1
|
Donen G, Milad N, Bernatchez P. Humanization of the mdx Mouse Phenotype for Duchenne Muscular Dystrophy Modeling: A Metabolic Perspective. J Neuromuscul Dis 2023; 10:1003-1012. [PMID: 37574742 PMCID: PMC10657711 DOI: 10.3233/jnd-230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy (MD) that is characterized by early muscle wasting and lethal cardiorespiratory failure. While the mdx mouse is the most common model of DMD, it fails to replicate the severe loss of muscle mass and other complications observed in patients, in part due to the multiple rescue pathways found in mice. This led to several attempts at improving DMD animal models by interfering with these rescue pathways through double transgenic approaches, resulting in more severe phenotypes with mixed relevance to the human pathology. As a growing body of literature depicts DMD as a multi-system metabolic disease, improvements in mdx-based modeling of DMD may be achieved by modulating whole-body metabolism instead of muscle homeostasis. This review provides an overview of the established dual-transgenic approaches that exacerbate the mild mdx phenotype by primarily interfering with muscle homeostasis and highlights how advances in DMD modeling coincide with inducing whole-body metabolic changes. We focus on the DBA2/J strain-based D2.mdx mouse with heightened transforming growth factor (TGF)-β signaling and the dyslipidemic mdx/apolipoprotein E (mdx/ApoE) knock-out (KO) mouse, and summarize how these novel models emulate the metabolic changes observed in DMD.
Collapse
Affiliation(s)
| | | | - Pascal Bernatchez
- Correspondence to: Dr. Pascal Bernatchez, Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, 2176 Health Sciences mall, room 217, Vancouver BC, V6T 1Z3, Canada. Tel.: +1 604 806 8346 /Ext.66060; E-mail:
| |
Collapse
|
2
|
Evidence of functional Cd94 polymorphism in a free-living house mouse population. Immunogenetics 2018; 71:321-333. [PMID: 30535636 DOI: 10.1007/s00251-018-01100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
The CD94 receptor, expressed on natural killer (NK) and CD8+ T cells, is known as a relatively non-polymorphic receptor with orthologues in humans, other primates, cattle, and rodents. In the house mouse (Mus musculus), a single allele is highly conserved among laboratory strains, and reports of allelic variation in lab- or wild-living mice are lacking, except for deficiency in one lab strain (DBA/2J). The non-classical MHC-I molecule Qa-1b is the ligand for mouse CD94/NKG2A, presenting alternative non-americ fragment of leader peptides (Qa-1 determinant modifier (Qdm)) from classical MHC-I molecules. Here, we report a novel allele identified in free-living house mice captured in Norway, living among individuals carrying the canonical Cd94 allele. The novel Cd94LocA allele encodes 12 amino acid substitutions in the extracellular lectin-like domain. Flow cytometric analysis of primary NK cells and transfected cells indicates that the substitutions prevent binding of CD94 mAb and Qa-1b/Qdm tetramers. Our data further indicate correlation of Cd94 polymorphism with the two major subspecies of house mice in Europe. Together, these findings suggest that the Cd94LocA/NKG2A heterodimeric receptor is widely expressed among M. musculus subspecies musculus, with ligand-binding properties different from mice of subspecies domesticus, such as the C57BL/6 strain.
