1
|
Alonso-Guallart P, Harle D. Role of chemokine receptors in transplant rejection and graft-versus-host disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:95-123. [PMID: 39260939 DOI: 10.1016/bs.ircmb.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Organ transplantation increases life expectancy and improves the quality of life of patients experiencing specific conditions such as terminal organ failure. Despite matching efforts between donor and recipient, immune activation can interfere with allograft survival after transplantation if immunosuppression is not used. With both innate and adaptive responses, this is a complicated immunological process. This can lead to organ rejection, or graft-versus-host disease (GVHD), depending on the origin of the immune response. Inflammatory factors, such as chemokine receptors and their ligands, are involved in a wide variety of immunological processes, including modulating transplant rejection or GVHD, therefore, chemokine biology has been a major focus of transplantation studies. These molecules attract circulating peripheral leukocytes to infiltrate into the allograft and facilitate dendritic and T cell trafficking between lymph nodes and the graft during the allogeneic response. In this chapter, we will review the most relevant chemokine receptors such as CXCR3 and CCR5, among others, and their ligands involved in the process of allograft rejection for solid organ transplantation and graft-versus-host disease in the context of hematopoietic cell transplantation.
Collapse
Affiliation(s)
| | - David Harle
- Columbia Center for Translational Immunology
| |
Collapse
|
2
|
Little CJ, Kim SC, Fechner JH, Post J, Coonen J, Chlebeck P, Winslow M, Kobuzi D, Strober S, Kaufman DB. Early allogeneic immune modulation after establishment of donor hematopoietic cell-induced mixed chimerism in a nonhuman primate kidney transplant model. Front Immunol 2024; 15:1343616. [PMID: 38318170 PMCID: PMC10839019 DOI: 10.3389/fimmu.2024.1343616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background Mixed lymphohematopoietic chimerism is a proven strategy for achieving operational transplant tolerance, though the underlying immunologic mechanisms are incompletely understood. Methods A post-transplant, non-myeloablative, tomotherapy-based total lymphoid (TLI) irradiation protocol combined with anti-thymocyte globulin and T cell co-stimulatory blockade (belatacept) induction was applied to a 3-5 MHC antigen mismatched rhesus macaque kidney and hematopoietic cell transplant model. Mechanistic investigations of early (60 days post-transplant) allogeneic immune modulation induced by mixed chimerism were conducted. Results Chimeric animals demonstrated expansion of circulating and graft-infiltrating CD4+CD25+Foxp3+ regulatory T cells (Tregs), as well as increased differentiation of allo-protective CD8+ T cell phenotypes compared to naïve and non-chimeric animals. In vitro mixed lymphocyte reaction (MLR) responses and donor-specific antibody production were suppressed in animals with mixed chimerism. PD-1 upregulation was observed among CD8+ T effector memory (CD28-CD95+) subsets in chimeric hosts only. PD-1 blockade in donor-specific functional assays augmented MLR and cytotoxic responses and was associated with increased intracellular granzyme B and extracellular IFN-γ production. Conclusions These studies demonstrated that donor immune cell engraftment was associated with early immunomodulation via mechanisms of homeostatic expansion of Tregs and early PD-1 upregulation among CD8+ T effector memory cells. These responses may contribute to TLI-based mixed chimerism-induced allogenic tolerance.
Collapse
Affiliation(s)
- Christopher J. Little
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Steven C. Kim
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - John H. Fechner
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Jen Post
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Peter Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Max Winslow
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Dennis Kobuzi
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Samuel Strober
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dixon B. Kaufman
- Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| |
Collapse
|
3
|
Gentherapie der Transplantatvaskulopathie. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2022. [DOI: 10.1007/s00398-022-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Immune Modulatory Effects of Probiotic Streptococcus thermophilus on Human Monocytes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ingesting probiotics contributes to the development of a healthy microflora in the GIT with established benefits to human health. Some of these beneficial effects may be through the modulation of the immune system. In addition, probiotics have become more common in the treatment of many inflammatory and immune disorders. Here, we demonstrate a range of immune modulating effects of Streptococcus thermophilus by human monocytes, including decreased mRNA expression of IL-1R, IL-18, IFNαR1, IFNγR1, CCL2, CCR5, TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-8, CD14, CD86, CD4, ITGAM, LYZ, TYK2, IFNR1, IRAK-1, NOD2, MYD88, SLC11A1, and increased expression of IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-23, IFNγ, TNFα, CSF-2. The routine administration of Streptococcus thermophilus in fermented dairy products and their consumption may be beneficial to the treatment/management of inflammatory and autoimmune diseases.
Collapse
|
5
|
Yamada K, Sawada T, Nakamura M, Yamamura T, Maeda K, Ishikawa E, Iida T, Mizutani Y, Kakushima N, Ishikawa T, Furukawa K, Ohno E, Honda T, Kawashima H, Ishigami M, Furune S, Hase T, Yokota K, Maeda O, Hashimoto N, Akiyama M, Ando Y, Fujishiro M. Clinical characteristics of gastrointestinal immune-related adverse events of immune checkpoint inhibitors and their association with survival. World J Gastroenterol 2021; 27:7190-7206. [PMID: 34887637 PMCID: PMC8613649 DOI: 10.3748/wjg.v27.i41.7190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite the popularity of immune checkpoint inhibitors (ICIs) in the treatment of advanced cancer, patients often develop gastrointestinal (GI) and non-GI immune-related adverse events (irAEs). The clinical characteristics and survival outcomes of GI-irAEs have not been fully elucidated in previous reports. This necessitates the evaluation of the impact of GI-irAEs on patients receiving ICI treatment.
AIM To evaluate the clinical characteristics of GI-irAEs and their impact on survival in patients treated with ICIs.
METHODS In this single-center, retrospective, observational study, we reviewed the records of 661 patients who received ICIs for various cancers at Nagoya University Hospital from September 2014 to August 2020. We analyzed the clinical characteristics of patients who received ICI treatment. We also evaluated the correlation between GI-irAE development and prognosis in non-small cell lung cancer (LC) and malignant melanoma (MM). Kaplan-Meier analysis was used to compare the median overall survival (OS). Multivariate Cox proportional hazards models were used to identify prognostic factors. A P value < 0.05 was considered statistically significant.
RESULTS GI-irAEs occurred in 34 of 605 patients (5.6%) treated with an anti-programmed cell death-1/programmed death-ligand 1 (anti-PD-1/PD-L1) antibody alone and in nine of 56 patients (16.1%) treated with an anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) antibody alone or a combination of anti-PD-1 and anti-CTLA-4 antibodies. The cumulative incidence and median daily diarrhea frequency were significantly higher in patients receiving anti-CTLA-4 antibodies (P < 0.05). In 130 patients with MM, OS was significantly prolonged in the group that continued ICI treatment despite the development of GI-irAEs compared to the group that did not experience GI-irAEs (P = 0.035). In contrast, in 209 patients with non-small cell LC, there was no significant difference in OS between the groups. The multivariate analyses showed that a performance status of 2-3 (hazard ratio: 2.406; 95% confidence interval: 1.125–5.147; P = 0.024) was an independent predictive factor for OS in patients with MM.
