1
|
Del Cornò M, Varì R, Scazzocchio B, Varano B, Masella R, Conti L. Dietary Fatty Acids at the Crossroad between Obesity and Colorectal Cancer: Fine Regulators of Adipose Tissue Homeostasis and Immune Response. Cells 2021; 10:cells10071738. [PMID: 34359908 PMCID: PMC8304920 DOI: 10.3390/cells10071738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.
Collapse
|
2
|
Giam YH, Shoemark A, Chalmers JD. Neutrophil dysfunction in bronchiectasis: an emerging role for immunometabolism. Eur Respir J 2021; 58:13993003.03157-2020. [DOI: 10.1183/13993003.03157-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Bronchiectasis is a heterogenous disease with multiple underlying causes. The pathophysiology is poorly understood but neutrophilic inflammation and dysfunctional killing of pathogens is believed to be key. There are, however, no licensed therapies for bronchiectasis that directly target neutrophilic inflammation. In this review, we discuss our current understanding of neutrophil dysfunction and therapeutic targeting in bronchiectasis. Immunometabolic reprogramming, a process through which inflammation changes inflammatory cell behaviour by altering intracellular metabolic pathways, is increasingly recognised across multiple inflammatory and autoimmune diseases. Here, we show evidence that much of the neutrophil dysfunction observed in bronchiectasis is consistent with immunometabolic reprogramming. Previous attempts at developing therapies targeting neutrophils have focused on reducing neutrophil numbers, resulting in increased frequency of infections. New approaches are needed and we propose that targeting metabolism could theoretically reverse neutrophil dysfunction and dysregulated inflammation. As an exemplar, 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation has already been shown to reverse phagocytic dysfunction and neutrophil extracellular trap (NET) formation in models of pulmonary disease. AMPK modulates multiple metabolic pathways, including glycolysis which is critical for energy generation in neutrophils. AMPK activators can reverse metabolic reprogramming and are already in clinical use and/or development. We propose the need for a new immunomodulatory approach, rather than an anti-inflammatory approach, to enhance bacterial clearance and reduce bronchiectasis disease severity.
Collapse
|
3
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
4
|
Das UN. Beneficial role of bioactive lipids in the pathobiology, prevention, and management of HBV, HCV and alcoholic hepatitis, NAFLD, and liver cirrhosis: A review. J Adv Res 2019; 17:17-29. [PMID: 31193303 PMCID: PMC6526165 DOI: 10.1016/j.jare.2018.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic damage and cirrhosis and associated hypoalbuminemia, non-alcoholic fatty liver disease (NAFLD), and alcoholic fatty liver disease (AFLD) are due to an imbalance between pro-inflammatory and anti-inflammatory bioactive lipids. Increased tumour necrosis factor (TNF)-α production induced by HBV and HCV leads to a polyunsaturated fatty acid (PUFA) deficiency and hypoalbuminemia. Albumin mobilizes PUFAs from the liver and other tissues and thus may aid in enhancing the formation of anti-inflammatory lipoxins, resolvins, protectins, maresins and prostaglandin E1 (PGE1) and suppressing the production of pro-inflammatory PGE2. As PUFAs exert anti-viral and anti-bacterial effects, the presence of adequate levels of PUFAs could inactivate HCV and HBV and prevent spontaneous bacterial peritonitis observed in cirrhosis. PUFAs, PGE1, lipoxins, resolvins, protectins, and maresins suppress TNF-α and other pro-inflammatory cytokines, exert cytoprotective effects, and modulate stem cell proliferation and differentiation to promote recovery following hepatitis, NAFLD and AFLD. Based on this evidence, it is proposed that the administration of albumin in conjunction with PUFAs and their anti-inflammatory products could be beneficial for the prevention of and recovery from NAFLD, hepatitis and cirrhosis of the liver. NAFLD is common in obesity, type 2 diabetes mellitus, and metabolic syndrome, suggesting that even these diseases could be due to alterations in the metabolism of PUFAs and other bioactive lipids. Hence, PUFAs and co-factors needed for their metabolism and albumin may be of benefit in the prevention and management of HBV, HCV, alcoholic hepatitis and NAFLD, and liver cirrhosis.
Collapse
|
5
|
Song W, Jiang R, Zhao C. Regulation of arachidonic acid in esophageal adenocarcinoma cells and tumor-infiltrating lymphocytes. Oncol Lett 2013; 5:1897-1902. [PMID: 23833663 PMCID: PMC3700846 DOI: 10.3892/ol.2013.1267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/24/2012] [Indexed: 12/26/2022] Open
Abstract
The generation and development of esophageal adenocarcinoma (EAC) are correlated with neuroimmunological factors. The aim of this study was to observe the effectiveness of the neurotransmitter arachidonic acid (AA) on two EAC cell lines, OE19 and SK-GT-4, as well as three isolated tumor-infiltrating lymphocytes (TIL1, 2 and 3). C-X-C chemokine receptor type 4 (CXCR-4) and tumor necrosis factor receptor 1 (TNFR1) expression, cell migration, necrosis, cytokine secretion and cytotoxicity of TILs were investigated. AA dose-dependently increased the migration of all cells. However, AA did not increase the percentage of cell death of the three TILs in the presence of a necrosis-inducing agent. AA dose-dependently increased the cytotoxicity of the three γδT cell-enriched TILs compared with the OE19 and SK-GT-4 cell lines. AA also dose-dependently increased the secretion of interferon-γ (IFN-γ) and TNF-β in TIL1 and 2. However, the cytokine secretion and cytotoxicity activity of TIL3 and γδT cell-enriched TIL3 were the lowest. Furthermore, the percentage of CD4+forkhead box p3 (Foxp3)+ regulatory T cells in TIL3 was the highest. The effect of AA on tumor cells and TILs is different. The degree of malignancy of the tumor and the ratio of regulatory T cells may be the main factors determining the function of AA.
Collapse
Affiliation(s)
- Wei Song
- Departments of Oncology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | | | | |
Collapse
|
6
|
Membrane lipidome reorganization correlates with the fate of neuroblastoma cells supplemented with fatty acids. PLoS One 2013; 8:e55537. [PMID: 23405167 PMCID: PMC3566009 DOI: 10.1371/journal.pone.0055537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Palmitic acid is known to be apoptotic for nervous cells but no data are available on membrane lipidome transformations occurring during its supplementation, although membrane lipids are clearly involved in the apoptotic signaling cascade. NB100 neuroblastoma cells were supplemented with palmitic acid and membrane fatty acids were isolated, derivatized and analysed by gas chromatography at defined time intervals. Parallely, cell viability, morphology, apoptosis, cPLA(2) and caspase activations were checked. Interestingly, under 150 µM supplementation the incorporation of palmitic acid was accompanied by the specific release of arachidonic acid. This event was timely correlated with cPLA(2) and caspases activations, and the time window of 60 minutes was envisaged for crucial membrane lipidome changes. The simultaneous addition of 50 µM oleic, 50 µM arachidonic and 150 µM palmitic acids to the cell cultures influenced membrane changes with suppression of caspase activation and maintenance of cell viability. These results highlight the role of the membrane asset with fatty acid remodeling and suggest the potential of lipid-based strategies for influencing cell response and fate in human diseases, such as neurodegenerative disorders or tumours.
Collapse
|
7
|
Wu H, Chen Y, Winnall WR, Phillips DJ, Hedger MP. Regulation of activin A release from murine bone marrow-derived neutrophil precursors by tumour necrosis factor-α and insulin. Cytokine 2013; 61:199-204. [DOI: 10.1016/j.cyto.2012.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/06/2012] [Accepted: 09/23/2012] [Indexed: 12/13/2022]
|
8
|
Mañé J, Pedrosa E, Lorén V, Ojanguren I, Fluvià L, Cabré E, Rogler G, Gassull MA. Partial replacement of dietary (n-6) fatty acids with medium-chain triglycerides decreases the incidence of spontaneous colitis in interleukin-10-deficient mice. J Nutr 2009; 139:603-10. [PMID: 19126671 DOI: 10.3945/jn.108.101170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enteral nutrition has a primary therapeutic effect in active Crohn's disease. It is unknown which nutrient(s) account for this action, but a role for both the amount and type of dietary fat has been postulated. Some clinical and experimental data suggest that medium-chain triglycerides (MCT) may reduce intestinal inflammation. We aimed to assess the effect of replacing part of the dietary fat with MCT on the incidence and severity of colitis in interleukin (IL)-10(-/-) mice under specific pathogen-free conditions. Twenty-four IL-10(-/-) 4-wk-old mice were randomized to receive a control diet based on sunflower oil [(n-6) fatty acids (FA)] and an experimental isocaloric, isonitrogenous diet with 50% sunflower and 50% coconut oil (MCT diet). When the mice were 12 wk old, they were killed and the colon was examined for the presence of colitis, lymphocyte subpopulations and apoptosis, ex vivo cytokine production in supernatant of colon explants, toll-like receptor (TLR)-2 and TLR-9 mRNA, and FA profile in colonic tissue homogenates. Colitis incidence was lower in the IL-10(-/-) mice fed the MCT diet (1/12) than in the mice fed the control diet (8/12; P = 0.03). The histological damage score was also lower in the former (P < 0.0005). Feeding the MCT diet resulted in fewer total and apoptotic intraepithelial CD3+ and lamina propria CD3+CD4+ lymphocytes, as well as downregulated production of IL-6 and interferon-gamma, and reduced TLR-9 mRNA. We conclude that partial replacement of dietary (n-6) FA with MCT decreases the incidence of colitis in a model of spontaneous intestinal inflammation and provide experimental arguments for a possible primary therapeutic effect of MCT in human Crohn's disease.