Collapse
|
3
|
Segregation of a spontaneous Klrd1 (CD94) mutation in DBA/2 mouse substrains. G3-GENES GENOMES GENETICS 2014; 5:235-9. [PMID: 25520036 PMCID: PMC4321031 DOI: 10.1534/g3.114.015164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current model DBA/2J (D2J) mice lack CD94 expression due to a deletion spanning the last coding exon of the Klrd1 gene that occurred in the mid- to late 1980s. In contrast, DBA/2JRj (D2Rj) mice, crosses derived from DBA/2J before 1984, and C57BL/6J (B6) mice lack the deletion and have normal CD94 expression. For example, BXD lines (BXD1–32) generated in the 1970s by crossing B6 and D2J do not segregate for the exonic deletion and have high expression, whereas BXD lines 33 and greater were generated after 1990 are segregating for the deletion and have highly variable Klrd1 expression. We performed quantitative trait locus analysis of Klrd1 expression by using BXD lines with different generation times and found that the expression difference in Klrd1 in the later BXD set is driven by a strong cis-acting expression quantitative trait locus. Although the Klrd1/CD94 locus is essential for mousepox resistance, the genetic variation among D2 substrains and the later set of BXD strains is not associated with susceptibility to the Influenza A virus PR8 strain. Substrains with nearly identical genetic backgrounds that are segregating functional variants such as the Klrd1 deletion are useful genetic tools to investigate biological function.
Collapse
|
4
|
Abstract
Abstract
Immune responses lead to expression of immunoregulatory molecules on T cells, including natural killer (NK) receptors, such as CD94/NKG2A on CD8+ T cells; these receptors restrain CD8+ responses, thereby preventing T-cell exhaustion in chronic infections and limiting immunopathology. Here, we examined the requirements for inducing CD94/NKG2A on T cells responding to antigen. In vitro, moderate induction of CD94/NKG2A expression occurred after exposure of naive CD8+ (but not CD4+) cells to CD3 ligation or specific peptide. Surprisingly, expression was inhibited by CD28/B7 costimulation. Such inhibition applied only to CD94/NKG2A and not other NK receptors (NKG2D) and was mediated by IL-2. Inhibition by IL-2 occurred via a NFAT cell-independent component of the calcineurin pathway, and CD94/NKG2A induction was markedly enhanced in the presence of calcineurin blockers, such as FK506 or using calcineurin-deficient T cells, both in vitro and in vivo. In addition to CD28-dependent inhibition by IL-2, CD94/NKG2A expression was impaired by several other cytokines (IL-4, IL-23, and transforming growth factor-β) but enhanced by others (IL-6, IL-10, and IL-21). The complex interplay between these various stimuli may account for the variable expression of CD94/NKG2A during responses to different pathogens in vivo.
Collapse
|
5
|
Liu S. Increasing alternative promoter repertories is positively associated with differential expression and disease susceptibility. PLoS One 2010; 5:e9482. [PMID: 20208995 PMCID: PMC2830428 DOI: 10.1371/journal.pone.0009482] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/07/2010] [Indexed: 12/03/2022] Open
Abstract
Background Alternative Promoter (AP) usages have been shown to enable diversified transcriptional regulation of individual gene in a context-specific (e.g., pathway, cell lineage, tissue type, and development stage et. ac.) way. Aberrant uses of APs have been directly linked to mechanism of certain human diseases. However, whether or not there exists a general link between a gene's AP repertoire and its expression diversity is currently unknown. The general relation between a gene's AP repertoire and its disease susceptibility also remains largely unexplored. Methodology/Principal Findings Based on the differential expression ratio inferred from all human microarray data in NCBI GEO and the list of disease genes curated in public repositories, we systemically analyzed the general relation of AP repertoire with expression diversity and disease susceptibility. We found that genes with APs are more likely to be differentially expressed and/or disease associated than those with Single Promoter (SP), and genes with more APs are more likely differentially expressed and disease susceptible than those with less APs. Further analysis showed that genes with increased number of APs tend to have increased length in all aspects of gene structure including 3′ UTR, be associated with increased duplicability, and have increased connectivity in protein-protein interaction network. Conclusions Our genome-wide analysis provided evidences that increasing alternative promoter repertories is positively associated with differential expression and disease susceptibility.
