1
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Raynor J, Lin A, Hummel SA, Lampe K, Jordan M, Hoebe K, Hildeman DA. The Variable Genomic NK Cell Receptor Locus Is a Key Determinant of CD4+ T Cell Responses During Viral Infection. Front Immunol 2020; 11:197. [PMID: 32153566 PMCID: PMC7044186 DOI: 10.3389/fimmu.2020.00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence points to a key role for NK cells in controlling adaptive immune responses. In studies examining the role of CD1d on CD4+ T cell responses, we found that a line of CD1d-deficient mice on the C57BL/6J background had a homozygous 129 locus on chromosome 6 containing the entire NK cell gene cluster. Mice possessing this locus (C57BL/6.NKC129) displayed a >10-fold reduction in antigen-specific CD4+ T cell responses after intracranial infection with lymphocytic choriomeningitis virus (LCMV). Neither parental strain displayed defects in viral-specific CD4+ T cell responses. Interestingly, following infection, increased numbers of NK cells accumulated in the lymph nodes of C57BL/6.NKC129 mice and displayed enhanced in vivo functionality. Moreover, depletion of NK cells with anti-asialo-GM-1 antibody in C57BL/6.NKC129 mice resulted in a >20-fold increase in viral-specific CD4+ T cell responses. Mechanistically, we found that dendritic cell antigen presentation and early type I IFN production were significantly decreased in C57BL/6.NKC129 mice, but were restored in perforin-deficient C57BL/6.NKC129 mice or following NK depletion. Together, these data reveal that the variable genomic regions containing the activating/inhibitory NK cell receptors are key determinants of antigen-specific CD4+ T cell responses, controlling type I IFN production and the antigen-presenting capacity of dendritic cells.
Collapse
Affiliation(s)
- Jana Raynor
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Adora Lin
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sarah A Hummel
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristin Lampe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Jordan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kasper Hoebe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Rao P, Wen X, Lo JH, Kim S, Li X, Chen S, Feng X, Akbari O, Yuan W. Herpes Simplex Virus 1 Specifically Targets Human CD1d Antigen Presentation To Enhance Its Pathogenicity. J Virol 2018; 92:e01490-18. [PMID: 30185591 PMCID: PMC6206489 DOI: 10.1128/jvi.01490-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is one of the most prevalent herpesviruses in humans and represents a constant health threat to aged and immunocompromised populations. How HSV-1 interacts with the host immune system to efficiently establish infection and latency is only partially known. CD1d-restricted NKT cells are a critical arm of the host innate immune system and play potent roles in anti-infection and antitumor immune responses. We discovered previously that upon infection, HSV-1 rapidly and efficiently downregulates CD1d expression on the cell surface and suppresses the function of NKT cells. Furthermore, we identified the viral serine/threonine protein kinase US3 as a major viral factor downregulating CD1d during infection. Interestingly, neither HSV-1 nor its US3 protein efficiently inhibits mouse CD1d expression, suggesting that HSV-1 has coevolved with the human immune system to specifically suppress human CD1d (hCD1d) and NKT cell function for its pathogenesis. This is consistent with the fact that wild-type mice are mostly resistant to HSV-1 infection. On the other hand, in vivo infection of CD1d-humanized mice (hCD1d knock-in mice) showed that HSV-1 can indeed evade hCD1d function and establish infection in these mice. We also report here that US3-deficient viruses cannot efficiently infect hCD1d knock-in mice but infect mice lacking all NKT cells at a higher efficiency. Together, these studies supported HSV-1 evasion of human CD1d and NKT cell function as an important pathogenic factor for the virus. Our results also validated the potent roles of NKT cells in antiherpesvirus immune responses and pointed to the potential of NKT cell ligands as adjuvants for future vaccine development.IMPORTANCE Herpes simplex virus 1 (HSV-1) is among the most common human pathogens. Little is known regarding the exact mechanism by which this virus evades the human immune system, particularly the innate immune system. We reported previously that HSV-1 employs its protein kinase US3 to modulate the expression of the key antigen-presenting molecule, CD1d, so as to evade the antiviral function of NKT cells. Here we demonstrated that the virus has coevolved with the human CD1d and NKT cell system and that NKT cells indeed play potent roles in anti-HSV immune responses. These studies point to the great potential of exploring NKT cell ligands as adjuvants for HSV vaccines.
Collapse
Affiliation(s)
- Ping Rao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae Ho Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Seil Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiaotian Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Webb TJ, Carey GB, East JE, Sun W, Bollino DR, Kimball AS, Brutkiewicz RR. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathog Dis 2016; 74:ftw055. [PMID: 27297969 DOI: 10.1093/femspd/ftw055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 01/27/2023] Open
Abstract
Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses.
Collapse
Affiliation(s)
- Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Gregory B Carey
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - James E East
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Wenji Sun
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Dominique R Bollino
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Amy S Kimball
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Haist K, Ziegler C, Botten J. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs. PLoS One 2015; 10:e0120043. [PMID: 25978311 PMCID: PMC4433285 DOI: 10.1371/journal.pone.0120043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 02/03/2023] Open
Abstract
Arenaviruses are bi-segmented, single-stranded RNA viruses that cause significant human disease. The manner in which they regulate the replication of their genome is not well-understood. This is partly due to the absence of a highly sensitive assay to measure individual species of arenavirus replicative RNAs. To overcome this obstacle, we designed a quantitative reverse transcription (RT)-PCR assay for selective quantitation of each of the lymphocytic choriomeningitis virus (LCMV) genomic or antigenomic RNAs. During the course of assay design, we identified a nonspecific priming phenomenon whereby, in the absence of an RT primer, cDNAs complementary to each of the LCMV replicative RNA species are generated during RT. We successfully circumvented this nonspecific priming event through the use of biotinylated primers in the RT reaction, which permitted affinity purification of primer-specific cDNAs using streptavidin-coated magnetic beads. As proof of principle, we used the assay to map the dynamics of LCMV replication at acute and persistent time points and to determine the quantities of genomic and antigenomic RNAs that are incorporated into LCMV particles. This assay can be adapted to measure total S or L segment-derived viral RNAs and therefore represents a highly sensitive diagnostic platform to screen for LCMV infection in rodent and human tissue samples and can also be used to quantify virus-cell attachment.
Collapse
Affiliation(s)
- Kelsey Haist
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Christopher Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Jason Botten
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
6
|
Van Kaer L, Parekh VV, Wu L. The Response of CD1d-Restricted Invariant NKT Cells to Microbial Pathogens and Their Products. Front Immunol 2015; 6:226. [PMID: 26029211 PMCID: PMC4429631 DOI: 10.3389/fimmu.2015.00226] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs). Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| |
Collapse
|
7
|
Shin J, O'Brien TF, Grayson JM, Zhong XP. Differential regulation of primary and memory CD8 T cell immune responses by diacylglycerol kinases. THE JOURNAL OF IMMUNOLOGY 2012; 188:2111-7. [PMID: 22271650 DOI: 10.4049/jimmunol.1102265] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The manipulation of signals downstream of the TCR can have profound consequences for T cell development, function, and homeostasis. Diacylglycerol (DAG) produced after TCR stimulation functions as a secondary messenger and mediates the signaling to Ras-MEK-Erk and NF-κB pathways in T cells. DAG kinases (DGKs) convert DAG into phosphatidic acid, resulting in termination of DAG signaling. In this study, we demonstrate that DAG metabolism by DGKs can serve a crucial function in viral clearance upon lymphocytic choriomeningitis virus infection. Ag-specific CD8(+) T cells from DGKα(-/-) and DGKζ(-/-) mice show enhanced expansion and increased cytokine production after lymphocytic choriomeningitis virus infection, yet DGK-deficient memory CD8(+) T cells exhibit impaired expansion after rechallenge. Thus, DGK activity plays opposing roles in the expansion of CD8(+) T cells during the primary and memory phases of the immune response, whereas consistently inhibiting antiviral cytokine production.