Collapse
Affiliation(s)
- Josep Mañé
- Health Sciences Research Institute, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kawakami Y, Okada H, Murakami Y, Kawakami T, Ueda Y, Kunii D, Sakamoto Y, Shiratori Y, Okita M. Dietary intake, neutrophil fatty acid profile, serum antioxidant vitamins and oxygen radical absorbance capacity in patients with ulcerative colitis. J Nutr Sci Vitaminol (Tokyo) 2007; 53:153-9. [PMID: 17616003 DOI: 10.3177/jnsv.53.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nutrition may play an important role in the pathogenesis and treatment of ulcerative colitis. Several studies suggest an association between dietary factors and the onset of ulcerative colitis; however, only few studies have examined the relationship between dietary intake and relapse of ulcerative colitis. The aim of this study was to assess the dietary intake and antioxidative capacity of ulcerative colitis patients and to elucidate the efficacy of dietary therapy for ulcerative colitis. Dietary intake, fatty acid composition of phospholipids in plasma and neutrophils, serum fat-soluble vitamin levels, and oxygen radical absorbance capacity were analyzed in 29 ulcerative colitis patients (7 males and 22 females), who were treated at the Department of Gastroenterology, Okayama University Hospital. Total fat intake, fat energy ratio and linoleic acid intake were significantly lower, while protein and carbohydrate intakes were significantly higher, in the patients than age- and sex-matched controls. In the neutrophil phospholipids of ulcerative colitis patients, significantly higher levels of linoleic aicd and arachidonic acid and a lower level of eicosapentaenoic acid were observed. The concentrations of serum retinol and beta-carotene but not alpha-tocopherol were significantly lower and serum oxygen radical absorbance capacity was also lower than in the controls. Significant correlations between serum oxygen radical absorbance capacity and retinol (r = 0.567, p = 0.0031), alpha-tocopherol (r = 0.560, p = 0.0036) and beta-carotene (r = 0.440, p = 0.0279) concentrations were observed in the ulcerative colitis patients. A diet restricting the intake of linoleic acid and supplemented with eicosapentaenoic acid and antioxidative vitamins may be recommendable for the nutritional management of ulcerative colitis patients.
Collapse
Affiliation(s)
- Yuko Kawakami
- Department of Human Nutrition, Chugokugakuen University, Okayama 701-0197, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Martins de Lima T, Gorjão R, Hatanaka E, Cury-Boaventura MF, Portioli Silva EP, Procopio J, Curi R. Mechanisms by which fatty acids regulate leucocyte function. Clin Sci (Lond) 2007; 113:65-77. [PMID: 17555405 DOI: 10.1042/cs20070006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fatty acids (FAs) have been shown to alter leucocyte function and thus to modulate inflammatory and immune responses. In this review, the effects of FAs on several aspects of lymphocyte, neutrophil and macrophage function are discussed. The mechanisms by which FAs modulate the production of lipid mediators, activity of intracellular signalling pathways, activity of lipid-raft-associated proteins, binding to TLRs (Toll-like receptors), control of gene expression, activation of transcription factors, induction of cell death and production of reactive oxygen and nitrogen species are described in this review. The rationale for the use of specific FAs to treat patients with impaired immune function is explained. Substantial improvement in the therapeutic usage of FAs or FA derivatives may be possible based on an improvement in the understanding of the precise molecular mechanisms of action with respect to the different leucocyte types and outcome with respect to the inflammatory responses.
