1
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Chen X, Gao Y, Zhang Y. Allogeneic CAR-T cells for cancer immunotherapy. Immunotherapy 2024; 16:1079-1090. [PMID: 39378059 PMCID: PMC11492692 DOI: 10.1080/1750743x.2024.2408048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Autologous chimeric antigen receptor (CAR)-modified T (CAR-T) cell therapy has displayed high efficacy in the treatment of hematological malignancies. Up to now, 11 autologous CAR-T cell products have been approved for the management of malignancies globally. However, the application of autologous CAR-T cell therapy has many individual limitations, long time-consuming, highly cost, and the risk of manufacturing failure. Indeed, some patients would not benefit from autologous CAR-T cell products because of rapid disease progression. Allogeneic CAR-T cells especially universal CAR-T (U-CAR-T) cell therapy are superior to these challenges of autologous CAR-T cells. In this review, we describe basic study and clinical trials of U-CAR-T cell therapeutic methods for malignancies. In addition, we summarize the problems encountered and potential solutions.
Collapse
Affiliation(s)
- Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yaoxin Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
3
|
Schlegel LS, Werbrouck C, Boettcher M, Schlegel P. Universal CAR 2.0 to overcome current limitations in CAR therapy. Front Immunol 2024; 15:1383894. [PMID: 38962014 PMCID: PMC11219820 DOI: 10.3389/fimmu.2024.1383894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has effectively complemented the treatment of advanced relapsed and refractory hematological cancers. The remarkable achievements of CD19- and BCMA-CAR T therapies have raised high expectations within the fields of hematology and oncology. These groundbreaking successes are propelling a collective aspiration to extend the reach of CAR therapies beyond B-lineage malignancies. Advanced CAR technologies have created a momentum to surmount the limitations of conventional CAR concepts. Most importantly, innovations that enable combinatorial targeting to address target antigen heterogeneity, using versatile adapter CAR concepts in conjunction with recent transformative next-generation CAR design, offer the promise to overcome both the bottleneck associated with CAR manufacturing and patient-individualized treatment regimens. In this comprehensive review, we delineate the fundamental prerequisites, navigate through pivotal challenges, and elucidate strategic approaches, all aimed at paving the way for the future establishment of multitargeted immunotherapies using universal CAR technologies.
Collapse
Affiliation(s)
- Lara Sophie Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Coralie Werbrouck
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney, NSW, Australia
| |
Collapse
|
4
|
Taefehshokr N, Lac A, Vrieze AM, Dickson BH, Guo PN, Jung C, Blythe EN, Fink C, Aktar A, Dikeakos JD, Dekaban GA, Heit B. SARS-CoV-2 NSP5 antagonizes MHC II expression by subverting histone deacetylase 2. J Cell Sci 2024; 137:jcs262172. [PMID: 38682259 PMCID: PMC11166459 DOI: 10.1242/jcs.262172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Alex Lac
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Angela M. Vrieze
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Brandon H. Dickson
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Peter N. Guo
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Catherine Jung
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Eoin N. Blythe
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Corby Fink
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Amena Aktar
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Bryan Heit
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
5
|
Zhu MM, Niu BW, Liu LL, Yang H, Qin BY, Peng XH, Chen LX, Liu Y, Wang C, Ren XN, Xu CH, Zhou XH, Li F. Development of a humanized HLA-A30 transgenic mouse model. Animal Model Exp Med 2022; 5:350-361. [PMID: 35791899 PMCID: PMC9434587 DOI: 10.1002/ame2.12225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background There are remarkable genetic differences between animal major histocompatibility complex (MHC) systems and the human leukocyte antigen (HLA) system. HLA transgenic humanized mouse model systems offer a much better method to study the HLA‐A‐related principal mechanisms for vaccine development and HLA‐A‐restricted responses against infection in human. Methods A recombinant gene encoding the chimeric HLA‐A30 monochain was constructed. This HHD molecule contains the following: α1‐α2 domains of HLA‐A30, α3 and cytoplasmic domains of H‐2Db, linked at its N‐terminus to the C‐terminus of human β2m by a 15‐amino‐acid peptide linker. The recombinant gene encoding the chimeric HLA‐A30 monochain cassette was introduced into bacterial artificial chromosome (BAC) CH502‐67J3 containing the HLA‐A01 gene locus by Red‐mediated homologous recombination. Modified BAC CH502‐67J3 was microinjected into the pronuclei of wild‐type mouse oocytes. This humanized mouse model was further used to assess the immune responses against influenza A virus (H1N1) pdm09 clinically isolated from human patients. Immune cell population, cytokine production, and histopathology in the lung were analyzed. Results We describe a novel human β2m‐HLA‐A30 (α1α2)‐H‐2Db (α3 transmembrane cytoplasmic) (HHD) monochain transgenic mouse strain, which contains the intact HLA‐A01 gene locus including 49 kb 5′‐UTR and 74 kb 3′‐UTR of HLA‐A01*01. Five transgenic lines integrated into the large genomic region of HLA‐A gene locus were obtained, and the robust expression of exogenous transgene was detected in various tissues from A30‐18# and A30‐19# lines encompassing the intact flanking sequences. Flow cytometry revealed that the introduction of a large genomic region in HLA‐A gene locus can influence the immune cell constitution in humanized mice. Pdm09 infection caused a similar immune response among HLA‐A30 Tg humanized mice and wild‐type mice, and induced the rapid increase of cytokines, including IFN‐γ, TNF‐α, and IL‐6, in both HLA‐A30 humanized Tg mice and wild‐type mice. The expression of HLA‐A30 transgene was dramatically promoted in tissues from A30‐9# line at 3 days post‐infection (dpi). Conclusions We established a promising preclinical research animal model of HLA‐A30 Tg humanized mouse, which could accelerate the identification of novel HLA‐A30‐restricted epitopes and vaccine development, and support the study of HLA‐A‐restricted responses against infection in humans.
Collapse
Affiliation(s)
- Meng-Min Zhu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Wen Niu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Ling-Ling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hua Yang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Yin Qin
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiu-Hua Peng
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Li-Xiang Chen
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yang Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chao Wang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Nan Ren
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chun-Hua Xu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Hui Zhou
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
6
|
Chen J, Li X, Huang J, Wang Q, Wang S, Wei S, Qin Q, Yang M. The transcription factor RFX5 positively regulates expression of MHCIa in the red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2022; 121:370-379. [PMID: 35051562 DOI: 10.1016/j.fsi.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Regulatory factor X 5 (RFX 5) is a member of the RFX family, and it forms the transcription factor complex RFX with RFXANK/B and RFXAP. The RFX complex can activate MHC expression by binding to the MHC promoter. However, the regulate mechanism of RFX in fish species is not been fully elucidated. In this study, we investigated the transcriptional regulation of Epinephelus akaara RFX5 (EaRFX5) on EaMHCI, and its effect on immune pathways. The genomic sequence of EaRFX5 was 35,774 bp and consisted of ten exons and nine introns. The length of EaRFX5 ORF sequence is 2,160 bp, encoding 719 amino acids. By qRT-PCR, EaRFX5 was detected constitutively expressed in twelve selected tissues, showing a wide range of expression. EaRFX5 expression parttern in response to poly (I:C), LPS, Zymosan A, SGIV, and NNV challenges showed that EaRFX5 plays a differentiated immunomodulatory role in response to various stimuli in different tissues, and EaRFX5 was most significantly upregulated in the kidney after challenge with SGIV. Subcellular localization assays showed that EaRFX5 is a typical nuclear protein. Based on the in vitro overexpression experiments, EaRFX5 appeared to promote the expression of EaMHCIa gene, interferon signalling pathway and inflammatory cytokine. Luciferase reporter assay showed that the -267 bp to +82 bp region of EaMHCIa promoter was the core region where EaRFX5 modulated. Additionally, point mutations and electrophoretic mobility shift assays indicating M3 is the EaRFX5 binding sites in the EaMHCIa promoter. These results contribute to elucidating the function of EaRFX5 in fish immune response, and provide the first evidence of positive regulation of MHCIa expression by RFX5 in fish.