Collapse
Affiliation(s)
- Song Liu
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York, United States of America.
| |
Collapse
|
6
|
Gu T, Kilinc MO, Egilmez NK. Transient activation of tumor-associated T-effector/memory cells promotes tumor eradication via NK-cell recruitment: minimal role for long-term T-cell immunity in cure of metastatic disease. Cancer Immunol Immunother 2008; 57:997-1005. [PMID: 18049819 PMCID: PMC11030151 DOI: 10.1007/s00262-007-0430-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 11/13/2007] [Indexed: 12/27/2022]
Abstract
Local delivery of IL-12 and GM-CSF to advanced primary tumors results in T- and NK-cell-dependent cure of disseminated disease in a murine spontaneous lung metastasis model. Post-therapy functional dynamics of cytotoxic T- and NK-cells were analyzed in primary and metastatic tumors to determine the specific roles of each subset in tumor eradication. Time-dependent depletion of CD8+ T and NK-cells demonstrated that CD8+ T-cells were critical to eradication of metastatic tumors within 3 days of treatment, but not later. In contrast, NK-cells were found to be essential to tumor regression for at least 10 days after cytokine delivery. Analysis of tumor-infiltrating lymphocyte populations in post-therapy primary tumors demonstrated that treatment resulted in the activation of tumor-associated CD8+ T-cells within 24 h as determined by IFNgamma and perforin production. T-cell activity peaked between days 1 and 3 and subsided rapidly thereafter. Activation was not accompanied with an increase in cell numbers suggesting that treatment mobilized pre-existing T-effector/memory cells without inducing proliferation. In contrast, therapy resulted in a > or = 3-fold enhancement of both the quantity and the cytotoxic activity of NK-cells in primary and metastatic tumors on day 3 post-therapy. NK-cell activity was also transient and subsided to pre-therapy levels by day 5. Depletion of CD4+ and CD8+ T-cells prior to treatment completely abrogated NK-cell infiltration into primary and metastatic tumors demonstrating the strict dependence of NK-cell recruitment on pre-existing T-effector/memory cells. Treatment failed to induce significant NK-cell infiltration in IFNgamma-knockout mice establishing the central role of IFNgamma in NK-cell chemotaxis to tumors. These data show that transient activation of tumor-associated T-effector/memory and NK-cells, but not long-term CD8+ T-cell responses, are critical to suppression of metastatic disease in this model; and reveal a novel role for preexisting adaptive T-cell immunity in the recruitment of innate effectors to tumors.
Collapse
Affiliation(s)
- Tao Gu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 138 Farber Hall, 3435 Main Street, Suny, Buffalo, NY 14214 USA
| | - Mehmet O. Kilinc
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 138 Farber Hall, 3435 Main Street, Suny, Buffalo, NY 14214 USA
| | - Nejat K. Egilmez
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 138 Farber Hall, 3435 Main Street, Suny, Buffalo, NY 14214 USA
| |
Collapse
|
7
|
Graham CM, Christensen JR, Thomas DB. Differential induction of CD94 and NKG2 in CD4 helper T cells. A consequence of influenza virus infection and interferon-gamma? Immunology 2007; 121:238-47. [PMID: 17462078 PMCID: PMC2265943 DOI: 10.1111/j.1365-2567.2007.02563.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus causes worldwide epidemics and pandemics and the investigation of memory T helper (Th) cells that help maintain serological memory following infection is important for vaccine design. In this study we investigated CD94 and NKG2 gene expression in memory CD4 T-cell clones established from the spleens of C57BL/10 (H-2(b)) and BALB/c (H-2(d)) mice infected with influenza A virus (H3N2). CD94 and NKG2A/C/E proteins form heterodimeric membrane receptors that are involved in virus recognition. CD94 and NKG2 expression have been well characterized in natural killer (NK) and cytotoxic T cells. Despite CD94 being potentially an important marker for Th1 cells involved in virus infection, however, there has been little investigation of its expression or function in the CD4 T-cell lineage and no studies have looked at in-vivo-generated Th cells or memory cells. We show in this study that in-vivo-generated CD4 Th1 cells, but not Th2 cells, exhibited full-length CD94 and NKG2A gene expression following activation with viral peptide. For NKG2A, a novel 'short' (possibly redundant) truncated isoform was detectable in a Th2 cell clone. Another member of the NK receptor family, NKG2D, but not NKG2C or E, was also differentially expressed in Th1 cells. We show here that CD94 and NKG2A may exist as multiple isoforms with the potential to distinguish helper T-cell subsets.