Collapse
Affiliation(s)
- Jinwook Shin
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
8
|
Subrahmanyam PB, Sun W, East JE, Li J, Webb TJ. Natural killer T cell based Immunotherapy. ACTA ACUST UNITED AC 2012; 3:144. [PMID: 24089657 DOI: 10.4172/2157-7560.1000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer T (NKT) cells play an important immunoregulatory role and are thought to bridge the innate and adaptive immune responses. Following activation through cognate interactions with lipid antigen presented in the context of CD1d molecules, NKT cells rapidly produce a plethora of cytokines and can also mediate cytotoxicity. Due to their potent effector functions, extensive research has been performed to increase our understanding on how to effectively modulate these cells. In fact, NKT cell agonists have been used as vaccine adjuvants to enhance antigen specific T and B cell responses to infections and malignancy. In this review, we will focus on recent advances in NKT cell-based vaccination strategies. Given the role that NKT cells play in autoimmune disease, infectious diseases, cancer, transplant immunology and dermatology, it is important to understand how to effectively guide their effector functions in order to develop novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine, the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
9
|
Lehmer EM, Jones JD, Bego MG, Varner JM, Jeor SS, Clay CA, Dearing MD. Long-term patterns of immune investment by wild deer mice infected with Sin Nombre virus. Physiol Biochem Zool 2010; 83:847-57. [PMID: 20695811 DOI: 10.1086/656215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immunocompetence of animals fluctuates seasonally, However, there is little consensus on the cause of these fluctuations. Some studies have suggested that these patterns are influenced by changes in reproductive condition, whereas others have suggested that differences result from seasonal variations in energy expenditures. The objective of our study was to examine these contrasting views of immunity by evaluating seasonal patterns of immune response and reproduction in wild populations of deer mice Peromyscus maniculatus exposed to Sin Nombre virus (SNV). Over three consecutive fall (September, October, November) and three consecutive spring (March, April, May) sampling periods, we used titration enzyme-linked immunosorbent assay (ELISA) to quantify virus-specific antibody production in 48 deer mice infected with SNV. Levels of reproductive hormones were quantified using ELISA. SNV antibody titers reached their lowest level during November (geometric mean titer [GMT] = 420) and their highest levels during September (GMT = 5,545) and May (GMT = 3,582), suggesting that the immune response of deer mice to SNV has seasonal patterns. The seeming decrease in antibody titer over winter coupled with the consistency in body masses suggests that during winter, immunocompetence may be compromised to offset the energetic costs of maintenance functions, including those associated with maintaining body mass. Deer mice showed distinct sex-based differences in SNV antibody production, with males producing higher antibody titers (GMT = 3,333) than females (GMT = 1,477). Levels of reproductive hormones do not appear to influence antibody production in either males or females, as there was no correlation between estradiol concentrations and SNV antibody titer in female deer mice (r² = 0.26), nor was there a significant relationship between levels of testosterone and SNV antibody titers in males (r² = 0.28). Collectively, this study demonstrates that immunocompetence of wild deer mice is seasonally variable; however, reproduction is not the primary stressor responsible for this variation. Rather, the data suggest that deer mice may compromise immunocompetence during winter to offset other maintenance costs during this period.
Collapse
Affiliation(s)
- Erin M Lehmer
- Department of Biology, Fort Lewis College, Durango, CO 81301, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Rohr J, Beutel K, Maul-Pavicic A, Vraetz T, Thiel J, Warnatz K, Bondzio I, Gross-Wieltsch U, Schündeln M, Schütz B, Woessmann W, Groll AH, Strahm B, Pagel J, Speckmann C, Janka G, Griffiths G, Schwarz K, zur Stadt U, Ehl S. Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2 overlaps with primary immunodeficiency diseases. Haematologica 2010; 95:2080-7. [PMID: 20823128 DOI: 10.3324/haematol.2010.029389] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Familial hemophagocytic lymphohistiocytosis is a genetic disorder of lymphocyte cytotoxicity that usually presents in the first two years of life and has a poor prognosis unless treated by hematopoietic stem cell transplantation. Atypical courses with later onset and prolonged survival have been described, but no detailed analysis of immunological parameters associated with typical versus atypical forms of familial hemophagocytic lymphohistiocytosis has been performed. DESIGN AND METHODS We analyzed disease manifestations, NK-cell and T-cell cytotoxicity and degranulation, markers of T-cell activation and B-cell differentiation as well as Natural Killer T cells in 8 patients with atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2. RESULTS All but one patient with atypical familial hemophagocytic lymphohistiocytosis carried at least one splice-site mutation in UNC13D or STXBP2. In most patients episodes of hemophagocytic lymphohistiocytosis were preceded or followed by clinical features typically associated with immunodeficiency, such as chronic active Epstein Barr virus infection, increased susceptibility to bacterial infections, granulomatous lung or liver disease, encephalitis or lymphoma. Five of 8 patients had hypogammaglobulinemia and reduced memory B cells. Most patients had a predominance of activated CD8(+) T cells and low numbers of Natural Killer T cells. When compared to patients with typical familial hemophagocytic lymphohistiocytosis, NK-cell cytotoxicity and NK-cell and CTL degranulation were impaired to a similar extent. However, in patients with an atypical course NK-cell degranulation could be partially reconstituted by interleukin-2 and cytotoxic T-cell cytotoxicity in vitro was normal. CONCLUSIONS Clinical and immunological features of atypical familial hemophagocytic lymphohistiocytosis show an important overlap to primary immunodeficiency diseases (particularly common variable immunodeficiency and X-linked lymphoproliferative syndrome) and must, therefore, be considered in a variety of clinical presentations. We show that degranulation assays are helpful screening tests for the identification of such patients.
Collapse
Affiliation(s)
- Jan Rohr
- Centre of Pediatrics and Adolescent Medicine, University Medical Centre, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ansari AW, Temblay JN, Alyahya SH, Ashton-Rickardt PG. Serine protease inhibitor 6 protects iNKT cells from self-inflicted damage. THE JOURNAL OF IMMUNOLOGY 2010; 185:877-83. [PMID: 20543105 DOI: 10.4049/jimmunol.1000651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role played by apoptosis in the homeostasis of effector cells of the innate immune system is unclear. Serine protease inhibitor 6 (Spi6) is an inhibitor of granzyme B (GrB) that protects cytotoxic T lymphocytes of the adaptive immune system from apoptosis. To determine whether Spi6 also protects cells of the innate immune system from self-inflicted damage we have examined invariant NKT (iNKT) cells. Spi6-deficient iNKT cells harbored increased levels of GrB after TCR stimulation with the PBS-57 glycolipid Ag and were susceptible to apoptosis. The increased apoptosis of Spi6 knock-out (KO) iNKT cells lead to a complete loss in the production of IL-4 and IFN-gamma by Spi6 KO iNKT cells after PBS-57 challenge. The increased activation-induced apoptosis resulted in impaired survival and a decreased clonal burst size of Spi6 KO iNKT cells, which could be corrected by GrB deficiency. However, the clonal burst of Spi6 KO iNKT cells after TCR-independent activation with lymphocytic choriomeningitis virus was not affected. Our findings demonstrate that Spi6 protects cytotoxic cells of the innate immune system from GrB-mediated self-inflicted triggered by the recognition of Ag.
