1
|
A novel lipidic peptide with potential to promote balanced effector-regulatory T cell responses. Sci Rep 2022; 12:11185. [PMID: 35778468 PMCID: PMC9249808 DOI: 10.1038/s41598-022-15455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
T cell-dendritic cell (DC) interactions contribute to reciprocal stimulation leading to DC maturation that results in production of interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Both cytokines have been implicated in autoimmune diseases while being necessary for effective immune responses against foreign antigens. We describe a lipidic peptide, designated IK14004, that modifies crosstalk between T cells and DCs resulting in suppression of IL-12p40/IFN-γ production. T cell production of interleukin-2 (IL-2) and IFN-γ is uncoupled and IL-12p70 production is enhanced. IK14004 induces expression of activating co-receptors in CD8+ T cells and increases the proportion of Foxp3-expressing CD4+ T regulatory cells. The potential for IK14004 to impact on signalling pathways required to achieve a balanced immune response upon stimulation of DCs and T cells is highlighted. This novel compound provides an opportunity to gain further insights into the complexity of T cell-DC interactions relevant to autoimmunity associated with malignancies and may have therapeutic benefit.
Collapse
|
2
|
Lamture G, Baer A, Fischer JW, Colon-Moran W, Bhattarai N. TCR-independent Activation in Presence of a Src-family Kinase Inhibitor Improves CAR-T Cell Product Attributes. J Immunother 2022; 45:139-149. [PMID: 34802014 PMCID: PMC8906249 DOI: 10.1097/cji.0000000000000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Chimeric antigen receptor expressing T cells (CAR-T cells) have shown remarkable efficacy against some blood cancers and have potential to treat many other human diseases. During CAR-T cell manufacturing, T cells are activated via engagement of the T-cell receptor (TCR); however, persistent TCR engagement can induce unchecked activation, differentiation, and exhaustion, which can negatively affect CAR-T cell product quality and in vivo potency. In addition, T cells may not uniformly respond to TCR-dependent activation (TCRD) contributing to lot-to-lot variability, poor expansion, and manufacturing failures. TCRD also presents challenges during manufacturing of allogeneic CAR-T cells when endogenous TCR is deleted to prevent graft-versus-host disease. Thus, novel strategies to activate T cells may help improve CAR-T cell product attributes and reduce manufacturing failures. In this study, we compared the effect of TCRD and TCR-independent activation (TCRI) on CAR-T cell product attributes. We found that TCRI in presence of a Src-kinase inhibitor significantly improved CAR-T cell expansion and yield without affecting viability and CD4/CD8 ratio. Markers of T-cell activation, exhaustion and differentiation were also reduced in these CAR-T cells compared with CAR-T cells manufactured by TCRD. TCRI did not affect CAR-T cell in vitro potency; however, following co-culture with target cells, CAR-T cells manufactured by TCRI released significantly less inflammatory cytokines compared with CAR-T cells manufactured by TCRD. Together, these data suggest that manufacturing CAR-T cells by TCRI activation in the presence of a Src-kinase inhibitor improves product quality attributes and may help reduce manufacturing failures and improve CAR-T cell safety and efficacy in vivo.
Collapse
|
3
|
Ye J, Shi M, Chen W, Zhu F, Duan Q. Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members. Curr Pharm Des 2021; 26:3122-3133. [PMID: 32013821 DOI: 10.2174/1381612826666200203115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
4
|
Abstract
Nonclonal innate immune responses mediated by germ line-encoded receptors, such as Toll-like receptors or natural killer receptors, are commonly contrasted with diverse, clonotypic adaptive responses of lymphocyte antigen receptors generated by somatic recombination. However, the Variable (V) regions of antigen receptors include germ line-encoded motifs unaltered by somatic recombination, and theoretically available to mediate nonclonal, innate responses, that are independent of or largely override clonotypic responses. Recent evidence demonstrates that such responses exist, underpinning the associations of particular γδ T cell receptors (TCRs) with specific anatomical sites. Thus, TCRγδ can make innate and adaptive responses with distinct functional outcomes. Given that αβ T cells and B cells can also make nonclonal responses, we consider that innate responses of antigen receptor V-regions may be more widespread, for example, inducing states of preparedness from which adaptive clones are better selected. We likewise consider that potent, nonclonal T cell responses to microbial superantigens may reflect subversion of physiologic innate responses of TCRα/β chains.
