1
|
Kono M, Wakisaka R, Komatsuda H, Hayashi R, Kumai T, Yamaki H, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Kobayashi H, Hayashi T, Takahara M. Immunotherapy targeting tumor-associated antigen in a mouse model of head and neck cancer. Head Neck 2024; 46:2056-2067. [PMID: 38390628 DOI: 10.1002/hed.27703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The identification of epitope peptides from tumor-associated antigens (TAAs) is informative for developing tumor-specific immunotherapy. However, only a few epitopes have been detected in mouse TAAs of head and neck cancer (HNSCC). METHODS Novel mouse c-Met-derived T-cell epitopes were predicted by computer-based algorithms. Mouse HNSCC cell line-bearing mice were treated with a c-Met peptide vaccine. The effects of CD8 and/or CD4 T-cell depletion, and vaccine combination with immune checkpoint inhibitors (ICIs) were evaluated. Tumor re-inoculation was performed to assess T-cell memory. RESULTS We identified c-Met-derived short and long epitopes that elicited c-Met-reactive antitumor CD8 and/or CD4 T-cell responses. Vaccination using these peptides showed remarkable antitumor responses via T cells in which ICIs were not required. The c-Met peptide-vaccinated mice rejected the re-inoculated tumors. CONCLUSIONS We demonstrated that novel c-Met peptide vaccines can induce antitumor T-cell response, and could be a potent immunotherapy in a syngeneic mouse HNSCC model.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
2
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Wei P, Kou W, Riaz F, Zhang K, Fu J, Pan F. Combination therapy of HIFα inhibitors and Treg depletion strengthen the anti-tumor immunity in mice. Eur J Immunol 2023; 53:e2250182. [PMID: 37615189 DOI: 10.1002/eji.202250182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Hypoxia-inducible factor 1 alpha (HIF1α), under hypoxic conditions, is known to play an oxygen sensor stabilizing role by exerting context- and cell-dependent stimulatory and inhibitory functions in immune cells. Nevertheless, how HIF1α regulates T cell differentiation and functions in tumor settings has not been elucidated. Herein, we demonstrated that T-cell-specific deletion of HIF1α improves the inflammatory potential and memory phenotype of CD8+ T cells. We validated that T cell-specific HIF1α ablation reduced the B16 melanomas development with the indication of ameliorated antitumor immune response with enhanced IFN-γ+ CD8+ T cells despite the increase in the Foxp3+ regulatory T-cell population. This was further verified by treating tumor-bearing mice with a HIF1α inhibitor. Results indicated that HIF1α inhibitor also recapitulates HIF1α ablation effects by declining tumor growth and enhancing the memory and inflammatory potential of CD8+ T cells. Furthermore, a combination of Treg inhibitor with HIF1α inhibitor can substantially reduce tumor size. Collectively, these findings highlight the notable roles of HIF1α in distinct CD8+ T-cell subsets. This study suggests the significant implications for enhancing the potential of T cell-based antitumor immunity by combining HIF1α and Tregs inhibitors.
Collapse
Affiliation(s)
- Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development, and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kou
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development, and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Kaimin Zhang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
| | - Juan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, P. R. China
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Zagorulya M, Spranger S. Once upon a prime: DCs shape cancer immunity. Trends Cancer 2023; 9:172-184. [PMID: 36357313 PMCID: PMC10827483 DOI: 10.1016/j.trecan.2022.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Cytotoxic CD8+ T cells are potent killers of diseased cells, but their functional capacity is often compromised in cancer. The quality of antitumor T cell immunity is determined during T cell priming in the lymph node and further influenced by the local microenvironment of the tumor. Increasing evidence indicates that dendritic cells (DCs) have the capacity to precisely regulate the functional quality of antitumor T cell responses in both locations. In this review, we discuss recent advances in our understanding of how distinct DC-derived signals influence CD8+ T cell differentiation and antitumor functions. Insight into the mechanisms of DC-mediated regulation of antitumor immunity could inspire the development of improved approaches to prevent and reverse T cell dysfunction in cancer.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Ludwig Center at MIT's Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Purcarea A, Jarosch S, Barton J, Grassmann S, Pachmayr L, D'Ippolito E, Hammel M, Hochholzer A, Wagner KI, van den Berg JH, Buchholz VR, Haanen JBAG, Busch DH, Schober K. Signatures of recent activation identify a circulating T cell compartment containing tumor-specific antigen receptors with high avidity. Sci Immunol 2022; 7:eabm2077. [PMID: 35960818 DOI: 10.1126/sciimmunol.abm2077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cell receptor (TCR) avidity is assumed to be a major determinant of the spatiotemporal fate and protective capacity of tumor-specific T cells. However, monitoring polyclonal T cell responses with known TCR avidities in vivo over space and time remains challenging. Here, we investigated the fate and functionality of tumor neoantigen-specific T cells with TCRs of distinct avidities in a well-established, reductionist preclinical tumor model and human patients with melanoma. To this end, we used polyclonal T cell transfers with in-depth characterized TCRs together with flow cytometric phenotyping in mice inoculated with MC38 OVA tumors. Transfer of T cells from retrogenic mice harboring TCRs with high avidity resulted in best tumor protection. Unexpectedly, we found that both high- and low-avidity T cells are similarly abundant within the tumor and adopt concordant phenotypic signs of exhaustion. Outside the tumor, high-avidity TCR T cells were not generally overrepresented but, instead, selectively enriched in T cell populations with intermediate PD-1 protein expression. Single-cell sequencing of neoantigen-specific T cells from two patients with melanoma-combined with transgenic reexpression of identified TCRs by CRISPR-Cas9-mediated orthotopic TCR replacement-revealed high-functionality TCRs to be enriched in T cells with RNA signatures of recent activation. Furthermore, of 130 surface protein candidates, PD-1 surface expression was most consistently enriched in functional TCRs. Together, our findings show that tumor-reactive TCRs with high protective capacity circulating in peripheral blood are characterized by a signature of recent activation.
Collapse
Affiliation(s)
- Anna Purcarea
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Jack Barton
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Simon Grassmann
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Ludwig Pachmayr
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Anna Hochholzer
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Karolin I Wagner
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | | | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - John B A G Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany.,Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany.,Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Ren X, Guo S, Guan X, Kang Y, Liu J, Yang X. Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Front Immunol 2022; 13:790113. [PMID: 35296094 PMCID: PMC8918549 DOI: 10.3389/fimmu.2022.790113] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Immunity is an important physiological function acquired throughout evolution as a defense system against the invasion of pathogenic microorganisms. The immune system also eliminates senescent cells and maintains homeostasis, monitoring cell mutations and preventing tumor development via the action of the immune cells and molecules. Immunotherapy often relies on the interaction of immune cells with the tumor microenvironment (TME). Based on the distribution of the number of lymphocytes (CD3 and CD8) in the center and edge of the tumor and the expression level of B7-H1/PD-L1, tumors are divided into hot tumors, cold tumors, and intermediate tumors (including immune-suppressed and isolated). This review focuses on the advances in precision combination immunotherapy, which has been widely explored in recent years, and its application in different tumor types.
Collapse
Affiliation(s)
- Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Songyi Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiamei Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xianghong Yang,
| |
Collapse
|
7
|
Shakiba M, Zumbo P, Espinosa-Carrasco G, Menocal L, Dündar F, Carson SE, Bruno EM, Sanchez-Rivera FJ, Lowe SW, Camara S, Koche RP, Reuter VP, Socci ND, Whitlock B, Tamzalit F, Huse M, Hellmann MD, Wells DK, Defranoux NA, Betel D, Philip M, Schietinger A. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J Exp Med 2022; 219:e20201966. [PMID: 34935874 PMCID: PMC8704919 DOI: 10.1084/jem.20201966] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/07/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
T cell receptor (TCR) signal strength is a key determinant of T cell responses. We developed a cancer mouse model in which tumor-specific CD8 T cells (TST cells) encounter tumor antigens with varying TCR signal strength. High-signal-strength interactions caused TST cells to up-regulate inhibitory receptors (IRs), lose effector function, and establish a dysfunction-associated molecular program. TST cells undergoing low-signal-strength interactions also up-regulated IRs, including PD1, but retained a cell-intrinsic functional state. Surprisingly, neither high- nor low-signal-strength interactions led to tumor control in vivo, revealing two distinct mechanisms by which PD1hi TST cells permit tumor escape; high signal strength drives dysfunction, while low signal strength results in functional inertness, where the signal strength is too low to mediate effective cancer cell killing by functional TST cells. CRISPR-Cas9-mediated fine-tuning of signal strength to an intermediate range improved anti-tumor activity in vivo. Our study defines the role of TCR signal strength in TST cell function, with important implications for T cell-based cancer immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytokines/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Neoplasms/etiology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Escape
Collapse
Affiliation(s)
- Mojdeh Shakiba
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
| | | | - Laura Menocal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
| | - Sandra E. Carson
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, NY
| | - Emmanuel M. Bruno
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Scott W. Lowe
- Cancer Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven Camara
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vincent P. Reuter
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin Whitlock
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fella Tamzalit
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Matthew D. Hellmann
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, Cornell University, New York, NY
| | - Daniel K. Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | | | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
8
|
Zhou L, Zeng Z, Egloff AM, Zhang F, Guo F, Campbell KM, Du P, Fu J, Zolkind P, Ma X, Zhang Z, Zhang Y, Wang X, Gu S, Riley R, Nakahori Y, Keegan J, Haddad R, Schoenfeld JD, Griffith O, Manguso RT, Lederer JA, Liu XS, Uppaluri R. Checkpoint blockade-induced CD8+ T cell differentiation in head and neck cancer responders. J Immunother Cancer 2022; 10:jitc-2021-004034. [PMID: 35058328 PMCID: PMC8772459 DOI: 10.1136/jitc-2021-004034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Immune checkpoint blockade (ICB) response in recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) is limited to 15%–20% of patients and underpinnings of resistance remain undefined. Methods Starting with an anti-PD1 sensitive murine HNSCC cell line, we generated an isogenic anti-PD1 resistant model. Mass cytometry was used to delineate tumor microenvironments of both sensitive parental murine oral carcinoma (MOC1) and resistant MOC1esc1 tumors. To examine heterogeneity and clonal dynamics of tumor infiltrating lymphocytes (TILs), we applied paired single-cell RNA and TCR sequencing in three HNSCC models. Results Anti-PD1 resistant MOC1esc1 line displayed a conserved cell intrinsic immune evasion signature. Immunoprofiling showed distinct baseline tumor microenvironments of MOC1 and MOC1esc1, as well as the remodeling of immune compartments on ICB in MOC1esc1 tumors. Single cell sequencing analysis identified several CD8 +TIL subsets including Tcf7 +Pd1− (naïve/memory-like), Tcf7 +Pd1+ (progenitor), and Tcf7-Pd1+ (differentiated effector). Mapping TCR shared fractions identified that successful anti-PD1 or anti-CTLA4 therapy-induced higher post-treatment T cell lineage transitions. Conclusions These data highlight critical aspects of CD8 +TIL heterogeneity and differentiation and suggest facilitation of CD8 +TIL differentiation as a strategy to improve HNSCC ICB response.
Collapse
Affiliation(s)
- Liye Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ann Marie Egloff
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Fan Zhang
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Fei Guo
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Katie M Campbell
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Peter Du
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jingxin Fu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Paul Zolkind
- Department of Otolaryngology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Xiaojing Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Zhe Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yi Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Xiaoqing Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shengqing Gu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rachel Riley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yasutaka Nakahori
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Joshua Keegan
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert Haddad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jonathan D Schoenfeld
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Obi Griffith
- McDonnell Genome Institute and Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert T Manguso
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Massachusetts General Hospital Center for Cancer Research, Boston, Massachusetts, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Differential effects of PD-1 and CTLA-4 blockade on the melanoma-reactive CD8 T cell response. Proc Natl Acad Sci U S A 2021; 118:2102849118. [PMID: 34670835 DOI: 10.1073/pnas.2102849118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have revolutionized the treatment of melanoma patients. Based on early studies addressing the mechanism of action, it was assumed that PD-1 blockade mostly influences T cell responses at the tumor site. However, recent work has demonstrated that PD-1 blockade can influence the T cell compartment in peripheral blood. If the activation of circulating, tumor-reactive T cells would form an important mechanism of action of PD-1 blockade, it may be predicted that such blockade would alter either the frequency and/or the breadth of the tumor-reactive CD8 T cell response. To address this question, we analyzed CD8 T cell responses toward 71 melanoma-associated epitopes in peripheral blood of 24 melanoma patients. We show that both the frequency and the breadth of the circulating melanoma-reactive CD8 T cell response was unaltered upon PD-1 blockade. In contrast, a broadening of the circulating melanoma-reactive CD8 T cell response was observed upon CTLA-4 blockade, in concordance with our prior data. Based on these results, we conclude that PD-1 and CTLA-4 blockade have distinct mechanisms of action. In addition, the data provide an argument in favor of the hypothesis that anti-PD-1 therapy may primarily act at the tumor site.
Collapse
|
10
|
Abstract
Anti-PD-1 therapies can activate tumor-specific T cells to destroy tumors. However, whether and how T cells with different antigen specificity and affinity are differentially regulated by PD-1 remain vaguely understood. Upon antigen stimulation, a variety of genes is induced in T cells. Recently, we found that T cell receptor (TCR) signal strength required for the induction of genes varies across different genes and PD-1 preferentially inhibits the induction of genes that require stronger TCR signal. As each T cell has its own response characteristics, inducibility of genes likely differs across different T cells. Accordingly, the inhibitory effects of PD-1 are also expected to differ across different T cells. In the current study, we investigated whether and how factors that modulate T cell responsiveness to antigenic stimuli influence PD-1 function. By analyzing TCRs with different affinities to peptide-MHC complexes (pMHC) and pMHCs with different affinities to TCR, we demonstrated that PD-1 inhibits the expression of TCR-inducible genes efficiently when TCR:pMHC affinity is low. In contrast, affinities of peptides to MHC and MHC expression levels did not affect PD-1 sensitivity of TCR-inducible genes although they markedly altered the dose responsiveness of T cells by changing the efficiency of pMHC formation, suggesting that the strength of individual TCR signal is the key determinant of PD-1 sensitivity. Accordingly, we observed a preferential expansion of T cells with low-affinity to tumor-antigen in PD-1-deficient mice upon inoculation of tumor cells. These results demonstrate that PD-1 imposes qualitative control of T cell responses by preferentially suppressing low-affinity T cells.
Collapse
|
11
|
Nelde A, Maringer Y, Bilich T, Salih HR, Roerden M, Heitmann JS, Marcu A, Bauer J, Neidert MC, Denzlinger C, Illerhaus G, Aulitzky WE, Rammensee HG, Walz JS. Immunopeptidomics-Guided Warehouse Design for Peptide-Based Immunotherapy in Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:705974. [PMID: 34305947 PMCID: PMC8297687 DOI: 10.3389/fimmu.2021.705974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Antigen-specific immunotherapies, in particular peptide vaccines, depend on the recognition of naturally presented antigens derived from mutated and unmutated gene products on human leukocyte antigens, and represent a promising low-side-effect concept for cancer treatment. So far, the broad application of peptide vaccines in cancer patients is hampered by challenges of time- and cost-intensive personalized vaccine design, and the lack of neoepitopes from tumor-specific mutations, especially in low-mutational burden malignancies. In this study, we developed an immunopeptidome-guided workflow for the design of tumor-associated off-the-shelf peptide warehouses for broadly applicable personalized therapeutics. Comparative mass spectrometry-based immunopeptidome analyses of primary chronic lymphocytic leukemia (CLL) samples, as representative example of low-mutational burden tumor entities, and a dataset of benign tissue samples enabled the identification of high-frequent non-mutated CLL-associated antigens. These antigens were further shown to be recognized by pre-existing and de novo induced T cells in CLL patients and healthy volunteers, and were evaluated as pre-manufactured warehouse for the construction of personalized multi-peptide vaccines in a first clinical trial for CLL (NCT04688385). This workflow for the design of peptide warehouses is easily transferable to other tumor entities and can provide the foundation for the development of broad personalized T cell-based immunotherapy approaches.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Marian C Neidert
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Gerald Illerhaus
- Clinic for Hematology and Oncology, Klinikum Stuttgart, Stuttgart, Germany
| | - Walter Erich Aulitzky
- Department of Hematology, Oncology and Palliative Medicine, Robert-Bosch-Krankenhaus Stuttgart, Stuttgart, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany
| |
Collapse
|
12
|
Katsuta E, Yan L, Opyrchal M, Kalinski P, Takabe K. Cytotoxic T-lymphocyte infiltration and chemokine predict long-term patient survival independently of tumor mutational burden in triple-negative breast cancer. Ther Adv Med Oncol 2021; 13:17588359211006680. [PMID: 33868461 PMCID: PMC8024454 DOI: 10.1177/17588359211006680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Cytotoxic T-lymphocyte (CTL) infiltration into tumor is a positive prognostic factor in breast cancer. High tumor mutational burden (TMB) is also considered as a predictor of tumor immunogenicity and response to immunotherapy. However, it is unclear whether the infiltration of functional CTL simply reflects the TMB or represents an independent prognostic value. Methods: Utilizing The Cancer Genome Atlas (TCGA) breast cancer cohort, we established the Functional Hotness Score (FHS). The associations of FHS and breast cancer patient prognosis as well as distinct immunity markers were analyzed in a total of 3011 breast cancer patients using TCGA, METABRIC and metastatic breast cancer (MBC) cohort GSE110590. Results: We established FHS, based on CD8A, GZMB and CXCL10 gene expression levels of bulk tumors, which delivered the best prognostic value among some gene combinations. Breast cancer patients with the high-FHS tumors showed significantly better survival. FHS was lower in the MBCs. Triple-negative breast cancer (TNBC) showed the highest FHS among subtypes. FHS predicted patient survival in hormone receptor (HR)-negative, especially in TNBC, but not in HR-positive breast cancer. FHS predicted patient prognosis independently in TNBC. The high-FHS TNBCs showed not only higher CD8+ T cell infiltration, but also enhanced broader type-1 anti-cancer immunity. The patients with the high-FHS tumors showed better prognosis not only in high-TMB tumors but also in low-TMB TNBCs. The combination of high-TMB with high-FHS identified a unique subset of patients who do not recur over time in TNBC. Conclusion: TNBCs with high FHS based on the expression levels of CD8A, GZMB and CXCL10 showed improved prognosis with enhanced anti-cancer immunity regardless of TMB. FHS constitutes an independent prognostic marker of survival, particularly robustly when combined with TMB in TNBC.
Collapse
Affiliation(s)
- Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mateusz Opyrchal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
13
|
Umemoto K, Togashi Y, Arai Y, Nakamura H, Takahashi S, Tanegashima T, Kato M, Nishikawa T, Sugiyama D, Kojima M, Gotohda N, Kuwata T, Ikeda M, Shibata T, Nishikawa H. The potential application of PD-1 blockade therapy for early-stage biliary tract cancer. Int Immunol 2020; 32:273-281. [PMID: 31867666 DOI: 10.1093/intimm/dxz080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Biliary tract cancer (BTC) is an aggressive cancer with a poor prognosis partially due to the limited success in developing novel therapies, including molecularly targeted therapies and immunotherapies. Programmed cell death-1 (PD-1) blockade therapy is less effective against BTCs, necessitating further studies to understand the detailed immunological status of the tumor microenvironment (TME) in BTC. Here, we examined the immunological status of the TME in 37 BTCs with early- to late-stage disease, especially focusing on PD-1+CD8+ T cells. PD-1+CD8+ T cells, which are reportedly associated with the clinical response to PD-1 blockade therapy, were frequently observed in early-stage BTC and decreased with disease progression. Imaging mass cytometry for representative PD-1+CD8+TIL-high and -low patients demonstrated that tumor-infiltrating PD-1+CD8+ T cells were localized adjacent to tumor cells, whereas PD-1-CD8+ T cells were detected mainly in the stroma of the TME. In a mouse model, PD-1 expression by tumor-infiltrating CD8+ T cells was higher in smaller tumors and decreased with tumor growth. Consequently, large tumors became resistant to PD-1 blockade, while small tumors containing higher numbers of PD-1+CD8+ T cells were sensitive. We propose the important role of tumor-infiltrating PD-1+CD8+ T cells in anti-tumor immunity and the potential application of PD-1 blockade therapy for early-stage BTC.
Collapse
Affiliation(s)
- Kumiko Umemoto
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.,Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, Research Institute, National Cancer Center, Tokyo, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, Research Institute, National Cancer Center, Tokyo, Japan
| | - Shinichiro Takahashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Tokiyoshi Tanegashima
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Mikiya Kato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsubasa Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - Naoto Gotohda
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, Research Institute, National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
van der Leun AM, Thommen DS, Schumacher TN. CD8 + T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer 2020; 20:218-232. [PMID: 32024970 PMCID: PMC7115982 DOI: 10.1038/s41568-019-0235-4] [Citation(s) in RCA: 778] [Impact Index Per Article: 194.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 01/17/2023]
Abstract
The T cell infiltrates that are formed in human cancers are a modifier of natural disease progression and also determine the probability of clinical response to cancer immunotherapies. Recent technological advances that allow the single-cell analysis of phenotypic and transcriptional states have revealed a vast heterogeneity of intratumoural T cell states, both within and between patients, and the observation of this heterogeneity makes it critical to understand the relationship between individual T cell states and therapy response. This Review covers our current knowledge of the T cell states that are present in human tumours and the role that different T cell populations have been hypothesized to play within the tumour microenvironment, with a particular focus on CD8+ T cells. The three key models that are discussed herein are as follows: (1) the dysfunction of T cells in human cancer is associated with a change in T cell functionality rather than inactivity; (2) antigen recognition in the tumour microenvironment is an important driver of T cell dysfunctionality and the presence of dysfunctional T cells can hence be used as a proxy for the presence of a tumour-reactive T cell compartment; (3) a less dysfunctional population of tumour-reactive T cells may be required to drive a durable response to T cell immune checkpoint blockade.
Collapse
Affiliation(s)
- Anne M van der Leun
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
15
|
Monnot GC, Martinez-Usatorre A, Lanitis E, Lopes SF, Cheng WC, Ho PC, Irving M, Coukos G, Donda A, Romero P. miR-155 Overexpression in OT-1 CD8 + T Cells Improves Anti-Tumor Activity against Low-Affinity Tumor Antigen. Mol Ther Oncolytics 2020; 16:111-123. [PMID: 32021906 PMCID: PMC6994712 DOI: 10.1016/j.omto.2019.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Therapy by adoptive transfer of ex vivo-expanded tumor-infiltrating or genetically modified T cells may lead to impressive clinical responses. However, there is a need to improve in vivo persistence and functionality of the transferred T cells, in particular, to face the highly immunosuppressive environment of solid tumors. Here, we investigate the potential of miR-155, a microRNA known to play an important role in CD8+ T cell fitness. We show that forced expression of miR-155 in tumor antigen-specific T cells improves the tumor control of B16 tumors expressing a low-affinity antigen ligand. Importantly, miR-155-transduced T cells exhibit increased proliferation and effector functions associated with a higher glycolytic activity independent of exogenous glucose. Altogether, these data suggest that miR-155 may optimize the antitumor activity of adoptively transferred low-affinity tumor-infiltrating lymphocytes (TILs), in particular, by rendering them more resistant to the glucose-deprived environment of solid tumors. Thus, transgenic expression of miR-155 may enable therapeutic targeting of self-antigen-specific T cells in addition to neoantigen-specific ones.
Collapse
Affiliation(s)
- Gwennaëlle C. Monnot
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Amaia Martinez-Usatorre
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Silvia Ferreira Lopes
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Wan-Chen Cheng
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Melita Irving
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch at the University of Lausanne, 1066 Epalinges, Switzerland
| | - Alena Donda
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology and Ludwig Cancer Center, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
16
|
Carmona SJ, Siddiqui I, Bilous M, Held W, Gfeller D. Deciphering the transcriptomic landscape of tumor-infiltrating CD8 lymphocytes in B16 melanoma tumors with single-cell RNA-Seq. Oncoimmunology 2020; 9:1737369. [PMID: 32313720 PMCID: PMC7153840 DOI: 10.1080/2162402x.2020.1737369] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 01/08/2023] Open
Abstract
Recent studies have proposed that tumor-specific tumor-infiltrating CD8+ T lymphocytes (CD8 TIL) can be classified into two main groups: "exhausted" TILs, characterized by high expression of the inhibitory receptors PD-1 and TIM-3 and lack of transcription factor 1 (Tcf1); and "memory-like" TILs, with self-renewal capacity and co-expressing Tcf1 and PD-1. However, a comprehensive definition of the heterogeneity existing within CD8 TILs has yet to be clearly established. To investigate this heterogeneity at the transcriptomic level, we performed paired single-cell RNA and TCR sequencing of CD8 T cells infiltrating B16 murine melanoma tumors, including cells of known tumor specificity. Unsupervised clustering and gene-signature analysis revealed four distinct CD8 TIL states - exhausted, memory-like, naïve and effector memory-like (EM-like) - and predicted novel markers, including Ly6C for the EM-like cells, that were validated by flow cytometry. Tumor-specific PMEL T cells were predominantly found within the exhausted and memory-like states but also within the EM-like state. Further, T cell receptor sequencing revealed a large clonal expansion of exhausted, memory-like and EM-like cells with partial clonal relatedness between them. Finally, meta-analyses of public bulk and single-cell RNA-seq data suggested that anti-PD-1 treatment induces the expansion of EM-like cells. Our reference map of the transcriptomic landscape of murine CD8 TILs will help interpreting future bulk and single-cell transcriptomic studies and may guide the analysis of CD8IL subpopulations in response to therapeutic interventions.
Collapse
Affiliation(s)
- Santiago J Carmona
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Imran Siddiqui
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Mariia Bilous
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Werner Held
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
17
|
Martinez-Usatorre A, Carmona SJ, Godfroid C, Yacoub Maroun C, Labiano S, Romero P. Enhanced Phenotype Definition for Precision Isolation of Precursor Exhausted Tumor-Infiltrating CD8 T Cells. Front Immunol 2020; 11:340. [PMID: 32174925 PMCID: PMC7056729 DOI: 10.3389/fimmu.2020.00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
In the context of adoptive T cell transfer (ACT) for cancer treatment, it is crucial to generate in vitro large amounts of tumor-specific CD8 T cells with high potential to persist in vivo. PD-1, Tim3, and CD39 have been proposed as markers of tumor-specific tumor-infiltrating CD8 T lymphocytes (CD8 TILs). However, these molecules are highly expressed by terminally differentiated exhausted CD8 T cells (Tex) that lack proliferation potential. Therefore, optimized strategies to isolate tumor-specific TILs with high proliferative potential, such as Tcf1+ precursor exhausted T cells (Tpe) are needed to improve in vivo persistence of ACT. Here we aimed at defining cell surface markers that would unequivocally identify Types for precision cell sorting increasing the purity of tumor-specific PD-1+ Tcf1+ Tpe from total TILs. Transcriptomic analysis of Tpe vs. Tex CD8 TIL subsets from B16 tumors and primary human melanoma tumors revealed that Tpes are enriched in Slamf6 and lack Entpd1 and Havcr2 expression, which encode Slamf6, CD39, and Tim3 cell surface proteins, respectively. Indeed, we observed by flow cytometry that CD39- Tim3- Slamf6+ PD-1+ cells yielded maximum enrichment for tumor specific PD-1+ Tcf1+ OT1 TILs in B16.OVA tumors. Moreover, this population showed higher re-expansion capacity upon an acute infection recall response compared to the CD39+ counterparts or bulk PD-1+ TILs. Hence, we report an enhanced sorting strategy (CD39- Tim3- Slamf6+ PD-1+) of Tpes. In conclusion, we show that optimization of CD8 TIL cell sorting strategy is a viable approach to improve recall capacity and in vivo persistence of transferred cells in the context of ACT.
Collapse
Affiliation(s)
| | - Santiago J. Carmona
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Céline Godfroid
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Céline Yacoub Maroun
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Sara Labiano
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
18
|
Snook JP, Soedel AJ, Ekiz HA, O'Connell RM, Williams MA. Inhibition of SHP-1 Expands the Repertoire of Antitumor T Cells Available to Respond to Immune Checkpoint Blockade. Cancer Immunol Res 2020; 8:506-517. [PMID: 32075800 DOI: 10.1158/2326-6066.cir-19-0690] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/12/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
The presence and activity of CD8+ T cells within the tumor microenvironment are essential for the control of tumor growth. Utilizing B16-F10 melanoma tumors that express altered peptide ligands of chicken ovalbumin, OVA257-264, we measured high- and low-affinity OVA-specific responses following adoptive transfer of OT-I CD8+ T cell into mice subsequently challenged with tumors. T-cell receptor (TCR) affinity positively correlated with the frequency of OT-I tumor-infiltrating lymphocytes (TIL). Differences in TCR affinity inversely corresponded to in vivo tumor growth rate. Blockade of the PD-1 and CTLA-4 checkpoints preferentially increased the frequency and antitumor function of TIL responding to high-affinity antigens, while failing to enhance the antitumor activity of low-affinity T cells. To determine whether lowering the TCR activation threshold could enhance the breadth and magnitude of the antitumor T-cell response, we inhibited Src homology region 2 domain-containing phosphatase 1 (SHP-1) in OT-I T cells prior to tumor antigen exposure. SHP-1 knockdown increased the cytokine-producing potential of high- and low-affinity T cells but failed to enhance control of tumor growth. In contrast, when SHP-1 knockdown of OT-I T cells was combined with immunotherapy, we observed a significant and long-lasting suppression of tumor growth mediated by low-affinity T cells. We conclude that lowering the TCR activation threshold by targeting SHP-1 expands the repertoire of T cells available to respond to conventional checkpoint blockade, leading to enhanced control of tumor growth.
Collapse
Affiliation(s)
- Jeremy P Snook
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Ashleigh J Soedel
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - H Atakan Ekiz
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| | - Matthew A Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah. .,Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
19
|
Etxeberria I, Bolaños E, Quetglas JI, Gros A, Villanueva A, Palomero J, Sánchez-Paulete AR, Piulats JM, Matias-Guiu X, Olivera I, Ochoa MC, Labiano S, Garasa S, Rodriguez I, Vidal A, Mancheño U, Hervás-Stubbs S, Azpilikueta A, Otano I, Aznar MA, Sanmamed MF, Inogés S, Berraondo P, Teijeira Á, Melero I. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8 + T Cells. Cancer Cell 2019; 36:613-629.e7. [PMID: 31761658 DOI: 10.1016/j.ccell.2019.10.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/12/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose I Quetglas
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alena Gros
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alberto Villanueva
- Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain
| | - Jara Palomero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alfonso R Sánchez-Paulete
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose María Piulats
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain; Department of Medical Oncology, IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Labiano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - August Vidal
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Uxua Mancheño
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - M Angela Aznar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Susana Inogés
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
20
|
Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 2019; 458:123-135. [DOI: 10.1016/j.canlet.2019.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
21
|
A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2019; 175:313-326. [PMID: 30290139 DOI: 10.1016/j.cell.2018.09.035] [Citation(s) in RCA: 894] [Impact Index Per Article: 178.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022]
Abstract
Harnessing an antitumor immune response has been a fundamental strategy in cancer immunotherapy. For over a century, efforts have primarily focused on amplifying immune activation mechanisms that are employed by humans to eliminate invaders such as viruses and bacteria. This "immune enhancement" strategy often results in rare objective responses and frequent immune-related adverse events (irAEs). However, in the last decade, cancer immunotherapies targeting the B7-H1/PD-1 pathway (anti-PD therapy), have achieved higher objective response rates in patients with much fewer irAEs. This more beneficial tumor response-to-toxicity profile stems from distinct mechanisms of action that restore tumor-induced immune deficiency selectively in the tumor microenvironment, here termed "immune normalization," which has led to its FDA approval in more than 10 cancer indications and facilitated its combination with different therapies. In this article, we wish to highlight the principles of immune normalization and learn from it, with the ultimate goal to guide better designs for future cancer immunotherapies.
Collapse
|
22
|
Martinez-Usatorre A, Sempere LF, Carmona SJ, Carretero-Iglesia L, Monnot G, Speiser DE, Rufer N, Donda A, Zehn D, Jandus C, Romero P. MicroRNA-155 Expression Is Enhanced by T-cell Receptor Stimulation Strength and Correlates with Improved Tumor Control in Melanoma. Cancer Immunol Res 2019; 7:1013-1024. [PMID: 31043416 DOI: 10.1158/2326-6066.cir-18-0504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
Abstract
microRNAs are short noncoding RNAs that regulate protein expression posttranscriptionally. We previously showed that miR-155 promotes effector CD8+ T-cell responses. However, little is known about the regulation of miR-155 expression. Here, we report that antigen affinity and dose determine miR-155 expression in CD8+ T cells. In B16 tumors expressing a low-affinity antigen ligand, tumor-specific infiltrating CD8+ T cells showed variable miR-155 expression, whereby high miR-155 expression was associated with more cytokine-producing cells and tumor control. Moreover, anti-PD-1 treatment led to both increased miR-155 expression and tumor control by specific CD8+ T cells. In addition, miR-155 overexpression enhanced exhausted CD8+ T-cell persistence in the LCMV cl13 chronic viral infection model. In agreement with these observations in mouse models, miR-155 expression in human effector memory CD8+ T cells positively correlated with their frequencies in tumor-infiltrated lymph nodes of melanoma patients. Low miR-155 target gene signature in tumors was associated with prolonged overall survival in melanoma patients. Altogether, these results raise the possibility that high miR-155 expression in CD8+ tumor-infiltrating T cells may be a surrogate marker of the relative potency of in situ antigen-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
| | - Lorenzo F Sempere
- Department of Radiology, Precision Health Program, Michigan State University, East Lansing, Michigan
| | - Santiago J Carmona
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Gwennaëlle Monnot
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Alena Donda
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Dietmar Zehn
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
23
|
Botelho NK, Tschumi BO, Hubbell JA, Swartz MA, Donda A, Romero P. Combination of Synthetic Long Peptides and XCL1 Fusion Proteins Results in Superior Tumor Control. Front Immunol 2019; 10:294. [PMID: 30863405 PMCID: PMC6399421 DOI: 10.3389/fimmu.2019.00294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cross-presenting Xcr1+CD8α DCs are attractive APCs to target for therapeutic cancer vaccines, as they are able to take up and process antigen from dying tumor cells for their MHCI-restricted presentation to CD8 T cells. To this aim, we developed fusion proteins made of the Xcr1 ligand Xcl1 fused to an OVA synthetic long peptide (SLP) and IgG1 Fc fragment. We demonstrated the specific binding and uptake of the Xcl1 fusion proteins by Xcr1+ DCs. Most importantly, their potent adjuvant effect on the H-2Kb/OVA specific T cell response was associated with a sustained tumor control even against the poorly immunogenic B16-OVA melanoma tumor. The increased tumor protection correlated with higher tumor infiltration of antigen-specific CD8+ T cells, increased IFNγ production and degranulation potential. Altogether, these results demonstrate that therapeutic cancer vaccines may be greatly improved by the combination of SLP antigen and Xcl1 fusion proteins.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CHO Cells
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Chemokines, C/genetics
- Chemokines, C/immunology
- Chemokines, C/metabolism
- Cricetinae
- Cricetulus
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Knockout
- Ovalbumin/genetics
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Natalia K. Botelho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Benjamin O. Tschumi
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Jeffrey A. Hubbell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Melody A. Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, United States
| | - Alena Donda
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|