Collapse
Affiliation(s)
- A Wahid Ansari
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
12
|
Inhibition of lipid antigen presentation in dendritic cells by HIV-1 Vpu interference with CD1d recycling from endosomal compartments. Blood 2010; 116:1876-84. [PMID: 20530791 DOI: 10.1182/blood-2009-09-243667] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) play an important role in viral infections both as initiators of immunity and as viral targets. Interaction between DCs and the innate-like CD1d-restricted natural killer T (NKT) cells results in the mutual activation of both cells and the subsequent initiation of cellular immune responses. Here, we show that HIV-1 inhibits the surface expression of CD1d in productively infected DCs and identify this as a novel activity of the HIV-1 vpu gene product. Interestingly, the viral protein U (Vpu) does not enhance constitutive CD1d endocytosis or induce rapid CD1d degradation. Instead, the Vpu protein interacts with CD1d and suppresses its recycling from endosomal compartments to the cell surface by retaining CD1d in early endosomes. This interference with the CD1d antigen presentation pathway strongly inhibits the ability of infected DCs to activate CD1d-restricted NKT cells. Given that the interaction with CD1d-expressing DCs is central to the ability of NKT cells to regulate immunity, these data suggest that interference with the CD1d antigen presentation pathway represents an HIV-1 strategy to evade innate cellular immune responses and imply a role for the innate-like CD1d-restricted NKT cells in the host defense against HIV-1.
Collapse
|
13
|
Detre C, Keszei M, Romero X, Tsokos GC, Terhorst C. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol 2010; 32:157-71. [PMID: 20146065 DOI: 10.1007/s00281-009-0193-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/30/2009] [Indexed: 01/05/2023]
Abstract
One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in T cell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Cynthia Detre
- BIDMC Division of Immunology, Harvard Center for Life Sciences, Rm. CLS 938, 3 Blackfan Circle, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
NKT cells are innate-like T lymphocytes that are found in rodents and primates. They are non-conventional T cells restricted by the CD1d molecule that presents self and exogenous glycolipids. NKT cells are unique in their ability to promptly secrete copious amounts of cytokines such as IFN-gamma and IL-4. Once activated, NKT cells can provide maturation signals to downstream cells, including DC, NK cells, and lymphocytes, thereby contributing to both innate and acquired immunity. Accordingly, NKT cells can influence a wide array of immune responses, including tumor surveillance, maintenance of self-tolerance and anti-infectious defenses. Studies performed with NKT-cell-deficient mice have shown that these cells are critical for the clearance of various pathogens. During bacterial infections, NKT cells can be activated either indirectly by DC or directly by bacterial lipid antigens presented by CD1d. Although viruses do not contain lipid antigens, NKT cells have also been implicated in antiviral responses. The capacity of NKT cells to regulate viral immune-surveillance, either constitutively or post-activation, makes them an attractive clinical target. In this review, we summarize recent publications dealing with the functions and relevance of NKT cells in the context of viral infections, both in murine models and in humans.
Collapse
Affiliation(s)
- Julien Diana
- INSERM, U561, Hôpital Cochin/St. Vincent de Paul, Université Paris Descartes, Paris, France
| | | |
Collapse
|
15
|
Tessmer MS, Fatima A, Paget C, Trottein F, Brossay L. NKT cell immune responses to viral infection. Expert Opin Ther Targets 2009; 13:153-62. [PMID: 19236234 DOI: 10.1517/14712590802653601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Natural killer T (NKT) cells are a heterogeneous population of innate T cells that have attracted interest because of their potential to regulate immune responses to a variety of pathogens. The most widely studied NKT cell subset is the invariant (i)NKT cells that recognize glycolipids in the context of the CD1d molecule. The multifaceted methods of activation iNKT cells possess and their ability to produce regulatory cytokines has made them a primary target for studies. OBJECTIVE/METHODS To give insights into the roles of iNKT cells during infectious diseases, particularly viral infections. We also highlight mechanisms leading to iNKT cell activation in response to pathogens. CONCLUSIONS iNKT cell's versatility allows them to detect and respond to several viruses. Therapeutic approaches to specifically target iNKT cells will require additional research. Notably, the roles of non-invariant NKT cells in response to pathogens warrant further investigation.
Collapse
Affiliation(s)
- Marlowe S Tessmer
- Brown University, Department of Molecular Microbiology and Immunology, Providence, USA
| | | | | | | | | |
Collapse
|
16
|
X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses. Immunol Res 2009; 42:145-59. [PMID: 18815745 DOI: 10.1007/s12026-008-8048-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A major focus of our research is to understand the molecular and cellular basis of X-linked lymphoproliferative disease (XLP), a rare and often fatal immunodeficiency caused by mutations in the SH2D1A gene, which encodes the adaptor molecule SAP. Recently, we observed that SAP is essential for the development of natural killer T (NKT) cells, a lymphocyte population that participates in protection against certain tumors, infections, and autoimmune states. In this review, we describe the approaches that we are taking to understand the role of SAP in immune cells, including NKT cells. By using SAP as the focal point of our studies, we hope to identify novel signaling pathways that could be targeted to improve the treatment for patients with XLP as well as more common disorders, such as autoimmunity and cancer.
Collapse
|
17
|
Kinjo Y, Kronenberg M. V alpha14 i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J Clin Immunol 2009; 25:522-33. [PMID: 16380816 DOI: 10.1007/s10875-005-8064-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 08/17/2005] [Indexed: 01/12/2023]
Abstract
Natural Killer T (NKT) cells constitute a conserved T lymphocyte sublineage that has been implicated in the regulation of various immune responses, including the responses to viruses, bacteria, and parasites. NKT cells recognize self and foreign glycolipids presented by CD1d, a non-classical antigen-presenting molecule, and they rapidly produce various cytokines. Many studies have shown that NKT cells have protective roles following microbial infection through the amplification of innate and adaptive immunity, although NKT cells have detrimental roles in some cases. Recent studies have shed light on the natural antigens recognized by NKT cells and the mechanisms whereby they contribute to host defense, and they suggest that these unique T cells have evolved to jump start the immune response to microbes.
Collapse
Affiliation(s)
- Yuki Kinjo
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
18
|
|
19
|
Welsh RM, Seedhom MO. Lymphocytic choriomeningitis virus (LCMV): propagation, quantitation, and storage. ACTA ACUST UNITED AC 2008; Chapter 15:Unit 15A.1. [PMID: 18770534 DOI: 10.1002/9780471729259.mc15a01s8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is an enveloped, ambisense RNA virus and the prototypic virus of the arenavirus group. It can cause viral meningitis and other ailments in humans, but its natural host is the mouse. The LCMV/mouse model has been useful for examining mechanisms of viral persistence and the basic concepts of virus-induced immunity and immunopathology. This unit discusses strain differences and biosafety containment issues for LCMV. Recommendations are made for techniques for propagating LCMV to high titers to quantify it by plaque assay and PCR techniques and to preserve its infectivity by appropriate storage.