Collapse
Affiliation(s)
- Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College, London, SE1 9RT, United Kingdom; .,Immunosurveillance Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College, London, SE1 9RT, United Kingdom; .,Immunosurveillance Laboratory, Francis Crick Institute, London, NW1 1AT, United Kingdom
| |
Collapse
|
5
|
Ormonde JVS, Li Z, Stegen C, Madrenas J. TAOK3 Regulates Canonical TCR Signaling by Preventing Early SHP-1-Mediated Inactivation of LCK. THE JOURNAL OF IMMUNOLOGY 2018; 201:3431-3442. [PMID: 30373850 DOI: 10.4049/jimmunol.1800284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
Activation of LCK is required for canonical TCR signaling leading to T cell responses. LCK activation also initiates a negative feedback loop mediated by the phosphatase SHP-1 that turns off TCR signaling. In this article, we report that the thousand-and-one amino acid kinase 3 (TAOK3) is a key regulator of this feedback. TAOK3 is a serine/threonine kinase expressed in many different cell types including T cells. TAOK3-deficient human T cells had impaired LCK-dependent TCR signaling resulting in a defect in IL-2 response to canonical TCR signaling but not to bacterial superantigens, which use an LCK-independent pathway. This impairment was associated with enhanced interaction of LCK with SHP-1 after TCR engagement and rapid termination of TCR signals, a defect corrected by TAOK3 reconstitution. Thus, TAOK3 is a positive regulator of TCR signaling by preventing premature SHP-1-mediated inactivation of LCK. This mechanism may also regulate signaling by other Src family kinase-dependent receptors.
Collapse
Affiliation(s)
- João V S Ormonde
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Zhigang Li
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Camille Stegen
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Joaquín Madrenas
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and .,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90277
| |
Collapse
|
6
|
Li Z, Zeppa JJ, Hancock MA, McCormick JK, Doherty TM, Hendy GN, Madrenas J. Staphylococcal Superantigens Use LAMA2 as a Coreceptor To Activate T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:1471-1479. [PMID: 29335257 DOI: 10.4049/jimmunol.1701212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023]
Abstract
Canonical Ag-dependent TCR signaling relies on activation of the src-family tyrosine kinase LCK. However, staphylococcal superantigens can trigger TCR signaling by activating an alternative pathway that is independent of LCK and utilizes a Gα11-containing G protein-coupled receptor (GPCR) leading to PLCβ activation. The molecules linking the superantigen to GPCR signaling are unknown. Using the ligand-receptor capture technology LRC-TriCEPS, we identified LAMA2, the α2 subunit of the extracellular matrix protein laminin, as the coreceptor for staphylococcal superantigens. Complementary binding assays (ELISA, pull-downs, and surface plasmon resonance) provided direct evidence of the interaction between staphylococcal enterotoxin E and LAMA2. Through its G4 domain, LAMA2 mediated the LCK-independent T cell activation by these toxins. Such a coreceptor role of LAMA2 involved a GPCR of the calcium-sensing receptor type because the selective antagonist NPS 2143 inhibited superantigen-induced T cell activation in vitro and delayed the effects of toxic shock syndrome in vivo. Collectively, our data identify LAMA2 as a target of antagonists of staphylococcal superantigens to treat toxic shock syndrome.
Collapse
Affiliation(s)
- Zhigang Li
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Joseph J Zeppa
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Mark A Hancock
- Surface Plasmon Resonance-Mass Spectrometry Facility, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Lawson Health Research Institute, London, Ontario N6A 5C1, Canada
| | - Terence M Doherty
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90277; and
| | - Geoffrey N Hendy
- Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre, and Departments of Medicine, Physiology, and Human Genetics, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Joaquín Madrenas
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; .,Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90277; and
| |
Collapse
|
7
|
Baer A, Colon-Moran W, Xiang J, Stapleton JT, Bhattarai N. Src-family kinases negatively regulate NFAT signaling in resting human T cells. PLoS One 2017; 12:e0187123. [PMID: 29073235 PMCID: PMC5658144 DOI: 10.1371/journal.pone.0187123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/13/2017] [Indexed: 01/30/2023] Open
Abstract
T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR) T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs) are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.
Collapse
Affiliation(s)
- Alan Baer
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Winston Colon-Moran
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jinhua Xiang
- Research Service, Iowa City Veterans Affairs Medical Center, and the Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Jack T. Stapleton
- Research Service, Iowa City Veterans Affairs Medical Center, and the Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Nirjal Bhattarai
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
- * E-mail:
| |
Collapse
|
8
|
Vogel S, Grabski E, Buschjäger D, Klawonn F, Döring M, Wang J, Fletcher E, Bechmann I, Witte T, Durisin M, Schraven B, Mangsbo SM, Schönfeld K, Czeloth N, Kalinke U. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64(+) cells. Sci Rep 2015; 5:18308. [PMID: 26670584 PMCID: PMC4680940 DOI: 10.1038/srep18308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 02/04/2023] Open
Abstract
Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions.
