1
|
Rabinowitz ZM, Somers J, Wang Z, Cui L. Chemical toolbox to interrogate Heparanase-1 activity. Curr Opin Chem Biol 2024; 80:102452. [PMID: 38555836 DOI: 10.1016/j.cbpa.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The development of a robust chemical toolbox to interrogate the activity of heparanase-1 (HPSE-1), an endo-β-d-glucuronidase and the only known enzyme that cleaves heparan sulfate (HS), has become critically important. The primary function of HPSE-1, cleaving HS side chains from heparan sulfate proteoglycans (HSPGs), regulates the integrity of the extracellular matrix (ECM) and the bioavailability of active, heparan sulfate-binding partners such as enzymes, growth factors, chemokines, and cytokines. HPSE-1 enzymatic activity is strictly regulated and has been found to play fundamental roles in pathophysiological processes. HPSE-1 is significantly overexpressed under various conditions including cancer, metastasis, angiogenesis, and inflammation, making HPSE-1 a promising therapeutic and diagnostic target. Chemical tools that can detect and image HPSE-1 activity in vitro and/or in vivo can help drive the discovery of novel and efficacious anti-HPSE-1 drugs, investigate the basic biology of HPSE-1, and help serve as a diagnostic tool in clinical applications. Here, we will give an overview of the common chemical tools to detect HPSE-1 activity and highlight the novel heparanase probes recently developed in our lab.
Collapse
Affiliation(s)
- Zachary M Rabinowitz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Johnathan Somers
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhishen Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Rabinowitz ZM, Wang Z, Liu J, Zhang Y, Ybargollin AJ, Saketkhou M, Cui L. A Fluorogenic Green Merocyanine-Based Probe to Detect Heparanase-1 Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581963. [PMID: 38464176 PMCID: PMC10925095 DOI: 10.1101/2024.02.25.581963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Heparanase-1 (HPSE-1), an endo-β-D-glucuronidase, is an extracellular matrix (ECM) remodeling enzyme that degrades heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs). HPSE-1 functions to remodel the ECM and thereby disseminate cells, liberate HS-bound bioactive molecules, and release biologically active HS fragments. Being the only known enzyme for the cleavage of HS, HPSE-1 regulates a number of fundamental cellular processes including cell migration, cytokine regulation, angiogenesis, and wound healing. Overexpression of HPSE-1 has been discovered in most cancers, inflammatory diseases, viral infections, among others. As an emerging therapeutic target, the biological role of HPSE-1 remains to be explored but is hampered by a lack of research tools. To expand the chemical tool-kit of fluorogenic probes to interrogate HPSE-1 activity, we design and synthesized a fluorogenic green disaccharide-based HPSE-1 probe using our design strategy of tuning the electronic effect of the aryl aglycon. The novel probe exhibits a highly sensitive 278-fold fluorescence turn-on response in the presence of recombinant human HPSE-1, while emitting green light at 560 nm, enabling the fluorescence imaging of HPSE-1 activity in cells.
Collapse
|
3
|
Metafuni E, Giammarco S, Bellesi S, Rossi M, Minnella G, Limongiello MA, Valentini CG, Teofili L, Sica S, Chiusolo P. Discrepancy between recipient and donor rs4364254 heparanase single nucleotide polymorphism impacts graft-versus-host disease after allogeneic stem cell transplant. Int J Lab Hematol 2023; 45:935-944. [PMID: 37646104 DOI: 10.1111/ijlh.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION The heparanase (HPSE) gene is highly polymorphic, but only a minority of its single nucleotide polymorphisms (SNPs) have been studied. Among these, rs4693608 and rs4364254 SNPs are closely associated with mRNA expression and HPSE protein levels in healthy subjects. Given the association between HPSE and inflammatory response, we aimed to evaluate whether HPSE rs4693608 and rs4364254 SNPs could have an impact on graft-versus-host disease after allogeneic stem cell transplants (HSCT). METHODS A total of 228 consecutive patients who underwent HSCT at our center between 2005 and 2018 were included. The rs4693608 SNP was identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, while the rs4364254 was detected by allele-specific amplification. RESULTS The recipient-donor discrepancy for rs4364254 HPSE SNP was significantly associated with grade II-IV aGvHD (HR 1.75, p = 0.03). Patients were stratified into risk groups as follows: low-risk group (LDR) including TT-TT, TT-CT, CT-TT, CC-CC; high-risk group (HDR) including CC-CT, CC-TT, CT-CC, CT-CT, TT-CC. Day 100 cumulative incidence of grade II-IV aGvHD was 23.4% in the LDR group and 41.4% in the HDR group (p = 0.01). One-year cumulative incidence of moderate/severe cGvHD was 42.6% in the LDR group and 58.6% in the HDR group (p = 0.04). Independent variables for moderate/severe cGvHD in patients who received myeloablative conditioning included donor rs4693608 SNP (GA/AA vs. GG: HR 6.86, p = 0.008), rs4693608-rs4364254 SNP combination in recipient (HR/MR vs. LR: HR 3.67, p = 0.01), and previous grade II-IV aGvHD (HR 3.28, p = 0.0005). Finally, donors with rs4364254 SNP CC conferred increased transplant-related mortality (TRM) (39.1% vs. 25%, p = 0.03) and decreased graft-relapse free survival (GRFS) (23.5% vs. 34.4%, p = 0.04) compared with CT or TT genotypes. CONCLUSION The differences in incidence of GvHD according to recipient-donor genotype combinations suggests a possible role for rs4364254 HPSE SNP in predicting GvHD. A high level of HPSE, particularly linked to CC genotype of rs4364254 SNP may promote alloreactive T lymphocytes activation and migration toward target organs.
Collapse
Affiliation(s)
- Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Monica Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gessica Minnella
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Caterina Giovanna Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luciana Teofili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Whitefield C, Vo Y, Schwartz BD, Hepburn C, Ahmed FH, Onagi H, Banwell MG, Nelms K, Malins LR, Jackson CJ. Complex Inhibitory Mechanism of Glycomimetics with Heparanase. Biochemistry 2023. [PMID: 37368361 DOI: 10.1021/acs.biochem.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heparanase (HPSE) is the only mammalian endo-β-glucuronidase known to catalyze the degradation of heparan sulfate. Dysfunction of HPSE activity has been linked to several disease states, resulting in HPSE becoming the target of numerous therapeutic programs, yet no drug has passed clinical trials to date. Pentosan polysulfate sodium (PPS) is a heterogeneous, FDA-approved drug for the treatment of interstitial cystitis and a known HPSE inhibitor. However, due to its heterogeneity, characterization of its mechanism of HPSE inhibition is challenging. Here, we show that inhibition of HPSE by PPS is complex, involving multiple overlapping binding events, each influenced by factors such as oligosaccharide length and inhibitor-induced changes in the protein secondary structure. The present work advances our molecular understanding of the inhibition of HPSE and will aid in the development of therapeutics for the treatment of a broad range of pathologies associated with enzyme dysfunction, including cancer, inflammatory disease, and viral infections.