Collapse
Affiliation(s)
- Raymond M Welsh
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
20
|
Tsunoda I, Tanaka T, Fujinami RS. Regulatory role of CD1d in neurotropic virus infection. J Virol 2008; 82:10279-10289. [PMID: 18684818 PMCID: PMC2566251 DOI: 10.1128/jvi.00734-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/29/2008] [Indexed: 02/05/2023] Open
Abstract
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1(-/-)) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1(-/-) mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1(-/-) mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1(-/-) mice. Second, an analysis of DA virus infection in CD1(-/-) mice was conducted. Although both wild-type and CD1(-/-) mice had similar clinical signs during the first 2 weeks after infection, CD1(-/-) mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1(-/-) mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1(-/-) mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, Division of Cell Biology & Immunology, University of Utah School of Medicine, 30 North 1900 East, MREB, Room 218, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
21
|
Bochtler P, Kröger A, Schirmbeck R, Reimann J. Type I IFN-induced, NKT cell-mediated negative control of CD8 T cell priming by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:1633-43. [PMID: 18641299 DOI: 10.4049/jimmunol.181.3.1633] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the negative effect of type I IFN (IFN-I) on the priming of specific CD8 T cell immunity. Priming of murine CD8 T cells is down-modulated if Ag is codelivered with IFN-I-inducing polyinosinic:polycytidylic acid (pI/C) that induces (NK cell- and T/B cell-independent) acute changes in the composition and surface phenotype of dendritic cells (DC). In wild-type but not IFN-I receptor-deficient mice, pI/C reduces the plasmacytoid DC but expands the CD8(+) conventional DC (cDC) population and up-regulates surface expression of activation-associated (CD69, BST2), MHC (class I/II), costimulator (CD40, CD80/CD86), and coinhibitor (PD-L1/L2) molecules by cDC. Naive T cells are efficiently primed in vitro by IFN-I-stimulated CD8 cDC (the key APC involved in CD8 T cell priming) although these DC produced less IL-12 p40 and IL-6. pI/C (IFN-I)-mediated down modulation of CD8 T cell priming in vivo was not observed in NKT cell-deficient CD1d(-/-) mice. CD8 cDC from pI/C-treated mice inefficiently stimulated IFN-gamma, IL-4, and IL-2 responses of NKT cells. In vitro, CD8 cDC that had activated NKT cells in the presence of IFN-I primed CD8 T cells that produced less IFN-gamma but more IL-10. The described immunosuppressive effect of IFN-I thus involves an NKT cell-mediated change in the phenotype of CD8 cDC that favors priming of IL-10-producing CD8 T cells. In the presence of IFN-I, NKT cells hence impair the competence of CD8 cDC to prime proinflammatory CD8 T cell responses.
Collapse
Affiliation(s)
- Petra Bochtler
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
22
|
Calpe S, Wang N, Romero X, Berger SB, Lanyi A, Engel P, Terhorst C. The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol 2008; 97:177-250. [PMID: 18501771 DOI: 10.1016/s0065-2776(08)00004-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nine SLAM-family genes, SLAMF1-9, a subfamily of the immunoglobulin superfamily, encode differentially expressed cell-surface receptors of hematopoietic cells. Engagement with their ligands, which are predominantly homotypic, leads to distinct signal transduction events, for instance those that occur in the T or NK cell immune synapse. Upon phosphorylation of one or more copies of a unique tyrosine-based signaling motif in their cytoplasmic tails, six of the SLAM receptors recruit the highly specific single SH2-domain adapters SLAM-associated protein (SAP), EAT-2A, and/or EAT-2B. These adapters in turn bind to the tyrosine kinase Fyn and/or other protein tyrosine kinases connecting the receptors to signal transduction networks. Individuals deficient in the SAP gene, SH2D1A, develop an immunodeficiency syndrome: X-linked lympho-proliferative disease. In addition to operating in the immune synapse, SLAM receptors initiate or partake in multiple effector functions of hematopoietic cells, for example, neutrophil and macrophage killing and platelet aggregation. Here we discuss the current understanding of the structure and function of these recently discovered receptors and adapter molecules in the regulation of adaptive and innate immune responses.
Collapse
Affiliation(s)
- Silvia Calpe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tulley JM, Palmer JL, Gamelli RL, Faunce DE. Prevention of injury-induced suppression of T-cell immunity by the CD1d/NKT cell-specific ligand alpha-galactosylceramide. Shock 2008; 29:269-77. [PMID: 17693934 DOI: 10.1097/shk.0b013e31811ff60c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Infection, sepsis, and multiple organ failure continue to be significant factors leading to morbidity and mortality after severe injury. Studies by our laboratory and others have identified injury-induced defects in both innate and adaptive components of host defense. We previously reported that CD1d-restricted natural killer T (NKT) cells actively suppress effector T-cell immunity after burn injury via production of excess IL-4 and failure to produce IFN-gamma. alpha-Galactosylceramide (alpha-GalCer) is a synthetic NKT cell-specific ligand presented exclusively to invariant NKT cells and is known to improve immunity against tumors and infection by promoting IFN-gamma production. Here, we confirmed the role of Valpha14-Jalpha281 invariant NKT cells in mouse model of burn injury-induced suppression of T-cell immunity and further asked whether alpha-GalCer can improve immunity after injury via similar mechanisms. We observed that systemic treatment with alpha-GalCer prevented the injury-induced suppression of Ag-specific T-cell responsiveness both in vitro and in vivo and restored the ability of splenic lymphocytes to produce both IL-2 and IFN-gamma. Moreover, burn injury was associated with diminished expression of major histocompatibility complex II and CD40 on antigen presenting cells that were both restored by alpha-GalCer treatment to levels seen in sham-treated mice. Collectively, these data suggest that, via manipulation of the NKT cell population, we may be able to maintain T-cell function and improve host defense after burn injury.
Collapse
Affiliation(s)
- Julia M Tulley
- Department of Surgery, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
24
|
Sharma A, Bhattacharya B, Puri RK, Maheshwari RK. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain. BMC Genomics 2008; 9:289. [PMID: 18558011 PMCID: PMC2440554 DOI: 10.1186/1471-2164-9-289] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 06/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. RESULTS Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). CONCLUSION Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration.
Collapse
Affiliation(s)
- Anuj Sharma
- Centre for Combat Casualty and Life Sustainment Research, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
25
|
|
26
|
Quantitative PCR technique for detecting lymphocytic choriomeningitis virus in vivo. J Virol Methods 2007; 147:167-76. [PMID: 17920702 DOI: 10.1016/j.jviromet.2007.08.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 08/23/2007] [Accepted: 08/30/2007] [Indexed: 11/21/2022]
Abstract
Quantitative PCR (QPCR, or real time PCR (rtPCR)) has emerged as a powerful virologic technique for measuring viral replication and viral loads in humans and animal models. We have developed a QPCR assay to accurately quantify lymphocytic choriomeningitis virus (LCMV) in infected mice. We first validated this assay using plasmid DNA and LCMV viral stocks. We then demonstrated that the LCMV QPCR assay can detect LCMV in serum and tissues of chronically infected mice (LCMV-clone 13), with greater sensitivity than conventional plaque assay. Subsequently, we demonstrated that the QPCR assay can detect LCMV in tissues of CD40L(-/-) mice during a low grade chronic infection with LCMV Armstrong. Finally, we improved the assay further such that it was approximate 1000-fold more sensitive than plaque assay for detection of the presence of LCMV in tissue.