CONCLUSION Patients receiving anti-CTLA-4 antibodies develop GI-irAEs more frequently and with higher severity than those receiving anti-PD-1/PD-L1 antibodies. Continuing ICI treatment in patients with MM with GI-irAEs have better OS.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Hospital, Nagoya City 4668560, Aichi, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Hospital, Nagoya City 4668560, Aichi, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Naomi Kakushima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Hiroki Kawashima
- Department of Endoscopy, Nagoya University Hospital, Nagoya City 4668560, Aichi, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Satoshi Furune
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya City 4668560, Aichi, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Kenji Yokota
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Osamu Maeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya City 4668560, Aichi, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya City 4668560, Aichi, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya City 4668560, Aichi, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan
| |
Collapse
|
6
|
Jang HR, Kim M, Hong S, Lee K, Park MY, Yang KE, Lee CJ, Jeon J, Lee KW, Lee JE, Park JB, Kim K, Kwon GY, Kim YG, Kim DJ, Huh W. Early postoperative urinary MCP-1 as a potential biomarker predicting acute rejection in living donor kidney transplantation: a prospective cohort study. Sci Rep 2021; 11:18832. [PMID: 34552150 PMCID: PMC8458304 DOI: 10.1038/s41598-021-98135-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the clinical relevance of urinary cytokines/chemokines reflecting intrarenal immunologic micromilieu as prognostic markers and the optimal measurement timing after living donor kidney transplantation (LDKT). This prospective cohort study included 77 LDKT patients who were followed for ≥ 5 years. Patients were divided into control (n = 42) or acute rejection (AR, n = 35) group. Early AR was defined as AR occurring within 3 months. Serum and urine cytokines/chemokines were measured serially as follows: intraoperative, 8/24/72 h, 1 week, 3 months, and 1 year after LDKT. Intrarenal total leukocytes, T cells, and B cells were analyzed with immunohistochemistry followed by tissueFAXS. Urinary MCP-1 and fractalkine were also analyzed in a validation cohort. Urinary MCP-1 after one week was higher in the AR group. Urinary MCP-1, fractalkine, TNF-α, RANTES, and IL-6 after one week were significantly higher in the early AR group. Intrarenal total leukocytes and T cells were elevated in the AR group compared with the control group. Urinary fractalkine, MCP-1, and IL-10 showed positive correlation with intrarenal leukocyte infiltration. Post-KT 1 week urinary MCP-1 showed predictive value in the validation cohort. One-week post-KT urinary MCP-1 may be used as a noninvasive diagnostic marker for predicting AR after LDKT.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Minjung Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Sungjun Hong
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Mee Yeon Park
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyeong Eun Yang
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyunga Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
7
|
Yamane K, Anazawa T, Tada S, Fujimoto N, Inoguchi K, Emoto N, Nagai K, Masui T, Okajima H, Takaori K, Sumi S, Uemoto S. Mitomycin C treatment improves pancreatic islet graft longevity in intraportal islet transplantation by suppressing proinflammatory response. Sci Rep 2020; 10:12086. [PMID: 32694579 PMCID: PMC7374693 DOI: 10.1038/s41598-020-69009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
The in vitro culture period prior to cell transplantation (i.e. pancreatic islet transplantation) enables cell modification and is thus advantageous. However, the islet preconditioning method has not been fully explored. Here we present a simple approach for islet preconditioning that uses the antibiotic mitomycin C (MMC), which has antitumor activity, to reduce islet immunogenicity and prevent proinflammatory events in an intraportal islet transplantation model. Freshly isolated mice islets were treated for 30 min with 10 μg/mL MMC or not, cultured for 20 h and transplanted into the livers of syngeneic or allogeneic diabetic mouse recipients. In the allogeneic model, MMC preconditioning significantly prolonged graft survival without requiring immunosuppressants. In vitro, MMC treatment suppressed the expression of proinflammatory cytokines in islet allografts, while immunohistochemical studies revealed the suppression of inflammatory cell infiltration into MMC-treated allografts relative to untreated allografts. Furthermore, MMC preconditioning significantly suppressed the mRNA expression of proinflammatory cytokines into the transplant site and induced the differentiation of regulatory T cells with the ability to suppress CD4+ T cell-mediated immune responses. In conclusion, islet preconditioning with MMC prolonged graft survival in an intraportal islet transplantation model by suppressing proinflammatory events and inducing potentially regulatory lymphocytes.
Collapse
Affiliation(s)
- Kei Yamane
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Takayuki Anazawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan.
| | - Seiichiro Tada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Nanae Fujimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kenta Inoguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Norio Emoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kazuyuki Nagai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Toshihiko Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Hideaki Okajima
- Department of Paediatric Surgery, Kanazawa Medical University, Kanazawa, 9200293, Japan
| | - Kyoichi Takaori
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 6068507, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| |
Collapse
|
8
|
AAV-Mediated Expression of AP-1-Neutralizing RNA Decoy Oligonucleotides Attenuates Transplant Vasculopathy in Mouse Aortic Allografts. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:246-256. [PMID: 31720303 PMCID: PMC6838891 DOI: 10.1016/j.omtm.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022]
Abstract
Transplant vasculopathy (TV), characterized by obstructive lesions in affected vessels, represents one of the long-term complications of cardiac transplantation. Activation of the transcription factor activator protein-1 (AP-1) is implicated in smooth muscle cell (SMC) phenotypic switch from contractile to synthetic function, increasing the migration and proliferation rate of these cells. We hypothesize that adeno-associated virus (AAV)-mediated delivery of an RNA hairpin AP-1 decoy oligonucleotide (dON) might effectively ameliorate TV severity in a mouse aortic allograft model. Aortic allografts from DBA/2 mice ex vivo transduced with modified AAV9-SLR carrying a targeting peptide within the capsid surface were transplanted into the infrarenal aorta of C57BL/6 mice. Cyclosporine A (10 mg/kg BW) was administered daily. AP-1 dONs were intracellularly expressed in the graft tissue as small hairpin RNA proved by fluorescent in situ hybridization. Explantation after 30 days and histomorphometric evaluation revealed that AP-1 dON treatment significantly reduced intima-to-media ratio by 41.5% (p < 0.05) in the grafts. In addition, expression of adhesion molecules, cytokines, as well as numbers of proliferative SMCs, matrix metalloproteinase-9-positive cells, and inflammatory cell infiltration were significantly decreased in treated aortic grafts. Our findings demonstrate the feasibility, efficacy, and specificity of the anti-AP-1 RNA dON approach for the treatment of allograft vasculopathy in an animal model. Moreover, the AAV-based approach in general provides the possibility to achieve a prolonged delivery of nucleic-acids-based therapeutics in to the blood vessel wall.
Collapse
|
9
|
Udartseva OO, Zhidkova OV, Ezdakova MI, Ogneva IV, Andreeva ER, Buravkova LB, Gollnick SO. Low-dose photodynamic therapy promotes angiogenic potential and increases immunogenicity of human mesenchymal stromal cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111596. [DOI: 10.1016/j.jphotobiol.2019.111596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
|
10
|
|
11
|
Merani S, Truong WW, Hancock W, Anderson CC, Shapiro AMJ. Chemokines and Their Receptors in Islet Allograft Rejection and as Targets for Tolerance Induction. Cell Transplant 2017; 15:295-309. [PMID: 28863747 DOI: 10.3727/000000006783981963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graft rejection is a major barrier to successful outcome of transplantation surgery. Islet transplantation introduces insulin secreting tissue into type 1 diabetes mellitus recipients, relieving patients from exogenous insulin injection. However, insulitis of grafted tissue and allograft rejection prevent long-term insulin independence. Leukocyte trafficking is necessary for the launch of successful immune responses to pathogen or allograft. Chemokines, small chemotactic cytokines, direct the migration of leukocytes through their interaction with chemokine receptors found on cell surfaces of immune cells. Unique receptor expression of leukocytes, and the specificity of chemokine secretion during various states of immune response, suggest that the extracellular chemokine milieu specifically homes certain leukocyte subsets. Thus, only those leukocytes required for the current immune task are attracted to the inflammatory site. Chemokine blockade, using antagonists and monoclonal antibodies directed against chemokine receptors, is an emerging and specific immunosuppressive strategy. Importantly, chemokine blockade may potentiate tolerance induction regimens to be used following transplantation surgery, and prevent the need for life-long immunosuppression of islet transplant recipients. Here, the role for chemokine blockade in islet transplant rejection and tolerance is reviewed.
Collapse
Affiliation(s)
- Shaheed Merani
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne W Truong
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, Joseph Stokes, Jr. Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Colin C Anderson
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - A M James Shapiro
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| |
Collapse
|
12
|
NOX4 Regulates CCR2 and CCL2 mRNA Stability in Alcoholic Liver Disease. Sci Rep 2017; 7:46144. [PMID: 28383062 PMCID: PMC5382722 DOI: 10.1038/srep46144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
Recruitment of inflammatory cells is a major feature of alcoholic liver injury however; the signals and cellular sources regulating this are not well defined. C-C chemokine receptor type 2 (CCR2) is expressed by active hepatic stellate cells (HSC) and is a key monocyte recruitment signal. Activated HSC are also important sources of hydrogen peroxide resulting from the activation of NADPH oxidase 4 (NOX4). As the role of this NOX in early alcoholic liver injury has not been addressed, we studied NOX4-mediated regulation of CCR2/CCL2 mRNA stability. NOX4 mRNA was significantly induced in patients with alcoholic liver injury, and was co-localized with αSMA-expressing activated HSC. We generated HSC-specific NOX4 KO mice and these were pair-fed on alcohol diet. Lipid peroxidation have not changed significantly however, the expression of CCR2, CCL2, Ly6C, TNFα, and IL-6 was significantly reduced in NOX4HSCKO compared to fl/fl mice. NOX4 promoter was induced in HSC by acetaldehyde treatment, and NOX4 has significantly increased mRNA half-life of CCR2 and CCL2 in conjunction with Ser221 phosphorylation and cytoplasmic shuttling of HuR. In conclusion, NOX4 is induced in early alcoholic liver injury and regulates CCR2/CCL2 mRNA stability thereby promoting recruitment of inflammatory cells and production of proinflammatory cytokines.
Collapse
|
13
|
Guillén-Gómez E, Dasilva I, Silva I, Arce Y, Facundo C, Ars E, Breda A, Ortiz A, Guirado L, Ballarín JA, Díaz-Encarnación MM. Early Macrophage Infiltration and Sustained Inflammation in Kidneys From Deceased Donors Are Associated With Long-Term Renal Function. Am J Transplant 2017; 17:733-743. [PMID: 27496082 DOI: 10.1111/ajt.13998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/25/2023]
Abstract
Kidney transplants from living donors (LDs) have a better outcome than those from deceased donors (DDs). Different factors have been suggested to justify the different outcome. In this study, we analyzed the infiltration and phenotype of monocytes/macrophages and the expression of inflammatory and fibrotic markers in renal biopsy specimens from 94 kidney recipients (60 DDs and 34 LDs) at baseline and 4 months after transplantation. We evaluated their association with medium- and long-term renal function. At baseline, inflammatory gene expression was higher in DDs than in LDs. These results were confirmed by the high number of CD68-positive cells in DD kidneys, which correlated negatively with long-term renal function. Expression of the fibrotic markers vimentin, fibronectin, and α-smooth muscle actin was more elevated in biopsy specimens from DDs at 4 months than in those from LDs. Gene expression of inflammatory and fibrotic markers at 4 months and difference between 4 months and baseline correlated negatively with medium- and long-term renal function in DDs. Multivariate analysis point to transforming growth factor-β1 as the best predictor of long-term renal function in DDs. We conclude that early macrophage infiltration, sustained inflammation, and transforming growth factor-β1 expression, at least for the first 4 months, contribute significantly to the difference in DD and LD transplant outcome.