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yen Vo
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Brett D Schwartz
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd, 38-46 South Street, Rydalmere, New South Wales 2116, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Keats Nelms
- Beta Therapeutics Pty. Ltd. Level 6, 121 Marcus Clarke Street, Canberra, Australian Capital Territory 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
6
|
Yuan F, Yang Y, Zhou H, Quan J, Liu C, Wang Y, Zhang Y, Yu X. Heparanase in cancer progression: Structure, substrate recognition and therapeutic potential. Front Chem 2022; 10:926353. [PMID: 36157032 PMCID: PMC9500389 DOI: 10.3389/fchem.2022.926353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Heparanase, a member of the carbohydrate-active enzyme (CAZy) GH79 family, is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulphate proteoglycans, thus modulating and facilitating remodeling of the extracellular matrix. Heparanase activity is strongly associated with major human pathological complications, including but not limited to tumour progress, angiogenesis and inflammation, which make heparanase a valuable therapeutic target. Long-due crystallographic structures of human and bacterial heparanases have been recently determined. Though the overall architecture of human heparanase is generally comparable to that of bacterial glucuronidases, remarkable differences exist in their substrate recognition mode. Better understanding of regulatory mechanisms of heparanase in substrate recognition would provide novel insight into the anti-heparanase inhibitor development as well as potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Yu
- *Correspondence: Yujing Zhang, ; Xing Yu,
| |
Collapse
|
7
|
Shi J, Kanoya R, Tani Y, Ishikawa S, Maeda R, Suzuki S, Kawanami F, Miyagawa N, Takahashi K, Oku T, Yamamoto A, Fukuzawa K, Nakajima M, Irimura T, Higashi N. Sulfated Hyaluronan Binds to Heparanase and Blocks Its Enzymatic and Cellular Actions in Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23095055. [PMID: 35563446 PMCID: PMC9102160 DOI: 10.3390/ijms23095055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
We examined whether sulfated hyaluronan exerts inhibitory effects on enzymatic and biological actions of heparanase, a sole endo-beta-glucuronidase implicated in cancer malignancy and inflammation. Degradation of heparan sulfate by human and mouse heparanase was inhibited by sulfated hyaluronan. In particular, high-sulfated hyaluronan modified with approximately 2.5 sulfate groups per disaccharide unit effectively inhibited the enzymatic activity at a lower concentration than heparin. Human and mouse heparanase bound to immobilized sulfated hyaluronan. Invasion of heparanase-positive colon-26 cells and 4T1 cells under 3D culture conditions was significantly suppressed in the presence of high-sulfated hyaluronan. Heparanase-induced release of CCL2 from colon-26 cells was suppressed in the presence of sulfated hyaluronan via blocking of cell surface binding and subsequent intracellular NF-κB-dependent signaling. The inhibitory effect of sulfated hyaluronan is likely due to competitive binding to the heparanase molecule, which antagonizes the heparanase-substrate interaction. Fragment molecular orbital calculation revealed a strong binding of sulfated hyaluronan tetrasaccharide to the heparanase molecule based on electrostatic interactions, particularly characterized by interactions of (−1)- and (−2)-positioned sulfated sugar residues with basic amino acid residues composing the heparin-binding domain-1 of heparanase. These results propose a relevance for sulfated hyaluronan in the blocking of heparanase-mediated enzymatic and cellular actions.
Collapse
Affiliation(s)
- Jia Shi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Riku Kanoya
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Yurina Tani
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Sodai Ishikawa
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Rino Maeda
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Sana Suzuki
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Fumiya Kawanami
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Naoko Miyagawa
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Katsuhiko Takahashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan;
| | - Ami Yamamoto
- Department of Physical Chemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (A.Y.); (K.F.)
| | - Kaori Fukuzawa
- Department of Physical Chemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (A.Y.); (K.F.)
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo 106-6019, Japan;
| | - Tatsuro Irimura
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8520, Japan;
| | - Nobuaki Higashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku, Tokyo 144-8501, Japan; (J.S.); (R.K.); (Y.T.); (S.I.); (R.M.); (S.S.); (F.K.); (N.M.); (K.T.)
- Correspondence: ; Tel.: +81-3-5498-5775
| |
Collapse
|
8
|
Mayfosh AJ, Goodall KJ, Nguyen T, Baschuk N, Hulett MD. Heparanase is a regulator of natural killer cell activation and cytotoxicity. J Leukoc Biol 2021; 111:1211-1224. [PMID: 34693552 DOI: 10.1002/jlb.3a0420-259rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heparanase is the only mammalian enzyme capable of cleaving heparan sulfate, a glycosaminoglycan of the extracellular matrix and cell surfaces. Most immune cells express heparanase that contributes to a range of functions including cell migration and cytokine expression. Heparanase also promotes natural killer (NK) cell migration; however, its role in other NK cell functions remains to be defined. In this study, heparanase-deficient (Hpse-/- ) mice were used to assess the role of heparanase in NK cell cytotoxicity, activation, and cytokine production. Upon challenge with the immunostimulant polyinosinic:polycytidylic acid (poly(I:C)), NK cells isolated from Hpse-/- mice displayed impaired cytotoxicity against EO771.LMB cells and reduced levels of activation markers CD69 and NKG2D. However, in vitro cytokine stimulation of wild-type and Hpse-/- NK cells resulted in similar CD69 and NKG2D expression, suggesting the impaired NK cell activation in Hpse-/- mice results from elements within the in vivo niche. NK cells are activated in vivo by dendritic cells (DCs) in response to poly(I:C). Poly(I:C)-stimulated Hpse-/- bone marrow DCs (BMDCs) expressed less IL-12, and when cultured with Hpse-/- NK cells, less MCP-1 mRNA and protein was detected. Although cell-cell contact is important for DC-mediated NK cell activation, co-cultures of Hpse-/- BMDCs and NK cells showed similar levels of contact to wild-type cells, suggesting heparanase contributes to NK cell activation independently of cell-cell contact with DCs. These observations define a role for heparanase in NK cell cytotoxicity and activation and have important implications for how heparanase inhibitors currently in clinical trials for metastatic cancer may impact NK cell immunosurveillance.
Collapse
Affiliation(s)
- Alyce J Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Katharine J Goodall
- oNKo-innate Pty. Ltd. Monash Biomedicine Discovery Institute, Clayton, Australia
| | - Tien Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Nikola Baschuk
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
- Heart Regeneration Group, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
9
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
10
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
11
|
The Challenge of Modulating Heparan Sulfate Turnover by Multitarget Heparin Derivatives. Molecules 2020; 25:molecules25020390. [PMID: 31963505 PMCID: PMC7024324 DOI: 10.3390/molecules25020390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
This review comes as a part of the special issue "Emerging frontiers in GAGs and mimetics". Our interest is in the manipulation of heparan sulfate (HS) turnover by employing HS mimetics/heparin derivatives that exert pleiotropic effects and are interesting for interfering at multiple levels with pathways in which HS is implicated. Due to the important role of heparanase in HS post-biosynthetic modification and catabolism, we focus on the possibility to target heparanase, at both extracellular and intracellular levels, a strategy that can be applied to many conditions, from inflammation to cancer and neurodegeneration.
Collapse
|
12
|
Role of Heparanase in Macrophage Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:445-460. [PMID: 32274721 DOI: 10.1007/978-3-030-34521-1_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages represent one of the most diverse immunocyte populations, constantly shifting between various phenotypes/functional states. In addition to execution of vital functions in normal physiological conditions, macrophages represent a key contributing factor in the pathogenesis of some of the most challenging diseases, such as chronic inflammatory disorders, diabetes and its complications, and cancer. Macrophage polarization studies focus primarily on cytokine-mediated mechanisms. However, to explore the full spectrum of macrophage action, additional, non-cytokine pathways responsible for altering macrophage phenotype have to be taken into consideration as well. Heparanase, the only known mammalian endoglycosidase that cleaves heparan sulfate glycosaminoglycans, has been shown to contribute to the altered macrophage phenotypes in vitro and in numerous animal models of inflammatory conditions, occurring either in the presence of microbial products or in the setting of non-infectious "aseptic" inflammation. Here we discuss the involvement of heparanase in shaping macrophage responses and provide information that may help to establish the rationale for heparanase-targeting interventions aimed at preventing abnormal macrophage activation in various disorders.
Collapse
|
13
|
Higashi N, Irimura T, Nakajima M. Heparanase is Involved in Leukocyte Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:435-444. [PMID: 32274720 DOI: 10.1007/978-3-030-34521-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leukocyte migration is essential for exerting self-defense mechanisms. During the extravasation process, leukocytes transmigrate through the endothelial lining and the subendothelial basement membrane. Accumulating evidence supports the involvement of heparanase in this process. Altered cellular distribution resulting in relocalization of heparanase to the leading edge of migration is a key event to rapidly turn on the function of the enzyme during migration. This review presents current research investigating the cellular machinery that builds up a functional subcellular structure for leukocyte attachment to and degradation of the extracellular matrix. Recent advances in the understanding of the roles of heparanase in inflammatory diseases and pharmacological approaches to control heparanase-mediated actions during inflammation are also discussed.
Collapse
Affiliation(s)
- Nobuaki Higashi
- Department of Biochemistry, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Tatsuro Irimura
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
14
|
van der Vlag J, Buijsers B. Heparanase in Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:647-667. [PMID: 32274730 DOI: 10.1007/978-3-030-34521-1_26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.