Collapse
|
27
|
Behar SM, Porcelli SA. CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 2007; 314:215-50. [PMID: 17593663 DOI: 10.1007/978-3-540-69511-0_9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD1 has been clearly shown to function as a microbial recognition system for activation of T cell responses, but its importance for mammalian protective responses against infections is still uncertain. The function of the group 1 CD1 isoforms, including human CD1a, CDlb, and CDLc, seems closely linked to adaptive immunity. These CD1 molecules control the responses of T cells that are highly specific for particular lipid antigens, the best known of which are abundantly expressed by pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium leprae. Studies done mainly on human circulating T cells ex vivo support a significant role for group I CD1-restricted T cells in protective immunity to mycobacteria and potentially other pathogens, although supportive data from animal models is currently limited. In contrast, group 2 CD1 molecules, which include human CD1d and its orthologs, have been predominantly associated with the activation of CD1d-restricted NKT cells, which appear to be more appropriately viewed as a facet of the innate immune system. Whereas the recognition of certain self-lipid ligands by CD d-restricted NKT cells is well accepted, the importance of these T cells in mediating adaptive immune recognition of specific microbial lipid antigens remains controversial. Despite continuing uncertainty about the role of CD 1d-restricted NKT cells in natural infections, studies in mouse models demonstrate the potential of these T cells to exert various effects on a wide spectrum of infectious diseases, most likely by serving as a bridge between innate and adaptive immune responses.
Collapse
Affiliation(s)
- S M Behar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith Building Room 518, One Jimmy Fund Way, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Tupin E, Kinjo Y, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 2007; 5:405-17. [PMID: 17487145 DOI: 10.1038/nrmicro1657] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural killer T (NKT) cells combine features of the innate and adaptive immune systems. Recently, it has become evident that these T cells have crucial roles in the response to infectious agents. The antigen receptor expressed by NKT cells directly recognizes unusual glycolipids that are part of the membrane of certain Gram-negative bacteria and spirochetes. Moreover, even in the absence of microbial glycolipid antigens, these T cells respond to innate cytokines produced by dendritic cells that have been activated by microbes. This indirect sensing of infection, by responding to cytokines from activated dendritic cells, allows NKT cells to react to a broad range of infectious agents.
Collapse
Affiliation(s)
- Emmanuel Tupin
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | | | | |
Collapse
|
29
|
Gorbachev AV, Fairchild RL. Activated NKT cells increase dendritic cell migration and enhance CD8+ T cell responses in the skin. Eur J Immunol 2006; 36:2494-503. [PMID: 16909435 DOI: 10.1002/eji.200636075] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activated NKT cells produce cytokines such as IL-4 and IFN-gamma that function locally to influence the strength and functional development of antigen-specific T cells. Here we identify an alternative mechanism by which NKT cells influence the strength of T cell responses: through modulation of peripheral dendritic cell (DC) trafficking. NKT cell activation with alpha-galactosylceramide induced high systemic levels of TNF-alpha that mediated increased DC migration from skin to draining lymph nodes. This increased DC trafficking led to a threefold increase in effector T cell priming and in the immune response elicited to antigen challenge when alpha-galactosylceramide was given at the time of immunization of the skin. These studies provide important implications for the use of NKT cell activation strategies to manipulate T cell-mediated responses including responses to cutaneous tumors and graft vs. host disease.
Collapse
Affiliation(s)
- Anton V Gorbachev
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195-0001, USA.
| | | |
Collapse
|
30
|
Ilyinskii PO, Wang R, Balk SP, Exley MA. CD1d mediates T-cell-dependent resistance to secondary infection with encephalomyocarditis virus (EMCV) in vitro and immune response to EMCV infection in vivo. J Virol 2006; 80:7146-58. [PMID: 16809320 PMCID: PMC1489038 DOI: 10.1128/jvi.02745-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The innate and adaptive immune responses have evolved distinct strategies for controlling different viral pathogens. Encephalomyocarditis virus (EMCV) is a picornavirus that can cause paralysis, diabetes, and myocarditis within days of infection. The optimal innate immune response against EMCV in vivo requires CD1d. Interaction of antigen-presenting cell CD1d with distinct natural killer T-cell ("NKT") populations can induce rapid gamma interferon (IFN-gamma) production and NK-cell activation. The T-cell response of CD1d-deficient mice (lacking all NKT cells) against acute EMCV infection was further studied in vitro and in vivo. EMCV persisted at higher levels in CD1d-knockout (KO) splenocyte cultures infected in vitro. Furthermore, optimal resistance to repeat cycles of EMCV infection in vitro was also shown to depend on CD1d. However, this was not reflected in the relative levels of NK-cell activation but rather by the responses of both CD4(+) and CD8(+) T-cell populations. Repeated EMCV infection in vitro induced less IFN-gamma and alpha interferon (IFN-alpha) from CD1d-deficient splenocytes than with the wild type. Furthermore, the level of EMCV replication in wild-type splenocytes was markedly and specifically increased by addition of blocking anti-CD1d antibody. Depletion experiments demonstrated that dendritic cells contributed less than the combination of NK and NKT cells to anti-EMCV responses and that none of these cell types was the main source of IFN-alpha. Finally, EMCV infection in vivo produced higher levels of viremia in CD1d-KO mice than in wild-type animals, coupled with significantly less lymphocyte activation and IFN-alpha production. These results point to the existence of a previously unrecognized mechanism of rapid CD1d-dependent stimulation of the antiviral adaptive cellular immune response.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigen Presentation/immunology
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, CD1d
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cardiovirus Infections/genetics
- Cardiovirus Infections/immunology
- Diabetes Mellitus/immunology
- Diabetes Mellitus/virology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon-alpha/immunology
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Maus Elberfeld virus/genetics
- Maus Elberfeld virus/immunology
- Mice
- Mice, Knockout
- Myocarditis/immunology
- Myocarditis/virology
- Paralysis/immunology
- Paralysis/virology
- Viremia/genetics
- Viremia/immunology
- Virus Replication/drug effects
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Petr O Ilyinskii
- Cancer Biology Program, Hematology/Oncology Division, Beth Israel Deaconess Medical Center, NRB 1030L, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The MHC class I-like CD1d glycoprotein is a member of the CD1 family of Ag-presenting molecules and is responsible for the selection of NKT cells. A number of ligands that can be presented by CD1d to NKT or other CD1d-restricted T cells have been identified. These include glycolipids from a marine sponge, bacterial glycolipids, normal endogenous glycolipids, tumor-derived phospholipids and glycolipids, and nonlipidic molecules. The presentation of many of these molecules can have immunopotentiating effects, such as serving as an adjuvant against malaria or resulting in a more rapid clearance of certain virus infections. They can also be protective in autoimmune diseases or cancer or can be deleterious. This review will highlight these ligands in a discussion of their potential use against (and role in the pathogenesis of) these diseases.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