Collapse
Affiliation(s)
- E Guillén-Gómez
- Molecular Biology Laboratory, Fundació Puigvert, Barcelona, Spain.,UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain
| | - I Dasilva
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - I Silva
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Renal Transplant Unit, Fundació Puigvert, Barcelona, Spain
| | - Y Arce
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Pathology Laboratory, Fundació Puigvert, Barcelona, Spain
| | - C Facundo
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Renal Transplant Unit, Fundació Puigvert, Barcelona, Spain
| | - E Ars
- Molecular Biology Laboratory, Fundació Puigvert, Barcelona, Spain.,UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain
| | - A Breda
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Urology Department, Fundació Puigvert, Barcelona, Spain
| | - A Ortiz
- IIS-Fundación Jiménez Díaz/UAM, REDinREN, Madrid, Spain
| | - L Guirado
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Renal Transplant Unit, Fundació Puigvert, Barcelona, Spain
| | - J A Ballarín
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - M M Díaz-Encarnación
- UAB, REDinREN, Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Institut Investigació Biosanitaria Sant Pau, Barcelona, Spain.,Nephrology Department, Fundació Puigvert, Barcelona, Spain
| |
Collapse
|
14
|
Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-α. Cancer Immunol Immunother 2017; 66:523-535. [PMID: 28184968 DOI: 10.1007/s00262-017-1955-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
Abstract
PD-L1 is an immune checkpoint protein that has emerged as a major signaling molecule involved with tumor escape from T cell immune responses. Studies have shown that intra-tumoral expression of PD-L1 can inhibit antitumor immune responses. However, it has recently been shown that expression of PD-L1 on myeloid cells from the tumor is a stronger indicator of prognosis than tumor cell PD-L1 expression. Therefore, it is important to understand the factors that govern the regulation of PD-L1 expression on tumor-infiltrating myeloid cells. We found that immature bone marrow monocytes in tumor-bearing mice had low levels of PD-L1 expression, while higher levels of expression were observed on monocytes in circulation. In contrast, macrophages found in tumor tissues expressed much higher levels of PD-L1 than circulating monocytes, implying upregulation by the tumor microenvironment. We demonstrated that tumor-conditioned media strongly induced increased PD-L1 expression by bone marrow-derived monocytes and TNF-α to be a cytokine that causes an upregulation of PD-L1 expression by the monocytes. Furthermore, we found production of TNF-α by the monocytes themselves to be a TLR2-dependent response to versican secreted by tumor cells. Thus, PD-L1 expression by tumor macrophages appears to be regulated in a different manner than by tumor cells themselves.
Collapse
|
15
|
Yan Q, Jiang H, Wang B, Sui W, Zhou H, Zou G. Expression and Significance of RANTES and MCP-1 in Renal Tissue With Chronic Renal Allograft Dysfunction. Transplant Proc 2016; 48:2034-9. [DOI: 10.1016/j.transproceed.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/04/2016] [Indexed: 12/01/2022]
|
16
|
Current Concepts of Using Pigs as a Source for Beta-Cell Replacement Therapy of Type 1 Diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
MicroRNA-33 suppresses CCL2 expression in chondrocytes. Biosci Rep 2016; 36:BSR20160068. [PMID: 27129293 PMCID: PMC4859085 DOI: 10.1042/bsr20160068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3'UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3'UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA.
Collapse
|
18
|
The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. Int Immunopharmacol 2015; 28:829-35. [DOI: 10.1016/j.intimp.2015.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
19
|
Kalnins A, Thomas MN, Andrassy M, Müller S, Wagner A, Pratschke S, Rentsch M, Klussmann S, Kauke T, Angele MK, Bazhin AV, Fischereder M, Werner J, Guba M, Andrassy J. Spiegelmer Inhibition of MCP-1/CCR2--Potential as an Adjunct Immunosuppressive Therapy in Transplantation. Scand J Immunol 2015; 82:102-9. [PMID: 25970072 DOI: 10.1111/sji.12310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/03/2015] [Indexed: 01/01/2023]
Abstract
The rejection process remains the key unsolved issue after transplantation of disparate tissue. The CC chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) has been reported to be involved in the process of alloimmune interaction. Spiegelmers are l-oligonucleotides that can be designed to bind to pharmacologically relevant target molecules. Here, we tested a high-affinity Spiegelmer-based MCP-1 inhibitor (mNOX-E36) in an allogeneic heart transplant model. Fully vascularized allogeneic heterotopic heart transplantations from BALB/c to C57BL/6 mice were performed. Mice were either treated with the anti-MCP-1-Spiegelmer (mNOX-E36) in monotherapy or in combination with subtherapeutic doses of cyclosporine A (CsA) (10 mg/kgBW/day) for 10 days. Controls received equivalent doses of a non-functional Spiegelmer (revmNOX-E36). Graft survival of allogeneic heart transplants was slightly but significantly prolonged under mNOX-E36 monotherapy (median graft survival 10 day ± 0.7) compared to revmNOX-E36 (median graft survival 7 day ± 0.3; P = 0.001). A synergistic beneficial effect could be seen when mNOX-E36 was administered in combination with subtherapeutic doses of CsA (18 day ± 2.8 versus 7 day ± 0.3; P < 0.0001). Levels of inflammatory cytokines and 'alarmins' were significantly reduced, and the number of F4/80(+) cells was lower under combination therapy (1.8% ± 1.3%; versus 14.6% ± 4.4%; P = 0.0002). This novel inhibitor of the MCP-1/CCR2 axis (mNOX-E36), which has already proven efficacy and tolerability in early clinical trials, alleviates acute rejection processes in allogeneic transplantation especially when combined with subtherapeutic doses of CsA. Thus, mNOX-E36 may have potential as an adjunct immunomodulatory agent.
Collapse
Affiliation(s)
- A Kalnins
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - M N Thomas
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - M Andrassy
- Department of Medicine, Rupprecht-Karl's University, Heidelberg, Germany
| | - S Müller
- Department of Pathology, Ludwig-Maximilian's University, Munich, Germany
| | - A Wagner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - S Pratschke
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - M Rentsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | | | - T Kauke
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - M K Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - A V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - M Fischereder
- Division of Nephrology, Department of Medicine, Med IV, Ludwig-Maximilian's University, Munich, Germany
| | - J Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - M Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| | - J Andrassy
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilian's-University Munich, Munich, Germany
| |
Collapse
|
20
|
Hårdstedt M, Lindblom S, Karlsson-Parra A, Nilsson B, Korsgren O. Characterization of Innate Immunity in an Extended Whole Blood Model of Human Islet Allotransplantation. Cell Transplant 2015; 25:503-15. [PMID: 26084381 DOI: 10.3727/096368915x688461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The instant blood-mediated inflammatory reaction (IBMIR) has been studied in whole blood models of human allo-islet transplantation for short periods (<6 h). Beyond this time frame the innate response to intraportally transplanted islets is less well described. A novel whole blood model was applied to study blood-islet-graft interactions up to 48 h. Heparinized polyvinyl chloride tubing was sealed into small bags containing venous blood together with allogeneic human islets and exocrine tissue, respectively. The bags were attached to a rotating wheel (37°C). Concentrated glucose and sodium hydrogen carbonate were added every 12 h to maintain physiological limits for sustained immune cell functions. Plasma was collected at repeated time points for analyses of coagulation/complement activation and chemokine/cytokine production. Immune cell infiltration was analyzed using immunohistochemistry. Coagulation and platelet activation markers, thrombin-antithrombin complex (TAT) and soluble CD40 ligand (sCD40L) showed early high concentrations (at 6-12 h). sC5b-9 steadily increased over 48 h. At 6 h neutrophils and monocytes surrounded the clotted cellular grafts with a following massive infiltration of neutrophils. High and increasing concentrations of CXCR1/2 ligands [IL-8 and growth-regulated oncogene α/β/γ (Gro-α/β/γ)] and IL-6 were produced in response to human islets and exocrine tissue. The CCR2 ligand monocyte chemoattractant protein 1 (MCP-1) exhibited increasing concentrations in response to exocrine tissue. The CXCR3 ligand interferon-inducible T cell α chemoattractant (I-TAC) was produced in response to both human islets and exocrine tissue from 6 h. Monokine induced by γ interferon (Mig) and interferon γ-induced protein 10 (IP-10) showed a later response, preferentially to exocrine tissue and with larger variations among preparations. An extended blood model of clinical islet transplantation allowed characterization of early immune activation in response to human islets and exocrine tissue. Increased production of chemokines targeting CXCR1/2, CCR2, and CXCR3 was observed, accompanied by massive intraislet neutrophil infiltration over 48 h. The model proved to be useful in exploring early blood-mediated reactions to cellular transplants and has relevance for evaluation of pharmacological interventions to prevent graft loss.