Collapse
Affiliation(s)
- Johan van der Vlag
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Baranca Buijsers
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Heparanase Inhibition by Pixatimod (PG545): Basic Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:539-565. [PMID: 32274726 DOI: 10.1007/978-3-030-34521-1_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pixatimod is an inhibitor of heparanase, a protein which promotes cancer via its regulation of the extracellular environment by enzymatic cleavage of heparan sulfate (HS) and non-enzymatic signaling. Through its inhibition of heparanase and other HS-binding signaling proteins, pixatimod blocks a number of pro-cancerous processes including cell proliferation, invasion, metastasis, angiogenesis and epithelial-mesenchymal transition. Several laboratories have found that these activities have translated into potent activity using a range of different mouse cancer models, including approximately 30 xenograft and 20 syngeneic models. Analyses of biological samples from these studies have confirmed the heparanase targeting of this agent in vivo and the broad spectrum of anti-cancer effects that heparanase blockade achieves. Pixatimod has been tested in combination with a number of approved anti-cancer drugs demonstrating its clinical potential, including with gemcitabine, paclitaxel, sorafenib, platinum agents and an anti-PD-1 antibody. Clinical testing has shown pixatimod to be well tolerated as a monotherapy, and it is currently being investigated in combination with the anti-PD-1 drug nivolumab in a pancreatic cancer phase I trial.
Collapse
|
16
|
Coombe DR, Gandhi NS. Heparanase: A Challenging Cancer Drug Target. Front Oncol 2019; 9:1316. [PMID: 31850210 PMCID: PMC6892829 DOI: 10.3389/fonc.2019.01316] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Heparanase has been viewed as a promising anti-cancer drug target for almost two decades, but no anti-heparanase therapy has yet reached the clinic. This endoglycosidase is highly expressed in a variety of malignancies, and its high expression is associated with greater tumor size, more metastases, and a poor prognosis. It was first described as an enzyme cleaving heparan sulfate chains of proteoglycans located in extracellular matrices and on cell surfaces, but this is not its only function. It is a multi-functional protein with activities that are enzymatic and non-enzymatic and which take place both outside of the cell and intracellularly. Knowledge of the crystal structure of heparanase has assisted the interpretation of earlier structure-function studies as well as in the design of potential anti-heparanase agents. This review re-examines the various functions of heparanase in light of the structural data. The functions of the heparanase variant, T5, and structure and functions of heparanase-2 are also examined as these heparanase related, but non-enzymatic, proteins are likely to influence the in vivo efficacy of anti-heparanase drugs. The anti-heparanase drugs currently under development predominately focus on inhibiting the enzymatic activity of heparanase, which, in the absence of inhibitors with high clinical efficacy, prompts a discussion of whether this is the best approach. The diversity of outcomes attributed to heparanase and the difficulties of unequivocally determining which of these are due to its enzymatic activity is also discussed and leads us to the conclusion that heparanase is a valid, but challenging drug target for cancer.
Collapse
Affiliation(s)
- Deirdre R Coombe
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Hermano E, Goldberg R, Rubinstein AM, Sonnenblick A, Maly B, Nahmias D, Li JP, Bakker MAH, van der Vlag J, Vlodavsky I, Peretz T, Elkin M. Heparanase Accelerates Obesity-Associated Breast Cancer Progression. Cancer Res 2019; 79:5342-5354. [PMID: 31481501 DOI: 10.1158/0008-5472.can-18-4058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/06/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
Obese women have higher risk of bearing breast tumors that are highly aggressive and resistant to therapies. Tumor-promoting effects of obesity occur locally via adipose inflammation and related alterations to the extracellular matrix (ECM) as well as systemically via circulating metabolic mediators (e.g., free fatty acids, FFA) associated with excess adiposity and implicated in toll-like receptor-mediated activation of macrophages-key cellular players in obesity-related cancer progression. Although the contribution of macrophages to proneoplastic effects of obesity is well documented, the role of ECM components and their enzymatic degradation is less appreciated. We show that heparanase, the sole mammalian endoglucuronidase that cleaves heparan sulfate in ECM, is preferentially expressed in clinical/experimental obesity-associated breast tumors. Heparanase deficiency abolished obesity-accelerated tumor progression in vivo. Heparanase orchestrated a complex molecular program that occurred concurrently in adipose and tumor tissue and sustained the cancer-promoting action of obesity. Heparanase was required for adipose tissue macrophages to produce inflammatory mediators responsible for local induction of aromatase, a rate-limiting enzyme in estrogen biosynthesis. Estrogen upregulated heparanase in hormone-responsive breast tumors. In subsequent stages, elevated levels of heparanase induced acquisition of procancerous phenotype by tumor-associated macrophages, resulting in activation of tumor-promoting signaling and acceleration of breast tumor growth under obese conditions. As techniques to screen for heparanase expression in tumors become available, these findings provide rational and a mechanistic basis for designing antiheparanase approaches to uncouple obesity and breast cancer in a rapidly growing population of obese patients. SIGNIFICANCE: This study reveals the role of heparanase in promoting obesity-associated breast cancer and provides a mechanistically informed approach to uncouple obesity and breast cancer in a rapidly growing population of obese patients.
Collapse
Affiliation(s)
- Esther Hermano
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ariel M Rubinstein
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bella Maly
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Nahmias
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marinka A H Bakker
- Nephrology Research Laboratory, Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Johan van der Vlag
- Nephrology Research Laboratory, Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Medical School, Jerusalem, Israel
| | - Michael Elkin
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
18
|
Cross-Species Analysis of Glycosaminoglycan Binding Proteins Reveals Some Animal Models Are "More Equal" than Others. Molecules 2019; 24:molecules24050924. [PMID: 30845788 PMCID: PMC6429508 DOI: 10.3390/molecules24050924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/22/2022] Open
Abstract
Glycosaminoglycan (GAG) mimetics are synthetic or semi-synthetic analogues of heparin or heparan sulfate, which are designed to interact with GAG binding sites on proteins. The preclinical stages of drug development rely on efficacy and toxicity assessment in animals and aim to apply these findings to clinical studies. However, such data may not always reflect the human situation possibly because the GAG binding site on the protein ligand in animals and humans could differ. Possible inter-species differences in the GAG-binding sites on antithrombin III, heparanase, and chemokines of the CCL and CXCL families were examined by sequence alignments, molecular modelling and assessment of surface electrostatic potentials to determine if one species of laboratory animal is likely to result in more clinically relevant data than another. For each protein, current understanding of GAG binding is reviewed from a protein structure and function perspective. This combinatorial analysis shows chemokine dimers and oligomers can present different GAG binding surfaces for the same target protein, whereas a cleft-like GAG binding site will differently influence the types of GAG structures that bind and the species preferable for preclinical work. Such analyses will allow an informed choice of animal(s) for preclinical studies of GAG mimetic drugs.
Collapse
|
19
|
Haq IU, Akram F. Enhanced production, overexpression and characterization of a hyperthermophilic multimodular GH family 2 β‑glucuronidase (TpGUS) cloned from Thermotoga petrophila RKU-1 T in a mesophilic host. Int J Biol Macromol 2018; 123:1132-1142. [PMID: 30465846 DOI: 10.1016/j.ijbiomac.2018.11.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
A multimodular hyperthermophilic β‑glucuronidase (TpGUS) from Thermotoga petrophila RKU-1T, belongs to glycoside hydrolase family 2 (GH2), was cloned and overexpressed in Escherichia coli BL21 CodonPlus (DE3)-RIPL. Expression and production of extracellular TpGUS was enhanced through various specific cultivation and induction strategies. Extracellular TpGUS activity was improved by 3.44 and 7 fold in 4 × ZB medium induced with 0.5 mM IPTG and 100 mM lactose, respectively. The enzyme was purified to homogeneity with a single band of 65.6 kDa on SDS-PAGE, using two subsequent steps of anion exchange and hydrophobic interaction chromatography after heat precipitation (70 °C, 1 h). Optimal activity of TpGUS was observed at 95 °C and pH 6.0; and it displayed prodigious thermal stability over a temperature range of 50-85 °C for 12 h at pH 6.0-7.5. Km, Vmax, VmaxKm-1, kcat, and kcatKm-1 were calculated to be 0.7 mM, 227 mmol mg-1 min-1, 324.3 min-1, 164,492.7 s-1 and 234,989.6 mM-1 s-1, respectively using pNPGU as a substrate. Recombinant TpGUS exhibited favorable properties which make this a promising candidate for various biotechnological and pharmacological applications.
