1
|
Klevebro S, Hellgren G, Hansen-Pupp I, Wackernagel D, Hallberg B, Borg J, Pivodic A, Smith L, Ley D, Hellström A. Elevated levels of IL-6 and IGFBP-1 predict low serum IGF-1 levels during continuous infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants. Growth Horm IGF Res 2020; 50:1-8. [PMID: 31756675 PMCID: PMC7054155 DOI: 10.1016/j.ghir.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Steady state insulin-like growth factor-1 (IGF-1) levels vary significantly during continuous intravenous infusion of recombinant human insulin-like growth factor-1/recombinant human insulin-like growth factor binding protein-3 (rhIGF-1/rhIGFBP-3) in the first weeks of life in extremely preterm infants. We evaluated interleukin-6 (IL-6) and insulin-like growth factor binding protein-1 (IGFBP-1) levels as predictors of low IGF-1 levels. METHODS Nineteen extremely preterm infants were enrolled in a trial, 9 received rhIGF-1/rhIGFBP-3 and 10 received standard neonatal care. Blood samples were analyzed daily for IGF-1, IL-6 and IGFBP-1 during intervention with rhIGF-1/rhIGFBP-3. RESULTS Thirty seven percent of IGF-1 values during active treatment were <20 μg/L. Among treated infants, higher levels of IL-6, one and two days before sampled IGF-1, were associated with IGF-1 < 20 μg/L, gestational age adjusted OR 1.30 (95% CI 1.03-1.63), p = .026, and 1.57 (95% CI 1.26-1.97), p < .001 respectively. Higher levels of IGFBP-1 one day before sampled IGF-1 was also associated with IGF-1 < 20 μg/L, gestational age adjusted OR 1.74 (95% CI 1.19-2.53), p = .004. CONCLUSION In preterm infants receiving continuous infusion of rhIGF-1/rhIGFBP-3, higher levels of IL-6 and IGFBP-1 preceded lower levels of circulating IGF-1. These findings demonstrate a need to further evaluate if inflammation and/or infection suppress serum IGF-1 levels. The trial is registered at ClinicalTrials.gov (NCT01096784).
Collapse
Affiliation(s)
- Susanna Klevebro
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Gunnel Hellgren
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Institute of Bioscience, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hansen-Pupp
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Dirk Wackernagel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Boubou Hallberg
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Borg
- Former Premacure AB, Uppsala, Sweden
| | | | - Lois Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - David Ley
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Pediatrics, Lund, Sweden
| | - Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Zhang W, Borcherding N, Kolb R. IL-1 Signaling in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:1-23. [PMID: 32060884 DOI: 10.1007/978-3-030-38315-2_1] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin 1 (IL-1) has long been known for its pleiotropic effects on inflammation that plays a complex, and sometimes contrasting, role in different stages of cancer development. As a major proinflammatory cytokine, IL-1β is mainly expressed by innate immune cells. IL-1α, however, is expressed by various cell types under physiological and pathological conditions. IL-1R1 is the main receptor for both ligands and is expressed by various cell types, including innate and adaptive immune cell types, epithelial cells, endothelial cells, adipocytes, chondrocytes, fibroblasts, etc. IL-1 and IL-1R1 receptor interaction leads to a set of common signaling pathways, mainly the NF-kB and MAP kinase pathways, as a result of complex positive and negative regulations. The variety of cell types with IL-1R1 expression dictates the role of IL-1 signaling at different stages of cancer, which under certain circumstances leads to contrasting roles in tumor development. Recent availability of IL-1R1 conditional knockout mouse model has made it possible to dissect the role of IL-1/IL-1R1 signaling transduction in different cell types within the tumor microenvironment. This chapter will focus on the role of IL-1/IL-1R1 in different cell types within the tumor microenvironment and discuss the potential of targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| | | | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Shi L, Banerjee D, Dobierzewska A, Sathishkumar S, Karakashian AA, Giltiay NV, Nikolova-Karakashian MN. Direct regulation of IGF-binding protein 1 promoter by interleukin-1β via an insulin- and FoxO-1-independent mechanism. Am J Physiol Endocrinol Metab 2016; 310:E612-E623. [PMID: 26884383 PMCID: PMC4835944 DOI: 10.1152/ajpendo.00289.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