Collapse
Affiliation(s)
- Christine M Graham
- Division of Virology, MRC National Institute for Medical Research, Mill Hill, UK.
| | | | | |
Collapse
|
8
|
Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 2007; 35:263-78. [PMID: 17172651 DOI: 10.1385/ir:35:3:263] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Immune responses must be tightly regulated to avoid hyporesponsiveness on one hand or excessive inflammation and the development of autoimmunity (hyperresponsiveness) on the other hand. This balance is attained through the throttling of activating signals by inhibitory signals that ideally leads to an adequate immune response against an invader without excessive and extended inflammatory signals that promote the development of autoimmunity. The CD94/NKG2 family of receptors is composed of members with activating or inhibitory potential. These receptors are expressed predominantly on NK cells and a subset of CD8+ T cells, and they have been shown to play an important role in regulating responses against infected and tumorigenic cells. In this review, we discuss the current knowledge about this family of receptors, including ligand and receptor interaction, signaling, membrane dynamics, regulation of gene expression and their roles in disease regulation, infections, and cancer, and bone marrow transplantation.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
9
|
Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 2006; 3:e10. [PMID: 17222062 PMCID: PMC1781489 DOI: 10.1371/journal.pgen.0030010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 12/05/2006] [Indexed: 12/19/2022] Open
Abstract
Neuronal apoptosis inhibitory protein (NAIP, also known as BIRC1) is a member of the conserved inhibitor of apoptosis protein (IAP) family. Lineage-specific rearrangements and expansions of this locus have yielded different copy numbers among primates and rodents, with human retaining a single functional copy and mouse possessing several copies, depending on the strain. Roles for this gene in disease have been documented, but little is known about transcriptional regulation of NAIP. We show here that NAIP has multiple promoters sharing no similarity between human and rodents. Moreover, we demonstrate that multiple, domesticated long terminal repeats (LTRs) of endogenous retroviral elements provide NAIP promoter function in human, mouse, and rat. In human, an LTR serves as a tissue-specific promoter, active primarily in testis. However, in rodents, our evidence indicates that an ancestral LTR common to all rodent genes is the major, constitutive promoter for these genes, and that a second LTR found in two of the mouse genes is a minor promoter. Thus, independently acquired LTRs have assumed regulatory roles for orthologous genes, a remarkable evolutionary scenario. We also demonstrate that 5′ flanking regions of IAP family genes as a group, in both human and mouse are enriched for LTR insertions compared to average genes. We propose several potential explanations for these findings, including a hypothesis that recruitment of LTRs near NAIP or other IAP genes may represent a host-cell adaptation to modulate apoptotic responses. When retroviruses infect cells, the viral DNA inserts into the cellular genome. If this happens in gametes (egg or sperm), the viral DNA will be transmitted from parent to offspring, like all chromosomal DNA. Through evolutionary time, such infections of gametes have been so prevalent that 8%–10% of the normal human and mouse genomes are now composed of ancient viral DNA, termed endogenous retroviruses (ERVs). In human, these ERVs are mutated or “dead” but it has been shown that ERV regulatory regions can be employed by the host to help control expression of cellular genes. Here, we report on a remarkable example of this phenomenon. We demonstrate that both the human and rodent neuronal apoptosis inhibitory protein (NAIP) genes, involved in preventing cell death, use different ERV sequences to drive gene expression. Moreover, in each of the primate and rodent lineages, two separate ERVs contribute to NAIP gene expression. This repeated ERV recruitment by NAIP genes throughout evolution is very unlikely to have occurred by chance. We offer a number of potential explanations, including the intriguing possibility that it may be advantageous for anti-cell death genes like NAIP to use ERVs to control their expression. These results support the view that not all retroviral remnants in our genome are simply junk DNA.