Collapse
Affiliation(s)
- Jinpeng Chen
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinshuai Li
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jianling Huang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shina Wei
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Min Yang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in Universal CAR-T Cell Therapy. Front Immunol 2021; 12:744823. [PMID: 34691052 PMCID: PMC8526896 DOI: 10.3389/fimmu.2021.744823] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy achieved extraordinary achievements results in antitumor treatments, especially against hematological malignancies, where it leads to remarkable, long-term antineoplastic effects with higher target specificity. Nevertheless, some limitations persist in autologous CAR-T cell therapy, such as high costs, long manufacturing periods, and restricted cell sources. The development of a universal CAR-T (UCAR-T) cell therapy is an attractive breakthrough point that may overcome most of these drawbacks. Here, we review the progress and challenges in CAR-T cell therapy, especially focusing on comprehensive comparison in UCAR-T cell therapy to original CAR-T cell therapy. Furthermore, we summarize the developments and concerns about the safety and efficiency of UCAR-T cell therapy. Finally, we address other immune cells, which might be promising candidates as a complement for UCAR-T cells. Through a detailed overview, we describe the current landscape and explore the prospect of UCAR-T cell therapy.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Li F, Zhu M, Niu B, Liu L, Peng X, Yang H, Qin B, Wang M, Ren X, Zhou X. Generation and expression analysis of BAC humanized mice carrying HLA-DP401 haplotype. Animal Model Exp Med 2021; 4:116-128. [PMID: 34179719 PMCID: PMC8212823 DOI: 10.1002/ame2.12158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Human leukocyte antigen (HLA)-DP is much less studied than other HLA class II antigens, that is, HLA-DR and HLA-DQ, etc. However, the accumulating data have suggested the important roles of DP-restricted responses in the context of cancer, allergy, and infectious disease. Lack of animal models expressing these genes as authentic cis-haplotypes blocks our understanding for the role of HLA-DP haplotypes in immunity. Methods To explore the potential cis-acting control elements involved in the transcriptional regulation of the HLA-DPA1/DPB1 gene, we performed the expression analysis using bacterial artificial chromosome (BAC)-based transgenic humanized mice in the C57BL/6 background, which carried the entire HLA-DP401 gene locus. We further developed a mouse model of Staphylococcus aureus pneumonia in HLA-DP401 humanized transgenic mice, and performed the analysis on the expression pattern of HLA-DP401 and immunological responses in the model. Results In this study, we screened and identified a BAC clone spanning the entire HLA-DP gene locus. DNA from this clone was analyzed for integrity by pulsed-field gel electrophoresis and then microinjected into fertilized mouse oocytes to produce transgenic founder animals. Nine sets of PCR primers for regional markers with an average distance of 15 kb between each primer were used to confirm the integrity of the transgene in the five transgenic lines carrying the HLA-DPA1/DPB1 gene. Transgene copy numbers were determined by real-time PCR analysis. HLA-DP401 gene expression was analyzed at the mRNA and protein level. Although infection with S aureus Newman did not alter the percentage of immune cells in the spleen and thymus from the HLA-DP401-H2-Aβ1 humanized mice. Increased expression of HLA-DP401 was observed in the thymus of the humanized mice infected by S aureus. Conclusions We generated several BAC transgenic mice, and analyzed the expression of HLA-DPA1/DPB1 in those mice. A model of Saureus-induced pneumonia in the HLA-DP401-H2-Aβ1-/- humanized mice was further developed, and S aureus infection upregulated the HLA-DP401 expression in thymus of those humanized mice. These findings demonstrate the potential of those HLA-DPA1/DPB1 transgenic humanized mice for developing animal models of infectious diseases and MHC-associated immunological diseases.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meng‐min Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐wen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Ling‐ling Liu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiu‐hua Peng
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Hua Yang
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐yin Qin
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meixiang Wang
- Department of Scientific ResearchShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaonan Ren
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| |
Collapse
|
9
|
Martínez Bedoya D, Dutoit V, Migliorini D. Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Front Immunol 2021; 12:640082. [PMID: 33746981 PMCID: PMC7966522 DOI: 10.3389/fimmu.2021.640082] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as one of the major breakthroughs in cancer immunotherapy in the last decade. Outstanding results in hematological malignancies and encouraging pre-clinical anti-tumor activity against a wide range of solid tumors have made CAR T cells one of the most promising fields for cancer therapies. CAR T cell therapy is currently being investigated in solid tumors including glioblastoma (GBM), a tumor for which survival has only modestly improved over the past decades. CAR T cells targeting EGFRvIII, Her2, or IL-13Rα2 have been tested in GBM, but the first clinical trials have shown modest results, potentially due to GBM heterogeneity and to the presence of an immunosuppressive microenvironment. Until now, the use of autologous T cells to manufacture CAR products has been the norm, but this approach has several disadvantages regarding production time, cost, manufacturing delay and dependence on functional fitness of patient T cells, often reduced by the disease or previous therapies. Universal “off-the-shelf,” or allogeneic, CAR T cells is an alternative that can potentially overcome these issues, and allow for multiple modifications and CAR combinations to target multiple tumor antigens and avoid tumor escape. Advances in genome editing tools, especially via CRISPR/Cas9, might allow overcoming the two main limitations of allogeneic CAR T cells product, i.e., graft-vs.-host disease and host allorejection. Here, we will discuss how allogeneic CAR T cells could allow for multivalent approaches and alteration of the tumor microenvironment, potentially allowing the development of next generation therapies for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Darel Martínez Bedoya
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
10
|
Mo F, Mamonkin M, Brenner MK, Heslop HE. Taking T-Cell Oncotherapy Off-the-Shelf. Trends Immunol 2021; 42:261-272. [PMID: 33536140 PMCID: PMC7914205 DOI: 10.1016/j.it.2021.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Banked allogeneic or 'off-the-shelf' (OTS) T cells from healthy human donors are being developed to address the limitations of autologous cell therapies. Potential challenges of OTS T cell therapies are associated with their allogeneic origin and the possibility of graft-versus-host disease (GvHD) and host-versus-graft immune reactions. While the risk of GvHD from OTS T cells has been proved to be manageable in clinical studies, approaches to prevent immune rejection of OTS cells are at an earlier stage of development. We provide an overview of strategies to generate OTS cell therapies and mitigate alloreactivity-associated adverse events, with a focus on recent advances for preventing immune rejection.
Collapse
Affiliation(s)
- Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
12
|
Zhang Y, Li P, Fang H, Wang G, Zeng X. Paving the Way Towards Universal Chimeric Antigen Receptor Therapy in Cancer Treatment: Current Landscape and Progress. Front Immunol 2020; 11:604915. [PMID: 33362790 PMCID: PMC7758418 DOI: 10.3389/fimmu.2020.604915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR) therapy has been proved effective in a stream of clinical trials, especially in hematologic malignancies. However, current CAR therapy is highly personalized as cells used are derived from patients themselves, which can be costly, time-consuming, and sometimes fails to achieve optimal therapeutic results due to poor quality/quantity of patient-derived cells. On the contrary, universal CAR therapy, which is based on healthy individuals’ cells, circumvents several limitations of current autologous CAR therapy. To achieve the universality of CAR therapy, the allogeneic cell transplantation related issues, such as graft-versus-host disease (GVHD) and host-versus-graft activities (HVGA), must be addressed. In this review, we focus on current progress regarding GVHD and HVGA in the universal CAR therapy, followed by a universal CAR design that may be applied to allogeneic cells and a summary of key clinical trials in this field. This review may provide valuable insights into the future design of universal CAR products.