The level of insulin-like growth factor-binding protein 1 (IGFBP1), a liver-produced serum protein that regulates insulin-like growth factor-I bioactivity, glucose homeostasis, and tissue regeneration, increases during inflammation. This manuscript describes a novel pathway for the regulation of hepatic IGFBP1 mRNA and protein levels by interleukin (IL)-1β. Experiments with the luciferase reporter system show that IL-1β stimulates transcriptional activity from the 1-kb promoter region of IGFBP1. Although IL-1β stimulation suppresses the insulin activation of protein kinase B, the major upstream regulator of IGFBP1 mRNA transcription, the induction of IGFBP1 by IL-1β did not require an intact insulin response element. Furthermore, neither overexpression nor silencing of FoxO-1 had any effect on the IL-1β-induced increase in IGFBP1 mRNA levels and promoter activity. However, inhibition of the ERK MAP kinases effectively prevented the IL-1β effects. Inhibition of neutral sphingomyelinase, a key player in the IL-1β signaling cascade that acts upstream of ERK, also suppressed the IL-1β effects, while increasing the ceramide, through the addition of C2-ceramide or via treatment with exogenous sphingomyelinase, was sufficient to induce IGFBP1 promoter-driven luciferase activity. Studies in primary rat hepatocytes where the levels of neutral sphingomyelinase were either elevated or suppressed using adenoviral constructs affirmed the key role of neutral sphingomyelinase and ceramide (exerted likely through ERK activation) in the IL-1β-induced IGFBP1 production. Finally, the IL-1β effects on IGFBP1 mRNA production and protein secretion could be abolished by the addition of insulin, either at very late time points or at very high doses.
Collapse
Affiliation(s)
- L Shi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - D Banerjee
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - A Dobierzewska
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - S Sathishkumar
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - A A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - N V Giltiay
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | |
Collapse
|
4
|
Ertosun MG, Hapil FZ, Osman Nidai O. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev 2016; 31:17-25. [PMID: 26947516 DOI: 10.1016/j.cytogfr.2016.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Fatma Zehra Hapil
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Ozes Osman Nidai
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey.
| |
Collapse
|
5
|
Ghosh A, Ghosh S, Dasgupta D, Ghosh A, Datta S, Sikdar N, Datta S, Chowdhury A, Banerjee S. Hepatitis B Virus X Protein Upregulates hELG1/ ATAD5 Expression through E2F1 in Hepatocellular Carcinoma. Int J Biol Sci 2016; 12:30-41. [PMID: 26722215 PMCID: PMC4679396 DOI: 10.7150/ijbs.12310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/04/2015] [Indexed: 01/04/2023] Open
Abstract
The precise mechanism by which HBx protein of hepatitis B virus (HBV) impacts on hepato-carcinogenesis remain largely elusive despite strong evidences for its' involvement in the process. Here, we have investigated the role of HBx on expression of a novel gene hELG1/ATAD5, which is required for genome maintenance and its' importance in hepatocarcinogenesis. This study has for the first time showed that the expression of this gene was significantly higher in human cancer such as HBV-associated hepatocellular carcinoma (HCC) and in different HCC cell lines compared to normal liver. In addition, a significant elevation in ATAD5 expression was also found in HBx transfected HCC cell lines implicating HBx mediated transcriptional regulation on ATAD5. Using different deletion mutant constructs of putative promoter, the active promoter region was first identified here and subsequently the regulatory region of HBx was mapped by promoter-luciferase assay. But ChIP assay with anti-HBx antibody revealed that HBx was not physically present in ATAD5 transcription machinery whereas anti-E2F1 antibody showed the presence of E2F1 in the complex. Luciferase assay with E2F1 binding site mutant had further confirmed it. Moreover, both loss-and gain-of-function studies of ATAD5 showed that ATAD5 could enhance HBV production in transfected cells whereas knock down of ATAD5 increased the sensitivity of HCC cell line to chemotherapeutics 5-fluorouracil. Overall, this data suggests that a positive feedback loop regulation between ATAD5 and HBV contributed to both viral replication and chemo-resistance of HCC cells.