Collapse
Affiliation(s)
- Mark T Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wynne M Lock
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louie N. van de Lagemaat
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine A Dunn
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Mesci A, Ljutic B, Makrigiannis AP, Carlyle JR. NKR-P1 biology: from prototype to missing self. Immunol Res 2006; 35:13-26. [PMID: 17003506 DOI: 10.1385/ir:35:1:13] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cells represent lymphocytes of the innate immune system capable of recognizing and destroying a broad array of target cells, including tumors, virus-infected cells, antibodycoated cells, foreign transplants, and "stressed" cells. NK cells eliminate their targets through two main effector mechanisms, cytokine secretion and cell-mediated cytotoxicity, which in turn depend on detection of target cells through a complex integration of stimulatory and inhibitory receptor-ligand interactions. The NKR-P1 molecules were the first family of NK cell receptors identified, yet they have remained enigmatic in their contribution to self-nonself discrimination until recently. Here, we outline a brief history of the NKR-P1 receptor family, then examine recent data providing insight into their genetic regulation, signaling function, cognate ligands, and gene organization and diversity.
Collapse
Affiliation(s)
- Aruz Mesci
- Department of Immunology, University of Toronto, Sunnybrook & Women's Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | | | | | | |
Collapse
|
11
|
Rouhi A, Gagnier L, Takei F, Mager DL. Evidence for epigenetic maintenance of Ly49a monoallelic gene expression. THE JOURNAL OF IMMUNOLOGY 2006; 176:2991-9. [PMID: 16493057 DOI: 10.4049/jimmunol.176.5.2991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although structurally unrelated, the human killer cell Ig-like (KIR) genes and the rodent lectin-like Ly49 genes serve similar functional roles in NK cells. Moreover, both gene families display variegated, monoallelic expression patterns established at the transcriptional level. DNA methylation has been shown to play an important role in maintenance of expression patterns of KIR genes, which have CpG island promoters. The potential role of DNA methylation in expression of Ly49 genes, which have CpG-poor promoters, is unknown. In this study, we show that hypomethylation of the region encompassing the Pro-2 promoter of Ly49a and Ly49c in primary C57BL/6 NK cells correlates with expression of the gene. Using C57BL/6 x BALB/c F1 hybrid mice, we demonstrate that the expressed allele of Ly49a is hypomethylated while the nonexpressed allele is heavily methylated, indicating a role for epigenetics in maintaining monoallelic Ly49 gene expression. Furthermore, the Ly49a Pro-2 region is heavily methylated in fetal NK cells but variably methylated in nonlymphoid tissues. Finally, in apparent contrast to the KIR genes, we show that DNA methylation and the histone acetylation state of the Pro-2 region are strictly linked with Ly49a expression status.
Collapse
MESH Headings
- Acetylation
- Alleles
- Animals
- Antigens, Ly/biosynthesis
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Base Sequence
- Cells, Cultured
- CpG Islands/immunology
- DNA Methylation
- Epigenesis, Genetic/immunology
- Female
- Gene Expression Regulation/immunology
- Histones/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily A
- Promoter Regions, Genetic/immunology
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, KIR
- Receptors, NK Cell Lectin-Like
Collapse
Affiliation(s)
- Arefeh Rouhi
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
12
|
Abstract
The stochastic expression of individual members of NK cell receptor gene families on subsets of NK cells has attracted considerable interest in the transcriptional regulation of these genes. Each receptor gene can contain up to three separate promoters with distinct properties. The recent discovery that an upstream promoter can function as a probabilistic switch element in the Ly49 gene family has revealed a novel mechanism of variegated gene expression. An important question to be answered is whether or not the other NK cell receptor gene families contain probabilistic switches. The promoter elements currently identified in the Ly49, NKR-P1, CD94, NKG2A, and KIR gene families are described.