Collapse
Affiliation(s)
- Thais Martins de Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Moghaddami N, Irvine J, Gao X, Grover PK, Costabile M, Hii CS, Ferrante A. Novel action of n-3 polyunsaturated fatty acids: inhibition of arachidonic acid-induced increase in tumor necrosis factor receptor expression on neutrophils and a role for proteases. ACTA ACUST UNITED AC 2007; 56:799-808. [PMID: 17328054 DOI: 10.1002/art.22432] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Neutrophils and tumor necrosis factor (TNF) play important roles in the pathogenesis of rheumatoid arthritis (RA). Modulation of TNF receptors (TNFRs) may contribute to the regulation of tissue damage, and n-6 polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) can increase the expression of TNFRI and TNFRII on neutrophils. Because the n-3 PUFAs are antiinflammatory in RA, we examined whether, as a novel mechanism of action, n-3 PUFAs can antagonize the AA-induced increase in TNFR expression. METHODS Human neutrophils were treated with PUFAs and examined for changes in surface expression of TNFRs by flow cytometry. Translocation of protein kinase C (PKC) and activation of ERK-1/2 MAPK were determined by Western blotting. Intracellular calcium mobilization was measured in Fura 2-loaded cells by luminescence spectrometry. RESULTS Pretreatment of neutrophils with nanomolar levels of n-3 PUFAs, eicosapentaenoic acid, or docosahexaenoic acid led to a marked inhibition of the AA-induced up-regulation of TNFRs I and II. Such pretreatment, however, did not prevent AA from stimulating the activities of PKC and ERK-1/2, which is required for the actions of AA or its ability to mobilize Ca(2+). Nevertheless, treatment with n-3 PUFAs caused the stimulation of serine proteases that could cleave the TNFRs. CONCLUSION These findings suggest a mechanism by which the n-3 PUFAs inhibit the inflammatory response in RA, by regulating the ability of AA to increase TNFR expression. These results help fill the gaps in our knowledge regarding the mechanisms of action of n-3 PUFAs, thus allowing us to make specific recommendations for the use of n-3 PUFAs in the regulation of inflammatory diseases.
Collapse
Affiliation(s)
- Nahid Moghaddami
- Children, Youth and Women's Health Services, and University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Reiss I, Kuntz S, Schmidt R, Kunz C, Gortner L, Rudloff S. Effect of pulmonary surfactant on TNF-α-activated endothelial cells and neutrophil adhesion in vitro. Immunobiology 2004; 209:235-44. [PMID: 15518335 DOI: 10.1016/j.imbio.2004.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulmonary surfactant given to infants and adults with respiratory failure is metabolized and recycled to a large extent. A small proportion also enters the circulation in cases of increased permeability of the alveolar-capillary membrane. We therefore investigated whether exogenous surfactants such as a natural bovine (natSF) or a synthetic (synSF) preparation had an impact on inflammatory conditions involving the adhesion of neutrophils to endothelial cells. Human umbilical cord vein endothelial cells (HUVEC) were plated on coverslips until confluence, activated by tumor necrosis factor-alpha and incubated with or without surfactant in the media. Human neutrophils passed the HUVEC layer in a flow chamber and interactions were visualized using a video microscope. To test if surfactant affected the expression of cell adhesion molecules, RT-PCR analyses were performed for E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Using concentrations between 50 and 300 microg/ml of surfactant in the pre-incubation media the number of adherent neutrophils increased by 10-20% at the higher concentration of the natSF (*P < 0.05) whereas the synSF had no effect. Increased neutrophil adhesion was associated with a significant up-regulation of mRNA levels for E-selectin and VCAM-1; mRNA levels for ICAM-1, however, were not affected by the presence of surfactant. These observations indicate that natSF but not synSF might have pro-inflammatory effects when higher amounts of the exogenous dose reach the circulation. This might be explained by different fatty acid profiles, e.g. the presence of arachidonic acid in the natSF or higher concentrations of surfactant-associated protein-C in the synSF.
Collapse
Affiliation(s)
- Irwin Reiss
- Center of Pediatrics, Feulgenstrasse 12, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|