Collapse
Affiliation(s)
- Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan.
| | - Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan
| |
Collapse
|
20
|
Zhitomirsky B, Assaraf YG. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget 2018; 8:45117-45132. [PMID: 28187461 PMCID: PMC5542171 DOI: 10.18632/oncotarget.15155] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
We have recently shown that hydrophobic weak base anticancer drugs are highly sequestered in acidic lysosomes, inducing TFEB-mediated lysosomal biogenesis and markedly increased lysosome numbers per cell. This enhanced lysosomal sequestration of chemotherapeutics, away from their intracellular targets, provoked cancer multidrug resistance. However, little is known regarding the fate of lysosome-sequestered drugs. While we suggested that sequestered drugs might be expelled from cancer cells via lysosomal exocytosis, no actual drug-induced lysosomal exocytosis was demonstrated. By following the subcellular localization of lysosomes during exposure to lysosomotropic chemotherapeutics, we herein demonstrate that lysosomal drug accumulation results in translocation of lysosomes from the perinuclear zone towards the plasma membrane via movement on microtubule tracks. Furthermore, following translocation to the plasma membrane in drug-treated cells, lysosomes fused with the plasma membrane and released their cargo to the extracellular milieu, as also evidenced by increased levels of the lysosomal enzyme cathepsin D in the extracellular milieu. These findings suggest that lysosomal exocytosis of chemotherapeutic drug-loaded lysosomes is a crucial component of lysosome-mediated cancer multidrug resistance. We further argue that drug-induced lysosomal exocytosis bears important implications on tumor progression, as several lysosomal enzymes were found to play a key role in tumor cell invasion, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Benny Zhitomirsky
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
Prophylactic Antiheparanase Activity by PG545 Is Antiviral In Vitro and Protects against Ross River Virus Disease in Mice. Antimicrob Agents Chemother 2018; 62:AAC.01959-17. [PMID: 29437628 DOI: 10.1128/aac.01959-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.
Collapse
|
22
|
Adachi H, Nakae K, Sakamoto S, Nosaka C, Atsumi S, Shibuya M, Higashi N, Nakajima M, Irimura T, Nishimura Y. Microbial metabolites and derivatives targeted at inflammation and bone diseases therapy: chemistry, biological activity and pharmacology. J Antibiot (Tokyo) 2017; 71:ja2017138. [PMID: 29089599 DOI: 10.1038/ja.2017.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Microbial metabolites have attracted increasing interest as a source of therapeutics and as probes for biological mechanisms. New microbial metabolites and derivatives targeted at inflammation and bone disease therapy have been identified by focusing on prostaglandin release, osteoblast differentiation and immune cell functions. These modulators of inflammatory processes and bone disease contribute to our understanding of biological mechanisms and support identification of the therapeutic potential of drug lead candidates. The present review describes recent advances in the chemistry and analysis of inhibitors of prostaglandin release or other functional molecules of immune cells, as well as inducers of osteoblast differentiation, including biological and pharmacological activities.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.138.
Collapse
Affiliation(s)
- Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Numazu Branch, Shizuoka, Japan
| | - Koichi Nakae
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Shuichi Sakamoto
- Institute of Microbial Chemistry (BIKAKEN), Numazu Branch, Shizuoka, Japan
| | - Chisato Nosaka
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Sonoko Atsumi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Changyaleket B, Chong ZZ, Dull RO, Nanegrungsunk D, Xu H. Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J Neuroinflammation 2017; 14:137. [PMID: 28720149 PMCID: PMC5516362 DOI: 10.1186/s12974-017-0912-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heparanase, a mammalian endo-β-D-glucoronidase that specifically degrades heparan sulfate, has been implicated in inflammation and ischemic stroke. However, the role of heparanase in neuroinflammatory response in subarachnoid hemorrhage (SAH) has not yet been investigated. This study was designed to examine the association between heparanase expression and neuroinflammation during subarachnoid hemorrhage. METHODS Rats were subjected to SAH by endovascular perforation, and the expression of heparanase was determined by Western blot analysis and immunofluorescence in the ipsilateral brain cortex at 24 h post-SAH. Pial venule leukocyte trafficking was monitored by using intravital microscopy through cranial window. RESULTS Our results indicated that, compared to their sham-surgical controls, the rats subjected to SAH showed marked elevation of heparanase expression in the ipsilateral brain cortex. The SAH-induced elevation of heparanase was accompanied by increased leukocyte trafficking in pial venules and significant neurological deficiency. Intracerebroventricular application of a selective heparanase inhibitor, OGT2115, which was initiated at 3 h after SAH, significantly suppressed the leukocyte trafficking and improved the neurological function. CONCLUSIONS Our findings indicate that heparanase plays an important role in mediating the neuroinflammatory response after SAH and contributes to SAH-related neurological deficits and early brain injury following SAH.
Collapse
Affiliation(s)
| | - Zhao Zhong Chong
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Danop Nanegrungsunk
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Haoliang Xu
- Department of Pathology, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
24
|
Changyaleket B, Deliu Z, Chignalia AZ, Feinstein DL. Heparanase: Potential roles in multiple sclerosis. J Neuroimmunol 2017; 310:72-81. [PMID: 28778449 DOI: 10.1016/j.jneuroim.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022]
Abstract
Heparanase is a heparan sulfate degrading enzyme that cleaves heparan sulfate (HS) chains present on HS proteoglycans (HSPGs), and has been well characterized for its roles in tumor metastasis and inflammation. However, heparanase is emerging as a contributing factor in the genesis and severity of a variety of neurodegenerative diseases and conditions. This is in part due to the wide variety of HSPGs on which the presence or absence of HS moieties dictates protein function. This includes growth factors, chemokines, cytokines, as well as components of the extracellular matrix (ECM) which in turn regulate leukocyte infiltration into the CNS. Roles for heparanase in stroke, Alzheimer's disease, and glioma growth have been described; roles for heparanase in other disease such as multiple sclerosis (MS) are less well established. However, given its known roles in inflammation and leukocyte infiltration, it is likely that heparanase also contributes to MS pathology. In this review, we will briefly summarize what is known about heparanase roles in the CNS, and speculate as to its potential role in regulating disease progression in MS and its animal model EAE (experimental autoimmune encephalitis), which may justify testing of heparanase inhibitors for MS treatment.
Collapse
Affiliation(s)
| | - Zane Deliu
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA; Jesse Brown Veteran Affairs Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat Rev Nephrol 2017; 13:201-212. [PMID: 28163306 DOI: 10.1038/nrneph.2017.6] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparanase has regulatory roles in various processes, including cell communication, gene transcription and autophagy. In addition, it is the only known mammalian endoglycosidase that is capable of degrading heparan sulfate (HS). HS chains are important constituents and organizers of the extracellular matrix (ECM), and have a key role in maintaining the integrity and function of the glomerular filtration barrier. In addition, HS chains regulate the activity of numerous bioactive molecules, such as cytokines and growth factors, at the cell surface and in the ECM. Given the functional diversity of HS, its degradation by heparanase profoundly affects important pathophysiological processes, including tumour development, neovascularization and inflammation, as well as progression of kidney disease. Heparanase-mediated degradation and subsequent remodelling of HS in the ECM of the glomerulus is a key mechanism in the development of glomerular disease, as exemplified by the complete resistance of heparanase-deficient animals to diabetes and immune-mediated kidney disease. This Review summarizes the role of heparanase in the development of kidney disease, and its potential as a therapeutic target.
Collapse
|
26
|
Mercier F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci 2016; 73:4661-4674. [PMID: 27475964 PMCID: PMC11108427 DOI: 10.1007/s00018-016-2314-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
The stem cell niche refers to a specific microenvironment where stem cells proliferate and differentiate to produce new specialized cells throughout an organism's adulthood. Growth factors are crucial signaling molecules that diffuse through the extracellular space, reach the stem cell niche, and ultimately promote stem cell proliferation and differentiation. However, it is not well known how multiple growth factors, often with antagonistic activities, work together in the stem cell niche to select target stem cell populations and determine stem cell fate. There is accumulating evidence suggesting that extracellular matrix (ECM) molecules play an important role in promoting growth factor access and activity in the stem cell niche. In the adult brain neurogenic zone, where neural stem cells (NSCs) reside, there exist specialized ECM structures, which we have named fractones. The processes of NSC allow them to come into contact with fractones and interact with its individual components, which include heparan sulfate proteoglycans (HSPGs) and laminins. We have demonstrated that fractone-associated HSPGs bind growth factors and regulate NSC proliferation in the neurogenic zone. Moreover, emerging results show that fractones are structurally altered in animal models with autism and adult hydrocephalus, as demonstrated by changes in fractone size, quantity, or HSPG content. Interestingly, ECM structures similar to fractones have been found throughout β-amyloid plaques in the brain of patients with Alzheimer's disease. Pathological fractones may cause imbalances in growth factor activity and impair neurogenesis, leading to inflammation and disorder. Generally speaking, these stem cell niche structures play a potentially vital role in controlling growth factor activity during both health and disease.