Collapse
Affiliation(s)
- Alip Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Suchandrima Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debanjali Dasgupta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Somenath Datta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Simanti Datta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- 3. Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
6
|
Derecki NC, Quinnies KM, Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav Immun 2011; 25:379-85. [PMID: 21093578 PMCID: PMC3039052 DOI: 10.1016/j.bbi.2010.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 01/23/2023] Open
Abstract
It was recently shown that adaptive immunity plays a key role in cognitive function. T cells appear to be major players in learning and memory; thus, mice devoid of functional T cells are impaired in performance of cognitive tasks such as Morris water maze (MWM), Barnes maze and others. This is a reversible phenomenon; injection of immune deficient mice with T cells from wild type counterparts improves their cognitive function. Recently we described a critical role for T cell-derived IL-4 as having beneficial effects on learning and memory through regulation of meningeal myeloid cell phenotype. In the absence of IL-4, meningeal myeloid cells acquire a pro-inflammatory skew. Thus, the presence of IL-4 in the meningeal spaces maintains a delicate balance of pro- and anti-inflammatory myeloid cell phenotype. Here we show that macrophages alternatively activated in vitro (M2 cells) can circumvent the need for 'pro-cognitive' T cells when injected intravenously into immune deficient mice. These results show for the first time that M2 myeloid cells are new and unexpected players in cognitive function, conferring beneficial effects on learning and memory without adaptive immune influence. These results might lead to development of new therapeutic approaches for cognitive pathologies associated with malfunction of adaptive immunity, such as chemo-brain, age-related dementia, HIV-dementia, and others.
Collapse
Affiliation(s)
- Noel C Derecki
- Graduate Program in Neuroscience, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
7
|
Kipnis J, Derecki NC, Yang C, Scrable H. Immunity and cognition: what do age-related dementia, HIV-dementia and 'chemo-brain' have in common? Trends Immunol 2008; 29:455-63. [PMID: 18789764 DOI: 10.1016/j.it.2008.07.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 11/24/2022]
Abstract
Until recently, dogma dictated that the immune system and the central nervous system (CNS) live mostly separate, parallel lives, and any interactions between the two were assumed to be limited to extreme cases of pathological insult. It was only a decade ago that T cells in the injured brain were shown to play a protective rather than a destructive role. In this article, we explore the role of the immune system in the healthy brain, focusing on the key function that T lymphocytes have in the regulation of cognition. We discuss candidate mechanisms underlying T cell-mediated control of cognitive function in human cognitive diseases associated with immune decline, such as age- and HIV-related dementias, 'chemo-brain' and others.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
8
|
Brynskikh A, Warren T, Zhu J, Kipnis J. Adaptive immunity affects learning behavior in mice. Brain Behav Immun 2008; 22:861-9. [PMID: 18249087 DOI: 10.1016/j.bbi.2007.12.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/22/2007] [Accepted: 12/22/2007] [Indexed: 11/16/2022] Open
Abstract
Regulation of neuronal plasticity by the immune system is an evolving field of modern neuroscience. Here we employ immune deficient mice to examine the role of the immune system in learning behavior of mice in a variety of cognitive tasks. While no motivation or motor function deficits are evident in severe combined immune deficient (scid) mice, there was significant impairment in acquisition of cognitive tasks as compared to wild-type (WT) control mice. Moreover, acute depletion of adaptive immunity in adult WT mice significantly impaired learning behavior. Passive transfer of autologous T cells into WT mice following ablation of adaptive immunity restored previously impaired cognitive function. These results suggest that throughout lifetime, immune system supports cognitive function and may therefore have far-reaching therapeutic implications for cognitive disorders.