Collapse
Affiliation(s)
- Maria Hårdstedt
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
21
|
Campanha-Rodrigues AL, Grazioli G, Oliveira TC, Campos-Lisbôa ACV, Mares-Guia TR, Sogayar MC. Therapeutic Potential of Laminin–Biodritin Microcapsules for Type 1 Diabetes Mellitus. Cell Transplant 2015; 24:247-61. [DOI: 10.3727/096368913x675160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet microencapsulation constitutes an attractive therapy for type 1 diabetes mellitus; however, long-term β-cell function remains a major problem. Loss of extracellular matrix interactions during islet isolation dramatically affects β-cell viability. We have previously shown beneficial effects of laminin (LN) in human islet cultures. Herein, we investigated whether LN could improve the outcome of transplantation after islet microencapsulation in Biodritin, an alginate-based material. To test LN-Biodritin stability, microcapsules were subjected to different types of in vitro stress. Focusing on biocompatibility, empty microcapsules were coincubated with the RAW 264.7 macrophage cell line for up to 24 h, and empty beads were implanted IP in mice and retrieved for analyses after 7 and 30 days. Upon culturing for 48 h, mRNA, protein levels, and caspase 3 activity were evaluated in islets microencapsulated with LN-Biodritin. Mice rendered diabetic by streptozotocin injection were transplanted with microencapsulated islets, followed by assessment of body weight, glycemia, and graft function (evaluated by OGTT). Graft efficiency was observed upon microencapsulated islet explantation. The results obtained showed that LN-Biodritin microcapsules were as stable and biocompatible as Biodritin. Modulation of mRNA and protein levels suggested protection against apoptosis and islet stress. Mice transplanted with LN-Biodritin microencapsulated islets presented a better outcome at 198 days postsurgery. Graft explantation led animals to hyperglycemia. In conclusion, LN-Biodritin constitutes a very promising biomaterial for islet transplantation.
Collapse
Affiliation(s)
- Ana Lucia Campanha-Rodrigues
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gisella Grazioli
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Talita C. Oliveira
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Carolina V. Campos-Lisbôa
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Thiago R. Mares-Guia
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Li R, Lee J, Kim MS, Liu V, Moulik M, Li H, Yi Q, Xie A, Chen W, Yang L, Li Y, Tsai TH, Oka K, Chan L, Yechoor V. PD-L1-driven tolerance protects neurogenin3-induced islet neogenesis to reverse established type 1 diabetes in NOD mice. Diabetes 2015; 64:529-40. [PMID: 25332429 PMCID: PMC4303975 DOI: 10.2337/db13-1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A breakdown in self-tolerance underlies autoimmune destruction of β-cells and type 1 diabetes. A cure by restoring β-cell mass is limited by the availability of transplantable β-cells and the need for chronic immunosuppression. Evidence indicates that inhibiting costimulation through the PD-1/PD-L1 pathway is central to immune tolerance. We therefore tested whether induction of islet neogenesis in the liver, protected by PD-L1-driven tolerance, reverses diabetes in NOD mice. We demonstrated a robust induction of neo-islets in the liver of diabetic NOD mice by gene transfer of Neurogenin3, the islet-defining factor, along with betacellulin, an islet growth factor. These neo-islets expressed all the major pancreatic hormones and transcription factors. However, an enduring restoration of glucose-stimulated insulin secretion and euglycemia occurs only when tolerance is also induced by the targeted overexpression of PD-L1 in the neo-islets, which results in inhibition of proliferation and increased apoptosis of infiltrating CD4(+) T cells. Further analysis revealed an inhibition of cytokine production from lymphocytes isolated from the liver but not from the spleen of treated mice, indicating that treatment did not result in generalized immunosuppression. This treatment strategy leads to persistence of functional neo-islets that resist autoimmune destruction and consequently an enduring reversal of diabetes in NOD mice.
Collapse
Affiliation(s)
- Rongying Li
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mi-sun Kim
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Victoria Liu
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX
| | - Haiyan Li
- Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH
| | - Qing Yi
- Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH
| | - Aini Xie
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Wenhao Chen
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Lina Yang
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Yimin Li
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Tsung Huang Tsai
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Kazuhiro Oka
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX Division of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Lawrence Chan
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX Division of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Vijay Yechoor
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX Division of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
23
|
Zhang Q, Reed EF. Array-based methods for diagnosis and prevention of transplant rejection. Expert Rev Mol Diagn 2014; 6:165-78. [PMID: 16512777 DOI: 10.1586/14737159.6.2.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA microarray is a microhybridization-based assay that is used to simultaneously study the expression of thousands of genes, thus providing a global view of gene expression in a tissue sample. This powerful technique has been adopted by many biomedical disciplines and will likely have a profound impact on the diagnosis, treatment and prognosis of human diseases. This review article presents an overview of the application of microarray technology to the field of solid-organ transplantation.
Collapse
Affiliation(s)
- Qiuheng Zhang
- Immunogenetics Center, Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
24
|
Zammit NW, Grey ST. Emerging roles for A20 in islet biology and pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:141-62. [PMID: 25302370 DOI: 10.1007/978-1-4939-0398-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A20 is most characteristically described in terms relating to inflammation and inflammatory pathologies. The emerging understanding of inflammation in the etiology of diabetes mellitus lays the framework for considering a central role for A20 in this disease process. Diabetes mellitus is considered a major health issue, and describes a group of common metabolic disorders pathophysiologically characterized by hyperglycemia. Within islets of Langherhans, the endocrine powerhouse of the pancreas, are the insulin-producing pancreatic beta-cells. Loss of beta-cell mass and function to inflammation and apoptosis is a major contributing factor to diabetes. Consequently, restoring functional beta-cell mass via transplantation represents a therapeutic option for diabetes. Unfortunately, transplanted islets also suffers from loss of beta-cell function and mass fueled by a multifactorial inflammatory cycle triggered by islet isolation prior to transplantation, the ischemic environment at transplantation as well as allogeneic or recurrent auto-immune responses. Activation of the transcription factor NF-kappaB is a central mediator of inflammatory mediated beta-cell dysfunction and loss. Accordingly, a plethora of strategies to block NF-kappaB activation in islets and hence limit beta-cell loss have been explored, with mixed success. We propose that the relatively poor efficacy of NF-kappaB blockade in beta-cells is due to concommittant loss of the important, NF-kappaB regulated anti-apoptotic and anti-inflammatory protein A20. A20 has been identified as a beta-cell expressed gene, raising questions about its role in beta-cell development and function, and in beta-cell related pathologies. Involvement of apoptosis, inflammation and NF-kappaB activation as beta-cell factors contributing to the pathophysiology of diabetes, coupled with the knowledge that beta-cells express the A20 gene, implies an important role for A20 in both normal beta-cell biology as well as beta-cell related pathology. Genome wide association studies (GWAS) linking single nucleotide polymorphisms in the A20 gene with the occurrence of diabetes and its complications support this hypothesis. In this chapter we review data supporting the role of A20 in beta-cell health and disease. Furthermore, by way of their specialized function in metabolism, pancreatic beta-cells also provide opportunities to explore the biology of A20 in scenarios beyond inflammation.
Collapse
|
25
|
Nagaraju S, Bertera S, Funair A, Wijkstrom M, Trucco M, Cooper DKC, Bottino R. Streptozotocin-associated lymphopenia in cynomolgus monkeys. Islets 2014; 6:e944441. [PMID: 25322828 PMCID: PMC4292713 DOI: 10.4161/19382014.2014.944441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Streptozotocin (STZ) is used to induce diabetes in experimental animals. It has a variety of adverse effects, ranging from nausea, emesis, and weight loss to liver damage, renal failure, and metabolic acidosis. STZ also has effects on the immune system, being associated with lymphopenia in rodents, the mechanism of which is not fully understood. We present data on a significant STZ-associated reduction in lymphocyte count in nonhuman primates. We report a significant reduction in absolute lymphocyte count; in 2 monkeys, the lymphopenia persisted for >100 d. However, a significant increase in absolute monocyte count was noted. Furthermore, an increase in serum monocyte chemoattractant protein-1 (MCP-1) was observed. The reduction in lymphocyte numbers may contribute to immunomodulation that may be beneficial to a subsequent islet graft, and may reduce the need for immunosuppressive therapy. The increase in monocytes and MCP-1, however, may be detrimental to the islet graft. Studies are warranted to explore the mechanism by which STZ has its effect.
Collapse
Affiliation(s)
- Santosh Nagaraju
- Thomas E. Starzl Transplantation Institute;
University of Pittsburgh Medical Center; Pittsburgh, PA
USA
| | - Suzanne Bertera
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| | - Amber Funair
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute;
University of Pittsburgh Medical Center; Pittsburgh, PA
USA
| | - Massimo Trucco
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute;
University of Pittsburgh Medical Center; Pittsburgh, PA
USA
- Correspondence to: David KC Cooper;
| | - Rita Bottino
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| |
Collapse
|
26
|
Abstract
Organ transplantation appears today to be the best alternative to replace the loss of vital organs induced by various diseases. Transplants can, however, also be rejected by the recipient. In this review, we provide an overview of the mechanisms and the cells/molecules involved in acute and chronic rejections. T cells and B cells mainly control the antigen-specific rejection and act either as effector, regulatory, or memory cells. On the other hand, nonspecific cells such as endothelial cells, NK cells, macrophages, or polymorphonuclear cells are also crucial actors of transplant rejection. Last, beyond cells, the high contribution of antibodies, chemokines, and complement molecules in graft rejection is discussed in this article. The understanding of the different components involved in graft rejection is essential as some of them are used in the clinic as biomarkers to detect and quantify the level of rejection.
Collapse
Affiliation(s)
- Aurélie Moreau
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN, CHU de Nantes 44093, France
| | | | | | | |
Collapse
|
27
|
Abstract
Early innate inflammatory reaction strongly affects islet engraftment and survival after intrahepatic transplantation. This early immune response is triggered by ischemia-reperfusion injury and instant blood mediated inflammatory reaction (IBMIR) occurring hours and days after islet infusion. Evidence in both mouse model and in human counterpart suggest the involvement of coagulation, complement system, and proinflammatory chemokines/cytokines. Identification and targeting of pathway(s), playing a role as "master regulator(s)" in post-transplant detrimental inflammatory events, is now mandatory to improve islet transplantation success. This review will focus on inflammatory pathway(s) differentially modulated by islet isolation and mainly associated with the early post-transplant events. Moreover, we will take into account anti-inflammatory strategies that have been tested at 2 levels: on the graft, ex vivo, during islet culture (i.e., donor) and/or on the graft site, in vivo, early after islet infusion (i.e., recipient).
Collapse
Affiliation(s)
- Antonio Citro
- Beta Cell Biology Unit, Diabetes Research Institute, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy,
| | | | | |
Collapse
|
28
|
Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders? Curr Opin Organ Transplant 2013; 17:20-5. [PMID: 22157320 DOI: 10.1097/mot.0b013e32834ee5b6] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. RECENT FINDINGS Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury, while more recent studies indicate that they may play a reparative role, depending on phenotype - M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid-organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. SUMMARY These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage-mediated injury, explore their potential reparative role, and determine if they or their functional products are biomarkers of poor graft outcomes.
Collapse
|
29
|
Abstract
Biomarkers are useful tools for research into type 1 diabetes (T1D) for a number of purposes, including elucidation of disease pathogenesis, risk prediction, and therapeutic monitoring. Susceptibility genes and islet autoantibodies are currently the most useful biomarkers for T1D risk prediction. However, these markers do not fully meet the needs of scientists and physicians for several reasons. First, improvement of the specificity and sensitivity is still desirable to achieve better positive predictive values. Second, autoantibodies appear relatively late in the disease process, thus limiting their value in early disease prediction. Third, the currently available biomarkers are not useful for assessing therapeutic outcomes because some are not involved in the disease process (autoantibodies) and others do not change during disease progression (susceptibility genes). Therefore, considerable effort has been devoted to the discovery of novel T1D biomarkers in the last three decades. The advent of high-throughput technologies for genetic, transcriptomic, and proteomic studies has allowed genome-wide examinations of genetic polymorphisms, global gene changes, and protein expression changes in T1D patients and prediabetic subjects. These large-scale studies resulted in the discovery of a large number of susceptibility genes and changes in gene and protein expression. While these studies have provided a number of novel biomarker candidates, their clinical benefits remain to be evaluated in prospective studies, and no new "star biomarker" has been identified until now. Previous studies suggest that significant improvements in study design and analytical methodologies have to be made to identify clinically relevant biomarkers. In this review, we discuss progress, opportunities, challenges, and future directions in the development of T1D biomarkers, mainly by focusing on the genetic, transcriptomic, and proteomic aspects.
Collapse
Affiliation(s)
- Yulan Jin
- Center for Biotechnology and Genomic Medicine and Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | |
Collapse
|
30
|
Lauden L, Boukouaci W, Borlado LR, López IP, Sepúlveda P, Tamouza R, Charron D, Al-Daccak R. Allogenicity of human cardiac stem/progenitor cells orchestrated by programmed death ligand 1. Circ Res 2012; 112:451-64. [PMID: 23243206 DOI: 10.1161/circresaha.112.276501] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Transplantation of allogeneic cardiac stem/progenitor cells (CPC) in experimental myocardial infarction promoted cardiac regeneration and improved heart function. Although this has enhanced prospects of using allogeneic CPC for cardiac repair, the mechanisms regulating the behavior of these allogeneic cells, which are central to clinical applications, remain poorly understood. OBJECTIVE T cells orchestrate the allogeneic adaptive immune response. Therefore, to provide insight into the mechanisms regulating the immunologic behavior of human CPC (hCPC), we investigated the allogeneic T-cell response elicited by cryopreserved c-kit-selected hCPC. METHODS AND RESULTS By using an experimental model of allogeneic stimulation, we demonstrate that, whether under inflammatory conditions or not, hCPC do not trigger conventional allogeneic Th1 or Th2 type responses but instead induce proliferation and selective expansion of suppressive CD25(high)CD127(low)human leukocyte antigen-DR(+)FoxP3(high) effector regulatory T cells. The regulatory T-cell proliferation and amplification were dependent on the interaction with the B7 family member programmed death ligand 1 (PD-L1), which is substantially expressed on hCPC and increased under inflammatory conditions. Thus, hCPC in allogeneic settings acquire the capacity to downregulate an ongoing immune response, which was dependent on PD-L1. CONCLUSIONS Collectively, these data reveal that hCPC in allogeneic settings have a tolerogenic immune behavior, promoting a contact PD-L1-dependent regulatory response and a PD-L1-dependent allogeneic-driven immunomodulation. Our study attributes an important role for PD-L1 in the immune behavior of allogeneic hCPC and raises the possibility of using PD-L1 expression as a marker to identify and select low-risk high-benefit allogeneic cardiac repair cells.
Collapse
Affiliation(s)
- Laura Lauden
- Institut National de la Santé et de la Recherche Médicale UMRS940, Institut Universitaire d’Hématologie, Université Paris-Diderot and Laboratoire d’Immunologie et d’Histocompatibilité, Hôpital Saint Louis, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Herpes simplex virus-1 (HSV-1) infects the majority of the world's population. These infections are often asymptomatic, but ocular HSV-1 infections cause multiple pathologies with perhaps the most destructive being herpes stromal keratitis (HSK). HSK lesions, which are immunoinflammatory in nature, can recur throughout life and often cause progressive corneal scaring resulting in visual impairment. Current treatment involves broad local immunosuppression with topical steroids along with antiviral coverage. Unfortunately, the immunopathologic mechanisms defined in animal models of HSK have not yet translated into improved therapy. Herein, we review the clinical epidemiology and pathology of the disease and summarize the large amount of basic research regarding the immunopathology of HSK. We examine the role of the innate and adaptive immune system in the clearance of virus and the destruction of the normal corneal architecture that is typical of HSK. Our goal is to define current knowledge of the pathogenic mechanisms and recurrent nature of HSK and identify areas that require further study.
Collapse
|
32
|
Amarnath S, Mangus CW, Wang JCM, Wei F, He A, Kapoor V, Foley JE, Massey PR, Felizardo TC, Riley JL, Levine BL, June CH, Medin JA, Fowler DH. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 2012; 3:111ra120. [PMID: 22133721 DOI: 10.1126/scitranslmed.3003130] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune surveillance by T helper type 1 (T(H)1) cells is not only critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GVHD) after transplantation. The inhibitory molecule programmed death ligand 1 (PDL1) has been shown to anergize human T(H)1 cells, but other mechanisms of PDL1-mediated T(H)1 inhibition such as the conversion of T(H)1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause T(H)1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET(+) T(H)1 cells into FOXP3(+) regulatory T (T(reg)) cells in vivo, thereby preventing human-into-mouse xenogeneic GVHD (xGVHD). Either blocking PD1 expression on T(H)1 cells by small interfering RNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized T(H)1 cell differentiation during PDL1 challenge and restored the capacity of T(H)1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human T(H)1 cells to manifest in vivo plasticity, resulting in a T(reg) phenotype that severely impairs cell-mediated immunity. Converting human T(H)1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GVHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection.