Collapse
Affiliation(s)
- Frederic Mercier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
27
|
Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 2016; 29:54-75. [PMID: 27912844 DOI: 10.1016/j.drup.2016.10.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Heparanase expression is enhanced in almost all cancers examined including various carcinomas, sarcomas and hematological malignancies. Numerous clinical association studies have consistently demonstrated that upregulation of heparanase expression correlates with increased tumor size, tumor angiogenesis, enhanced metastasis and poor prognosis. In contrast, knockdown of heparanase or treatments of tumor-bearing mice with heparanase-inhibiting compounds, markedly attenuate tumor progression further underscoring the potential of anti-heparanase therapy for multiple types of cancer. Heparanase neutralizing monoclonal antibodies block myeloma and lymphoma tumor growth and dissemination; this is attributable to a combined effect on the tumor cells and/or cells of the tumor microenvironment. In fact, much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis and chemoresistance. The repertoire of the physio-pathological activities of heparanase is expanding. Specifically, heparanase regulates gene expression, activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and non-enzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive inflammatory responses, tumor survival, growth, dissemination and drug resistance; but in the same time, may fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, stress response, and heparan sulfate turnover. Heparanase is upregulated in response to chemotherapy in cancer patients and the surviving cells acquire chemoresistance, attributed, at least in part, to autophagy. Consequently, heparanase inhibitors used in tandem with chemotherapeutic drugs overcome initial chemoresistance, providing a strong rationale for applying anti-heparanase therapy in combination with conventional anti-cancer drugs. Heparin-like compounds that inhibit heparanase activity are being evaluated in clinical trials for various types of cancer. Heparanase neutralizing monoclonal antibodies are being evaluated in pre-clinical studies, and heparanase-inhibiting small molecules are being developed based on the recently resolved crystal structure of the heparanase protein. Collectively, the emerging premise is that heparanase expressed by tumor cells, innate immune cells, activated endothelial cells as well as other cells of the tumor microenvironment is a master regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a prime target for therapy.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | - Preeti Singh
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Ilanit Boyango
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Lilach Gutter-Kapon
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ralph D Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
28
|
Sue M, Higashi N, Shida H, Kogane Y, Nishimura Y, Adachi H, Kolaczkowska E, Kepka M, Nakajima M, Irimura T. An iminosugar-based heparanase inhibitor heparastatin (SF4) suppresses infiltration of neutrophils and monocytes into inflamed dorsal air pouches. Int Immunopharmacol 2016; 35:15-21. [PMID: 27015605 DOI: 10.1016/j.intimp.2016.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 01/23/2023]
Abstract
Local infiltration of inflammatory cells is regulated by a number of biological steps during which the cells likely penetrate through subendothelial basement membranes that contain heparan sulfate proteoglycans. In the present study, we examined whether administration of heparastatin (SF4), an iminosugar-based inhibitor of heparanase, could suppress local inflammation and degradation of heparan sulfate proteoglycans in basement membranes. In a carrageenan- or formyl peptide-induced dorsal air pouch inflammation model, the number of infiltrated neutrophils and monocytes was significantly lower in mice after topical administration of heparastatin (SF4). The concentration of chemokines MIP-2 and KC in pouch exudates of drug-treated mice was similar to control. In a zymosan-induced peritonitis model, the number of infiltrated cells was not altered in drug-treated mice. To further test how heparastatin (SF4) influences transmigration of inflammatory neutrophils, its suppressive effect on migration and matrix degradation was examined in vitro. In the presence of heparastatin (SF4), the number of neutrophils that infiltrated across a Matrigel-coated polycarbonate membrane was significantly lower, while the number of neutrophils passing through an uncoated membrane was not altered. Lysate of bone marrow-derived neutrophils released sulfate-radiolabeled macromolecules from basement membrane-like extracellular matrix, which was suppressed by heparastatin (SF4). Heparan sulfate degradation activity was almost completely abolished after incubation of lysate with protein G-conjugated anti-heparanase monoclonal antibody, strongly suggesting that the activity was due to heparanase-mediated degradation. Taken together, in a dorsal air pouch inflammation model heparastatin (SF4) potentially suppresses extravasation of inflammatory cells by impairing the degradation of basement membrane heparan sulfate.
Collapse
Affiliation(s)
- Mayumi Sue
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuaki Higashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; One-stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Shida
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Kogane
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshio Nishimura
- Institute of Microbial Chemistry (BIKAKEN), Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Elzbieta Kolaczkowska
- Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Krakow, Poland
| | - Magdalena Kepka
- Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Krakow, Poland
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo 106-6019, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Biochemistry, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8560, Japan; Department of Breast and Endocrine Surgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8560, Japan.
| |
Collapse
|
29
|
Tsunekawa N, Higashi N, Kogane Y, Waki M, Shida H, Nishimura Y, Adachi H, Nakajima M, Irimura T. Heparanase augments inflammatory chemokine production from colorectal carcinoma cell lines. Biochem Biophys Res Commun 2015; 469:878-83. [PMID: 26713365 DOI: 10.1016/j.bbrc.2015.12.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production.
Collapse
Affiliation(s)
- Naoki Tsunekawa
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuaki Higashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; One-stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Kogane
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michihiko Waki
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Shida
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshio Nishimura
- Institute of Microbial Chemistry, Tokyo, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry, Tokyo, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo 106-6019, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Biochemistry and Department of Breast and Endocrine Surgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8560, Japan.
| |
Collapse
|
30
|
Wu L, Viola CM, Brzozowski AM, Davies GJ. Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 2015; 22:1016-22. [PMID: 26575439 PMCID: PMC5008439 DOI: 10.1038/nsmb.3136] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) is a glycosaminoglycan that forms a key component of the extracellular matrix (ECM). Breakdown of HS is carried out by heparanase (HPSE), an endo-β-glucuronidase of the glycoside hydrolase 79 (GH79) family. Overexpression of HPSE results in breakdown of extracellular HS and release of stored growth factors and hence is strongly linked to cancer metastasis. Here we present crystal structures of human HPSE at 1.6-Å to 1.9-Å resolution that reveal how an endo-acting binding cleft is exposed by proteolytic activation of latent proHPSE. We used oligosaccharide complexes to map the substrate-binding and sulfate-recognition motifs. These data shed light on the structure and interactions of a key enzyme involved in ECM maintenance and provide a starting point for the design of HPSE inhibitors for use as biochemical tools and anticancer therapeutics.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, University of York, York, UK
| | | | | | | |
Collapse
|
31
|
Wang A, Sankaranarayanan NV, Yanagishita M, Templeton DM, Desai UR, Sugahara K, Wang CP, Hascall VC. Heparin interaction with a receptor on hyperglycemic dividing cells prevents intracellular hyaluronan synthesis and autophagy responses in models of type 1 diabetes. Matrix Biol 2015; 48:36-41. [DOI: 10.1016/j.matbio.2015.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/11/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022]
|
32
|
Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics. Transplantation 2015; 99:668-77. [PMID: 25606800 DOI: 10.1097/tp.0000000000000561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. METHODS CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. RESULTS Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. CONCLUSIONS Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.
Collapse
|
33
|
Doloff JC, Waxman DJ. Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts. BMC Cancer 2015; 15:375. [PMID: 25952672 PMCID: PMC4523019 DOI: 10.1186/s12885-015-1358-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Background Cyclophosphamide treatment on a six-day repeating metronomic schedule induces a dramatic, innate immune cell-dependent regression of implanted gliomas. However, little is known about the underlying mechanisms whereby metronomic cyclophosphamide induces innate immune cell mobilization and recruitment, or about the role of DNA damage and cell stress response pathways in eliciting the immune responses linked to tumor regression. Methods Untreated and metronomic cyclophosphamide-treated human U251 glioblastoma xenografts were analyzed on human microarrays at two treatment time points to identify responsive tumor cell-specific factors and their upstream regulators. Mouse microarray analysis across two glioma models (human U251, rat 9L) was used to identify host factors and gene networks that contribute to the observed immune and tumor regression responses. Results Metronomic cyclophosphamide increased expression of tumor cell-derived DNA damage, cell stress, and cell death genes, which may facilitate innate immune activation. Increased expression of many host (mouse) immune networks was also seen in both tumor models, including complement components, toll-like receptors, interferons, and cytolysis pathways. Key upstream regulators activated by metronomic cyclophosphamide include members of the interferon, toll-like receptor, inflammatory response, and PPAR signaling pathways, whose activation may contribute to anti-tumor immunity. Many upstream regulators inhibited by metronomic cyclophosphamide, including hypoxia-inducible factors and MAP kinases, have glioma-promoting activity; their inhibition may contribute to the therapeutic effectiveness of the six-day repeating metronomic cyclophosphamide schedule. Conclusions Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA-induced, immune-based regression. These factors may include useful biomarkers that facilitate discovery of clinically effective immunogenic metronomic drugs and treatment schedules, and the selection of patients most likely to be responsive to immunogenic drug scheduling. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1358-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Doloff
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| | - David J Waxman
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| |
Collapse
|
34
|
A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:237969. [PMID: 26064887 PMCID: PMC4433633 DOI: 10.1155/2015/237969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022]
Abstract
As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery.