Collapse
Affiliation(s)
- Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Dang AT, Strietz J, Zenobi A, Khameneh HJ, Brandl SM, Lozza L, Conradt G, Kaufmann SHE, Reith W, Kwee I, Minguet S, Chelbi ST, Guarda G. NLRC5 promotes transcription of BTN3A1-3 genes and Vγ9Vδ2 T cell-mediated killing. iScience 2020; 24:101900. [PMID: 33364588 PMCID: PMC7753138 DOI: 10.1016/j.isci.2020.101900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
BTN3A molecules—BTN3A1 in particular—emerged as important mediators of Vγ9Vδ2 T cell activation by phosphoantigens. These metabolites can originate from infections, e.g. with Mycobacterium tuberculosis, or by alterations in cellular metabolism. Despite the growing interest in the BTN3A genes and their high expression in immune cells and various cancers, little is known about their transcriptional regulation. Here we show that these genes are induced by NLRC5, a regulator of MHC class I gene transcription, through an atypical regulatory motif found in their promoters. Accordingly, a robust correlation between NLRC5 and BTN3A gene expression was found in healthy, in M. tuberculosis-infected donors' blood cells, and in primary tumors. Moreover, forcing NLRC5 expression promoted Vγ9Vδ2 T-cell-mediated killing of tumor cells in a BTN3A-dependent manner. Altogether, these findings indicate that NLRC5 regulates the expression of BTN3A genes and hence open opportunities to modulate antimicrobial and anticancer immunity. BTN3A promoters contain a unique regulatory motif occupied by overexpressed NLRC5 NLRC5 and BTN3A mRNA levels correlate in healthy and diseased cells NLRC5 overexpression increases susceptibility to Vγ9Vδ2 T-cell-mediated elimination
Collapse
Affiliation(s)
- Anh Thu Dang
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Juliane Strietz
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Alessandro Zenobi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Hanif J Khameneh
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Simon M Brandl
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Gregor Conradt
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sonia T Chelbi
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| |
Collapse
|
14
|
'Off-the-shelf' allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 2020; 19:185-199. [PMID: 31900462 DOI: 10.1038/s41573-019-0051-2] [Citation(s) in RCA: 664] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system. The development of next-generation allogeneic CAR T cells to address these issues is an active area of research. In this Review, we analyse the different sources of T cells for optimal allogeneic CAR-T cell therapy and describe the different technological approaches, mainly based on gene editing, to produce allogeneic CAR T cells with limited potential for graft-versus-host disease. These improved allogeneic CAR-T cell products will pave the way for further breakthroughs in the treatment of cancer.
Collapse
|
15
|
Singh B, Fakiola M, Sudarshan M, Oommen J, Singh SS, Sundar S, Blackwell JM. HLA-DR Class II expression on myeloid and lymphoid cells in relation to HLA-DRB1 as a genetic risk factor for visceral leishmaniasis. Immunology 2019; 156:174-186. [PMID: 30403401 PMCID: PMC6328996 DOI: 10.1111/imm.13018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/27/2022] Open
Abstract
Genetic variation at HLA-DRB1 is a risk factor for visceral leishmaniasis (VL) caused by Leishmania donovani. The single nucleotide polymorphism rs9271252 upstream of the DRB1 gene provides a perfect tag for protective versus risk HLA-DRB1 four-digit alleles. In addition to the traditional role of the membrane-distal region of HLA class II molecules in antigen presentation and CD4 T-cell activation, the membrane-proximal region mediates 'non-traditional' multi-functional activation, differentiation, or death signals, including in DR-expressing T cells. To understand how HLA-DR contributes to disease pathogenesis, we examined expression at the protein level in circulating myeloid (CD14+ , CD16+ ) and lymphoid (CD4+ , CD8+ , CD19+ ) cells of VL patients (pre- and post-treatment) compared with endemic healthy controls (EHC). Although DR expression is reduced in circulating myeloid cells in active disease relative to EHC and post-treatment groups, expression is enhanced on CD4+ DR+ and CD8+ DR+ T cells consistent with T-cell activation. Cells of all myeloid and lymphoid populations from active cases were refractory to stimulation of DR expression with interferon-γ (IFN-γ). In contrast, all populations except CD19+ B cells from healthy blood bank controls showed enhanced DR expression following IFN-γ stimulation. The rs9271252 genotype did not impact significantly on IFN-γ-activated DR expression in myeloid, B or CD8+ T cells, but CD4+ T cells from healthy individuals homozygous for the risk allele were particularly refractory to activated DR expression. Further analysis of DR expression on subsets of CD4+ T cells regulating VL disease could uncover additional ways in which pleiotropy at HLA DRB1 contributes to disease pathogenesis.
Collapse
Affiliation(s)
- Bhawana Singh
- Department of MedicineInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUPIndia
| | - Michaela Fakiola
- Department of PathologyThe University of CambridgeCambridgeUK
- Present address:
INGM‐National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Medhavi Sudarshan
- Department of MedicineInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUPIndia
| | - Joyce Oommen
- Telethon Kids InstituteThe University of Western AustraliaWest PerthWAAustralia
| | - Siddharth Sankar Singh
- Department of MedicineInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUPIndia
| | - Shyam Sundar
- Department of MedicineInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUPIndia
| | - Jenefer M. Blackwell
- Department of PathologyThe University of CambridgeCambridgeUK
- Telethon Kids InstituteThe University of Western AustraliaWest PerthWAAustralia
| |
Collapse
|
16
|
Jongsma MLM, Guarda G, Spaapen RM. The regulatory network behind MHC class I expression. Mol Immunol 2017; 113:16-21. [PMID: 29224918 DOI: 10.1016/j.molimm.2017.12.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
The MHC class I pathway, presenting endogenously derived peptides to T lymphocytes, is hijacked in many pathological conditions. This affects MHC class I levels and peptide presentation at the cell surface leading to immune escape of cancer cells or microbes. It is therefore important to identify the molecular mechanisms behind MHC class I expression, processing and antigen presentation. The identification of NLRC5 as regulator of MHC class I transcription was a huge step forward in understanding the transcriptional mechanism involved. Nevertheless, many questions concerning MHC class I transcription are yet unsolved. Here we illuminate current knowledge on MHC class I and NLRC5 transcription, we highlight some remaining questions and discuss the use of quickly developing high-content screening tools to reveal unknowns in MHC class I transcription in the near future.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Cicchini L, Blumhagen RZ, Westrich JA, Myers ME, Warren CJ, Siska C, Raben D, Kechris KJ, Pyeon D. High-Risk Human Papillomavirus E7 Alters Host DNA Methylome and Represses HLA-E Expression in Human Keratinocytes. Sci Rep 2017; 7:3633. [PMID: 28623356 PMCID: PMC5473897 DOI: 10.1038/s41598-017-03295-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus (HPV) infection distinctly alters methylation patterns in HPV-associated cancer. We have recently reported that HPV E7-dependent promoter hypermethylation leads to downregulation of the chemokine CXCL14 and suppression of antitumor immune responses. To investigate the extent of gene expression dysregulated by HPV E7-induced DNA methylation, we analyzed parallel global gene expression and DNA methylation using normal immortalized keratinocyte lines, NIKS, NIKS-16, NIKS-18, and NIKS-16∆E7. We show that expression of the MHC class I genes is downregulated in HPV-positive keratinocytes in an E7-dependent manner. Methylome analysis revealed hypermethylation at a distal CpG island (CGI) near the HLA-E gene in NIKS-16 cells compared to either NIKS cells or NIKS-16∆E7 cells, which lack E7 expression. The HLA-E CGI functions as an active promoter element which is dramatically repressed by DNA methylation. HLA-E protein expression on cell surface is downregulated by high-risk HPV16 and HPV18 E7 expression, but not by low-risk HPV6 and HPV11 E7 expression. Conversely, demethylation at the HLA-E CGI restores HLA-E protein expression in HPV-positive keratinocytes. Because HLA-E plays an important role in antiviral immunity by regulating natural killer and CD8+ T cells, epigenetic downregulation of HLA-E by high-risk HPV E7 may contribute to virus-induced immune evasion during HPV persistence.
Collapse
Affiliation(s)
- Louis Cicchini
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rachel Z Blumhagen
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mallory E Myers
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cody J Warren
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Charlotte Siska
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - David Raben
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
18
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
19
|
Suzuki K, Luo Y. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:71-111. [PMID: 28057216 DOI: 10.1016/bs.apcsb.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4+ T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression.