Renukaradhya GJ, Sriram V, Du W, Gervay-Hague J, Van Kaer L, Brutkiewicz RR. Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma modelin vivo. Int J Cancer 2006; 118:3045-53. [PMID: 16395717 DOI: 10.1002/ijc.21764] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have investigated the role of the host's CD1d-dependent innate antitumor immune response in a murine T-cell lymphoma model in vivo. We found that C57BL/6 wildtype (WT) mice inoculated with RMA/S cells transfected with murine CD1d1 died at the same rate as mice inoculated with vector-transfected cells. In contrast, natural killer T (NKT) cell-deficient CD1d or Jalpha18 knockout mice inoculated with CD1d-transfected RMA/S cells survived significantly longer than mice inoculated with vector-transfected RMA/S cells, implicating the involvement of invariant NKT (iNKT) cells in inhibiting antitumor activity in vivo. In contrast to the mutant mice, which produced more of the proinflammatory cytokines IFN-gamma and GM-CSF, WT mice produced significantly elevated amounts of IL-13. Antitumor activity in the knockout mice was not due to the development of CD1d-specific cytotoxic T lymphocytes or circulating antibodies. However, iNKT cell numbers were elevated in tumor-bearing mice. Thus, iNKT cells may be playing a negative role in the host's antitumor immune response against T-cell lymphomas in a CD1d-dependent manner.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, I46202, USA
| | | | | | | | | | | |
Collapse
|
33
|
Numata Y, Tazuma S, Ueno Y, Nishioka T, Hyogo H, Chayama K. Therapeutic effect of repeated natural killer T cell stimulation in mouse cholangitis complicated by colitis. Dig Dis Sci 2005; 50:1844-51. [PMID: 16187185 DOI: 10.1007/s10620-005-2949-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/05/2005] [Indexed: 01/17/2023]
Abstract
Primary sclerosing cholangitis is often complicated by ulcerative colitis. Recently, we reported on Th1-dominant cholangitis associated with experimental colitis, and natural killer T (NKT) cells might play an important role in this model. The aim of this study was to clarify the immunopathogenic role of NKT cells in this model using alpha-galactosylceramide. CD-1 mice were administered 2.0% dextran sulfate sodium for 29 days and injection of alpha-galactosylceramide was performed every 5 days, then inflammation was assessed. Mononuclear cells from the liver were analyzed with respect to cytokine production and the surface marker. alpha-Galactosylceramide improved survival rate, weight gain, and inflammation score. Also, interferon-gamma release from MNC, CD4/CD8 ratio, NKT cell population, and NK cell population were decreased by this treatment. These findings indicate that repeated stimulation of NKT cells modifies the Th1/Th2 balance to reduce Th1 dominance, and this may be a mechanism by which alpha-galactosylceramide has a therapeutic effect.
Collapse
Affiliation(s)
- Yoshihiro Numata
- Department of General Medicine and Clinical Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Smiley ST, Lanthier PA, Couper KN, Szaba FM, Boyson JE, Chen W, Johnson LL. Exacerbated susceptibility to infection-stimulated immunopathology in CD1d-deficient mice. THE JOURNAL OF IMMUNOLOGY 2005; 174:7904-11. [PMID: 15944296 PMCID: PMC3010175 DOI: 10.4049/jimmunol.174.12.7904] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice lacking functional CD1d genes were used to study mechanisms of resistance to the protozoan parasite Toxoplasma gondii. Wild-type (WT) BALB/c mice, CD1d-deficient BALB/c mice, and WT C57BL/6 mice all survived an acute oral infection with a low dose of mildly virulent strain ME49 T. gondii cysts. In contrast, most CD1d-deficient C57BL/6 mice died within 2 wk of infection. Despite having parasite burdens that were only slightly higher than WT mice, CD1d-deficient C57BL/6 mice displayed greater weight loss and intestinal pathology. In C57BL/6 mice, CD4(+) cells can cause intestinal pathology during T. gondii infection. Compared with WT mice, infected CD1d-deficient C57BL/6 mice had higher frequencies and numbers of activated (CD44(high)) CD4(+) cells in mesenteric lymph nodes. Depletion of CD4(+) cells from CD1d-deficient mice reduced weight loss and prolonged survival, demonstrating a functional role for CD4(+) cells in their increased susceptibility to T. gondii infection. CD1d-deficient mice are deficient in Valpha14(+) T cells, a major population of NKT cells. Involvement of these cells in resistance to T. gondii was investigated using gene-targeted Jalpha18-deficient C57BL/6 mice, which are deficient in Valpha14(+) T cells. These mice did not succumb to acute infection, but experienced greater weight loss and more deaths than B6 mice during chronic infection, indicating that Valpha14(+) cells contribute to resistance to T. gondii. The data identify CD4(+) cells as a significant component of the marked susceptibility to T. gondii infection observed in CD1d-deficient C57BL/6 mice, and establish T. gondii as a valuable tool for deciphering CD1d-dependent protective mechanisms.
Collapse
MESH Headings
- Acute Disease
- Administration, Oral
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD1/biosynthesis
- Antigens, CD1/genetics
- Antigens, CD1/physiology
- Antigens, CD1d
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/immunology
- CD4 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/parasitology
- Genetic Predisposition to Disease/genetics
- Immunity, Innate/genetics
- Intestinal Diseases, Parasitic/genetics
- Intestinal Diseases, Parasitic/immunology
- Intestinal Diseases, Parasitic/pathology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Toxoplasma/growth & development
- Toxoplasma/immunology
- Toxoplasma/pathogenicity
- Toxoplasmosis, Animal/genetics
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/pathology
- Toxoplasmosis, Animal/therapy
Collapse
Affiliation(s)
| | | | - Kevin N. Couper
- Trudeau Institute, Inc. 154 Algonquin Ave. Saranac Lake, NY 12983
| | - Frank M. Szaba
- Trudeau Institute, Inc. 154 Algonquin Ave. Saranac Lake, NY 12983
| | - Jonathan E. Boyson
- Department of Surgery, Division of Transplantation Surgery and Immunology, University of Vermont, Burlington, VT, 05405
| | - Wangxue Chen
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON K1A0RG, Canada
| | | |
Collapse
|
35
|
Sanchez DJ, Gumperz JE, Ganem D. Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 2005; 115:1369-78. [PMID: 15864354 PMCID: PMC1087176 DOI: 10.1172/jci24041] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/01/2005] [Indexed: 12/23/2022] Open
Abstract
Little is known about the role of CD1d-restricted T cells in antiviral immune responses. Here we show that the lytic replication cycle of the Kaposi sarcoma-associated herpesvirus (KSHV) promotes downregulation of cell-surface CD1d. This is caused by expression of the 2 modulator of immune recognition (MIR) proteins of the virus, each of which promotes the loss of surface CD1d expression following transfection into uninfected cells. Inhibition of CD1d surface expression is due to ubiquitination of the CD1d alpha-chain on a unique lysine residue in its cytoplasmic tail, which triggers endocytosis. Unlike MIR-mediated MHC class I downregulation, however, CD1d downregulation does not appear to include accelerated lysosomal degradation. MIR2-induced downregulation of CD1d results in reduced activation of CD1d-restricted T cells in vitro. KSHV modulation of CD1d expression represents a strategy for viral evasion of innate host immune responses and implicates CD1d-restricted T cells as regulators of this viral infection.
Collapse
Affiliation(s)
- David Jesse Sanchez
- George Williams Hooper Foundation, University of California, San Francisco, 94143, USA
| | | | | |
Collapse
|
36
|
Sandberg JK, Ljunggren HG. Development and function of CD1d-restricted NKT cells: influence of sphingolipids, SAP and sex. Trends Immunol 2005; 26:347-9. [PMID: 15925541 DOI: 10.1016/j.it.2005.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/22/2005] [Accepted: 05/16/2005] [Indexed: 12/30/2022]
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. They express an invariant and conserved T-cell receptor that recognizes glycolipids presented by CD1d. Manipulation, activation or loss of NKT cells has profound effects on diverse immune functions and can influence desirable responses to infectious organisms and tumors, as well as undesirable responses to autoantigens. Here, we discuss recent progress in the identification of natural endogenous and exogenous CD1d-presented antigens, the understanding of factors that regulate development of NKT cells in the thymus and of factors that influence their function in the periphery. Clinical implications of these findings are briefly touched on.
Collapse
Affiliation(s)
- Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | | |
Collapse
|
37
|
Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 2005; 203:180-99. [PMID: 15661030 DOI: 10.1111/j.0105-2896.2005.00230.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
X-linked lymphoproliferative disease (XLP) is an inherited immune defect caused by mutations in the Src homology 2 domain-containing gene 1A, which encodes the adapter protein, signaling lymphocytic activation molecule (SLAM)-associated protein (SAP). SAP is expressed in T cells, natural killer (NK) cells, and NKT cells, where it binds to the cytoplasmic domain of the surface receptor SLAM (CD150) and the related receptors, 2B4 (CD244), CD84, Ly9 (CD229), NK-T-B-antigen, and CD2-like receptor-activating cytotoxic T cells. SAP also binds to the Src family tyrosine kinase Fyn and recruits it to SLAM, which leads to the generation of downstream phosphotyrosine signals. While the roles of the SLAM family receptors are only beginning to be understood, experiments suggest that these molecules regulate important aspects of lymphocyte function, such as proliferation, cytokine secretion, cytotoxicity, and antibody production. Thus, in XLP patients who lack functional SAP, the SLAM family receptors may not signal properly. This property likely contributes to the phenotypes of XLP, including fulminant infectious mononucleosis, lymphoma, and hypogammaglobulinemia. Further studies of SAP and the SLAM family receptors will provide insights into XLP and elucidate the signaling events regulating lymphocyte ontogeny and function.
Collapse
Affiliation(s)
- Kim E Nichols
- Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
38
|
Sanchez DJ, Gumperz JE, Ganem D. Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 2005. [DOI: 10.1172/jci200524041] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
39
|
Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. THE JOURNAL OF IMMUNOLOGY 2005; 174:3153-7. [PMID: 15749842 DOI: 10.4049/jimmunol.174.6.3153] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
X-linked lymphoproliferative disease (XLP) is a fatal immunological disorder that typically manifests following EBV infection. XLP patients exhibit a number of immune defects including abnormal T, B, and NK lymphocyte function. These defects have been attributed to mutations of Src homology 2 domain-containing gene 1A (SH2D1A), the gene encoding signaling lymphocytic activation molecule-associated protein (SAP), an intracellular adaptor molecule expressed in lymphocytes. We have observed that SAP knockout (SAPKO) mice and humans with XLP have a complete lack of CD1d-restricted NKT cells. As expected, SAPKO mice injected with the NKT cell agonist, alpha-galactosylceramide failed to generate NKT cell IFN-gamma or IL-4. Furthermore, in contrast to wild-type littermates, SAPKO mice coinjected with OVA and alpha-galactosylceramide failed to mount OVA-specific CTL responses. These data suggest that an absence of NKT cells may underlie part of the immune dysregulation seen in SAPKO mice and in XLP patients.
Collapse
Affiliation(s)
- Brian Chung
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
40
|
Lin Y, Roberts TJ, Wang CR, Cho S, Brutkiewicz RR. Long-term loss of canonical NKT cells following an acute virus infection. Eur J Immunol 2005; 35:879-89. [PMID: 15724241 DOI: 10.1002/eji.200425495] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NKT cell activation plays an important role in regulating innate and adaptive immunity during infection. We have previously found that there is a dramatic reduction in the NKT cell population on day 3 after an acute lymphocytic choriomeningitis virus (LCMV) infection. In this study, we report that this loss continued for at least 3 months and was not simply due to internalization of the TCR. Concomitant with the decrease in NKT cells was an increase in the percentage of Annexin V(+) NKT cells that remained in vivo, suggesting that the reduction in NKT cells at these late stages post-infection occurred by activation-induced cell death. Interestingly, APC from LCMV-infected mice could activate NKT cells in vitro at higher levels than those from uninfected mice and was concomitant with an increase in apoptosis in NKT cells. However, this could not be blocked by mAb to murine CD1d, and APC from LCMV-infected (but not uninfected) CD1d1-deficient mice could also stimulate NKT cells. Collectively, our data suggest that the activation and subsequent long-term loss of NKT cells is a normal component of the host's antiviral immune response, and this occurs in a CD1d-independent manner.
Collapse
Affiliation(s)
- Yinling Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, The Walther Oncology Center, and The Walther Cancer Institute, Indianapolis, USA
| | | | | | | | | |
Collapse
|
41
|
Hage CA, Kohli LL, Cho S, Brutkiewicz RR, Twigg HL, Knox KS. Human immunodeficiency virus gp120 downregulates CD1d cell surface expression. Immunol Lett 2005; 98:131-5. [PMID: 15790518 DOI: 10.1016/j.imlet.2004.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 10/27/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
CD1d is an MHC class I-like surface molecule that presents endogenous glycoplipid antigens. The effect of HIV infection on CD1d surface expression has not yet been reported. FACS analysis revealed significantly lower levels of CD1d on CD14(+) monocytes from HIV-infected subjects compared to HIV-infected subjects on HAART and healthy controls. CD1d expression correlated inversely with viral load in infected individuals. CD1d surface expression on human cell lines was downregulated after infection with M-tropic HIV, T-tropic HIV, or after exposure to HIV gp120 in vitro. These data suggest that CD1d-mediated responses are altered during HIV infection and may thus contribute to the global immunodeficiency seen in these patients.
Collapse
Affiliation(s)
- Chadi A Hage
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
42
|
Arrunategui-Correa V, Lenz L, Kim HS. CD1d-independent regulation of NKT cell migration and cytokine production upon Listeria monocytogenes infection. Cell Immunol 2005; 232:38-48. [PMID: 15922714 DOI: 10.1016/j.cellimm.2005.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/21/2004] [Accepted: 01/18/2005] [Indexed: 11/29/2022]
Abstract
Natural killer T (NKT) cells are a unique T-cell population that is positively selected by CD1d-expressing cells. In this study, we examined the kinetics of conventional CD4+TCRbeta+ and CD4-TCRbeta+ cells along with various NKT cell populations from WT and CD1d KO mice after oral Listeria monocytogenes (Lm) infection at different time points in tissue compartments. We found that CD4+TCRbeta+ cells expressing NK1.1+ (NKT) were constitutively expressed in the lung of both strains of mice, but disappeared after infection. In contrast, CD4-TCRbeta+ NK1.1+ cells migrated to the spleen. Here, we demonstrated that endogenous IL-12 was predominantly expressed in the spleen of CD1d KO mice 2 days after infection, whereas IL-4 was predominantly expressed in the liver of WT mice. Higher levels of IFN-gamma were expressed in MLN of CD1d KO but not in WT mice on day 5. Thus, tissue-specific ligands orchestrate the localization and activation of NKT cells to control immune response to Listeria, which may explain the difference in disease susceptibility.
