an increasing health burden with high morbidity and mortality rates worldwide. AKI is a risk factor for chronic kidney disease (CKD) development and progression to end stage renal disease (ESRD). Rapid action is required to find treatment options for AKI, plus to anticipate the development of CKD and other complications. Therefore, it is essential to understand the pathophysiology of AKI to CKD transition. Over the last several years, research has revealed maladaptive repair to be an interplay of cell death, endothelial dysfunction, tubular epithelial cell senescence, inflammatory processes and more-terminating in fibrosis. Various pathological mechanisms have been discovered and reveal targets for potential interventions. Furthermore, there have been clinical efforts measures for AKI prevention and progression including the development of novel biomarkers and prediction models. In this review, we provide an overview of pathophysiological mechanisms involved in kidney fibrosis. Furthermore, we discuss research gaps and promising therapeutic approaches for AKI to CKD progression.
Collapse
|
10
|
NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020; 21:ijms21134777. [PMID: 32640524 PMCID: PMC7369905 DOI: 10.3390/ijms21134777] [Citation(s) in RCA: 767] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Collapse
|
11
|
Pyaram K, Kumar A, Kim YH, Noel S, Reddy SP, Rabb H, Chang CH. Keap1-Nrf2 System Plays an Important Role in Invariant Natural Killer T Cell Development and Homeostasis. Cell Rep 2020; 27:699-707.e4. [PMID: 30995469 DOI: 10.1016/j.celrep.2019.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/02/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) proteins work in concert to regulate the levels of reactive oxygen species (ROS). The Keap1-Nrf2 antioxidant system also participates in T cell differentiation and inflammation, but its role in innate T cell development and functions remains unclear. We report that T cell-specific deletion of Keap1 results in defective development and reduced numbers of invariant natural killer T (NKT) cells in the thymus and the peripheral organs in a cell-intrinsic manner. The frequency of NKT2 and NKT17 cells increases while NKT1 decreases in these mice. Keap1-deficient NKT cells show increased rates of proliferation and apoptosis, as well as increased glucose uptake and mitochondrial function, but reduced ROS, CD122, and Bcl2 expression. In NKT cells deficient in Nrf2 and Keap1, all these phenotypic and metabolic defects are corrected. Thus, the Keap1-Nrf2 system contributes to NKT cell development and homeostasis by regulating cell metabolism.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yeung-Hyen Kim
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Abstract
A strong Th17 inflammatory response aggravates ischemia reperfusion-induced (IR-induced) acute kidney injury (AKI), tissue fibrosis, and AKI-to-chronic kidney disease (CKD) progression. However, the underlying mechanisms of sustained Th17 activation following AKI and during AKI-to-CKD progression are unclear. In this issue of the JCI, Mehrotra et al. present compelling evidence that the store-operated calcium (Ca2+) channel Orai1 sustains Th17-driven inflammatory response after AKI and drives the AKI-to-CKD transition. Orai1 blockade significantly protected renal function from IR, attenuated high-salt-induced AKI-to-CKD progression in rats, and decreased Th17 response in rat and human T cells. Therapeutic targeting of Orai1 can potentially reduce AKI, AKI-to-CKD progression, and other Th17-driven diseases.
Collapse
|
13
|
Anderson W, Thorpe J, Long SA, Rawlings DJ. Efficient CRISPR/Cas9 Disruption of Autoimmune-Associated Genes Reveals Key Signaling Programs in Primary Human T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:3166-3178. [PMID: 31722988 PMCID: PMC6904544 DOI: 10.4049/jimmunol.1900848] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Risk of autoimmunity is associated with multiple genetic variants. Genome-wide association studies have linked single-nucleotide polymorphisms in the phosphatases PTPN22 (rs2476601) and PTPN2 (rs1893217) to increased risk for multiple autoimmune diseases. Previous mouse studies of loss of function or risk variants in these genes revealed hyperactive T cell responses, whereas studies of human lymphocytes revealed contrasting phenotypes. To better understand this dichotomy, we established a robust gene editing platform to rapidly address the consequences of loss of function of candidate genes in primary human CD4+ T cells. Using CRISPR/Cas9, we obtained efficient gene disruption (>80%) of target genes encoding proteins involved in Ag and cytokine receptor signaling pathways including PTPN22 and PTPN2 Loss-of-function data in all genes studied correlated with previous data from mouse models. Further analyses of PTPN2 gene-disrupted T cells demonstrated dynamic effects, by which hyperactive IL-2R signaling promoted compensatory transcriptional events, eventually resulting in T cells that were hyporesponsive to IL-2. These results imply that altered phosphatase activity promotes evolving phenotypes based on Ag experience and/or other programming signals. This approach enables the discovery of molecular mechanisms modulating risk of autoimmunity that have been difficult to parse in traditional mouse models or cross-sectional human studies.
Collapse
Affiliation(s)
- Warren Anderson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - Jerill Thorpe
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101;
- Department of Pediatrics, University of Washington, Seattle, WA 98109; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
14
|
Li Y, Kang XJ, Pang JKS, Soh BS, Yu Y, Fan Y. Human germline editing: Insights to future clinical treatment of diseases. Protein Cell 2019; 10:470-475. [PMID: 30430420 PMCID: PMC6588666 DOI: 10.1007/s13238-018-0594-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yanni Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiang Jin Kang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon Seng Soh
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
15
|
Abstract
Immune cell populations determine the balance between ongoing damage and repair following tissue injury. Cells responding to a tissue-damaged environment have significant bioenergetic and biosynthetic needs. In addition to supporting these needs, metabolic pathways govern the function of pro-repair immune cells, including regulatory T cells and tissue macrophages. In this Review, we explore how specific features of the tissue-damaged environment such as hypoxia, oxidative stress, and nutrient depletion serve as metabolic cues to promote or impair the reparative functions of immune cell populations. Hypoxia, mitochondrial DNA stress, and altered redox balance each contribute to mechanisms regulating the response to tissue damage. For example, hypoxia induces changes in regulatory T cell and macrophage metabolic profiles, including generation of 2-hydroxyglutarate, which inhibits demethylase reactions to modulate cell fate and function. Reactive oxygen species abundant in oxidative environments cause damage to mitochondrial DNA, initiating signaling pathways that likewise control pro-repair cell function. Nutrient depletion following tissue damage also affects pro-repair cell function through metabolic signaling pathways, specifically those sensitive to the redox state of the cell. The study of immunometabolism as an immediate sensor and regulator of the tissue-damaged environment provides opportunities to consider mechanisms that facilitate healthy repair of tissue injury.
Collapse
|