Collapse
Affiliation(s)
- Anna Brynskikh
- Laboratory of NeuroImmune Regulation, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | |
Collapse
|
9
|
Liu L, Wang S, Shan B, Shao L, Sato A, Kawamura K, Li Q, Ma G, Tagawa M. IL-27-mediated activation of natural killer cells and inflammation produced antitumour effects for human oesophageal carcinoma cells. Scand J Immunol 2008; 68:22-9. [PMID: 18482209 DOI: 10.1111/j.1365-3083.2008.02111.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin IL-27, composed of p28 and EBV-induced gene 3 subunits, has diverse functions in enhancing cell-mediated immunity and silencing the immunity. We examined whether forced expression of the p28-linked EBI3 gene in human oesophageal carcinoma cells (Eca109) produced antitumour effects in a T cell-defective condition. Tumour growth of Eca109 cells expressing IL-27 (Eca109/IL-27) was retarded in nude mice compared with parental and vector DNA-transduced tumours and survival of the mice inoculated with Eca109/IL-27 cells was prolonged. Expression of the tumour necrosis factor-alpha, IL-1beta and IL-6 genes was up-regulated in Eca109/IL-27 tumour specimens while the tumours remained small in size but the increased transcription was subsequently down-regulated in enlarged tumours. Spleen cells from mice-bearing Eca109/IL-27 tumours produced interferon-gamma and showed YAC-1-targeted cytotoxic activities greater than those of mice inoculated with parental or vector DNA-transducer tumours. Numbers of DX5+CD69+ natural killer cells in spleen of mice-bearing Eca109/IL-27 tumours and those of CD31+ cells within Eca109/IL-27 tumours remained the same as found in mice-bearing parental or vector DNA-transduced tumours. These data collectively suggest that the IL-27-mediated antitumour effects produced in a mature T cell-defective condition were attributable to enhanced interferon-gamma production and natural killer activities.
Collapse
Affiliation(s)
- L Liu
- Research Center, Fourth Hospital of Hebei Medical University, Jiankanglu, Shijiazhuang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
O'Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol 2008; 252:91-110. [PMID: 18325486 DOI: 10.1016/j.cellimm.2007.09.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 09/01/2007] [Indexed: 11/16/2022]
Abstract
During the past decade, the immune and endocrine systems have been discovered to interact in controlling physiologic processes as diverse as cell growth and differentiation, metabolism, and even human and animal behavior. The interaction between these two major physiological systems is a bi-directional process. While it has been well documented that hormones, including prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid-stimulating hormone (TSH), regulate a variety of immune events, a great deal of data have accumulated supporting the notion that cytokines from the innate immune system also affect the neuroendocrine system. Communication between these two systems coordinates processes that are necessary to maintain homeostasis. Proinflammatory cytokines often act as negative regulatory signals that temper the action of hormones and growth factors. This system of 'checks and balances' is an active, ongoing process, even in healthy individuals. Dysregulation of this process has been implicated as a potential pathogenic factor in the development of co-morbid conditions associated with several chronic inflammatory diseases, including type 2 diabetes, cardiovascular disease, cerebrovascular disease, inflammatory bowel disease, rheumatoid arthritis, major depression, and even normal aging. Over the past decade, research in our laboratory has focused on the ability of the major proinflammatory cytokines, tumor necrosis factor (TNF)alpha and interleukin (IL)-1beta, to induce a state of IGF resistance. This review will highlight these and other new findings by explaining how proinflammatory cytokines induce resistance to the major growth factor, insulin-like growth factor-I (IGF-I). We also highlight that IGF-I can induce resistance or reduce sensitivity to brain TNFalpha and discuss how TNFalpha, IL-1beta, and IGF-I interact to regulate several aspects of behavior and cognition.
Collapse
Affiliation(s)
- Jason C O'Connor
- Integrative Immunology and Behavior Program, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
11
|
Macrae VE, Ahmed SF, Mushtaq T, Farquharson C. IGF-I signalling in bone growth: inhibitory actions of dexamethasone and IL-1beta. Growth Horm IGF Res 2007; 17:435-439. [PMID: 17590365 DOI: 10.1016/j.ghir.2007.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine if glucocorticoids and proinflammatory cytokines inhibit bone growth through a common mechanism involving impaired IGF-I signalling. DESIGN IGF-I (100 ng/ml), dexamethasone (dex) (10(-6)M) and IL-1beta (10 ng/ml) with inhibitors of the PI3K (LY294002) and Erk 1/2 (PD98059 and UO126) IGF-I pathways (all 10 microM) were studied using the ATDC5 chondrocyte cell line and murine fetal metatarsal cultures. RESULTS IGF-I stimulated ATDC5 chondrocyte proliferation (322%; P < 0.001 versus control). Addition of PD or LY individually to IGF-I supplemented ATDC5 cultures partially reduced proliferation by 32% (P < 0.001), and 66% (P < 0.001), respectively. PD and LY in combination blocked all IGF-I stimulated ATDC5 proliferation. LY significantly reversed IGF-I stimulatory effects on metatarsal growth (P < 0.001), whereas PD and UO treatment had no effect. IGF-I induced ATDC5 proliferation was further decreased when Dex (24%; P < 0.01) or IL-1beta (33%; P < 0.001) were added to PD but not LY cultures. Metatarsal growth inhibition by LY was unaltered by Dex or IL-1beta addition. CONCLUSIONS Both the PI3K and Erk 1/2 pathways contributed independently to IGF-I mediated ATDC5 proliferation. However in metatarsal cultures, the Erk 1/2 pathway was not required for IGF-I stimulated growth. Dex and IL-1beta may primarily inhibit IGF-I induced bone growth through the PI3K pathway.