Collapse
|
35
|
The function of heparanase in diabetes and its complications. Can J Diabetes 2015; 37:332-8. [PMID: 24500561 DOI: 10.1016/j.jcjd.2013.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/18/2023]
Abstract
Heparan sulfate proteoglycans are ubiquitous glycoproteins that contain several heparan sulfate polysaccharide side chains attached to a core protein. They function not only as a primary structural component of the extracellular matrix, but also provide a storage depot for bioactive molecules, such as basic fibroblast growth factor, vascular endothelial growth factor and lipoprotein lipase. Heparanase is an endoglycosidase that specifically hydrolyzes heparan sulfate into oligosaccharides. Recent studies have indicated that heparanase is engaged in the initiation and progression of diabetes, in addition to its associated complications. This review focuses on the participation of heparanase in the cleavage of heparan sulfate proteoglycans in pancreatic islets promoting beta cell death, promotion of atherosclerosis, and its role in cardiac metabolic switching in the early stage of cardiomyopathy during diabetes. Understanding the mechanisms by which heparanase is regulated in diabetes could provide a drug target to prevent diabetes and its complications.
Collapse
|
36
|
Stoler-Barak L, Petrovich E, Aychek T, Gurevich I, Tal O, Hatzav M, Ilan N, Feigelson SW, Shakhar G, Vlodavsky I, Alon R. Heparanase of murine effector lymphocytes and neutrophils is not required for their diapedesis into sites of inflammation. FASEB J 2015; 29:2010-21. [PMID: 25634957 DOI: 10.1096/fj.14-265447] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022]
Abstract
Heparanase, the exclusive mammalian heparan sulfate-degrading enzyme, has been suggested to be utilized by leukocytes to penetrate through the dense basement membranes surrounding blood venules. Despite its established role in tumor cell invasion, heparanase function in leukocyte extravasation has never been demonstrated. We found that TH1/TC1-type effector T cells are highly enriched for this enzyme, with a 3.6-fold higher heparanase mRNA expression compared with naive lymphocytes. Using adoptive transfer of wild-type and heparanase-deficient effector T cells into inflamed mice, we show that T-cell heparanase was not required for extravasation inside inflamed lymph nodes or skin. Leukocyte extravasation through acute inflamed skin vessels was also heparanase independent. Furthermore, neutrophils emigrated to the inflamed peritoneal cavity independently of heparanase expression on either the leukocytes or on the endothelial and mesothelial barriers, and overexpression of the enzyme on neutrophils did not facilitate their emigration. However, heparanase absence significantly reduced monocyte emigration into the inflamed peritoneal cavity. These results collectively suggest that neither leukocyte nor endothelial heparanase is required for T-cell and neutrophil extravasation through inflamed vascular barriers, whereas this enzyme is required for optimal monocyte recruitment to inflamed peritoneum.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ekaterina Petrovich
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tegest Aychek
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Irina Gurevich
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Orna Tal
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Miki Hatzav
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sara W Feigelson
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Guy Shakhar
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ronen Alon
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
37
|
Gotha L, Lim SY, Osherov AB, Wolff R, Qiang B, Erlich I, Nili N, Pillarisetti S, Chang YT, Tran PK, Tryggvason K, Hedin U, Tran-Lundmark K, Advani SL, Gilbert RE, Strauss BH. Heparan sulfate side chains have a critical role in the inhibitory effects of perlecan on vascular smooth muscle cell response to arterial injury. Am J Physiol Heart Circ Physiol 2014; 307:H337-45. [PMID: 24858854 DOI: 10.1152/ajpheart.00654.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2(Δ3/Δ3) (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type (P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB (P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.
Collapse
Affiliation(s)
- Lara Gotha
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sang Yup Lim
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Korea University Ansan Hospital, Ansan, Korea
| | - Azriel B Osherov
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rafael Wolff
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Beiping Qiang
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Ilana Erlich
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nafiseh Nili
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Ya-Ting Chang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; and
| | - Phan-Kiet Tran
- Department of Pediatric Cardiac Surgery, Skane University Hospital, Lund, Sweden
| | - Karl Tryggvason
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; and
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; and
| | - Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; and
| | - Suzanne L Advani
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard E Gilbert
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Bradley H Strauss
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada;
| |
Collapse
|
38
|
Heparanase-mediated cleavage of macromolecular heparin accelerates release of granular components of mast cells from extracellular matrices. Biochem J 2014; 458:291-9. [PMID: 24344642 DOI: 10.1042/bj20131463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heparanase cleaves macromolecular heparin in the secretory granules of connective tissue-type mast cells. We investigated roles of the cleavage under a microenvironment mimicking where the mast cells physiologically reside. A connective tissue-type mast cell line MST and mouse peritoneal cell-derived mast cells stored macromolecular heparin in the secretory granules. The cells expressing heparanase stored fragmented heparin (~10 kDa) due to heparanase-dependent cleavage of the heparin. We produced an artificial collagen-based extracellular matrix and placed the live cells or glycosaminoglycans purified from the cells in the matrix to measure the release of sulfated macromolecules into the medium. The sulfate-radiolabelled molecules from the degranulating heparanase-expressing cells and the purified glycosaminoglycans showed significantly greater release into the medium than those derived from mock cells, which was not the case in suspension culture. The mast cell granular enzyme chymase, but not β-hexosaminidase, showed significantly greater release from the degranulating heparanase-expressing cells than from mock cells. Purified chymase mixed with fragmented heparin derived from heparanase-expressing cells showed greater release from collagen gels than the enzyme alone or mixed with macromolecular heparin derived from mock cells. We propose that the cleavage of macromolecular heparin by heparanase accelerates the release of heparin and chymase from extracellular matrices.
Collapse
|
39
|
Simon Davis DA, Parish CR. Heparan sulfate: a ubiquitous glycosaminoglycan with multiple roles in immunity. Front Immunol 2013; 4:470. [PMID: 24391644 PMCID: PMC3866581 DOI: 10.3389/fimmu.2013.00470] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022] Open
Abstract
Heparan sulfate (HS) is a highly acidic linear polysaccharide with a very variable structure. It is ubiquitously expressed on cell surfaces and in the extracellular matrix and basement membrane of mammalian tissues. Synthesized attached to various core proteins to form HS-proteoglycans, HS is capable of interacting with various polypeptides and exerting diverse functions. In fact, a bioinformatics analysis of mammalian proteins that express a heparin/HS-binding motif and are associated with the immune system identified 235 candidate proteins, the majority having an intracellular location. This simple analysis suggests that HS may, in fact, interact with many more components of the immune system than previously realized. Numerous studies have also directly demonstrated that HS plays multiple prominent functional roles in the immune system that are briefly reviewed in this article. In particular, the molecule has been shown to regulate leukocyte development, leukocyte migration, immune activation, and inflammatory processes.