Collapse
Affiliation(s)
- Stephanie Vogel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Feodor-Lynen-Straße 7, D30625 Hannover
| | - Elena Grabski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Feodor-Lynen-Straße 7, D30625 Hannover
| | - Daniela Buschjäger
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Feodor-Lynen-Straße 7, D30625 Hannover
| | - Frank Klawonn
- Department of Computer Science, Ostfalia University of Applied Sciences, Salzdahlumer Straße 46/48, D38302 Wolfenbüttel, Germany.,Biostatistics, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D38124 Braunschweig, Germany
| | - Marius Döring
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Feodor-Lynen-Straße 7, D30625 Hannover
| | - Junxi Wang
- Biostatistics, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D38124 Braunschweig, Germany
| | - Erika Fletcher
- Department of Immunology Genetics and Pathology, Uppsala University, Rudbeck Laboratory, S75185 Uppsala, Sweden.,Immuneed AB, S-756 52, Uppsala, Sweden
| | - Ingo Bechmann
- Institute for Anatomy, University Leipzig, Liebigstraße 13, D04103 Leipzig
| | - Torsten Witte
- Clinic for Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Straße 1, D30625 Hannover, Germany
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, D30625 Hannover, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, D39120 Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstrß2 7, D38124 Braunschweig, Germany
| | - Sara M Mangsbo
- Department of Immunology Genetics and Pathology, Uppsala University, Rudbeck Laboratory, S75185 Uppsala, Sweden.,Immuneed AB, S-756 52, Uppsala, Sweden
| | - Kurt Schönfeld
- Biotest AG, Dreieich, Landsteinerstrasse 5, D63303 Dreieich, Germany
| | - Niklas Czeloth
- Biotest AG, Dreieich, Landsteinerstrasse 5, D63303 Dreieich, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Feodor-Lynen-Straße 7, D30625 Hannover
| |
Collapse
|
9
|
SEA antagonizes the imatinib-meditated inhibitory effects on T cell activation via the TCR signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:682010. [PMID: 24524084 PMCID: PMC3909973 DOI: 10.1155/2014/682010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
The BCR-ABL kinase inhibitor imatinib is highly effective in the treatment of chronic myeloid leukemia (CML). However, long-term imatinib treatment induces immunosuppression, which is mainly due to T cell dysfunction. Imatinib can reduce TCR-triggered T cell activation by inhibiting the phosphorylation of tyrosine kinases such as Lck, ZAP70, LAT, and PLCγ1 early in the TCR signaling pathway. The purpose of this study was to investigate whether the superantigen SEA, a potent T cell stimulator, can block the immunosuppressive effects of imatinib on T cells. Our data show that the exposure of primary human T cells and Jurkat cells to SEA for 24 h leads to the upregulation of the Lck and ZAP70 proteins in a dose-dependent manner. T cells treated with SEA prior to TCR binding had increased the tyrosine phosphorylation of Lck, ZAP70, and PLCγ1. Pretreatment with SEA prevents the inhibitory effects of imatinib on TCR signaling, which leads to T cell proliferation and IL-2 production. It is conceivable that SEA antagonizes the imatinib-mediated inhibition of T cell activation and proliferation through the TCR signaling pathway.
Collapse
|
10
|
Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells. PLoS One 2014; 9:e85934. [PMID: 24454946 PMCID: PMC3893272 DOI: 10.1371/journal.pone.0085934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/03/2013] [Indexed: 01/09/2023] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca2+ imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca2+ response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca2+ signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.
Collapse
|
11
|
Watson ARO, Janik DK, Lee WT. Superantigen-induced CD4 memory T cell anergy. I. Staphylococcal enterotoxin B induces Fyn-mediated negative signaling. Cell Immunol 2012; 276:16-25. [PMID: 22386537 DOI: 10.1016/j.cellimm.2012.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/15/2011] [Accepted: 02/07/2012] [Indexed: 12/15/2022]
Abstract
Memory CD4 T cells must provide robust protection for an organism while still maintaining self-tolerance. Superantigens reveal a memory cell-specific regulatory pathway, by which signaling through the TCR can lead to clonal tolerance (anergy). Here we show that the src kinase Fyn is a critical regulator of anergy in murine memory CD4 T cells induced by the bacterial superantigen staphylococcal enterotoxin B (SEB). Exposure to SEB results in impaired TCR signaling due to failed CD3/ZAP-70 complex formation. Further, signal transduction through the TCR remains similarly blocked when anergic memory cells are subsequently exposed to agonist peptide antigen. Pharmacological inhibition or genetic elimination of Fyn kinase reverses memory cell anergy, resulting in SEB-induced cell proliferation. The mechanism underlying impaired TCR signaling and subsequent memory cell anergy must involve a Fyn signaling pathway given that the suppression of Fyn activity restores CD3/ZAP-70 complex formation and TCR proximal signaling.