Collapse
Affiliation(s)
- K Suzuki
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan.
| | - Y Luo
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan
| |
Collapse
|
20
|
Raj P, Rai E, Song R, Khan S, Wakeland BE, Viswanathan K, Arana C, Liang C, Zhang B, Dozmorov I, Carr-Johnson F, Mitrovic M, Wiley GB, Kelly JA, Lauwerys BR, Olsen NJ, Cotsapas C, Garcia CK, Wise CA, Harley JB, Nath SK, James JA, Jacob CO, Tsao BP, Pasare C, Karp DR, Li QZ, Gaffney PM, Wakeland EK. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 2016; 5:e12089. [PMID: 26880555 PMCID: PMC4811771 DOI: 10.7554/elife.12089] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/13/2016] [Indexed: 12/15/2022] Open
Abstract
Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.
Collapse
Affiliation(s)
- Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ekta Rai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ran Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shaheen Khan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Benjamin E Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kasthuribai Viswanathan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carlos Arana
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chaoying Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ferdicia Carr-Johnson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mitja Mitrovic
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Graham B Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Bernard R Lauwerys
- Pole de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Nancy J Olsen
- Division of Rheumatology, Department of Medicine, Penn State Medical School, Hershey, United States
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Christine K Garcia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carol A Wise
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, United States
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - John B Harley
- Cincinnati VA Medical Center, Cincinnati, United States
- Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Swapan K Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Betty P Tsao
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - David R Karp
- Rheumatic Diseases Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Quan Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
21
|
Wong D, Lee W, Humburg P, Makino S, Lau E, Naranbhai V, Fairfax BP, Chan K, Plant K, Knight JC. Genomic mapping of the MHC transactivator CIITA using an integrated ChIP-seq and genetical genomics approach. Genome Biol 2015; 15:494. [PMID: 25366989 PMCID: PMC4243378 DOI: 10.1186/s13059-014-0494-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 12/30/2022] Open
Abstract
Background The master transactivator CIITA is essential to the regulation of Major Histocompatibility Complex (MHC) class II genes and an effective immune response. CIITA is known to modulate a small number of non-MHC genes involved in antigen presentation such as CD74 and B2M but its broader genome-wide function and relationship with underlying genetic diversity has not been resolved. Results We report the first genome-wide ChIP-seq map for CIITA and complement this by mapping inter-individual variation in CIITA expression as a quantitative trait. We analyse CIITA recruitment for pathophysiologically relevant primary human B cells and monocytes, resting and treated with interferon-gamma, in the context of the epigenomic regulatory landscape and DNA-binding proteins associated with the CIITA enhanceosome including RFX, CREB1/ATF1 and NFY. We confirm recruitment to proximal promoter sequences in MHC class II genes and more distally involving the canonical CIITA enhanceosome. Overall, we map 843 CIITA binding intervals involving 442 genes and find 95% of intervals are located outside the MHC and 60% not associated with RFX5 binding. Binding intervals are enriched for genes involved in immune function and infectious disease with novel loci including major histone gene clusters. We resolve differentially expressed genes associated in trans with a CIITA intronic sequence variant, integrate with CIITA recruitment and show how this is mediated by allele-specific recruitment of NF-kB. Conclusions Our results indicate a broader role for CIITA beyond the MHC involving immune-related genes. We provide new insights into allele-specific regulation of CIITA informative for understanding gene function and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0494-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Wong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt, Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Scharer CD, Choi NM, Barwick BG, Majumder P, Lohsen S, Boss JM. Genome-wide CIITA-binding profile identifies sequence preferences that dictate function versus recruitment. Nucleic Acids Res 2015; 43:3128-42. [PMID: 25753668 PMCID: PMC4381081 DOI: 10.1093/nar/gkv182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
The class II transactivator (CIITA) is essential for the expression of major histocompatibility complex class II (MHC-II) genes; however, the role of CIITA in gene regulation outside of MHC-II biology is not fully understood. To comprehensively map CIITA-bound loci, ChIP-seq was performed in the human B lymphoblastoma cell line Raji. CIITA bound 480 sites, and was significantly enriched at active promoters and enhancers. The complexity of CIITA transcriptional regulation of target genes was analyzed using a combination of CIITA-null cells, including a novel cell line created using CRISPR/Cas9 tools. MHC-II genes and a few novel genes were regulated by CIITA; however, most other genes demonstrated either diminished or no changes in the absence of CIITA. Nearly all CIITA-bound sites were within regions containing accessible chromatin, and CIITA's presence at these sites was associated with increased histone H3K27 acetylation, suggesting that CIITA's role at these non-regulated loci may be to poise the region for subsequent regulation. Computational genome-wide modeling of the CIITA bound XY box motifs provided constraints for sequences associated with CIITA-mediated gene regulation versus binding. These data therefore define the CIITA regulome in B cells and establish sequence specificities that predict activity for an essential regulator of the adaptive immune response.
Collapse
Affiliation(s)
| | - Nancy M Choi
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Parimal Majumder
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Sarah Lohsen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module. PLoS Genet 2015; 11:e1005088. [PMID: 25811463 PMCID: PMC4374748 DOI: 10.1371/journal.pgen.1005088] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.
Collapse
|
24
|
Sillé FCM, Conde L, Zhang J, Akers NK, Sanchez S, Maltbaek J, Riby JE, Smith MT, Skibola CF. Follicular lymphoma-protective HLA class II variants correlate with increased HLA-DQB1 protein expression. Genes Immun 2013; 15:133-6. [PMID: 24304973 DOI: 10.1038/gene.2013.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 11/09/2022]
Abstract
Multiple follicular lymphoma (FL) susceptibility single-nucleotide polymorphisms in the human leukocyte antigen (HLA) class I and II regions have been identified, including rs6457327, rs3117222, rs2647012, rs10484561, rs9268853 and rs2621416. Here we validated previous expression quantitative trait loci results with real-time reverse transcription quantitative PCR and investigated protein expression in B-lymphoblastoid cell lines and primary dendritic cells using flow cytometry, cell-based enzyme-linked immunosorbent assay and western blotting. We confirmed that FL-protective rs2647012-linked variants, in high linkage disequilibrium with the extended haplotype DRB1*15:01-DQA1*01:02-DQB1*06:02, correlate with increased HLA-DQB1 expression. This association remained significant at the protein level and was reproducible across different cell types. We also found that differences in HLA-DQB1 expression were not related to changes in activation markers or class II, major histocompatibility complex, transactivator expression, suggesting the role of an alternative regulatory mechanism. However, functional analysis using RegulomeDB did not reveal any relevant regulatory candidates. Future studies should focus on the clinical relevance of increased HLA-DQB1 protein expression facilitating tumor cell removal through increased immune surveillance.
Collapse
Affiliation(s)
- F C M Sillé
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - L Conde
- Department of Epidemiology, Comprehensive Cancer Center, University of Alabama, Birmingham, AL, USA
| | - J Zhang
- Department of Epidemiology, Comprehensive Cancer Center, University of Alabama, Birmingham, AL, USA
| | - N K Akers
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - S Sanchez
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - J Maltbaek
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - J E Riby
- Department of Epidemiology, Comprehensive Cancer Center, University of Alabama, Birmingham, AL, USA
| | - M T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - C F Skibola
- Department of Epidemiology, Comprehensive Cancer Center, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
25
|
Short AD, Boag A, Catchpole B, Kennedy LJ, Massey J, Rothwell S, Husebye E, Ollier B. A candidate gene analysis of canine hypoadrenocorticism in 3 dog breeds. J Hered 2013; 104:807-20. [PMID: 23997205 DOI: 10.1093/jhered/est051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Canine hypoadrenocorticism is believed to be an immune-related condition. It is rare in the overall dog population but shows a breed-related predisposition with Standard poodles and Portuguese water dogs having a greater prevalence of the condition. It shares many similarities with human primary adrenal insufficiency and is believed to be a naturally occurring, spontaneous model for the human condition. Short haplotype blocks and low levels of linkage disequilibrium in the human genome mean that the identification of genetic contributors to the condition requires large sample numbers. Pedigree dogs have high linkage disequilibrium and long haplotypes within a breed, increasing the potential of identifying novel genes that contribute to canine genetic disease. We investigated 222 SNPs from 42 genes that have been associated or may be implicated in human Addison's disease. We conducted case-control analyses in 3 pedigree dog breeds (Labrador retriever: affected n = 30, unaffected = 76; Cocker Spaniel: affected n = 19, unaffected = 53; Springer spaniel: affected n = 26, unaffected = 46) and identified 8 associated alleles in genes COL4A4, OSBPL9, CTLA4, PTPN22, and STXBP5 in 3 pedigree breeds. Association with immune response genes PTPN22 and CTLA4 in certain breeds suggests an underlying immunopathogenesis of the disease. These results suggest that canine hypoadrenocorticism could be a useful model for studying comparative genetics relevant to human Addison's disease.