Collapse
Affiliation(s)
- David Anak Simon Davis
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| |
Collapse
|
40
|
Ostrovsky O, Shimoni A, Baryakh P, Morgulis Y, Mayorov M, Beider K, Shteingauz A, Ilan N, Vlodavsky I, Nagler A. Modification of heparanase gene expression in response to conditioning and LPS treatment: strong correlation to rs4693608 SNP. J Leukoc Biol 2013; 95:677-88. [PMID: 24319286 DOI: 10.1189/jlb.0313147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of HSPGs, important structural and functional components of the ECM. Cleavage of HS leads to loss of the structural integrity of the ECM and release of HS-bound cytokines, chemokines, and bioactive angiogenic- and growth-promoting factors. Our previous study revealed a highly significant correlation of HPSE gene SNPs rs4693608 and rs4364254 and their combination with the risk of developing GVHD. We now demonstrate that HPSE is up-regulated in response to pretransplantation conditioning, followed by a gradual decrease thereafter. Expression of heparanase correlated with the rs4693608 HPSE SNP before and after conditioning. Moreover, a positive correlation was found between recipient and donor rs4693608 SNP discrepancy and the time of neutrophil and platelet recovery. Similarly, the discrepancy in rs4693608 HPSE SNP between recipients and donors was found to be a more significant factor for the risk of aGVHD than patient genotype. The rs4693608 SNP also affected HPSE gene expression in LPS-treated MNCs from PB and CB. Possessors of the AA genotype exhibited up-regulation of heparanase with a high ratio in the LPS-treated MNCs, whereas individuals with genotype GG showed down-regulation or no effect on HPSE gene expression. HPSE up-regulation was mediated by TLR4. The study emphasizes the importance of rs4693608 SNP for HPSE gene expression in activated MNCs, indicating a role in allogeneic stem cell transplantation, including postconditioning, engraftment, and GVHD.
Collapse
Affiliation(s)
- Olga Ostrovsky
- 1.Dept. of Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Unexpected new roles for heparanase in Type 1 diabetes and immune gene regulation. Matrix Biol 2013; 32:228-33. [PMID: 23499527 DOI: 10.1016/j.matbio.2013.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 01/15/2023]
Abstract
Heparanase (Hpse) is an endo-β-d-glucuronidase that degrades the glycosaminoglycan heparan sulfate (HS) in basement membranes (BMs) to facilitate leukocyte migration into tissues. Heparanase activity also releases HS-bound growth factors from the extracellular matrix (ECM), a function that aids wound healing and angiogenesis. In disease states, the degradation of HS in BMs by heparanase is well recognized as an invasive property of metastatic cancer cells. Recent studies by our group, however, have identified unexpected new roles for heparanase and HS. First, we discovered that in Type 1 diabetes (T1D) (i) HS in the pancreatic islet BM acts as a barrier to invading cells and (ii) high levels of HS within the insulin-producing islet beta cells themselves are critical for beta cell survival, protecting the cells from free radical-mediated damage. Furthermore, catalytically active heparanase produced by autoreactive T cells and other insulitis mononuclear cells was shown to degrade intra-islet HS, increasing the susceptibility of islet beta cells to free radical damage and death. This totally novel molecular explanation for the onset of T1D diabetes opens up new therapeutic approaches for preventing disease progression. Indeed, administration of the heparanase inhibitor, PI-88, dramatically reduced T1D incidence in diabetes-prone NOD mice, preserved islet beta cell HS and reduced islet inflammation. Second, in parallel studies it has been shown that heparanase and HS can be transported to the nucleus of cells where they impact directly or indirectly on gene transcription. Based on ChIP-on-chip studies heparanase was found to interact with the promoters and transcribed regions of several hundred genes and micro-RNAs in activated Jurkat T cells and up-regulate transcription, with many of the target genes/micro-RNAs being involved in T cell differentiation. At the molecular level, nuclear heparanase appears to regulate histone 3 lysine 4 (H3K4) methylation by influencing the recruitment of demethylases to transcriptionally active genes. These studies have unveiled new functions for heparanase produced by T lymphocytes, with the enzyme mediating unexpected intracellular effects on T cell differentiation and insulin-producing beta cell survival in T cell-dependent autoimmune T1D.
Collapse
|
42
|
Benhamron S, Reiner I, Zcharia E, Atallah M, Grau A, Vlodavsky I, Mevorach D. Dissociation between mature phenotype and impaired transmigration in dendritic cells from heparanase-deficient mice. PLoS One 2012; 7:e35602. [PMID: 22590508 PMCID: PMC3349677 DOI: 10.1371/journal.pone.0035602] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 03/22/2012] [Indexed: 12/24/2022] Open
Abstract
To reach the lymphatics, migrating dendritic cells (DCs) need to interact with the extracellular matrix (ECM). Heparanase, a mammalian endo-β-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and ECM. The role of heparanase in the physiology of bone marrow-derived DCs was studied in mutant heparanase knock-out (Hpse-KO) mice. Immature DCs from Hpse-KO mice exhibited a more mature phenotype; however their transmigration was significantly delayed, but not completely abolished, most probably due to the observed upregulation of MMP-14 and CCR7. Despite their mature phenotype, uptake of beads was comparable and uptake of apoptotic cells was more efficient in DCs from Hpse-KO mice. Heparanase is an important enzyme for DC transmigration. Together with CCR7 and its ligands, and probably MMP-14, heparanase controls DC trafficking.
Collapse
Affiliation(s)
- Sandrine Benhamron
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Rheumatology Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Inna Reiner
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Rheumatology Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Zcharia
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Mizhir Atallah
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Rheumatology Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Grau
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Rheumatology Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Israel Vlodavsky
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Dror Mevorach
- The Laboratory for Cellular and Molecular Immunology, Department of Medicine, Rheumatology Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
43
|
van der Pouw Kraan TCTM, van der Laan AM, Piek JJ, Horrevoets AJG. Surfing the data tsunami, a bioinformatic dissection of the proangiogenic monocyte. Vascul Pharmacol 2012; 56:297-305. [PMID: 22387744 DOI: 10.1016/j.vph.2012.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/26/2012] [Accepted: 02/16/2012] [Indexed: 11/26/2022]
Abstract
In this review we compare expression studies on monocyte subsets as an example to show the integrated possibilities of molecular databases and bioinformatic analysis tools. Monocytes have been recognized as cells with great plasticity and differentiation potential that play a pivotal role in revascularization processes, i.e. angiogenesis and arteriogenesis. To gain more insight in the relevant developmental programs, we compared the full-genome mRNA expression profiles of several distinct human monocyte subpopulations previously identified based on surface marker expression. These included classical and non-classical, M1 and M2 macrophages, circulating angiogenic cells (CAC), and non-monocyte-derived endothelial colony-forming cells (ECFC). Their transcriptional profiles revealed distinct and overlapping gene expression signatures and pathways reminiscent of utilization of transcription factors driving polarization into the different monocytic phenotypes. Hierarchical cluster analysis revealed that CAC are most related to M2 macrophages and unstimulated macrophages, and to a lesser extent to classical monocytes, and are quite distinct from M1 macrophages and ECFC. Analysis of the promoter region of CAC-expressed genes suggests that in particular the ETS family of transcription factors is important in CAC development. These analyses show the power of combining multiple datasets with existing databases on biological knowledge, to interpret full genome expression data.
Collapse
Affiliation(s)
- T C T M van der Pouw Kraan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
44
|
Heparanase enhances nerve-growth-factor-induced PC12 cell neuritogenesis via the p38 MAPK pathway. Biochem J 2012; 440:273-82. [PMID: 21831044 DOI: 10.1042/bj20110167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heparanase is involved in the cleavage of the HS (heparan sulfate) chain of HSPGs (HS proteoglycans) and hence participates in remodelling of the ECM (extracellular matrix) and BM (basement membrane). In the present study we have shown that NGF (nerve growth factor) promoted nuclear enrichment of EGR1 (early growth response 1), a transcription factor for heparanase, and markedly induced heparanase expression in rat adrenal pheochromocytoma (PC12) cells. K252a, an antagonist of the NGF receptor TrkA (tyrosine kinase receptor A), decreased heparanase protein expression induced by NGF in PC12 cells. Suramin, a heparanase inhibitor, decreased heparanase in PC12 cells and blocked NGF-induced PC12 neuritogenesis. Stable overexpression of heparanase activated p38 MAPK (mitogen-activated protein kinase) by phosphorylation and enhanced the neurite outgrowth induced by NGF, whereas knock down of heparanase impaired this process. However, overexpression of latent pro-heparanase with a Y156A mutation still led to enhanced NGF-induced neurite outgrowth and increased p38 MAPK phosphorylation. Inhibition of p38 MAPK by SB203580 suppressed the promotion of NGF-induced neuritogenesis by the wild-type and mutant heparanase. The impaired differentiation by knock down of heparanase could be restored by transfection of wild-type or mutant heparanase in PC12 cells. The results of the present study suggest that heparanase, at least in the non-enzymatic form, may promote NGF-induced neuritogenesis via the p38 MAPK pathway.