Collapse
Affiliation(s)
- Andrew R O Watson
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, NY 12201-0509, United States
| | | | | |
Collapse
|
12
|
Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat Med 2009; 15:641-8. [PMID: 19465927 DOI: 10.1038/nm.1965] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/07/2009] [Indexed: 01/08/2023]
Abstract
Staphylococcal superantigens are pyrogenic exotoxins that cause massive T cell activation leading to toxic shock syndrome and death. Despite the strong adaptive immune response induced by these toxins, infections by superantigen-producing staphylococci are very common clinical events. We hypothesized that this may be partly a result of staphylococcal strains having developed strategies that downregulate the T cell response to these toxins. Here we show that the human interleukin-2 response to staphylococcal superantigens is inhibited by the simultaneous presence of bacteria. Such a downregulatory effect is the result of peptidoglycan-embedded molecules binding to Toll-like receptor 2 and inducing interleukin-10 production and apoptosis of antigen-presenting cells. We corroborated these findings in vivo by showing substantial prevention of mortality after simultaneous administration of staphylococcal enterotoxin B with either heat-killed staphylococci or Staphylococcus aureus peptidoglycan in mouse models of superantigen-induced toxic shock syndrome.
Collapse
|
13
|
Batliwalla FM, Li W, Ritchlin CT, Xiao X, Brenner M, Laragione T, Shao T, Durham R, Kemshetti S, Schwarz E, Coe R, Kern M, Baechler EC, Behrens TW, Gregersen PK, Gulko PS. Microarray analyses of peripheral blood cells identifies unique gene expression signature in psoriatic arthritis. Mol Med 2009; 11:21-9. [PMID: 16622521 PMCID: PMC1449519 DOI: 10.2119/2006-00003.gulko] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/13/2006] [Indexed: 01/01/2023] Open
Abstract
Psoriatic arthritis (PsA) is a chronic and erosive form of arthritis of unknown cause. We aimed to characterize the PsA phenotype using gene expression profiling and comparing it with healthy control subjects and patients rheumatoid arthritis (RA). Peripheral blood cells (PBCs) of 19 patients with active PsA and 19 age- and sex-matched control subjects were used in the analyses of PsA, with blood samples collected in PaxGene tubes. A significant alteration in the pattern of expression of 313 genes was noted in the PBCs of PsA patients on Affymetrix U133A arrays: 257 genes were expressed at reduced levels in PsA, and 56 genes were expressed at increased levels, compared with controls. Downregulated genes tended to cluster to certain chromosomal regions, including those containing the psoriasis susceptibility loci PSORS1 and PSORS2. Among the genes with the most significantly reduced expression were those involved in downregulation or suppression of innate and acquired immune responses, such as SIGIRR, STAT3, SHP1, IKBKB, IL-11RA, and TCF7, suggesting inappropriate control that favors proin-flammatory responses. Several members of the MAPK signaling pathway and tumor suppressor genes showed reduced expression. Three proinflammatory genes--S100A8, S100A12, and thioredoxin--showed increased expression. Logistic regression and recursive partitioning analysis determined that one gene, nucleoporin 62 kDa, could correctly classify all controls and 94.7% of the PsA patients. Using a dataset of 48 RA samples for comparison, the combination of two genes, MAP3K3 followed by CACNA1S, was enough to correctly classify all RA and PsA patients. Thus, PBC gene expression profiling identified a gene expression signature that differentiated PsA from RA, and PsA from controls. Several novel genes were differentially expressed in PsA and may prove to be diagnostic biomarkers or serve as new targets for the development of therapies.
Collapse
Affiliation(s)
- Franak M. Batliwalla
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Wentian Li
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
| | - Christopher T. Ritchlin
- Division of Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Xiangli Xiao
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
| | - Max Brenner
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
- North Shore-LIJ Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Teresina Laragione
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
| | - Tianmeng Shao
- Division of Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Robert Durham
- Division of Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Sunil Kemshetti
- Division of Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Edward Schwarz
- Division of Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Rodney Coe
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
| | - Marlena Kern
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
| | - Emily C. Baechler
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Timothy W. Behrens
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter K. Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
- Division of Rheumatology, Department of Medicine, North Shore University Hospital, Manhasset, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Pércio S. Gulko
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research
- Division of Rheumatology, Department of Medicine, North Shore University Hospital, Manhasset, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
- Address correspondence and reprint requests to Pércio S. Gulko, Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Drive, Room 139, Manhasset, NY 11030. Phone: 516-562-1275; fax: 516-562-1153; e-mail:
| |
Collapse
|
14
|
Ngai J, Methi T, Andressen KW, Levy FO, Torgersen KM, Vang T, Wettschureck N, Taskén K. The heterotrimeric G-protein alpha-subunit Galphaq regulates TCR-mediated immune responses through an Lck-dependent pathway. Eur J Immunol 2009; 38:3208-18. [PMID: 18991294 DOI: 10.1002/eji.200838195] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Here, we examined the functional involvement of heterotrimeric G-proteins in TCR-induced immune responses. TCR/CD3 crosslinking resulted in activation of both Galphaq and Galphas, but not Galphai-2. Targeting of Galphas, Galphai-2 and Galphaq using siRNA demonstrated a specific role of Galphaq in TCR signaling. Jurkat TAg T cells with Galphaq knockdown displayed reduced activation of Lck and LAT phosphorylation, but paradoxically showed sustained ERK1/2 phosphorylation and increased NFAT-AP-1-reporter activity implicating Galphaq in the negative control of downstream signaling and IL-2-promoter activity. Primary T cells isolated from Galphaq-deficient mice had a similar TCR signaling response with reduced proximal LAT phosphorylation, sustained ERK1/2 phosphorylation and augmented immune responses including increased secretion of IL-2, IL-5, IL-12 and TNF-alpha. The effects on NFAT-AP-1-reporter activity were sensitive to the Src family kinase inhibitor PP2 and were reversed by transient expression of constitutively active Lck. Furthermore, expression of constitutively active Galphaq Q209L elevated Lck activity and Zap-70 phosphorylation. Together these data argue for a role of Galphaq in the fine-tuning of proximal TCR signals at the level of Lck and a negative regulatory role of Galphaq in transcriptional activation of cytokine responses.