Collapse
Affiliation(s)
- Victor Arrunategui-Correa
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | | | | |
Collapse
|
43
|
Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, Tangye SG, Schwartzberg PL, Koretzky GA, Stein PL. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 2005; 11:340-5. [PMID: 15711562 PMCID: PMC10655637 DOI: 10.1038/nm1189] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 01/07/2005] [Indexed: 11/09/2022]
Abstract
The adaptor molecule SAP is expressed in T lymphocytes and natural killer (NK) cells, where it regulates cytokine production and cytotoxicity. Here, we show that SAP, encoded by the SH2D1A gene locus, also has a crucial role during the development of NKT cells, a lymphocyte subset with immunoregulatory functions in response to infection, cancer and autoimmune disease. Following stimulation with the NKT cell-specific agonist alpha-galactosyl ceramide (alphaGC), Sh2d1a-/- splenocytes did not produce cytokines or activate other lymphoid lineages in an NKT cell-dependent manner. While evaluating the abnormalities in alphaGC-induced immune responses, we observed that Sh2d1a-/- animals lacked NKT cells in the thymus and peripheral organs. The defect in NKT cell ontogeny was hematopoietic cell autonomous and could be rescued by reconstitution of SAP expression within Sh2d1a-/- bone marrow cells. Seventeen individuals with X-linked lymphoproliferative disease (XLP), who harbored germline mutations in SH2D1A, also lacked NKT cells. Furthermore, a female XLP carrier showed completely skewed X chromosome inactivation within NKT cells, but not T or B cells. Thus, SAP is a crucial regulator of NKT cell ontogeny in humans and in mice. The absence of NKT cells may contribute to the phenotypes of SAP deficiency, including abnormal antiviral and antitumor immunity and hypogammaglobulinemia.
Collapse
Affiliation(s)
- Kim E Nichols
- Pediatric Oncology, Wood, 4th floor, 3615 Civic Center Boulevard, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ. Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect Immun 2005; 73:181-92. [PMID: 15618153 PMCID: PMC538963 DOI: 10.1128/iai.73.1.181-192.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/20/2004] [Accepted: 09/06/2004] [Indexed: 01/16/2023] Open
Abstract
Trypanosoma cruzi infects 15 to 20 million people in Latin America and causes Chagas disease, a chronic inflammatory disease with fatal cardiac and gastrointestinal sequelae. How the immune response causes Chagas disease is not clear, but during the persistent infection both proinflammatory and anti-inflammatory responses are critical. Natural killer T (NKT) cells have been shown to regulate immune responses during infections and autoimmune diseases. We report here that during acute T. cruzi infection NKT-cell subsets provide distinct functions. CD1d(-/-) mice, which lack both invariant NKT (iNKT) cells and variant NKT (vNKT) cells, develop a mild phenotype displaying an increase in spleen and liver mononuclear cells, anti-T. cruzi antibody response, and muscle inflammation. In contrast, Jalpha18(-/-) mice, which lack iNKT cells but have vNKT cells, develop a robust phenotype involving prominent spleen, liver, and skeletal muscle inflammatory infiltrates comprised of NK, dendritic, B and T cells. The inflammatory cells display activation markers; produce more gamma interferon, tumor necrosis factor alpha, and nitric oxide; and show a diminished antibody response. Strikingly, most Jalpha18(-/-) mice die. Thus, in response to the same infection, vNKT cells appear to augment a robust proinflammatory response, whereas the iNKT cells dampen this response, possibly by regulating vNKT cells.
Collapse
Affiliation(s)
- Malcolm S. Duthie
- Infectious Disease Research Institute, Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington
| | - Maria Kahn
- Infectious Disease Research Institute, Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington
| | - Maria White
- Infectious Disease Research Institute, Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington
| | - Raj P. Kapur
- Infectious Disease Research Institute, Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington
| | - Stuart J. Kahn
- Infectious Disease Research Institute, Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington
| |
Collapse
|
45
|
Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004; 114:1379-88. [PMID: 15545985 PMCID: PMC525753 DOI: 10.1172/jci23594] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
NKT cells are a unique T lymphocyte sublineage that has been implicated in the regulation of immune responses associated with a broad range of diseases, including autoimmunity, infectious diseases, and cancer. In stark contrast to both conventional T lymphocytes and other types of Tregs, NKT cells are reactive to the nonclassical class I antigen-presenting molecule CD1d, and they recognize glycolipid antigens rather than peptides. Moreover, they can either up- or downregulate immune responses by promoting the secretion of Th1, Th2, or immune regulatory cytokines. This review will explore the diverse influences of these cells in various disease models, their ability to suppress or enhance immunity, and the potential for manipulating these cells as a novel form of immunotherapy.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
46
|
Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004. [PMID: 15545985 DOI: 10.1172/jci200423594] [Citation(s) in RCA: 603] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
NKT cells are a unique T lymphocyte sublineage that has been implicated in the regulation of immune responses associated with a broad range of diseases, including autoimmunity, infectious diseases, and cancer. In stark contrast to both conventional T lymphocytes and other types of Tregs, NKT cells are reactive to the nonclassical class I antigen-presenting molecule CD1d, and they recognize glycolipid antigens rather than peptides. Moreover, they can either up- or downregulate immune responses by promoting the secretion of Th1, Th2, or immune regulatory cytokines. This review will explore the diverse influences of these cells in various disease models, their ability to suppress or enhance immunity, and the potential for manipulating these cells as a novel form of immunotherapy.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
47
|
Lin Y, Roberts TJ, Spence PM, Brutkiewicz RR. Reduction in CD1d expression on dendritic cells and macrophages by an acute virus infection. J Leukoc Biol 2004; 77:151-8. [PMID: 15548574 DOI: 10.1189/jlb.0704399] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mice were infected with lymphocytic choriomeningitis virus (LCMV) to determine if changes in CD1d expression occurred during an acute virus infection. It is interesting that a decrease in CD1d expression on splenic dendritic cells (DC) and macrophages (MPhi) was observed for at least 3 months post-LCMV infection, and vaccinia virus and vesicular stomatitis virus induced similar changes in CD1d upon infection with those viruses. The reduction of CD1d cell-surface expression on DC and MPhi was independent of interferon-gamma and interleukin-12 expression but partially recovered in transporter associated with antigen processing-1-deficient mice, suggesting that CD8+ T cells may play a role. Thus, one consequence of the induction of a cellular immune response is a change in CD1d expression, which may constitute a key element in regulating antiviral immunity.
Collapse
Affiliation(s)
- Yinling Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, The Walther Oncology Center, and The Walther Cancer Institute, Indianapolis, IN 46202-5181, USA
| | | | | | | |
Collapse
|