Collapse
|
45
|
Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia. Brain Res 2011; 1433:137-44. [PMID: 22169133 DOI: 10.1016/j.brainres.2011.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/22/2022]
Abstract
Heparanase is a heparan sulfate degrading endoglycosidase. Previous work has demonstrated that heparanase plays important roles in various biological processes including angiogenesis, wound healing and metastasis. However, the role of heparanase in the post-ischemic brain is not well defined. Transient focal cerebral ischemia in adult mice was induced by ligations of the right middle cerebral artery (MCA) and both common carotid arteries (CCAs). All mice were subjected to bromodeoxyuridine (BrdU) injection and sacrificed at different time points after stroke for immunohistochemical and Western blot analyses. Heparanase expression increased after ischemia in both cell-specific and time-dependent manners. Three to 7 days after stroke, levels of the 50-kD heparanase, basic fibroblast growth factor (FGF-2), and angiopoietin-2 (Ang-2) increased in the peri-infarct region. At early time points, heparanase expression was largely confined to proliferating vascular endothelial cells. At 14 days after ischemia, this expression had shifted to astrocytes in the same region. These data show that cerebral ischemia markedly increases heparanase levels in endothelial cells and then in astrocytes. The unique features of the heparanase upregulation imply that heparanase may play specific roles in the pathological and regenerative processes during the acute and sub-acute/chronic phases in the post-stroke brain.
Collapse
|
46
|
The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 2010; 58:45-56. [PMID: 20049646 DOI: 10.1007/s00005-009-0061-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/30/2009] [Indexed: 12/28/2022]
Abstract
The glomerular basement membrane (GBM) is a kind of net that remains in a state of dynamic equilibrium. Heparan sulfate proteoglycans (HSPGs) are among its most important components. There are much data indicating the significance of these proteoglycans in protecting proteins such as albumins from penetrating to the urine, although some new data indicate that loss of proteoglycans does not always lead to proteinuria. Heparanase is an enzyme which cleaves beta 1,4 D: -glucuronic bonds in sugar groups of HSPGs. Thus it is supposed that heparanase may have an important role in the pathogenesis of proteinuria. Increased heparanase expression and activity in the course of many glomerular diseases was observed. The most widely documented is the significance of heparanase in the pathogenesis of diabetic nephropathy. Moreover, heparanase acts as a signaling molecule and may influence the concentrations of active growth factors in the GBM. It is being investigated whether heparanase inhibition may cause decreased proteinuria. The heparanase inhibitor PI-88 (phosphomannopentaose sulfate) was effective as an antiproteinuric drug in an experimental model of membranous nephropathy. Nevertheless, this drug is burdened by some toxicity, so further investigations should be considered.
Collapse
|
47
|
Sato M, Amemiya K, Hayakawa S, Munakata H. Subcellular localization of human heparanase and its alternative splice variant in COS-7 cells. Cell Biochem Funct 2008; 26:676-83. [PMID: 18646256 DOI: 10.1002/cbf.1492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heparanase, the enzyme that degrades heparan sulfate, has been implicated to play important and characteristic roles in organogenesis, tissue organization, cell migration, and tumor metastasis. Clarification of its expression, its intracellular sorting, and its secretion is, therefore, of much importance to understand its role in cell biology. In addition to the 1.7 Kb transcript previously reported, we detected a 1.5 Kb transcript of human heparanase by RT-PCR. The smaller transcript was shown to be an alternatively spliced variant lacking exon 5, which contains the essential glutamic acid residue required for enzyme activity. When expressed in COS-7 cells this variant did not show any heparanase activity. Full-length heparanase and the exon 5-deleted splice variant were expressed in COS-7 cells and examined by confocal laser scanning microscopy. Both proteins co-localized with calnexin, a marker protein for the endoplasmic reticulum, and they co-immunoprecipitated with calnexin. Both proteins were postulated to be precursors based upon the results of SDS-PAGE analyses. Treatment with endoglycosidases revealed that all potential N-glycosylation sites in the proteins were glycosylated. Tunicamycin treatment of transfected COS-7 cells inhibited N-glycosylation but did not change the subcellular localization. These results indicate that overexpressed heparanase and its splice variant localize to the endoplasmic reticulum independent of glycosylation in COS-7 cells.
Collapse
Affiliation(s)
- Mayumi Sato
- Department of Biochemistry, Kinki University School of Medicine, Osaka-Sayama, Japan
| | | | | | | |
Collapse
|
48
|
Eudes A, Mouille G, Thévenin J, Goyallon A, Minic Z, Jouanin L. Purification, cloning and functional characterization of an endogenous beta-glucuronidase in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2008; 49:1331-41. [PMID: 18667448 DOI: 10.1093/pcp/pcn108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Beta-glucuronidase (GUS) activities have been extensively characterized in bacteria, fungi, and animals, and the bacterial enzyme GUSA from Escherichia coli is commonly used as a reporter for gene expression studies in plants. Although endogenous GUS activity has been observed in plants, the nature and function of the enzymes involved remain elusive. Here we report on tissue-specific localization, partial purification and identification of AtGUS2, a GUS active under acidic conditions from Arabidopsis thaliana. This enzyme belongs to the GH79 family in the Carbohydrate-Active Enzymes database, which also includes mammalian heparanases that degrade the carbohydrate moieties of cell surface proteoglycans, and fungal enzymes active on arabinogalactan proteins (AGPs). We characterized a knockout insertion line (atgus2-1) and transgenic lines overexpressing AtGUS2 (Pro(35S):AtGUS2). Endogenous GUS activity assayed histochemically and biochemically was absent in atgus2-1 tissues and four times higher in Pro(35S):AtGUS2 lines. AGPs purified from atgus2-1 and Pro(35S):AtGUS2 seedlings showed higher and markedly lower glucuronic acid content, respectively. Our results suggest that endogenous GUS activity influences the sugar composition of the complex polysaccharide chains of AGPs. We also show that transgenics display hypocotyl and root growth defects compared to wild-type plants. Hypocotyl and root lengths are increased in Pro(35S):AtGUS2 seedlings, whereas hypocoyl length is reduced in atgus2-1 seedlings. These data are consistent with a role for the carbohydrate moieties of AGPs in cell growth.
Collapse
Affiliation(s)
- Aymerick Eudes
- INRA, Centre de Versailles, Institut Jean-Pierre Bourgin, Laboratoire de Biologie Cellulaire, 78026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Wood RJ, Hulett MD. Cell Surface-expressed Cation-independent Mannose 6-Phosphate Receptor (CD222) Binds Enzymatically Active Heparanase Independently of Mannose 6-Phosphate to Promote Extracellular Matrix Degradation. J Biol Chem 2008; 283:4165-76. [DOI: 10.1074/jbc.m708723200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Takahashi H, Matsumoto H, Smirkin A, Itai T, Nishimura Y, Tanaka J. Involvement of heparanase in migration of microglial cells. Biochim Biophys Acta Gen Subj 2008; 1780:709-15. [PMID: 18222122 DOI: 10.1016/j.bbagen.2007.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/19/2007] [Accepted: 12/20/2007] [Indexed: 11/24/2022]
Abstract
Heparanase, a matrix-degrading enzyme that cleaves heparan sulfate side chains from heparan sulfate proteoglycans (HSPGs), has been shown to facilitate cell invasion, migration, and extravasation of metastatic tumor cells or immune cells. In this study, the expression and functions of heparanase were investigated using rat primary cultured microglia, the resident macrophages in the brain. The microglia were found to express heparanase mRNA and protein. Microglia treated with lipopolysaccharide (LPS) were activated, expressed induced nitric oxide synthase and elevated the expression of heparanase. Heparanase has two molecular weights: a 65 kDa latent form and an active 50 kDa. Both forms were expressed by LPS-treated activated microglia; however, untreated microglia primarily expressed the latent form. Cell lysates from microglia actually degraded Matrigel containing HSPG. Heparanase was colocalized with the actin cytoskeleton in microglial leading edges or ruffled membranes. Microglia transmigrated through a Matrigel-coated pored membrane. This process was inhibited by SF-4, a specific heparanase inhibitor, in a concentration-dependent manner. Degraded HSPG was generated when microglia transmigrated through the coated membrane, and this was also inhibited by SF-4. The results suggest the involvement of heparanase in the migration or invasion of microglia or brain macrophages across basement membrane around brain vasculature.
Collapse
Affiliation(s)
- Hisaaki Takahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|