Collapse
Affiliation(s)
- Jacob Ngai
- The Biotechnology Centre of Oslo, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 2008; 111:3653-64. [PMID: 18212246 DOI: 10.1182/blood-2007-07-101600] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During immunologic synapse (IS) formation, human CD38 redistributes to the contact area of T cell-antigen-presenting cell (APC) conjugates in an antigen-dependent manner. Confocal microscopy showed that CD38 preferentially accumulated along the contact zone, whereas CD3-zeta redistributed toward the central zone of the IS. APC conjugates with human T cells or B cells transiently expressing CD38-green fluorescent protein revealed the presence of 2 distinct pools of CD38, one localized at the cell membrane and the other in recycling endosomes. Both pools were recruited to the T/APC contact sites and required antigen-pulsed APCs. The process appeared more efficient in T cells than in APCs. CD38 was actively recruited at the IS of T cells by means of Lck-mediated signals. Overexpression of CD38 in T cells increased the levels of antigen-induced intracellular calcium release. Opposite results were obtained by down-regulating surface CD38 expression by means of CD38 siRNA. CD38 blockade in influenza HA-specific T cells inhibited IL-2 and IFN-gamma production, PKC phosphorylation at Thr538, and PKC recruitment to the IS induced by antigen-pulsed APCs. These results reveal a new role for CD38 in modulating antigen-mediated T-cell responses during IS formation.
Collapse
|
16
|
Guan Y, Abdelwahab S, Kamin-Lewis R, DeVico AL, Lewis GK. Self-protection of individual CD4+ T cells against R5 HIV-1 infection by the synthesis of anti-viral CCR5 ligands. PLoS One 2008; 3:e3481. [PMID: 18941536 PMCID: PMC2567041 DOI: 10.1371/journal.pone.0003481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 09/29/2008] [Indexed: 02/05/2023] Open
Abstract
It is well established that paracrine secretion of anti-viral CCR5 ligands by CD8+ and CD4+ T cells can block the infection of activated CD4+ T cells by R5 and dual-tropic isolates of HIV-1. By contrast, because CD4+ T cells can be infected by HIV-1 and at least some subsets secrete anti-viral CCR5 ligands, it is possible that these ligands protect against HIV-1 via autocrine as well as paracrine pathways. Here we use a model primary CD4+ T cell response in vitro to show that individual CD4+ T cells that secrete anti-viral CCR5 ligands are 'self-protected' against infection with R5 but not X4 strains of HIV-1. This protection is selective for CD4+ T cells that secrete anti-viral CCR5 ligands in that activated CD4+ T cells in the same cultures remain infectable with R5 HIV-1. These data are most consistent with an autocrine pathway of protection in this system and indicate a previously unappreciated selective pressure on the emergence of viral variants and CD4+ T cell phenotypes during HIV-1 infection.
Collapse
Affiliation(s)
- Yongjun Guan
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sayed Abdelwahab
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Roberta Kamin-Lewis
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anthony L. DeVico
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - George K. Lewis
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Methi T, Ngai J, Vang T, Torgersen KM, Taskén K. Hypophosphorylated TCR/CD3zeta signals through a Grb2-SOS1-Ras pathway in Lck knockdown cells. Eur J Immunol 2007; 37:2539-48. [PMID: 17683112 DOI: 10.1002/eji.200636973] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the loss of proximal TCR-dependent signaling events, downstream T cell responses are paradoxically augmented in T cells with siRNA-mediated Lck knockdown (Methi et al., J. Immunol. 2005. 175: 7398-7406). This indicates that alternative Lck-independent pathways of T cell activation exist or that low levels of Lck elicit other signals than normal T cell activation. Here we report the recruitment of Grb2-SOS1 to CD3zeta of the TCR complex after prolonged anti-CD3 (OKT3) stimulation in T cells with Lck knockdown. Grb2 bound to incompletely phosphorylated ITAM1 with the pY-Y configuration in a solid-phase assay, but was excluded by ZAP-70 in the doubly phosphorylated pY-pY conformation. Ras and ERK1/2 activation was augmented after prolonged stimulation in T cells with Lck knockdown compared to control, leading to increased activation of the proximal IL-2 promoter (NFAT-AP-1). Finally, the phosphorylation of Ras-GAP was strongly suppressed in Lck knockdown cells, indicating that a Ras negative feedback mechanism is dependent on Lck.