Collapse
Affiliation(s)
- Vicky E Macrae
- Bone Biology Group, Division of Gene Function and Development, Roslin Institute, Roslin, Midlothian, Edinburgh EH25 9PS, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 2007; 55:483-96. [PMID: 17203475 DOI: 10.1002/glia.20474] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While a number of studies have documented the importance of microglia in central nervous system (CNS) response to injury, infection and disease, little is known regarding its role in viral encephalitis. We therefore, exploited an experimental model of Japanese Encephalitis, to better understand the role played by microglia in Japanese Encephalitis Virus (JEV) infection. Lectin staining performed to assess microglial activation indicated a robust increase in reactive microglia following infection. A difference in the topographic distribution of activated, resting, and phagocytic microglia was also observed. The levels of various proinflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2), IL-6, IL-1beta, TNF-alpha, and MCP-1 that have been implicated in microglial response to an activational state was significantly elevated following infection. These cytokines exhibited region selective expression in the brains of infected animals, with the highest expression observed in the hippocampus. Moreover, the expression of neuronal specific nuclear protein NeuN was markedly downregulated during progressive infection indicating neuronal loss. In vitro studies further confirmed that microglial activation and subsequent release of various proinflammatory mediators induces neuronal death following JEV infection. Although initiation of immune responses by microglial cells is an important protective mechanism in the CNS, unrestrained inflammatory responses may result in irreparable brain damage. Our findings suggest that the increased microglial activation following JEV infection influences the outcome of viral pathogenesis. It is likely that the increased microglial activation triggers bystander damage, as the animals eventually succumb to infection.
Collapse
Affiliation(s)
- Ayan Ghoshal
- National Brain Research Centre, Manesar, Haryana, India
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Di Paolo S, Teutonico A, Ranieri E, Gesualdo L, Schena PF. Monitoring Antitumor Efficacy of Rapamycin in Kaposi Sarcoma. Am J Kidney Dis 2007; 49:462-70. [PMID: 17336708 DOI: 10.1053/j.ajkd.2006.11.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 11/14/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND The clinical challenge for the application of rapamycin and its derivatives as anticancer drugs is the ability to prospectively identify which tumors will be sensitive to mammalian target of rapamycin (mTOR) inhibition. The present study is designed to explore mTOR signaling in peripheral-blood mononuclear cells (PBMCs) from renal transplant recipients with Kaposi sarcoma and ascertain whether it would reflect deregulation of the AKT-mTOR pathway in skin cancer tissue and might help identify which patients would benefit from rapamycin treatment, as well as to monitor their clinical response. METHODS We measured basal and in vivo stimulated AKT and P70 S6 kinase (P70(S6K)) phosphorylation in PBMCs from 37 cyclosporine A-treated patients, 10 of whom had Kaposi sarcoma, before and 6 months after conversion to rapamycin therapy. RESULTS Patients with Kaposi sarcoma showed markedly increased basal P70(S6K) activation and depressed phosphorylation of AKT. Long-term treatment with rapamycin was associated with marked inhibition of basal and stimulated phosphorylation of both AKT and P70(S6K), in parallel with regression of the dermal neoplasm. CONCLUSION Overactivation of basal P70(S6K) in PBMCs from renal transplant recipients appears to be associated with the presence of Kaposi sarcoma dermal lesions; conversely, kinase inhibition is linked to regression of skin cancer lesions. Thus, monitoring P70(S6K) phosphorylation can help predict and monitor the biological effectiveness of rapamycin in renal transplant recipients with Kaposi sarcoma and possibly adjust the biologically active doses of the mTOR inhibitor.