Collapse
Affiliation(s)
- S K Anderson
- Basic Research Program, SAIC-Frederick, National Cancer Institute-Frederick, Bldg. 560, Rm. 31-93, Frederick, MD 21702-1201, USA.
| |
Collapse
|
13
|
|
14
|
Lin CW, Liu TY, Chen SU, Wang KT, Medeiros LJ, Hsu SM. CD94 1A transcripts characterize lymphoblastic lymphoma/leukemia of immature natural killer cell origin with distinct clinical features. Blood 2005; 106:3567-74. [PMID: 16046525 DOI: 10.1182/blood-2005-02-0519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most lymphoblastic lymphomas (LBLs) are regarded as neoplasms of immature T cells because they express cytoplasmic CD3 and frequently carry T-cell receptor (TCR) gene rearrangements. Immature natural killer (NK) and T cells, however, have a common bipotent T/NK-cell precursor in the thymus, and NK cells also express cytoplasmic CD3. Thus, some LBLs could arise from immature NK cells. Mature NK cells express 2 CD94 transcripts: 1A, induced by interleukin 15 (IL-15), and 1B constitutively. Because immature NK cells require IL-15 for development, CD94 1A transcripts could be a marker of NK-LBL. To test this hypothesis, we used laser capture microdissection to isolate IL-15 receptor alpha(+) lymphoid cells from the thymus and showed that these cells contained CD94 1A transcripts. We then assessed for CD94 transcripts in 21 cases of LBL that were cytoplasmic CD3(+), nuclear terminal deoxynucleotidyl transferase positive (TdT(+)), and CD56(-), consistent with either the T-cell or NK-cell lineage. We found that 7 LBLs expressed CD94 1A transcripts without TCR gene rearrangements, suggesting NK-cell lineage. Patients with NK-LBL were younger than patients with T-LBL (15 years versus 33 years; P = .11) and had a better 2-year survival (100% versus 27%; P < .01). These results improve the current classification of LBL and contribute to our understanding of NK-cell differentiation.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- CD3 Complex/metabolism
- Cell Differentiation
- Child
- Child, Preschool
- Disease-Free Survival
- Female
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, T-Lymphocyte
- Humans
- Infant
- Infant, Newborn
- Interleukin-15/metabolism
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Leukemia/metabolism
- Leukemia/mortality
- Leukemia/pathology
- Male
- Microdissection/methods
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily D/biosynthesis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Interleukin-15
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Chung-Wu Lin
- Department of Pathology, National Taiwan University College of Medicine, Taipei
| | | | | | | | | | | |
Collapse
|
15
|
Gunturi A, Berg RE, Crossley E, Murray S, Forman J. The role of TCR stimulation and TGF-beta in controlling the expression of CD94/NKG2A receptors on CD8 T cells. Eur J Immunol 2005; 35:766-75. [PMID: 15714583 DOI: 10.1002/eji.200425735] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Following antigen recognition, murine CD8 T cells express CD94/NKG2A receptors. Our results show that this up-regulation occurs rapidly in vitro and is accompanied by an approximately 8-fold increase in CD94 and approximately 125-fold increase in NKG2A mRNA. In contrast, only a twofold increase in NKG2C mRNA is noted. The addition of TGF-beta, but not IL-10, IL-12 or IL-15, leads to a further increase in cell membrane expression of these receptors, as well as a approximately 6-fold increase in mRNA for both chains. TGF-beta also increases CD94/NKG2A expression on memory CD8 T cells that are re-exposed to antigen. The effect of TGF-beta on increasing CD94/NKG2A expression on both naive and memory CD8 T cells occurs only when there is a concurrent stimulation through the TCR. In contrast, TGF-beta does not increase expression of CD94/NKG2A on resting or activated NK cells. We also show by using purified CD8 T cells, that TGF-beta acts directly on these cells. These results implicate a role for both antigen and TGF-beta in increasing expression of inhibitory CD94/NKG2A receptors on CD8 T cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Flow Cytometry
- Gene Expression
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Listeria monocytogenes/immunology
- Listeriosis/immunology
- Mice