Collapse
Affiliation(s)
- Trond Methi
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
18
|
Meraner P, Horejsí V, Wolpl A, Fischer GF, Stingl G, Maurer D. Dendritic Cells Sensitize TCRs through Self-MHC-Mediated Src Family Kinase Activation. THE JOURNAL OF IMMUNOLOGY 2007; 178:2262-71. [PMID: 17277131 DOI: 10.4049/jimmunol.178.4.2262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is unclear whether peptide-MHC class II (pMHC) complexes on distinct types of APCs differ in their capacity to trigger TCRs. In this study, we show that individual cognate pMHC complexes displayed by dendritic cells (DCs), as compared with nonprofessional APCs, are far better in productively triggering Ag-specific TCRs independently of conventional costimulation. As we further show, this is accomplished by the unique ability of DCs to robustly activate the Src family kinases (SFKs) Lck and Fyn in T cells even in the absence of cognate peptide. Instead, this form of SFK activation depends on interactions of DC-displayed MHC with TCRs of appropriate restriction, suggesting a central role of self-pMHC recognition. DC-mediated SFK activation leads to "TCR licensing," a process that dramatically increases sensitivity and magnitude of the TCR response to cognate pMHC. Thus, TCR licensing, besides costimulation, is a main mechanism of DCs to present Ag effectively.
Collapse
Affiliation(s)
- Paul Meraner
- Research Center for Molecular Medicine, Austrian Academy of Sciences
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Some bacterial and viral proteins are potent activators of the immune response, earning them the title of superantigens (SAgs). Infection with pathogens containing these proteins can produce massive T cell activation and can result in various potentially fatal conditions, such as toxic shock and food poisoning. Unlike conventional peptide antigens, SAgs bind promiscuously to the external faces of class II major histocompatibility complex (MHC) molecules and families of T cell receptors (TCRs), thereby activating large numbers of T cells simultaneously. The manner in which SAgs bind MHC and TCR differs from the way in which peptide antigens interact with these structures. Nevertheless, because they simultaneously engage MHC and TCR, SAgs were assumed to activate T cells through the canonical signaling pathway that has been described for T cell activation by TCR engagement of peptide-MHC complexes. However, recent research shows that SAgs also activate an alternative signaling pathway in T cells. This study shows that SAgs can stimulate T cells in the absence of the Src family kinase, Lck, by activating a heterotrimeric guanine nucleotide-binding protein (G protein), Galpha(11). Galpha(11) activates phospholipase C-beta (PLC-beta), rather than the more abundant PLC-gamma1, and, by this means, links SAg signaling to the phosphatidylinositol and protein kinase C signaling pathways. The discovery of a signaling pathway specifically activated by SAgs, and not by conventional peptide antigens, opens the possibility of developing therapeutic reagents that may help control diseases caused by these agents.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/physiology
- Antigens, Viral/immunology
- Antigens, Viral/physiology
- Calcium Signaling
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Humans
- Isoenzymes/physiology
- Jurkat Cells
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/deficiency
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Major Histocompatibility Complex/immunology
- Models, Immunological
- Phospholipase C beta
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Superantigens/immunology
- Superantigens/physiology
- T-Lymphocyte Subsets/immunology
- Type C Phospholipases/physiology
Collapse
Affiliation(s)
- Rose Zamoyska
- Molecular Immunology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 4RD, UK.
| |
Collapse
|
20
|
Zeyda M, Geyeregger R, Poglitsch M, Weichhart T, Zlabinger GJ, Koyasu S, Hörl WH, Stulnig TM, Watschinger B, Saemann MD. Impairment of T cell interactions with antigen-presenting cells by immunosuppressive drugs reveals involvement of calcineurin and NF-κB in immunological synapse formation. J Leukoc Biol 2006; 81:319-27. [PMID: 17038582 DOI: 10.1189/jlb.0606378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A stable supramolecular cluster in T cells at the contact site of APCs, the immunological synapse (IS), is essential for full T cell activation. Failure of IS maturation, as determined by defective relocalization of the TCR/CD3 complex at the T cell/APC contact site, is linked with T cell hyporesponsiveness. The effects of clinically used immunosuppressants on these critical events, however, are undefined. Here, we show that treatment of T cells with cyclosporin A, FK506, and dexamethasone, which are known to inhibit calcineurin and NF-kappaB, respectively, but not rapamycin, the inhibitor of mammalian target of rapamycin, selectively prevented TCR/CD3 relocalization into the IS, while relocalization of adhesion and cytoskeletal proteins as well as T cell/APC conjugate formation remained unaltered. The involvement of calcineurin and NF-kappaB in IS maturation was confirmed by using specific inhibitors of these molecules (FR901725, gossypol, SN50). FK778, as an inhibitor of DNA replication and also TCR/CD3-activated tyrosine kinases, globally abrogated cytoskeletal, adhesion, and signaling molecule relocalization, thereby preventing formation of an IS at an earlier, immature stage along with impaired, antigen-specific T cell/APC conjugate formation. Collectively, blocking IS formation at distinct stages may mediate effects on T cell activation of currently used immunosuppressants, apart from their capacity to block gene transcription, cytokine signaling, and DNA replication. Furthermore, these data imply novel functions of calcineurin and NF-kappaB for successful IS maturation.