Collapse
Affiliation(s)
- Andrea D Short
- the Centre for Integrated Genomic Medical Research, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Monaco E, Bionaz M, Rodriguez-Zas S, Hurley WL, Wheeler MB. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One 2012; 7:e32481. [PMID: 22412878 PMCID: PMC3296722 DOI: 10.1371/journal.pone.0032481] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/30/2012] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow mesenchymal stem cells (BMSC) are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC). The abundance and ease of harvest make the adipose-derived stem cells (ASC) an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition, functional analysis data might indicate differences in therapeutic application.
Collapse
Affiliation(s)
- Elisa Monaco
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Massimo Bionaz
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra Rodriguez-Zas
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Walter L. Hurley
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew B. Wheeler
- Laboratory of Stem Cell Biology and Engineering, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Landsverk OJB, Ottesen AH, Berg-Larsen A, Appel S, Bakke O. Differential regulation of MHC II and invariant chain expression during maturation of monocyte-derived dendritic cells. J Leukoc Biol 2012; 91:729-37. [PMID: 22371435 DOI: 10.1189/jlb.0311150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
DCs are potent initiators of adaptive immune responses toward invading pathogens. Upon reception of pathogenic stimuli, DCs initiate a complex differentiation program, culminating in mature DCs with an extreme capacity to activate naïve T cells. During this maturation, DCs reduce the synthesis and turnover of MHC II molecules. This allows for a stable population of MHC II, presenting peptides captured at the time and place of activation, thus provoking specific immune responses toward the activating pathogen. The efficient loading of antigenic peptides onto MHC II is vitally dependent on the accessory molecule Ii, which aids in the assembly of the MHC II α- and β-chains in the ER and directs their trafficking to the endocytic compartments, where they encounter endocytosed antigen. However, Ii plays additional roles in DC function by influencing migration, antigen uptake, and processing. To examine the biosynthetic background for diverse Ii functions in DCs, we investigated mRNA and protein levels of Ii compared with MHC II in human moDCs during maturation using various stimuli. We find that the production of Ii did not correlate with that of MHC II and that mature DCs maintain abundant levels of Ii despite a reduced production of new MHC II.
Collapse
|
28
|
van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2011; 2:48. [PMID: 22566838 PMCID: PMC3342053 DOI: 10.3389/fimmu.2011.00048] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022] Open
Abstract
Major histocompatibility complex (MHC)-I and MHC-II molecules play an essential role in the immune response to pathogens by virtue of their ability to present peptides to CD8+ and CD4+ T cells, respectively. Given this critical role, MHC-I and MHC-II genes are regulated in a tight fashion at the transcriptional level by a variety of transcription factors that interact with conserved cis-acting regulatory promoter elements. In addition to the activities of these regulatory factors, modification of chromatin also plays an essential role in the efficient transcription of these genes to meet with local requirement for an effective immune response. The focus of this review is on the transcription factors that interact with conserved cis-acting promoter elements and the epigenetic mechanisms that modulate induced and constitutive expression of these MHC genes.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center Leiden, Netherlands.
| |
Collapse
|
29
|
Epigenetic Control in Immune Function. EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:36-49. [DOI: 10.1007/978-1-4419-8216-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Abstract
Transcriptional regulation of gene expression plays a significant role in establishing the diversity of human cell types and biological functions from a common set of genes. The components of regulatory control in the human genome include cis-acting elements that act across immense genomic distances to influence the spatial and temporal distribution of gene expression. Here we review the established categories of distant-acting regulatory elements, discussing the classical and contemporary evidence of their regulatory potential and clinical importance. Current efforts to identify regulatory sequences throughout the genome and elucidate their biological significance depend heavily on advances in sequence conservation-based analyses and on increasingly large-scale efforts applying transgenic technologies in model organisms. We discuss the advantages and limitations of sequence conservation as a predictor of regulatory function and present complementary emerging technologies now being applied to annotate regulatory elements in vertebrate genomes.
Collapse
Affiliation(s)
- James P Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
31
|
Pyrz M, Wang B, Wabl M, Pedersen FS. A retroviral mutagenesis screen identifies Cd74 as a common insertion site in murine B-lymphomas and reveals the existence of a novel IFNgamma-inducible Cd74 isoform. Mol Cancer 2010; 9:86. [PMID: 20416035 PMCID: PMC2883540 DOI: 10.1186/1476-4598-9-86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/23/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Insertional mutagenesis screens in the mouse are an acknowledged approach to identify genes involved in the pathogenesis of cancer. The potential of these screens to identify genes causally involved in tumorigenesis is not only limited to the murine host, but many of these genes have also been proven to be involved in the oncogenic process in man. RESULTS Through an insertional mutagenesis screen applying murine leukemia viruses in mouse, we found that Cd74 was targeted by proviral insertion in tumors of B-cell origin. This locus encodes a protein playing crucial roles in antigen presentation and B-cell homeostasis, and its deregulation is often associated with cancer in man. The distribution of insertions within the Cd74 locus prompted the identification of an alternative transcript initiated in intron 1 of Cd74 encoding an N-terminally truncated Cd74 isoform in tissues from un-infected mice, and transcriptional activation assays revealed a positive effect on the novel intronic promoter by a formerly described intronic enhancer in the Cd74 locus. Furthermore, we show that the new Cd74 isoform is IFNgamma inducible and that its expression is differentially regulated from the canonical Cd74 isoform at the transcriptional level. CONCLUSIONS We here identify Cd74 as a common insertion site in murine B-lymphomas and describe a novel IFNgamma-inducible murine Cd74 isoform differentially regulated from the canonical isoform and expressed under the control of an intronic promoter. The distribution and orientation of proviral insertion sites within the Cd74 locus underscores the causal involvement of the isoforms in the murine B-lymphomagenic process.
Collapse
Affiliation(s)
- Magdalena Pyrz
- Department of Molecular Biology, Aarhus University, Aarhus, DK-8000, Denmark
| | | | | | | |
Collapse
|
32
|
Handunnetthi L, Ramagopalan SV, Ebers GC, Knight JC. Regulation of major histocompatibility complex class II gene expression, genetic variation and disease. Genes Immun 2010; 11:99-112. [PMID: 19890353 PMCID: PMC2987717 DOI: 10.1038/gene.2009.83] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/15/2009] [Indexed: 12/29/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are central to adaptive immune responses and maintenance of self-tolerance. Since the early 1970s, the MHC class II region at chromosome 6p21 has been shown to be associated with a remarkable number of autoimmune, inflammatory and infectious diseases. Given that a full explanation for most MHC class II disease associations has not been reached through analysis of structural variation alone, in this review we examine the role of genetic variation in modulating gene expression. We describe the intricate architecture of the MHC class II regulatory system, indicating how its unique characteristics may relate to observed associations with disease. There is evidence that haplotype-specific variation involving proximal promoter sequences can alter the level of gene expression, potentially modifying the emergence and expression of key phenotypic traits. Although much emphasis has been placed on cis-regulatory elements, we also examine the role of more distant enhancer elements together with the evidence of dynamic inter- and intra-chromosomal interactions and epigenetic processes. The role of genetic variation in such mechanisms may hold profound implications for susceptibility to common disease.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Sreeram V. Ramagopalan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - George C. Ebers
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
33
|
Gautier M, Flori L, Riebler A, Jaffrézic F, Laloé D, Gut I, Moazami-Goudarzi K, Foulley JL. A whole genome Bayesian scan for adaptive genetic divergence in West African cattle. BMC Genomics 2009; 10:550. [PMID: 19930592 PMCID: PMC2784811 DOI: 10.1186/1471-2164-10-550] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 11/21/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The recent settlement of cattle in West Africa after several waves of migration from remote centres of domestication has imposed dramatic changes in their environmental conditions, in particular through exposure to new pathogens. West African cattle populations thus represent an appealing model to unravel the genome response to adaptation to tropical conditions. The purpose of this study was to identify footprints of adaptive selection at the whole genome level in a newly collected data set comprising 36,320 SNPs genotyped in 9 West African cattle populations. RESULTS After a detailed analysis of population structure, we performed a scan for SNP differentiation via a previously proposed Bayesian procedure including extensions to improve the detection of loci under selection. Based on these results we identified 53 genomic regions and 42 strong candidate genes. Their physiological functions were mainly related to immune response (MHC region which was found under strong balancing selection, CD79A, CXCR4, DLK1, RFX3, SEMA4A, TICAM1 and TRIM21), nervous system (NEUROD6, OLFM2, MAGI1, SEMA4A and HTR4) and skin and hair properties (EDNRB, TRSP1 and KRTAP8-1). CONCLUSION The main possible underlying selective pressures may be related to climatic conditions but also to the host response to pathogens such as Trypanosoma(sp). Overall, these results might open the way towards the identification of important variants involved in adaptation to tropical conditions and in particular to resistance to tropical infectious diseases.