Collapse
Affiliation(s)
- Salvatore Di Paolo
- Department of Emergency and Organ Transplants, Division of Nephrology, Dialysis and Transplantation, University of Bari, Policlinico-Piazza Giulio Cesare, 11-70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
14
|
Weber GF, Gaertner FC, Erl W, Janssen KP, Blechert B, Holzmann B, Weighardt H, Essler M. IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8266-72. [PMID: 17114505 DOI: 10.4049/jimmunol.177.11.8266] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IL-22 is a recently discovered cytokine of the IL-10 family that binds to a class II cytokine receptor composed of IL-22R1 and IL-10R2(c) and influences a variety of immune reactions. As IL-22 has also been shown to modulate cell cycle and proliferation mediators such as ERK1/2 and JNK, we studied the role of IL-22 in proliferation, apoptosis, and cell cycle regulation in EMT6 murine breast cancer cells in vitro and in vivo. In this study, we report that murine breast cancer cells express functional IL-22R as indicated by RT-PCR studies, immunoblotting, and STAT3 activation assays. Importantly, IL-22 exposure of EMT6 cells resulted in decreased levels of phosphorylated ERK1/2 and AKT protein kinases, indicating an inhibitory effect of IL-22 on signaling pathways promoting cell proliferation. Furthermore, IL-22 induced a cell cycle arrest of EMT6 cells in the G(2)-M phase. IL-22 reduced EMT6 cell numbers and the proliferation rate by approximately 50% as measured by [(3)H]thymidine incorporation. IL-22 treatment of EMT6 tumor-bearing mice lead to a decreased tumor size and a reduced tumor cell proliferation in vivo, as determined by 3'-deoxy-3'-fluorothymidine-positron emission tomography scans. Interestingly, IL-22 did not induce apoptosis, as determined in annexin V binding assay and caspase-3 activation assay and had no effect on angiogenesis in vivo. In conclusion, our results indicate that IL-22 reduced tumor growth by inhibiting signaling pathways such as ERK1/2 and AKT phosphorylation that promote tumor cell proliferation in EMT6 cells. Therefore, IL-22 may play a role in the control of tumor growth and tumor progression.
Collapse
Affiliation(s)
- Georg F Weber
- Chirurgische Klinik und Poliklinik der Technischen Universität München, Ismaningerstrasse 22, 81675 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jia G, Cheng G, Agrawal DK. Differential effects of insulin-like growth factor-1 and atheroma-associated cytokines on cell proliferation and apoptosis in plaque smooth muscle cells of symptomatic and asymptomatic patients with carotid stenosis. Immunol Cell Biol 2006; 84:422-9. [PMID: 16942485 DOI: 10.1111/j.1440-1711.2006.01449.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morbidity and mortality from atherosclerosis are associated with complicated atherosclerotic lesions due to plaque rupture, which is regulated by a balance between proliferation and apoptosis of vascular smooth muscle cells (VSMC). We examined insulin-like growth factor-1 (IGF-1)-induced survival of plaque VSMC from carotid endarterectomy specimens and investigated the underlying cellular mechanisms in the presence and absence of IL-12 and IFN-gamma. Both IL-12 and IFN-gamma were strongly expressed in symptomatic atherosclerotic plaques as compared with asymptomatic plaques. In asymptomatic plaque VSMC, IGF-1 induced the survival and proliferation of VSMC and accelerated VSMC into S-phase. IL-12 or IFN-gamma inhibited proliferation and VSMC were arrested in the G0-G1 phase. IGF-1 markedly inhibited the expression of p27(kip) and p21(cip) and significantly induced cyclin E and cyclin D. Both cytokines by themselves increased the expression of p27(kip) and p21(cip) and inhibited cyclin E and cyclin D. On the contrary, in symptomatic VSMC there was already increased apoptosis of VSMC and there was no significant effect of IGF-1 or inflammatory cytokines on proliferation, apoptosis or the expression of p27(kip) and p21(cip) and cyclin D and E. These data suggest that IGF-1 is more potent in inducing the survival of VSMC from the endarterectomy specimens of asymptomatic patients as compared to that of symptomatic subjects and cytokines associated with atheroma lesions decrease the activity of IGF-1-induced survival in the VSMC of asymptomatic plaques. The different expression and activity of cell cycle regulatory proteins could be responsible for apoptosis of VSMC and destabilization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | |
Collapse
|