Collapse
Affiliation(s)
- Maximilian Zeyda
- Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bueno C, Lemke CD, Criado G, Baroja ML, Ferguson SSG, Rahman AKMNU, Tsoukas CD, McCormick JK, Madrenas J. Bacterial Superantigens Bypass Lck-Dependent T Cell Receptor Signaling by Activating a Gα11-Dependent, PLC-β-Mediated Pathway. Immunity 2006; 25:67-78. [PMID: 16860758 DOI: 10.1016/j.immuni.2006.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/07/2006] [Accepted: 04/12/2006] [Indexed: 11/18/2022]
Abstract
The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.
Collapse
Affiliation(s)
- Clara Bueno
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martín-Cófreces NB, Sancho D, Fernández E, Vicente-Manzanares M, Gordón-Alonso M, Montoya MC, Michel F, Acuto O, Alarcón B, Sánchez-Madrid F. Role of Fyn in the rearrangement of tubulin cytoskeleton induced through TCR. THE JOURNAL OF IMMUNOLOGY 2006; 176:4201-7. [PMID: 16547257 DOI: 10.4049/jimmunol.176.7.4201] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The translocation of the microtubule-organizing center (MTOC), its associated signaling complex, and the secretory apparatus is the most characteristic early event that involves the tubulin cytoskeleton of T or NK cells after their interaction with APC or target cells. Our results show that Fyn kinase activity is essential for MTOC reorientation in an Ag-dependent system. Moreover, T cells from Fyn-deficient mice are unable to rearrange their tubulin cytoskeleton in response to anti-CD3-coated beads. Analysis of conjugates of T cells from transgenic OT-I mice with dendritic cells revealed that an antagonist peptide induces translocation of the MTOC, and that this process is impaired in T cells from Fyn(-/-) OT-I mice. In addition, Fyn deficiency significantly affects the MTOC relocation mediated by agonist peptide stimulation. These results reveal Fyn to be a key regulator of tubulin cytoskeleton reorganization in T cells.
Collapse
Affiliation(s)
- Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Methi T, Ngai J, Mahic M, Amarzguioui M, Vang T, Tasken K. Short-interfering RNA-mediated Lck knockdown results in augmented downstream T cell responses. THE JOURNAL OF IMMUNOLOGY 2006; 175:7398-406. [PMID: 16301647 DOI: 10.4049/jimmunol.175.11.7398] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Src family kinase Lck is essential for T cell Ag receptor-mediated signaling. In this study, we report the effects of acute elimination of Lck in Jurkat TAg and primary T cells using RNA interference mediated by short-interfering RNAs. In cells with Lck knockdown (kd), proximal TCR signaling was strongly suppressed as indicated by reduced zeta-chain phosphorylation and intracellular calcium mobilization. However, we observed sustained and elevated phosphorylation of ERK1/2 in Lck kd cells 30 min to 2 h after stimulation. Downstream effects on immune function as determined by activation of a NFAT-AP-1 reporter, and TCR/CD28-stimulated IL-2 secretion were strongly augmented in Jurkat and primary T cells, respectively. As expected, overexpression of SHP-1 in Jurkat cells inhibited TCR-induced NFAT-AP-1 activation, but this effect could be overcome by simultaneous kd of Lck. Furthermore, acute elimination of Lck also suppressed TCR-mediated activation of SHP-1, suggesting the possible role of SHP-1 in a negative feedback loop originating from Lck. This report underscores Lck as an important mediator of proximal TCR signaling, but also indicates a suppressive role on downstream immune function.
Collapse
Affiliation(s)
- Trond Methi
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
24
|
Mazurov D, Heidecker G, Derse D. HTLV-1 Gag protein associates with CD82 tetraspanin microdomains at the plasma membrane. Virology 2005; 346:194-204. [PMID: 16325219 DOI: 10.1016/j.virol.2005.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/20/2005] [Accepted: 10/25/2005] [Indexed: 01/01/2023]
Abstract
We examined the association of HTLV-1 Gag with tetraspanin-enriched microdomains in the plasma membrane. Immunofluorescent staining and confocal image analysis showed that HTLV-1 Gag protein colocalized with CD82 and other tetraspanins at the plasma membrane of T cells. HTLV-1 Gag, which is associated with the inner surface of the plasma membrane, was concentrated to the patches formed by antibody-mediated cross-linking of CD82 on the cell surface. Also, CD82 and HTLV-1 Gag rapidly segregated to the immune synapse that is formed between Raji B cells and Jurkat T cells in the presence of bacterial superantigen. CD82, which was immunoprecipitated from cell extracts prepared in Brij97 detergent conditions, was associated with the matrix (MA) protein. Stable interaction of MA and CD82 in Brij97-disrupted cell extracts required Gag multimerization and proteolytic processing. The form of MA that coimmunoprecipitated with CD82 was a cysteine-linked homodimer. The viral envelope glycoprotein was not required for the association of Gag with CD82-enriched membrane regions. In contrast to HTLV-1, HIV-1 Gag did not colocalize, cosegregate, or coimmunoprecipitate with CD82. Our data suggest that once at the plasma membrane, HTLV-1 virion components associate with CD82-containing microdomains, which may facilitate the mobilization of nascent virions to sites of intercellular adhesion.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- National Cancer Institute, HIV Drug Resistance Program, Bld 535, Rm. 110, NCI-Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
25
|
Zeyda M, Poglitsch M, Geyeregger R, Smolen JS, Zlabinger GJ, Hörl WH, Waldhäusl W, Stulnig TM, Säemann MD. Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. ACTA ACUST UNITED AC 2005; 52:2730-9. [PMID: 16142756 DOI: 10.1002/art.21255] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Leflunomide, a potent disease-modifying antirheumatic drug of the isoxazole class, exhibits antiinflammatory, antiproliferative, and immunosuppressive effects by largely unknown mechanisms, although alterations of pyrimidine synthesis have been proposed. Successful immune responsiveness requires T cell activation by interaction with antigen-presenting cells (APCs), and integrin activation and formation of an immunologic synapse (IS). In this study, we evaluated the impact of the active leflunomide metabolite teriflunomide on T cell integrin activation, evolution of the IS, and antigen-specific formation of stable T cell/APC conjugates. METHODS Effects of pharmacologic concentrations of teriflunomide on CD3/CD28- and lymphocyte function-associated antigen 1-induced signal transduction and activation of primary human T cells were investigated. Furthermore, T cells were stimulated with superantigen- and antigen-pulsed APCs to study relocalization of molecules to the IS and T cell/APC conjugate formation. RESULTS Teriflunomide inhibited T cell receptor (TCR)/CD3-mediated calcium mobilization, but other critical T cell signaling events, including activation of MAPK and NF-kappaB, remained unaltered. In contrast, inhibition of TCR/CD3-triggered beta1,2 integrin avidity and integrin-mediated costimulation (outside-in signaling) by teriflunomide revealed a striking interference with integrin function that was independent of altered pyrimidine synthesis. Moreover, teriflunomide abolished molecule relocalization to the IS and induction of T cell/APC conjugates. CONCLUSION These data show that the active metabolite of leflunomide prevents the interaction of T cells with APCs to form an IS. Since IS formation is crucial for eliciting an immune response, this novel mechanism could underlie the beneficial effects of leflunomide in immune-mediated disorders such as rheumatoid arthritis.
Collapse
|
26
|
Cho NH, Feng P, Lee SH, Lee BS, Liang X, Chang H, Jung JU. Inhibition of T cell receptor signal transduction by tyrosine kinase-interacting protein of Herpesvirus saimiri. ACTA ACUST UNITED AC 2004; 200:681-7. [PMID: 15337788 PMCID: PMC2212737 DOI: 10.1084/jem.20040924] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T cells play a central role in orchestrating immunity against pathogens, particularly viruses. Thus, impairing T cell activation is an important strategy employed by viruses to escape host immune control. The tyrosine kinase–interacting protein (Tip) of the T lymphotropic Herpesvirus saimiri (HVS) is constitutively present in lipid rafts and interacts with cellular Lck tyrosine kinase and p80 endosomal protein. Here we demonstrate that, due to the sequestration of Lck by HVS Tip, T cell receptor (TCR) stimulation fails to activate ZAP70 tyrosine kinase and to initiate downstream signaling events. TCR ζ chains in Tip-expressing T cells were initially phosphorylated to recruit ZAP70 molecule upon TCR stimulation, but the recruited ZAP70 kinase was not subsequently phosphorylated, resulting in TCR complexes that were stably associated with inactive ZAP70 kinase. Consequently, Tip expression not only markedly inhibited TCR-mediated intracellular signal transduction but also blocked TCR engagement with major histocompatibility complexes on the antigen-presenting cells and immunological synapse formation. These results demonstrate that a lymphotropic herpesvirus has evolved a novel mechanism to deregulate T cell activation to disarm host immune surveillance. This process contributes to the establishment and maintenance of viral latency.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA
| | | | | | | | | | | | | |
Collapse
|