Collapse
Affiliation(s)
- Mathieu Gautier
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Laurence Flori
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Andrea Riebler
- University of Zurich, Institute of Social and Preventive Medicine, Zurich, Switzerland
| | - Florence Jaffrézic
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Denis Laloé
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Ivo Gut
- CEA, Centre National de Génotypage, 91057 Evry, France
| | | | - Jean-Louis Foulley
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| |
Collapse
|
34
|
The locus control region of the MHC class II promoter acts as a repressor element, the activity of which is inhibited by CIITA. Mol Immunol 2009; 47:825-32. [PMID: 19897249 DOI: 10.1016/j.molimm.2009.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/30/2009] [Indexed: 11/22/2022]
Abstract
The closest region of the promoter of MHC II genes and particularly three conserved boxes (X, Y and S) are fundamental for the transcriptional regulation. A second set of conserved sequences is present approximately 1200-1500 bp upstream in opposite orientation. In transient transfection experiments in IFN-gamma-treated macrophages and in B lymphocytes, we determined the expression of a fragment of 2035 bp of the I-Abeta gene, which contains the upstream boxes. Mutation of the distal boxes increased induction, thereby suggesting a repressive effect on transcription. In vitro, the proximal and distal ends of I-Abeta promoter were ligated in the presence of nuclear extracts from untreated macrophages but not when the extracts were obtained from IFN-gamma-stimulated cells. The mutation of distal or proximal boxes resulted in a decrease in the ligation assay. The addition of recombinant CIITA to untreated nuclear extracts decreased the capacity of the promoter to be ligated. Finally, we observed increased capacity to ligate the promoter in extracts from B cells lacking CIITA, but not from B cells lacking RFXANK. These results allow us to postulate a model where the proteins in the proximal and distal conserved sequences interact. When CIITA is induced, these proteins make an enhanceosome, allowing chromatin to open and initiate transcription.
Collapse
|
35
|
Leimgruber E, Seguín-Estévez Q, Dunand-Sauthier I, Rybtsova N, Schmid CD, Ambrosini G, Bucher P, Reith W. Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site. Nucleic Acids Res 2009; 37:2514-28. [PMID: 19264803 PMCID: PMC2677874 DOI: 10.1093/nar/gkp116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequence.
Collapse
Affiliation(s)
- Elisa Leimgruber
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, CH-1211, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuhki N, Mullikin JC, Beck T, Stephens R, O'Brien SJ. Sequences, annotation and single nucleotide polymorphism of the major histocompatibility complex in the domestic cat. PLoS One 2008; 3:e2674. [PMID: 18629345 PMCID: PMC2453318 DOI: 10.1371/journal.pone.0002674] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 06/12/2008] [Indexed: 11/19/2022] Open
Abstract
Two sequences of major histocompatibility complex (MHC) regions in the domestic cat, 2.976 and 0.362 Mbps, which were separated by an ancient chromosome break (55-80 MYA) and followed by a chromosomal inversion were annotated in detail. Gene annotation of this MHC was completed and identified 183 possible coding regions, 147 human homologues, possible functional genes and 36 pseudo/unidentified genes) by GENSCAN and BLASTN, BLASTP RepeatMasker programs. The first region spans 2.976 Mbp sequence, which encodes six classical class II antigens (three DRA and three DRB antigens) lacking the functional DP, DQ regions, nine antigen processing molecules (DOA/DOB, DMA/DMB, TAPASIN, and LMP2/LMP7,TAP1/TAP2), 52 class III genes, nineteen class I genes/gene fragments (FLAI-A to FLAI-S). Three class I genes (FLAI-H, I-K, I-E) may encode functional classical class I antigens based on deduced amino acid sequence and promoter structure. The second region spans 0.362 Mbp sequence encoding no class I genes and 18 cross-species conserved genes, excluding class I, II and their functionally related/associated genes, namely framework genes, including three olfactory receptor genes. One previously identified feline endogenous retrovirus, a baboon retrovirus derived sequence (ECE1) and two new endogenous retrovirus sequences, similar to brown bat endogenous retrovirus (FERVmlu1, FERVmlu2) were found within a 140 Kbp interval in the middle of class I region. MHC SNPs were examined based on comparisons of this BAC sequence and MHC homozygous 1.9x WGS sequences and found that 11,654 SNPs in 2.84 Mbp (0.00411 SNP per bp), which is 2.4 times higher rate than average heterozygous region in the WGS (0.0017 SNP per bp genome), and slightly higher than the SNP rate observed in human MHC (0.00337 SNP per bp).
Collapse
Affiliation(s)
- Naoya Yuhki
- Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
37
|
Krawczyk M, Seguín-Estévez Q, Leimgruber E, Sperisen P, Schmid C, Bucher P, Reith W. Identification of CIITA regulated genetic module dedicated for antigen presentation. PLoS Genet 2008; 4:e1000058. [PMID: 18437201 PMCID: PMC2278383 DOI: 10.1371/journal.pgen.1000058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 03/21/2008] [Indexed: 11/24/2022] Open
Abstract
The class II trans-activator CIITA is a transcriptional co-activator required for the expression of Major Histocompatibility Complex (MHC) genes. Although the latter function is well established, the global target-gene specificity of CIITA had not been defined. We therefore generated a comprehensive list of its target genes by performing genome-wide scans employing four different approaches designed to identify promoters that are occupied by CIITA in two key antigen presenting cells, B cells and dendritic cells. Surprisingly, in addition to MHC genes, only nine new targets were identified and validated by extensive functional and expression analysis. Seven of these genes are known or likely to function in processes contributing to MHC-mediated antigen presentation. The remaining two are of unknown function. CIITA is thus uniquely dedicated for genes implicated in antigen presentation. The finding that CIITA regulates such a highly focused gene expression module sets it apart from all other transcription factors, for which large-scale binding-site mapping has indicated that they exert pleiotropic functions and regulate large numbers of genes. Most mammalian transcription factors and transcriptional co-activators are believed to regulate the activities of numerous genes fulfilling multiple functions. This pleiotropic role has recently been confirmed directly for several individual factors by large-scale mapping studies aimed at generating comprehensive catalogues of their binding sites in the genome. Until now, all transcription factors, for which such studies have been performed, were found to regulate hundreds or even thousands of genes. We demonstrate, here, that the transcriptional co-activator CIITA (class II transactivator) is an exception to this rule. CIITA is a key regulator of the immune system because it controls the transcription of genes coding for Major Histocompatibility Complex (MHC) class II molecules, which are cell-surface molecules that present peptide antigens to T lymphocytes. To address the possibility that CIITA might exert more widespread functions, we have performed extensive genome-wide searches to establish a comprehensive list of CIITA-regulated genes. Surprisingly, we found that CIITA regulates only a small number of genes, most of which code for proteins implicated directly or indirectly in MHC-mediated antigen presentation. CIITA is thus remarkably dedicated for the regulation of a unique set of functionally related genes constituting a genetic module devoted to a single biological process.