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Reverse Transcriptase Polymerase Chain Reaction
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Anasuya Gunturi
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | |
Collapse
|
16
|
Dyer KD, Rosenberg HF. The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression. Nucleic Acids Res 2005; 33:1077-86. [PMID: 15722482 PMCID: PMC549413 DOI: 10.1093/nar/gki250] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ribonuclease A (RNase A) superfamily has been the subject of extensive studies in the areas of protein evolution, structure and biochemistry and are exciting molecules in that they appear to be responding to unique selection pressures, generating proteins capable of multiple and diverse activities. The RNase 4 and RNase 5/ang 1 shared locus breaks a pattern that is otherwise canonical among the members of the RNase A gene superfamily. Conserved among humans, mice and rats, the locus includes two non-coding exons followed by two distinct exons encoding RNase 4 and RNase 5/ang 1. Transcription from this locus is controlled by differential splicing and tissue-specific expression from promoters located 5′ to each of the non-coding exons. Promoter 1, 5′ to exon I, is universally active, while Promoter 2, 5′ to exon II, is active only in hepatic cells in promoter assays in vitro. Transcription from Promoter 2 is dependent on an intact HNF-1 consensus binding site which binds the transcription factor HNF-1α. In summary, RNase 4 and RNase 5/ang 1 are unique among the RNase A ribonuclease genes in that they maintain a complex gene locus that is conserved across species with transcription initiated from tissue-specific dual promoters followed by differential exon splicing.
Collapse
Affiliation(s)
- Kimberly D Dyer
- Laboratory of Allergic Diseases NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
17
|
Lieto LD, Borrego F, You CH, Coligan JE. Human CD94 gene expression: dual promoters differing in responsiveness to IL-2 or IL-15. THE JOURNAL OF IMMUNOLOGY 2004; 171:5277-86. [PMID: 14607929 DOI: 10.4049/jimmunol.171.10.5277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD94 is a C-type lectin required for the dimerization of the CD94/NKG2 family of receptors, which are expressed on NK cells and T cell subsets. Little is known about CD94 gene expression and the elements that regulate CD94 transcription. In this study, we report that CD94 gene expression is regulated by distal and proximal promoters that transcribe unique initial exons specific to each promoter. This results in two species of transcripts; the previously described CD94 mRNA and a novel CD94C mRNA. All NK cells and CD94(+), CD8(+) alphabeta T cells transcribe CD94 mRNA. Stimulation of NK and CD8(+) alphabeta T cells with IL-2 or IL-15 induced the transcription of CD94C mRNA. The distal and proximal promoters both contain elements with IFN-gamma-activated and Ets binding sites, known as GAS/EBS. Additionally, an unknown element, termed site A, was identified in the proximal promoter. EMSA analyses showed that constitutive factors could bind to oligonucleotide probes containing each element. After treatment of primary NK cells with IL-2 or IL-15, separate inducible complexes could be detected with oligonucleotide probes containing either the proximal or distal GAS/EBS elements. These elements are highly conserved between mice and humans, which suggests that both species regulate CD94 gene expression via mechanisms that predate their evolutionary divergence.
Collapse
MESH Headings
- 5' Untranslated Regions/analysis
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Binding Sites/genetics
- Binding Sites/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clone Cells
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Exons/immunology
- Gene Expression Regulation/immunology
- Humans
- Interleukin-15/pharmacology
- Interleukin-2/pharmacology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily D
- Promoter Regions, Genetic/immunology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Response Elements/immunology
- STAT1 Transcription Factor
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Louis D Lieto
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|