Collapse
Affiliation(s)
- Shoba Amarnath
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cowley MJ, Weinberg A, Zammit NW, Walters SN, Hawthorne WJ, Loudovaris T, Thomas H, Kay T, Gunton JE, Alexander SI, Kaplan W, Chapman J, O'Connell PJ, Grey ST. Human islets express a marked proinflammatory molecular signature prior to transplantation. Cell Transplant 2012; 21:2063-78. [PMID: 22404979 DOI: 10.3727/096368911x627372] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the context of islet transplantation, experimental models show that induction of islet intrinsic NF-κB-dependent proinflammatory genes can contribute to islet graft rejection. Isolation of human islets triggers activation of the NF-κB and mitogen-activated kinase (MAPK) stress response pathways. However, the downstream NF-κB target genes induced in human islets during the isolation process are poorly described. Therefore, in this study, using microarray, bioinformatic, and RTqPCR approaches, we determined the pattern of genes expressed by a set of 14 human islet preparations. We found that isolated human islets express a panel of genes reminiscent of cells undergoing a marked NF-κB-dependent proinflammatory response. Expressed genes included matrix metallopeptidase 1 (MMP1) and fibronectin 1 (FN1), factors involved in tissue remodeling, adhesion, and cell migration; inflammatory cytokines IL-1β and IL-8; genes regulating cell survival including A20 and ATF3; and notably high expression of a set of chemokines that would favor neutrophil and monocyte recruitment including CXCL2, CCL2, CXCL12, CXCL1, CXCL6, and CCL28. Of note, the inflammatory profile of isolated human islets was maintained after transplantation into RAG(-/-) recipients. Thus, human islets can provide a reservoir of NF-κB-dependent inflammatory factors that have the potential to contribute to the anti-islet-graft immune response. To test this hypothesis, we extracted rodent islets under optimal conditions, forced activation of NF-κB, and transplanted them into allogenic recipients. These NF-κB activated islets not only expressed the same chemokine profile observed in human islets but also struggled to maintain normoglycemia posttransplantation. Further, NF-κB-activated islets were rejected with a faster tempo as compared to non-NF-κB-activated rodent islets. Thus, isolated human islets can make cell autonomous contributions to the ensuing allograft response by elaborating inflammatory factors that contribute to their own demise. These data highlight the potential importance of islet intrinsic proinflammatory responses as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark J Cowley
- Peter Wills Bioinformatics Centre, Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mechanisms of indirect acute lung injury: a novel role for the coinhibitory receptor, programmed death-1. Ann Surg 2012; 255:158-64. [PMID: 21997806 DOI: 10.1097/sla.0b013e31823433ca] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the contribution of programmed death receptor (PD)-1 in the morbidity and mortality associated with the development of indirect-acute lung injury. BACKGROUND The immune cell interaction(s) leading to indirect-acute lung injury are not completely understood. In this respect, we have recently shown that the murine cell surface coinhibitory receptor, PD-1, has a role in septic morbidity/mortality that is mediated in part through the effects on the innate immune arm. However, it is not know if PD-1 has a role in the development of indirect-acute lung injury and how this may be mediated at a cellular level. METHODS PD-1 -/- mice were used in a murine model of indirect-acute lung injury (hemorrhagic shock followed 24 hours after with cecal ligation and puncture-septic challenge) and compared to wild type controls. Groups were initially compared for survival and subsequently for markers of pulmonary inflammation, influx of lymphocytes and neutrophils, and expression of PD-1 and its ligand-PD-L1. In addition, peripheral blood leukocytes of patients with indirect-acute lung injury were examined to assess changes in cellular PD-1 expression relative to mortality. RESULTS PD-1 -/- mice showed improved survival compared to wild type controls. In the mouse lung, CD4+, CD11c+, and Gr-1+ cells showed increased PD-1 expression in response to indirect-acute lung injury. However, although the rise in bronchial alveolar lavage fluid protein concentrations, lung IL-6, and lung MCP-1 were similar between PD-1 -/- and wild type animals subjected to indirect acute lung injury, the PD-1 -/- animals that were subjected to shock/septic challenge had reduced CD4:CD8 ratios, TNF-α levels, MPO activity, and Caspase 3 levels in the lung. Comparatively, we observed that humans, who survived their acute lung injury, had significantly lower expression of PD-1 on T cells. CONCLUSIONS PD-1 expression contributes to mortality after the induction of indirect-acute lung injury and this seems to be associated with modifications in the cellular and cytokine profiles in the lung.
Collapse
|
35
|
Affiliation(s)
- Hye-Jung Yeom
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Curie Ahn
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
36
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
37
|
Vaithilingam V, Quayum N, Joglekar MV, Jensen J, Hardikar AA, Oberholzer J, Guillemin GJ, Tuch BE. Effect of alginate encapsulation on the cellular transcriptome of human islets. Biomaterials 2011; 32:8416-25. [PMID: 21889795 DOI: 10.1016/j.biomaterials.2011.06.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
Encapsulation of human islets may prevent their immune rejection when transplanted into diabetic recipients. To assist in understanding why clinical outcomes with encapsulated islets were not ideal, we examined the effect of encapsulation on their global gene (mRNA) and selected miRNAs (non-coding (nc)RNA) expression. For functional studies, encapsulated islets were transplanted into peritoneal cavity of diabetic NOD-SCID mice. Genomics analysis and transplantation studies demonstrate that islet origin and isolation centres are a major source of variation in islet quality. In contrast, tissue culture and the encapsulation process had only a minimal effect, and did not affect islet viability. Microarray analysis showed that as few as 29 genes were up-regulated and 2 genes down-regulated (cut-off threshold 0.1) by encapsulation. Ingenuity analysis showed that up-regulated genes were involved mostly in inflammation, especially chemotaxis, and vascularisation. However, protein expression of these factors was not altered by encapsulation, raising doubts about the biosignificance of the gene changes. Encapsulation had no effect on levels of islet miRNAs. In vivo studies indicate differences among the centres in the quality of the islets isolated. We conclude that microencapsulation of human islets with barium alginate has little effect on their transcriptome.
Collapse
|
38
|
Shahaf G, Moser H, Ozeri E, Mizrahi M, Abecassis A, Lewis EC. α-1-antitrypsin gene delivery reduces inflammation, increases T-regulatory cell population size and prevents islet allograft rejection. Mol Med 2011; 17:1000-11. [PMID: 21670848 DOI: 10.2119/molmed.2011.00145] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/27/2011] [Indexed: 01/12/2023] Open
Abstract
Antiinflammatory clinical-grade, plasma-derived human α-1 antitrypsin (hAAT) protects islets from allorejection as well as from autoimmune destruction. hAAT also interferes with disease progression in experimental autoimmune encephalomyelitis (EAE) and in collagen-induced arthritis (CIA) mouse models. hAAT increases IL-1 receptor antagonist expression in human mononuclear cells and T-regulatory (Treg) cell population size in animal models. Clinical-grade hAAT contains plasma impurities, multiple hAAT isoforms and various states of inactive hAAT. We thus wished to establish islet-protective activities and effect on Treg cells of plasmid-derived circulating hAAT in whole animals. Islet function was assessed in mice that received allogeneic islet transplants after mice were given hydrodynamic tail-vein injection with pEF-hAAT, a previously described Epstein-Barr virus (EBV) plasmid construct containing the EBV nuclear antigen 1 (EBNA1) and the family of repeat EBNA1 binding site components (designated "EF") alongside the hAAT gene. Sera collected from hAAT-expressing mice were added to lipopolysaccharide (LPS)-stimulated macrophages to assess macrophage responsiveness. Also, maturation of peritoneal cells from hAAT-expressing mice was evaluated. hAAT-expressing mice accepted islet allografts (n = 11), whereas phosphate-buffered saline-injected animals (n = 11), as well as mice treated with truncated-hAAT-plasmid (n = 6) and untreated animals (n = 20) rapidly rejected islet allografts. In hAAT-expressing animals, local Treg cells were abundant at graft sites, and the IL-1 receptor antagonist was elevated in grafts and circulation. Sera from hAAT-expressing mice, but not control mice, inhibited macrophage responses. Finally, peritoneal cells from hAAT-expressing mice exhibited a semimature phenotype. We conclude that plasmid-derived circulating hAAT protects islet allografts from acute rejection, and human plasma impurities are unrelated to islet protection. Future studies may use this in vivo approach to examine the structure-function characteristics of the protective activities of AAT by manipulation of the hAAT plasmid.
Collapse
Affiliation(s)
- Galit Shahaf
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | |
Collapse
|
39
|
Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci 2011; 1217:45-59. [DOI: 10.1111/j.1749-6632.2010.05919.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Torres J, Tamimi F, Alkhraisat MH, Manchón A, Linares R, Prados-Frutos JC, Hernández G, López Cabarcos E. Platelet-rich plasma may prevent titanium-mesh exposure in alveolar ridge augmentation with anorganic bovine bone. J Clin Periodontol 2010. [PMID: 20796106 DOI: 10.1111/j.1600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Bone augmentation with the titanium-mesh (Ti-mesh) technique is susceptible to a large rate of complications such as morbidity of bone graft donor site, and mesh exposure to the oral cavity. The purpose of this study was to evaluate the effectiveness of anorganic bovine bone (ABB) in alveolar bone augmentation with the Ti-mesh technique. In addition, we investigated the effect of platelet-rich plasma (PRP) in preventing mesh exposure by using it to cover the Ti-mesh. PATIENTS AND METHODS Patients included in the clinical trial were randomly allocated by a blinded assistant into two groups. The 30 patients recruited for this study underwent 43 alveolar bone augmentation with the Ti-mesh technique using ABB as graft material in all of them. In 15 patients, the Ti-meshes were covered with PRP (PRP group) whereas in the other 15 the Ti-meshes were not (control group). After 6 months, patients were called for clinical, radiographic, and histological evaluation, and implant placement surgery. A total of 97 implants were placed in the augmented bone and their evolution was followed up for a period of 24 months. RESULTS Significant differences were found between the two study groups in terms of complications and bone formation. In the control group, 28.5% of the cases suffered from mesh exposure, while in the PRP group, no exposures were registered. Radiographic analysis revealed that bone augmentation was higher in the PRP group than in the control group. Overall, 97.3% of implants placed in the control group and 100% of those placed in the PRP group were successful during the monitoring period. We suggest that the positive effect of PRP on the Ti-mesh technique is due to its capacity to improve soft tissue healing, thereby protecting the mesh and graft material secured beneath the gingival tissues. CONCLUSIONS Alveolar bone augmentation using ABB alone in the Ti-mesh technique is sufficient for implant rehabilitation. Besides, covering the Ti-meshes with PRP was a determining factor in avoiding mesh exposure. Ti-mesh exposure provoked significant bone loss, but in most cases it did not affect the subsequent placement of implants.
Collapse
Affiliation(s)
- Jesús Torres
- Ciencias de la Salud III, Universidad Rey Juan Carlos, Alcorcón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mita A, Ricordi C, Messinger S, Miki A, Misawa R, Barker S, Molano RD, Haertter R, Khan A, Miyagawa S, Pileggi A, Inverardi L, Alejandro R, Hering BJ, Ichii H. Antiproinflammatory effects of iodixanol (OptiPrep)-based density gradient purification on human islet preparations. Cell Transplant 2010; 19:1537-46. [PMID: 20719078 PMCID: PMC3777530 DOI: 10.3727/096368910x516600] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Islet isolation and purification using a continuous density gradient may reduce the volume of tissue necessary for implantation into patients, therefore minimizing the risks associated with intraportal infusion in islet transplantation. On the other hand, the purification procedure might result in a decreased number of islets recovered due to various stresses such as exposure to cytokine/chemokine. While a Ficoll-based density gradient has been widely used in purification for clinical trials, purification with iodixanol (OptiPrep) has been recently reported in islet transplant series with successful clinical outcomes. The aim of the current study was to compare the effects of the purification method using OptiPrep-based and Ficoll-based density gradients. Human islet isolations were performed using a modified automated method. After the digestion phase, pre-purification digests were divided into two groups and purified using a semiautomated cell processor with either a continuous Ficoll- or OptiPrep-based density gradient. The quantity, purity, viability, and cellular composition of islet preparations from each group were assessed. Cytokine/chemokine and tissue factor production from islet preparations after 48-h culture were also measured. Although islet purity, post-purification IEQ, islet recovery rate, FDA/PI, and fractional β-cell viability were comparable, β-cell mass after 48-h culture significantly improved in the OptiPrep group when compared to the Ficoll group. The production of cytokine/chemokine including IL-1β, TNF-α, IFN-γ, IL-6, IL-8, MIP-1β, MCP-1, and RANTES but not tissue factor from the OptiPrep group was significantly lower during 48-h culture after isolation. Each preparation contained the similar number of ductal cells and macrophages. Endotoxin level in both gradient medium was also comparable. The purification method using OptiPrep gradient media significantly reduced cytokine/chemokine production but not tissue factor from human islet preparations and improved β-cell survival during pretransplant culture. Our results suggest that the purification method using OptiPrep gradient media may be of assistance in increasing successful islet transplantation.
Collapse
Affiliation(s)
- A Mita
- Cell Transplant Center, Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Regulatory T cells (Tregs) and the PD-1: PD-ligand (PD-L) pathway are both critical to terminating immune responses. Elimination of either can result in the breakdown of tolerance and the development of autoimmunity. The PD-1: PD-L pathway can thwart self-reactive T cells and protect against autoimmunity in many ways. In this review, we highlight how PD-1 and its ligands defend against potentially pathogenic self-reactive effector T cells by simultaneously harnessing two mechanisms of peripheral tolerance: (i) the promotion of Treg development and function and (ii) the direct inhibition of potentially pathogenic self-reactive T cells that have escaped into the periphery. Treg cells induced by the PD-1 pathway may also assist in maintaining immune homeostasis, keeping the threshold for T-cell activation high enough to safeguard against autoimmunity. PD-L1 expression on non-hematopoietic cells as well as hematopoietic cells endows PD-L1 with the capacity to promote Treg development and enhance Treg function in lymphoid organs and tissues that are targets of autoimmune attack. At sites where transforming growth factor-beta is present (e.g. sites of immune privilege or inflammation), PD-L1 may promote the de novo generation of Tregs. When considering the consequences of uncontrolled immunity, it would be therapeutically advantageous to manipulate Treg development and sustain Treg function. Thus, this review also discusses how the PD-1 pathway regulates a number of autoimmune diseases and the therapeutic potential of PD-1: PD-L modulation.
Collapse
Affiliation(s)
- Loise M. Francisco
- Departments of Pathology, Harvard Medical School, Boston, MA, USA
- Brigham & Women’s Hospital, Boston, MA, USA
| | - Peter T. Sage
- Departments of Pathology, Harvard Medical School, Boston, MA, USA
| | - Arlene H. Sharpe
- Departments of Pathology, Harvard Medical School, Boston, MA, USA
- Brigham & Women’s Hospital, Boston, MA, USA
| |
Collapse
|
43
|
Melzi R, Mercalli A, Sordi V, Cantarelli E, Nano R, Maffi P, Sitia G, Guidotti LG, Secchi A, Bonifacio E, Piemonti L. Role of CCL2/MCP-1 in islet transplantation. Cell Transplant 2010; 19:1031-46. [PMID: 20546673 DOI: 10.3727/096368910x514639] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High levels of donor-derived CCL2 have been associated with poor islet allograft outcome in patients with type 1 diabetes. The aim of our work was to determine whether CCL2 secreted by the islet has independent proinflammatory effects that influence engraftment and graft acceptance. Both in mice and humans CCL2 is significantly positively associated with other cytokines/chemokines, in particular with the highly released "proinflammatory" IL-6 and CXCL8 or CXCL1. Transplantation of CCL2-/- islets into syngenic recipients did not improve the transplant function. Transplantation of islets into CCL2-/- syngenic recipients led to a significant improvement of transplant function and partial abrogation of local hepatic inflammation. When evaluated in human islets CCL2 release was strongly related to the immediate local inflammatory response in the liver and impacted short-term human islet function dependently by the induced inflammatory response and independently by the immunosuppressive therapy. The data showed that islet CCL2 release is a sign of "inflamed" islets without having a direct role in graft failure. On the other hand, a causal effect for developing detrimental proinflammatory conditions after transplant was proved for recipient CCL2. Strategies to selectively decrease recipient, but not donor, CCL2 release may increase the success of islet transplantation.
Collapse
Affiliation(s)
- Raffaella Melzi
- Beta Cell Biology Unit, Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vaithilingam V, Oberholzer J, Guillemin GJ, Tuch BE. The humanized NOD/SCID mouse as a preclinical model to study the fate of encapsulated human islets. Rev Diabet Stud 2010; 7:62-73. [PMID: 20703439 DOI: 10.1900/rds.2010.7.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite encouraging results in animal models, the transplantation of microencapsulated islets into humans has not yet reached the therapeutic level. Recent clinical trials using microencapsulated human islets in barium alginate showed the presence of dense fibrotic overgrowth around the microcapsules with no viable islets. The major reason for this is limited understanding of what occurs when encapsulated human islets are allografted. This warrants the need for a suitable small animal model. In this study, we investigated the usefulness of NOD/SCID mice reconstituted with human PBMCs (called humanized NOD/SCID mice) as a preclinical model. In this model, human T cell engraftment could be achieved, and CD45+ cells were observed in the spleen and peripheral blood. Though the engrafted T cells caused a small fibrotic overgrowth around the microencapsulated human islets, this failed to stop the encapsulated islets from functioning in the diabetic recipient mice. The ability of encapsulated islets to survive in this mouse model might partly be attributed to the presence of Th2 cytokines IL-4 and IL-10, which are known to induce graft tolerance. In conclusion, this study showed that the hu-NOD/SCID mouse is not a suitable preclinical model to study the allograft rejection mechanisms of encapsulated human islets. As another result, the maintained viability of transplanted islets on the NOD/SCID background emphasized a critical role of protective mechanisms in autoimmune diabetes transplanted subjects due to specific immunoregulatory effects provided by IL-4 and IL-10.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Diabetes Transplant Unit, Prince of Wales Hospital and University of New South Wales, and Australian Foundation for Diabetes Research, Sydney, Australia
| | | | | | | |
Collapse
|
45
|
Gelman AE, Okazaki M, Sugimoto S, Li W, Kornfeld CG, Lai J, Richardson SB, Kreisel FH, Huang HJ, Tietjens JR, Zinselmeyer BH, Patterson GA, Miller MJ, Krupnick AS, Kreisel D. CCR2 regulates monocyte recruitment as well as CD4 T1 allorecognition after lung transplantation. Am J Transplant 2010; 10:1189-99. [PMID: 20420631 PMCID: PMC3746750 DOI: 10.1111/j.1600-6143.2010.03101.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Graft rejection remains a formidable problem contributing to poor outcomes after lung transplantation. Blocking chemokine pathways have yielded promising results in some organ transplant systems. Previous clinical studies have demonstrated upregulation of CCR2 ligands following lung transplantation. Moreover, lung injury is attenuated in CCR2-deficient mice in several inflammatory models. In this study, we examined the role of CCR2 in monocyte recruitment and alloimmune responses in a mouse model of vascularized orthotopic lung transplantation. The CCR2 ligand MCP-1 is upregulated in serum and allografts following lung transplantation. CCR2 is critical for the mobilization of monocytes from the bone marrow into the bloodstream and for the accumulation of CD11c(+) cells within lung allografts. A portion of graft-infiltrating recipient CD11c(+) cells expresses both recipient and donor MHC molecules. Two-photon imaging demonstrates that recipient CD11c(+) cells are associated with recipient T cells within the graft. While recipient CCR2 deficiency does not prevent acute lung rejection and is associated with increased graft infiltration by T cells, it significantly reduces CD4(+) T(h)1 indirect and direct allorecognition. Thus, CCR2 may be a potential target to attenuate alloimmune responses after lung transplantation.
Collapse
Affiliation(s)
- A. E. Gelman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - M. Okazaki
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - S. Sugimoto
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - W. Li
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - C. G. Kornfeld
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - J. Lai
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - S. B. Richardson
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - F. H. Kreisel
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - H. J. Huang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - J. R. Tietjens
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - B. H. Zinselmeyer
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - G. A. Patterson
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - M. J. Miller
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - A. S. Krupnick
- Department of Surgery, Washington University in St. Louis, St. Louis, MO
| | - D. Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, MO,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO,Corresponding author: Daniel Kreisel,
| |
Collapse
|
46
|
Zhao Q. Dual targeting of CCR2 and CCR5: therapeutic potential for immunologic and cardiovascular diseases. J Leukoc Biol 2010; 88:41-55. [PMID: 20360402 DOI: 10.1189/jlb.1009671] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A cardinal feature of inflammation is the tissue recruitment of leukocytes, a process that is mediated predominantly by chemokines via their receptors on migrating cells. CCR2 and CCR5, two CC chemokine receptors, are important players in the trafficking of monocytes/macrophages and in the functions of other cell types relevant to disease pathogenesis. This review provides a brief overview of the biological actions of CCR2 and CCR5 and a comprehensive summary of published data that demonstrate the involvement of both receptors in the pathogenesis of immunologic diseases (RA, CD, and transplant rejection) and cardiovascular diseases (atherosclerosis and AIH). In light of the potential for functional redundancy of chemokine receptors in mediating leukocyte trafficking and the consequent concern over insufficient efficacy offered by pharmacologically inhibiting one receptor, this review presents evidence supporting dual targeting of CCR2 and CCR5 as a more efficacious strategy than targeting either receptor alone. It also examines potential safety issues associated with such dual targeting.
Collapse
Affiliation(s)
- Qihong Zhao
- Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543, USA.
| |
Collapse
|
47
|
Matz M, Weber U, Mashreghi MF, Lorkowski C, Ladhoff J, Kramer S, Neumayer HH, Budde K. Effects of the new immunosuppressive agent AEB071 on human immune cells. Nephrol Dial Transplant 2010; 25:2159-67. [PMID: 20100729 DOI: 10.1093/ndt/gfp775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED BACKGROUND. The novel immunosuppressive agent AEB071 is currently being evaluated for its capability to prevent rejection after kidney transplantation as a potential adjunct to calcineurin inhibitor-based regimen. AEB071 is a selective protein kinase C inhibitor and has been shown to be well tolerated in humans. We here present extensive in vitro studies that contribute to the understanding of AEB071 effects on human lymphocyte, natural killer (NK) cell and dendritic cell (DC) action. METHODS The impact of AEB071 on several T-cell activation and costimulatory markers was assessed. Furthermore, assays were performed to study the effect on T-cell proliferation and intracellular cytokine production. Additionally, the effect of AEB071 on DC maturation and their capacity to stimulate allogeneic T-cells was examined. Also, an evaluation of AEB071 effects on the lytic activity of human NK cells was performed. RESULTS We were able to show that T-cell proliferation and cytokine production rates are significantly reduced after AEB071 administration. Also, mitogen-induced T-cell activation characterized by expression levels of surface markers could be significantly inhibited. In contrast, the T-cell stimulatory capacity of AEB071-treated mature monocyte-derived DC (Mo-DC) is not reduced, and AEB071 administration does not prevent lipopolysaccharide (LPS)-induced Mo-DC maturation. It could be demonstrated that AEB071 significantly inhibited the cytotoxic activity of NK cells. CONCLUSIONS The promising immunosuppressive agent AEB071 has a strong impact on T-cell activation, proliferation and cytokine production as well as NK cell activity, but not DC maturation in vitro, and therefore, seems to function T-cell and NK cell specific via protein kinase C (PKC) inhibition.
Collapse
Affiliation(s)
- Mareen Matz
- Department of Nephrology, Universitätsmedizin Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheng X, Dai H, Wan N, Moore Y, Vankayalapati R, Dai Z. Interaction of programmed death-1 and programmed death-1 ligand-1 contributes to testicular immune privilege. Transplantation 2009; 87:1778-86. [PMID: 19543053 DOI: 10.1097/tp.0b013e3181a75633] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immune responses are tempered in immunologically privileged sites including the testis. Previous studies have shown that islet transplantation in the testis significantly prolongs islet allograft survival. However, mechanisms underlying testicular immune privilege and intratesticular allograft survival remain unclear. METHODS Allogeneic murine islets were transplanted in the testis. Programmed death-1 ligand-1 (PD-L1) expression was detected by immunohistochemstry and real-time polymerase chain reaction. Infiltrating T-cell proliferation was measured by bromodeoxyuridine uptakes, whereas their apoptosis was quantified by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling methods. Transgenic T cells were used to track allospecific memory T-cell generation. RESULTS We found that programmed death-1 (PD-1):PD-L1 negative costimulation is essential for prolonged survival of intratesticular islet allografts, as blocking PD-L1 or PD-1, but not PD-L2 and cytotoxic T-lymphocyte antigen 4, abrogated long-term survival of intratesticular islet allografts. As controls, blocking PD-1 or PD-L1 did not significantly accelerate the acute rejection of islet allografts transplanted under the renal capsule, a conventional islet-grafting site. We also found for the first time that PD-L1 is constitutively expressed mainly by spermatocytes and spermatids in seminiferous tubules of the testis. Moreover, infiltrating T cells underwent less vigorous proliferation but faster apoptosis in the testis than in the kidney. Blocking PD-1:PD-L1 costimulation largely abolished the suppression of T-cell proliferation and acceleration of T-cell apoptosis. Importantly, testicular immune privilege significantly suppressed the generation and proliferation of donor-specific memory CD8 T cells. CONCLUSIONS The constitutive expression of PD-L1 in the testis is an important mechanism underlying testicular immune privilege and long-term survival of intratesticular islet allografts.
Collapse
Affiliation(s)
- Xuyang Cheng
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX 75708, USA
| | | | | | | | | | | |
Collapse
|
49
|
Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009; 117:95-109. [PMID: 19566488 DOI: 10.1042/cs20080581] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many of the major diseases, including cardiovascular disease, are widely recognized as inflammatory diseases. MCP-1 (monocyte chemotactic protein-1) plays a critical role in the development of cardiovascular diseases. MCP-1, by its chemotactic activity, causes diapedesis of monocytes from the lumen to the subendothelial space where they become foam cells, initiating fatty streak formation that leads to atherosclerotic plaque formation. Inflammatory macrophages probably play a role in plaque rupture and the resulting ischaemic episode as well as restenosis after angioplasty. There is strong evidence that MCP-1 plays a major role in myocarditis, ischaemia/reperfusion injury in the heart and in transplant rejection. MCP-1 also plays a role in cardiac repair and manifests protective effects under certain conditions. Such protective effects may be due to the induction of protective ER (endoplasmic reticulum) stress chaperones by MCP-1. Under sustained ER stress caused by chronic exposure to MCP-1, the protection would break down resulting in the development of heart failure. MCP-1 is also involved in ischaemic angiogenesis. The recent advances in our understanding of the molecular mechanisms that might be involved in the roles that MCP-1 plays in cardiovascular disease are reviewed. The gene expression changes induced by the signalling events triggered by MCP-1 binding to its receptor include the induction of a novel zinc-finger protein called MCPIP (MCP-1-induced protein), which plays critical roles in the development of the pathophysiology caused by MCP-1 production. The role of the MCP-1/CCR2 (CC chemokine receptor 2) system in diabetes, which is a major risk factor for cardiovascular diseases, is also reviewed briefly. MCP-1/CCR2- and/or MCPIP-targeted therapeutic approaches to intervene in inflammatory diseases, including cardiovascular diseases, may be feasible.
Collapse
|
50
|
Le Bas-Bernardet S, Blancho G. Current cellular immunological hurdles in pig-to-primate xenotransplantation. Transpl Immunol 2009; 21:60-4. [DOI: 10.1016/j.trim.2008.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/09/2008] [Indexed: 12/13/2022]
|