Collapse
Affiliation(s)
- Michal Krawczyk
- University of Geneva Medical School, CMU, Geneva, Switzerland
| | | | | | - Peter Sperisen
- Swiss Institute of Bioinformatics, Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | - Christoph Schmid
- Swiss Institute of Bioinformatics, Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | - Philipp Bucher
- Swiss Institute of Bioinformatics, Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | - Walter Reith
- University of Geneva Medical School, CMU, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Majumder P, Gomez JA, Chadwick BP, Boss JM. The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. ACTA ACUST UNITED AC 2008; 205:785-98. [PMID: 18347100 PMCID: PMC2292219 DOI: 10.1084/jem.20071843] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Knockdown of the insulator factor CCCTC binding factor (CTCF), which binds XL9, an intergenic element located between HLA-DRB1 and HLA-DQA1, was found to diminish expression of these genes. The mechanism involved interactions between CTCF and class II transactivator (CIITA), the master regulator of major histocompatibility complex class II (MHC-II) gene expression, and the formation of long-distance chromatin loops between XL9 and the proximal promoter regions of these MHC-II genes. The interactions were inducible and dependent on the activity of CIITA, regulatory factor X, and CTCF. RNA fluorescence in situ hybridizations show that both genes can be expressed simultaneously from the same chromosome. Collectively, the results suggest a model whereby both HLA-DRB1 and HLA-DQA1 loci can interact simultaneously with XL9, and describe a new regulatory mechanism for these MHC-II genes involving the alteration of the general chromatin conformation of the region and their regulation by CTCF.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
39
|
Christova R, Jones T, Wu PJ, Bolzer A, Costa-Pereira AP, Watling D, Kerr IM, Sheer D. P-STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFNgamma. J Cell Sci 2007; 120:3262-70. [PMID: 17726060 DOI: 10.1242/jcs.012328] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcriptional activation of the major histocompatibility complex (MHC) by IFNgamma is a key step in cell-mediated immunity. At an early stage of IFNgamma induction, chromatin carrying the entire MHC locus loops out from the chromosome 6 territory. We show here that JAK/STAT signalling triggers this higher-order chromatin remodelling and the entire MHC locus becomes decondensed prior to transcriptional activation of the classical HLA class II genes. A single point mutation of STAT1 that prevents phosphorylation is sufficient to abolish chromatin remodelling, thus establishing a direct link between the JAK/STAT signalling pathway and human chromatin architecture. The onset of chromatin remodelling corresponds with the binding of activated STAT1 and the chromatin remodelling enzyme BRG1 at specific sites within the MHC, and is followed by RNA-polymerase recruitment and histone hyperacetylation. We propose that the higher-order chromatin remodelling of the MHC locus is an essential step to generate a transcriptionally permissive chromatin environment for subsequent activation of classical HLA genes.
Collapse
Affiliation(s)
- Rossitza Christova
- Human Cytogenetics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bewry NN, Bolick SCE, Wright KL, Harton JA. GTP-dependent recruitment of CIITA to the class II major histocompatibility complex promoter. J Biol Chem 2007; 282:26178-84. [PMID: 17623662 DOI: 10.1074/jbc.m611747200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously established that the class II transactivator CIITA binds GTP and disruption of the GTP binding ability of CIITA results in increased cytoplasmic CIITA, loss of nuclear CIITA, and thus diminished class II major histocompatibility complex transcription. Because of its role in facilitating nuclear localization, whether GTP binding is also required for CIITA-mediated transactivation of major histocompatibility class II genes remains unclear. We now show that recruitment of CIITA to the human leukocyte antigen (HLA)-DR promoter and activation of HLA-DR transcription is also GTP-dependent. After restoration of nuclear expression, CIITA mutants defective in GTP binding lack full transcriptional activation capacity. Although the availability of the activation domain of CIITA is unaltered, GTP mutants no longer cooperate with CREB-binding protein, p300, and pCAF and are defective in recruitment to the HLA-DR promoter.
Collapse
Affiliation(s)
- Nadine N Bewry
- Department of Molecular Medicine, H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
41
|
Herrmann TL, Agrawal RS, Connolly SF, McCaffrey RL, Schlomann J, Kusner DJ. MHC Class II levels and intracellular localization in human dendritic cells are regulated by calmodulin kinase II. J Leukoc Biol 2007; 82:686-99. [PMID: 17586661 DOI: 10.1189/jlb.0107045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dendritic cells (DC) are professional APC, which activate the adaptive immune response. A Ca2+-calmodulin (CaM)-CaM kinase II (CaMKII) pathway regulates maturation and MHC Class II antigen presentation in human DC. The objective of this study was to characterize the mechanisms by which CaMKII modulates the levels and subcellular distribution of MHC Class II molecules. Inhibition of CaMKII via the highly specific, autoinhibitory peptide derived from the enzyme's regulatory domain resulted in rapid (60 min) and sustained (24 h) reduction of MHC Class II levels in antigen-stimulated, primary, human DC. The initial depletion of intracellular and cell surface MHC Class II was associated with its enhanced lysosomal trafficking and increased activity of specific proteases in the absence of effects on other transmembrane proteins (CD1b and CD34) or a detectable change in lysosomal degradation of exogenous protein. Inhibition of CaMKII also resulted in significant reductions in the level and stability of MHC Class II mRNA and the levels and nucleocytosolic localization of its major transcriptional regulator CIITA. These data support a model in which CaMKII regulates the levels and localization of MHC Class II protein in human DC via transcriptional, post-transcriptional, and post-translational mechanisms. These pathways are likely important to the physiologic regulation of MHC Class II as well as to its dysregulation in disease states associated with altered CaMKII function.
Collapse
Affiliation(s)
- Tara L Herrmann
- The Inflammation Program, Division of Infectious Diseases, University of Iowa Carver College of Medicine, 200 Hawkins Dr., SW 54-8, GH, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rybtsova N, Leimgruber E, Seguin-Estévez Q, Dunand-Sauthier I, Krawczyk M, Reith W. Transcription-coupled deposition of histone modifications during MHC class II gene activation. Nucleic Acids Res 2007; 35:3431-41. [PMID: 17478518 PMCID: PMC1904273 DOI: 10.1093/nar/gkm214] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5' end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Walter Reith
- *To whom correspondence should be addressed. Tel: +41 22 379 56 66; Fax: +41 22 379 57 46;
| |
Collapse
|
43
|
Garvie CW, Stagno JR, Reid S, Singh A, Harrington E, Boss JM. Characterization of the RFX Complex and the RFX5(L66A) Mutant: Implications for the Regulation of MHC Class II Gene Expression. Biochemistry 2007; 46:1597-611. [PMID: 17279624 DOI: 10.1021/bi6023868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatability complex class II (MHCII) molecules are an essential component of the mammalian adaptive immune response. The expression of MHCII genes is regulated by a cell-specific multiprotein complex, termed the MHCII enhanceosome. The heterotrimeric RFX complex is the key DNA-binding component of the MHCII enhanceosome. The RFX complex is comprised of three proteins, RFXB, RFXAP, and RFX5, all of which are required for DNA binding and activation of MHCII gene expression. Static light scattering and chemical cross-linking of the three RFX proteins show that RFXB and RFXAP are monomers and that RFX5 dimerizes through two separate domains. One of these domains, the oligomerization domain, promotes formation of a dimer of dimers of RFX5. In addition, we show that the RFX complex forms a 2:1:1 complex of RFX5.RFXAP.RFXB, which can associate with a further dimer of RFX5 to form a 4:1:1 complex through the oligomerization domain of RFX5. On the basis of these studies, we propose DNA-binding models for the interaction between the RFX complex and the MHCII promoter including a DNA looping model. We also provide direct evidence that the RFX5(L66A) point mutation prevents dimerization of the RFX complexes and propose a model for how this results in a loss of MHCII gene expression.
Collapse
Affiliation(s)
- Colin W Garvie
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Krawczyk M, Leimgruber E, Seguín-Estévez Q, Dunand-Sauthier I, Barras E, Reith W. Expression of RAB4B, a protein governing endocytic recycling, is co-regulated with MHC class II genes. Nucleic Acids Res 2006; 35:595-605. [PMID: 17175541 PMCID: PMC1802633 DOI: 10.1093/nar/gkl980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The small GTPase RAB4 regulates endocytic recycling, a process that contributes to Major Histocompatibility Complex (MHC)-mediated antigen presentation by specialized antigen presenting cells (APC) of the immune system. The gene encoding the RAB4B isoform of RAB4 was singled out by two complementary genome-wide screens. One of these consisted of a computer scan to identify genes containing characteristic MHC class II-related regulatory sequences. The second was the use of chromatin immunoprecipitation coupled to microarrays (ChIP-on-chip) to identify novel targets of a transcriptional co-activator called the MHC class II transactivator (CIITA). We show that the RAB4B gene is regulated by a typical MHC class II-like enhancer that is controlled directly by both CIITA and the multiprotein transcription factor complex known as the MHC class II enhanceosome. RAB4B expression is thus activated by the same regulatory machinery that is known to be essential for the expression of MHC class II genes. This molecular link between the transcriptional activation of RAB4B and MHC class II genes implies that APC boost their antigen presentation capacity by increasing RAB4-mediated endocytic recycling.
Collapse
Affiliation(s)
| | | | | | | | | | - Walter Reith
- To whom correspondence should be addressed. Tel: +41 22 379 56 66; Fax: +41 22 379 57 46;
| |
Collapse
|
45
|
Wright KL, Ting JPY. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 2006; 27:405-12. [PMID: 16870508 DOI: 10.1016/j.it.2006.07.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/23/2006] [Accepted: 07/12/2006] [Indexed: 02/02/2023]
Abstract
This review describes recent advances in understanding how epigenetic events control MHC-class-II-family (MHC-II) gene expression. To address this issue, two phases of gene transcription have to be considered. First, the control of MHC-II by chromatin-modifying events such as histone acetylation, methylation, deacetylation, ubiquitination and the interplay between these different epigenetic events will be examined. The interactions of chromatin-modifying enzymes with class II transactivator (CIITA) and relevant DNA-binding proteins for activating and silencing MHC-II gene transcription will be reviewed. Second, the transcriptional control of the promoter of CIITA, the master regulator of MHC-II, by DNA methylation and chromatin modification will be discussed, and the novel role of noncoding RNA will be explored. Finally, the relevance of these findings to infection, transplantation and cancer will be reviewed.
Collapse
Affiliation(s)
- Kenneth L Wright
- H. Lee Moffitt Cancer Center and Research Institute, and the Department of Interdisciplinary Oncology, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
46
|
Zhao H, Kim A, Song SH, Dean A. Enhancer blocking by chicken beta-globin 5'-HS4: role of enhancer strength and insulator nucleosome depletion. J Biol Chem 2006; 281:30573-80. [PMID: 16877759 DOI: 10.1074/jbc.m606803200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-HS4 chicken beta-globin insulator functions as a positional enhancer blocker on chromatinized episomes in human cells, blocking the HS2 enhancer of the human beta-globin locus control region from activating a downstream epsilon-globin gene. 5'-HS4 interrupted formation of a domain of histone H3 and H4 acetylation encompassing the 6-kb minilocus and inhibited transfer of RNA polymerase from the enhancer to the gene promoter. We found that the enhancer blocking phenotype was amplified when the insulated locus contained a weakened HS2 enhancer in which clustered point mutations eliminated interaction of the transcription factor GATA-1. The GATA-1 mutation compromised recruitment of histone acetyltransferases and RNA polymerase II to HS2. Enhancer blocking correlated with a significant depletion of nucleosomes in the core region of the insulator as revealed by micrococcal nuclease and DNase I digestion studies. Nucleosome depletion at 5'-HS4 was dependent on interaction of the insulator protein CCCTC-binding factor (CTCF) and was required for enhancer blocking. These findings provide evidence that a domain of active chromatin is formed by spreading from an enhancer to a target gene and can be blocked by a nucleosome-free gap in an insulator.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
47
|
Majumder P, Gomez JA, Boss JM. The human major histocompatibility complex class II HLA-DRB1 and HLA-DQA1 genes are separated by a CTCF-binding enhancer-blocking element. J Biol Chem 2006; 281:18435-43. [PMID: 16675454 DOI: 10.1074/jbc.m601298200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human major histocompatibility complex class II (MHC-II) region encodes a cluster of polymorphic heterodimeric glycoproteins HLA-DR, -DQ, and -DP that functions in antigen presentation. Separated by approximately 44 kb of DNA, the HLA-DRB1 and HLA-DQA1 encode MHC-II proteins that function in separate MHC-II heterodimers and are diametrically transcribed. A region of high acetylation located in the intergenic sequences between HLA-DRB1 and HLA-DQA1 was discovered and termed XL9. The peak of acetylation coincided with sequences that bound the insulator protein CCCTC-binding factor as determined by chromatin immunoprecipitations and in vitro DNA binding studies. XL9 was also found to be associated with the nuclear matrix. The activity of the XL9 region was examined and found to be a potent enhancer-blocking element. These results suggest that the XL9 region may have evolved to separate the transcriptional units of the HLA-DR and HLA-DQ genes.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
48
|
Krawczyk M, Reith W. Regulation of MHC class II expression, a unique regulatory system identified by the study of a primary immunodeficiency disease. ACTA ACUST UNITED AC 2006; 67:183-97. [PMID: 16573555 DOI: 10.1111/j.1399-0039.2006.00557.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex class II (MHC-II) molecules are of central importance for adaptive immunity. Defective MHC-II expression causes a severe immunodeficiency disease called bare lymphocyte syndrome (BLS). Studies of the molecular defects underlying BLS have been pivotal for characterization of the regulatory system controlling the transcription of MHC-II genes. The precisely controlled pattern of MHC-II gene expression is achieved by a very peculiar and highly specialized molecular machinery that involves the interplay between ubiquitous DNA-binding transcription factors and a highly unusual, tightly regulated, non-DNA-binding coactivator called the MHC class II transactivator (CIITA). CIITA single handedly coordinates practically all aspects of MHC-II gene regulation and has therefore been dubbed the master controller of MHC-II expression. Several of the unusual features of the MHC-II regulatory system may be a consequence of the fact that CIITA originated from an ancient family of cytoplasmic proteins involved in inflammation and innate immunity. The function of CIITA in transcriptional regulation of MHC-II genes could thus be a recent acquisition by an ancestral protein having a role in an unrelated system.
Collapse
Affiliation(s)
- M Krawczyk
- University of Geneva Medical School, CMU, Switzerland
| | | |
Collapse
|
49
|
Dean A. On a chromosome far, far away: LCRs and gene expression. Trends Genet 2005; 22:38-45. [PMID: 16309780 DOI: 10.1016/j.tig.2005.11.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/29/2005] [Accepted: 11/09/2005] [Indexed: 11/20/2022]
Abstract
Transcription activation of a gene involves the ordered recruitment of components of the basal transcription machinery in concert with alterations in chromatin structure, including nucleosome remodeling and post-translational modification of histones. Enhancers and locus control regions (LCRs) that are remote from the genes they activate, recruit the complexes that carry out these alterations and, sometimes, recruit RNA polymerase II. The question of how these distant activators interact with their target genes has been of long-standing interest. Recent data indicate that LCRs mediate contact with their coordinate genes through the formation of domains of histone modification and of intra- and inter-chromosomal loops and that they might localize genes within nuclear regions that favor transcription.
Collapse
Affiliation(s)
- Ann Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 2005; 5:793-806. [PMID: 16200082 DOI: 10.1038/nri1708] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MHC class II molecules are pivotal for the adaptive immune system, because they guide the development and activation of CD4+ T helper cells. Fulfilling these functions requires that the genes encoding MHC class II molecules are transcribed according to a strict cell-type-specific and quantitatively modulated pattern. This complex gene-expression profile is controlled almost exclusively by a single master regulatory factor, which is known as the class II transactivator. As we discuss here, differential activation of the three independent promoters that drive expression of the gene encoding the class II transactivator ultimately determines the exquisitely regulated pattern of MHC class II gene expression.
Collapse
Affiliation(s)
- