1
|
Zandigohar M, Pang J, Rodrigues A, Roberts RE, Dai Y, Koh TJ. Transcription Factor Activity Regulating Macrophage Heterogeneity during Skin Wound Healing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:506-518. [PMID: 38940624 PMCID: PMC11300156 DOI: 10.4049/jimmunol.2400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Monocytes and macrophages (Mos/Mϕs) play diverse roles in wound healing by adopting a spectrum of functional phenotypes; however, the regulation of such heterogeneity remains poorly defined. We enhanced our previously published Bayesian inference TF activity model, incorporating both single-cell RNA sequencing and single-cell ATAC sequencing data to infer transcription factor (TF) activity in Mos/Mϕs during skin wound healing. We found that wound Mos/Mϕs clustered into early-stage Mos/Mϕs, late-stage Mϕs, and APCs, and that each cluster showed differential chromatin accessibility and differential predicted TF activity that did not always correlate with mRNA or protein expression. Network analysis revealed two highly connected large communities involving a total of 19 TFs, highlighting TF cooperation in regulating wound Mos/Mϕs. This analysis also revealed a small community populated by NR4A1 and NFKB1, supporting a proinflammatory link between these TFs. Importantly, we validated a proinflammatory role for NR4A1 activity during wound healing, showing that Nr4a1 knockout mice exhibit decreased inflammatory gene expression in early-stage wound Mos/Mϕs, along with delayed wound re-epithelialization and impaired granulation tissue formation. In summary, our study provides insight into TF activity that regulates Mo/Mϕ heterogeneity during wound healing and provides a rational basis for targeting Mo/Mϕ TF networks to alter phenotypes and improve healing.
Collapse
Affiliation(s)
- Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| | - Alannah Rodrigues
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Rita E. Roberts
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| |
Collapse
|
2
|
Injarabian L, Willenborg S, Welcker D, Sanin DE, Pasparakis M, Kashkar H, Eming SA. FADD- and RIPK3-Mediated Cell Death Ensures Clearance of Ly6C high Wound Macrophages from Damaged Tissue. J Invest Dermatol 2024; 144:152-164.e7. [PMID: 37516311 DOI: 10.1016/j.jid.2023.06.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/31/2023]
Abstract
Cells of the monocyte/macrophage lineage are an integral component of the body's innate ability to restore tissue function after injury. In parallel to mounting an inflammatory response, clearance of monocytes/macrophages from the wound site is critical to re-establish tissue functionality and integrity during the course of healing. The role of regulated cell death in macrophage clearance from damaged tissue and its implications for the outcome of the healing response is little understood. In this study, we explored the role of macrophage-specific FADD-mediated cell death on Ripk3-/- background in a mechanical skin injury model in mice. We found that combined inhibition of RIPK3-mediated necroptosis and FADD-caspase-8-mediated apoptosis in macrophages profoundly delayed wound healing. Importantly, RIPK3 deficiency alone did not considerably alter the wound healing process and macrophage population dynamics, arguing that inhibition of FADD-caspase-8-dependent death of macrophages is primarily responsible for delayed wound closure. Notably, TNF blockade reversed the accumulation of Ly6Chigh macrophages induced by combined deficiency of FADD and RIPK3, indicating a critical dual role of TNF-mediated prosurvival and cell death signaling, particularly in this highly proinflammatory macrophage subset. Our findings reveal a previously uncharacterized cross-talk of inflammatory and cell death signaling in macrophages in regulating repair processes in the skin.
Collapse
Affiliation(s)
| | | | - Daniela Welcker
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - David E Sanin
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Quantitative Sciences Division and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Developmental Biology Unit, Institute of Zoology, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Ma Q, Zhang N, You Y, Zhu J, Yu Z, Chen H, Xie X, Yu H. CXCR4 blockade in macrophage promotes angiogenesis in ischemic hindlimb by modulating autophagy. J Mol Cell Cardiol 2022; 169:57-70. [PMID: 35597127 DOI: 10.1016/j.yjmcc.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Chemokine receptor CXCR4 plays a crucial role in leukocyte recruitment and inflammation regulation to influence tissue repair in ischemic diseases. Here we assessed the effect of CXCR4 expression in macrophages on angiogenesis in the ischemic hindlimb of a mouse. Inflammatory cells were increased in the ischemic muscles of hindlimb, and CXCR4 was highly expressed in the infiltrated macrophages but not in neutrophils. Myeloid-specific CXCR4 knockout attenuated macrophage infiltration and subsequent reduced inflammatory response in the ischemic hindlimb, accompanied with better blood reperfusion and higher capillary density as compared with that in LysM Cre+/- (Cre) mice. Similar outcomes were also observed in CRE mice whose bone marrow cells were replaced with those from CXCR4-deficient mice. Gene ontology cluster analysis reviewed that Decorin, a negative regulator of angiogenesis, was reduced in CXCR4-deficient macrophages. CXCR4-deficient macrophages were less inducible into M1 phase by lipopolysaccharide and more favorable for M2 polarization under oxygen/glucose deprivation condition. Enhanced autophagy was detected in CXCR4-deficient macrophages, which was associated with less expression of both Decorin and the inflammatory cytokines. In summary, myeloid-specific CXCR4 deficiency reduced monocyte infiltration and the secretion of inflammatory cytokines and Decorin from macrophages, thus blunting inflammation response and promoting angiogenesis in the ischemic hindlimb.
Collapse
Affiliation(s)
- Qunchao Ma
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Ning Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Yayu You
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Zhaosheng Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Haibo Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Xiaojie Xie
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| |
Collapse
|
4
|
Ajay AK, Zhao L, Vig S, Fujiwara M, Thakurela S, Jadhav S, Cho A, Chiu IJ, Ding Y, Ramachandran K, Mithal A, Bhatt A, Chaluvadi P, Gupta MK, Shah SI, Sabbisetti VS, Waaga-Gasser AM, Frank DA, Murugaiyan G, Bonventre JV, Hsiao LL. Deletion of STAT3 from Foxd1 cell population protects mice from kidney fibrosis by inhibiting pericytes trans-differentiation and migration. Cell Rep 2022; 38:110473. [PMID: 35263586 PMCID: PMC10027389 DOI: 10.1016/j.celrep.2022.110473] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Signal transduction and activator of transcription 3 (STAT3) is a key transcription factor implicated in the pathogenesis of kidney fibrosis. Although Stat3 deletion in tubular epithelial cells is known to protect mice from fibrosis, vFoxd1 cells remains unclear. Using Foxd1-mediated Stat3 knockout mice, CRISPR, and inhibitors of STAT3, we investigate its function. STAT3 is phosphorylated in tubular epithelial cells in acute kidney injury, whereas it is expanded to interstitial cells in fibrosis in mice and humans. Foxd1-mediated deletion of Stat3 protects mice from folic-acid- and aristolochic-acid-induced kidney fibrosis. Mechanistically, STAT3 upregulates the inflammation and differentiates pericytes into myofibroblasts. STAT3 activation increases migration and profibrotic signaling in genome-edited, pericyte-like cells. Conversely, blocking Stat3 inhibits detachment, migration, and profibrotic signaling. Furthermore, STAT3 binds to the Collagen1a1 promoter in mouse kidneys and cells. Together, our study identifies a previously unknown function of STAT3 that promotes kidney fibrosis and has therapeutic value in fibrosis.
Collapse
Affiliation(s)
- Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Li Zhao
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Renal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shruti Vig
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mai Fujiwara
- Ann Romney Centre for Neurological Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sudhir Thakurela
- Broad Institute of MIT and Harvard, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shreyas Jadhav
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Cho
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - I-Jen Chiu
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yan Ding
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Krithika Ramachandran
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Arushi Mithal
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aanal Bhatt
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pratyusha Chaluvadi
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Manoj K Gupta
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Venkata S Sabbisetti
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana Maria Waaga-Gasser
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David A Frank
- Department of Medical Oncology, Dana Farber Cancer Research Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Centre for Neurological Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
6
|
Susceptibility of human and murine dermal fibroblasts to Herpes simplex Virus 1 in the absence and presence of extracellular matrix. J Virol 2021; 96:e0206821. [PMID: 34908440 DOI: 10.1128/jvi.02068-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) invades its human host via the skin and mucosa and initiates infection in the epithelium. While human and murine epidermis are highly susceptible to HSV-1, we recently observed rare infected cells in the human dermis and only minor infection efficiency in murine dermis upon ex vivo infection. Here, we investigated why cells in the dermis are so inefficiently infected and explored potential differences between murine and human dermal fibroblasts. In principle, primary fibroblasts are highly susceptible to HSV-1, however, we found a delayed infection onset in human compared to murine cells. Intriguingly, only a minor delayed onset of infection was evident in collagen-embedded compared to unembedded human fibroblasts although expression of the receptor nectin-1 dropped after collagen-embedding. This finding is in contrast to previous observations with murine fibroblasts where collagen-embedding delayed infection. The application of latex beads revealed limited penetration in the dermis which was more pronounced in human compared to murine dermis supporting the species-specific differences already observed for HSV-1 invasion. Our results suggest that the distinct organization of human and murine dermis contribute to the presence and accessibility of the HSV-1 receptors as well as to the variable barrier function of the extracellular matrix. These contributions, in turn, give rise to the inefficient viral access to cells in the dermis while dermal fibroblasts in culture are well infected. Importance Dermal fibroblasts are exposed to HSV-1 upon invasion in skin during in vivo infection. Thus, fibroblasts represent a widely used experimental tool to understand virus-host cell interactions and are highly susceptible in culture. The spectrum of fibroblasts' characteristics in their in vivo environment, however, clearly differs from the observations under cell culture conditions implying putative variations in virus-cell interactions. This becomes evident when ex vivo infection studies in murine as well as human dermis revealed the rather inefficient penetration of HSV-1 in the tissue and uptake in the dermal fibroblasts. Here, we initiated studies to explore the contributions of receptor presence and accessibility to efficient infection of dermal fibroblasts. Our results strengthen the heterogeneity of murine and human dermis and imply that the interplay between dermal barrier function and receptor presence determine how well HSV-1 penetrates the dermis.
Collapse
|
7
|
Mammary collagen is under reproductive control with implications for breast cancer. Matrix Biol 2021; 105:104-126. [PMID: 34839002 DOI: 10.1016/j.matbio.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/26/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
Mammographically-detected breast density impacts breast cancer risk and progression, and fibrillar collagen is a key component of breast density. However, physiologic factors influencing collagen production in the breast are poorly understood. In female rats, we analyzed gene expression of the most abundantly expressed mammary collagens and collagen-associated proteins across a pregnancy, lactation, and weaning cycle. We identified a triphasic pattern of collagen gene regulation and evidence for reproductive state-dependent composition. An initial phase of collagen deposition occurred during pregnancy, followed by an active phase of collagen suppression during lactation. The third phase of collagen regulation occurred during weaning-induced mammary gland involution, which was characterized by increased collagen deposition. Concomitant changes in collagen protein abundance were confirmed by Masson's trichrome staining, second harmonic generation (SHG) imaging, and mass spectrometry. We observed similar reproductive-state dependent collagen patterns in human breast tissue obtained from premenopausal women. SHG analysis also revealed structural variation in collagen across a reproductive cycle, with higher packing density and more collagen fibers arranged perpendicular to the mammary epithelium in the involuting rat mammary gland compared to nulliparous and lactating glands. Involution was also characterized by high expression of the collagen cross-linking enzyme lysyl oxidase, which was associated with increased levels of cross-linked collagen. Breast cancer relevance is suggested, as we found that breast cancer diagnosed in recently postpartum women displayed gene expression signatures of increased collagen deposition and crosslinking compared to breast cancers diagnosed in age-matched nulliparous women. Using publically available data sets, we found this involution-like, collagen gene signature correlated with poor progression-free survival in breast cancer patients overall and in younger women. In sum, these findings of physiologic collagen regulation in the normal mammary gland may provide insight into normal breast function, the etiology of breast density, and inform breast cancer risk and outcomes.
Collapse
|
8
|
Butenko S, Ben Jashar N, Sheffer T, Sabo E, Schif-Zuck S, Ariel A. ACKR2 limits skin fibrosis and hair loss through IFN-β. FASEB J 2021; 35:e21917. [PMID: 34533865 DOI: 10.1096/fj.202002395rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/02/2023]
Abstract
The resolution of inflammation facilitates proper wound healing and limits tissue repair short of exaggerated fibrotic scarring. The atypical chemokine receptor (ACKR)2/D6 scavenges inflammatory chemokines, while IFN-β is a recently unveiled pro-resolving cytokine. Both effector molecules limit acute inflammatory episodes and promote their resolution in various organs. Here, we found fibrotic skin lesions from ACKR2-/- mice presented increased epidermal and dermal thickening, atrophy of the subcutaneous adipose tissue, augmented disorientation of collagen deposition, and enhanced deformation and loss of hair follicles compared to WT counterparts. In addition, affected skin sections from ACKR2-/- mice contained reduced levels of the pro-resolving mediators IFN-β and IL-10, but increased levels of the pro-inflammatory chemokines CCL2 and 3, the pro-fibrotic cytokine TGF-β, and the immune-stimulating cytokine IL-12. Notably, treatment with exogenous IFN-β rescued, at least in part, all the pro-fibrotic outcomes and lesion size in ACKR2-/- mice and promoted expression of the pro-resolving enzyme 12/15-lipoxygenase (LO) in both ACKR2-/- and WT mice. Moreover, Ifnb-/- mice displayed enhanced pro-fibrotic indices upon exposure to bleomycin. These findings suggest ACKR2 is an important mediator in limiting inflammatory skin fibrosis and acts via IFN-β production to promote the resolution of inflammation and minimize tissue scaring.
Collapse
Affiliation(s)
- Sergei Butenko
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Nofar Ben Jashar
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Tsofiya Sheffer
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Edmond Sabo
- Institute of Pathology, Carmel Medical Center, Haifa, Israel
| | - Sagie Schif-Zuck
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings - a promising therapeutic approach for chronic wounds. Biol Chem 2021; 402:1289-1307. [PMID: 34390641 DOI: 10.1515/hsz-2021-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Nonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches. Herein, we review current concepts and perspectives of therapeutic macrophage control by ECM-inspired wound dressing materials. We provide an overview of the current understanding of macrophage diversity with particular view on their roles in skin and in physiological and disturbed wound healing processes. Based on this we discuss strategies for their modulation in chronic wounds and how such strategies can be tailored in ECM-inspired wound dressing. The latter utilize and mimic general principles of ECM-mediated cell control, such as binding and delivery of signaling molecules and direct signaling to cells specifically adapted for macrophage regulation in wounds. In this review, we present examples of most recent approaches and discuss ideas for their further development.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
10
|
Ex vivo infection of human skin with herpes simplex virus 1 reveals mechanical wounds as insufficient entry portals via the skin surface. J Virol 2021; 95:e0133821. [PMID: 34379501 DOI: 10.1128/jvi.01338-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) enters its human host via the skin and mucosa. The open question is how the virus invades this highly protective tissue in vivo to approach its receptors in the epidermis and initiate infection. Here, we performed ex vivo infection studies in human skin to investigate how susceptible the epidermis and dermis are to HSV-1 and whether wounding facilitates viral invasion. Upon ex vivo infection of complete skin, only sample edges with integrity loss demonstrated infected cells. After removal of the dermis, HSV-1 efficiently invaded the basal layer of the epidermis, and from there, gained access to suprabasal layers. This finding supports a high susceptibility of all epidermal layers which correlated with the surface expression of the receptors nectin-1 and herpesvirus entry mediator (HVEM). In contrast, only single infected cells were detected in the separated dermis where minor expression of the receptors was found. Interestingly, after wounding, nearly no infection of the epidermis was observed via the skin surface. However, if the wounding of the skin samples led to breaks through the dermis, HSV-1 infected mainly keratinocytes via the damaged dermal layer. The application of latex beads revealed only occasional entry via the wounded dermis, however, facilitated penetration via the wounded skin surface. Thus, we suggest that although the wounded human skin surface allows particle penetration, the skin still provides barriers that prevent HSV-1 from reaching its receptors. Importance The human pathogen HSV-1 invades its host via the skin and mucosa which leads to primary infection of the epithelium. As the various epithelial barriers effectively protect the tissue against viral invasion, successful infection most likely depends on tissue damage. We addressed the initial invasion process in human skin by ex vivo infection to understand how HSV-1 overcomes physical skin barriers and reaches its receptors to enter skin cells. Our results demonstrate that intact skin samples allow viral access only from the edges, while the epidermis is highly susceptible once the basal epidermal layer serves as initial entry portal. Surprisingly, mechanical wounding did not facilitate HSV-1 entry via the skin surface although latex beads still penetrated via the lesions. Our results imply that successful invasion of HSV-1 depends on how well the virus can reach its receptors which was not accomplished by skin lesions under ex vivo conditions.
Collapse
|
11
|
Tesoriere A, Dinarello A, Argenton F. The Roles of Post-Translational Modifications in STAT3 Biological Activities and Functions. Biomedicines 2021; 9:956. [PMID: 34440160 PMCID: PMC8393524 DOI: 10.3390/biomedicines9080956] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
STAT3 is an important transcription factor that regulates cell growth and proliferation by regulating gene transcription of a plethora of genes. This protein also has many roles in cancer progression and several tumors such as prostate, lung, breast, and intestine cancers that are characterized by strong STAT3-dependent transcriptional activity. This protein is post-translationally modified in different ways according to cellular context and stimulus, and the same post-translational modification can have opposite effects in different cellular models. In this review, we describe the studies performed on the main modifications affecting the activity of STAT3: phosphorylation of tyrosine 705 and serine 727; acetylation of lysine 49, 87, 601, 615, 631, 685, 707, and 709; and methylation of lysine 49, 140, and 180. The extensive results obtained by different studies demonstrate that post-translational modifications drastically change STAT3 activities and that we need further analysis to properly elucidate all the functions of this multifaceted transcription factor.
Collapse
Affiliation(s)
| | | | - Francesco Argenton
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy; (A.T.); (A.D.)
| |
Collapse
|
12
|
Hitscherich P, Lee EJ. Crosstalk Between Cardiac Cells and Macrophages Postmyocardial Infarction: Insights from In Vitro Studies. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:475-485. [PMID: 33096955 DOI: 10.1089/ten.teb.2020.0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiovascular disease, including myocardial infarction (MI), is the leading cause of death in the western world. Following MI, a large number of cardiomyocytes are lost and inflammatory cells such as monocytes and macrophages migrate into the damaged region to remove dead cells and tissue. These inflammatory cells secrete growth factors to induce degradation of the extracellular matrix in the myocardium and recruit cardiac fibroblasts. However, the contribution of specific macrophage subsets on cardiac cell function and survival in the steady state as well as in the diseased state is not well known. There is an increasing demand for in vitro cardiac disease models to bridge the critical missing link in the existing experimental methods. In this review, studies using in vitro models to examine the interaction between macrophages and cardiac cells, including cardiomyocytes, endothelial cells, and fibroblasts, are summarized to better understand the complex inflammatory cascade post-MI. The current challenges and the future directions of in vitro cardiac models are also discussed. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize the development of treatments and diagnostic alternatives. Impact statement The inflammatory cascade postmyocardial infarction (MI) is very complex. In vitro cardiac disease model studies bridge the critical missing link in the existing experimental methods and provide insights, including multicellular interaction post-MI. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize in developing treatments and diagnostic alternatives.
Collapse
Affiliation(s)
- Pamela Hitscherich
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Eun Jung Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Fibroblasts are very heterogeneous and plastic cells in the vasculature. A growing interest in fibroblasts in healthy and atherosclerotic vasculature is observed, next to macrophages, endothelial cells, and smooth muscle cells (SMCs). In this review, we discuss fibroblast presence, heterogeneity, origin, and plasticity in health and atherosclerosis based on latest literature. RECENT FINDINGS With help of single cell sequencing (SCS) techniques, we have gained more insight into presence and functions of fibroblasts in atherosclerosis. Next to SMCs, fibroblasts are extracellular matrix-producing cells abundant in the vasculature and involved in atherogenesis. Fibroblasts encompass a heterogeneous population and SCS data reveal several fibroblast clusters in healthy and atherosclerotic tissue with varying gene expression and function. Moreover, recent findings indicate interesting similarities between adventitial stem and/or progenitor cells and fibroblasts. Also, communication with inflammatory cells opens up a new therapeutic avenue. SUMMARY Because of their highly plastic and heterogeneous nature, modulating fibroblast cell function and communication in the atherosclerotic vessel might be useful in battling atherosclerosis from within the plaque.
Collapse
Affiliation(s)
- Renée J H A Tillie
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kim van Kuijk
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Judith C Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Mittapalli VR, Kühl T, Kuzet SE, Gretzmeier C, Kiritsi D, Gaggioli C, Bruckner-Tuderman L, Nyström A. STAT3 targeting in dystrophic epidermolysis bullosa. Br J Dermatol 2019; 182:1279-1281. [PMID: 31675440 DOI: 10.1111/bjd.18639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- V R Mittapalli
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - T Kühl
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - S E Kuzet
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - C Gretzmeier
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - D Kiritsi
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - C Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - L Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - A Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Witherel CE, Abebayehu D, Barker TH, Spiller KL. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv Healthc Mater 2019; 8:e1801451. [PMID: 30658015 PMCID: PMC6415913 DOI: 10.1002/adhm.201801451] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Biomaterial-mediated inflammation and fibrosis remain a prominent challenge in designing materials to support tissue repair and regeneration. Despite the many biomaterial technologies that have been designed to evade or suppress inflammation (i.e., delivery of anti-inflammatory drugs, hydrophobic coatings, etc.), many materials are still subject to a foreign body response, resulting in encapsulation of dense, scar-like extracellular matrix. The primary cells involved in biomaterial-mediated fibrosis are macrophages, which modulate inflammation, and fibroblasts, which primarily lay down new extracellular matrix. While macrophages and fibroblasts are implicated in driving biomaterial-mediated fibrosis, the signaling pathways and spatiotemporal crosstalk between these cell types remain loosely defined. In this review, the role of M1 and M2 macrophages (and soluble cues) involved in the fibrous encapsulation of biomaterials in vivo is investigated, with additional focus on fibroblast and macrophage crosstalk in vitro along with in vitro models to study the foreign body response. Lastly, several strategies that have been used to specifically modulate macrophage and fibroblast behavior in vitro and in vivo to control biomaterial-mediated fibrosis are highlighted.
Collapse
Affiliation(s)
- Claire E. Witherel
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Abebayehu
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Thomas H. Barker
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Kara L. Spiller
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA,
| |
Collapse
|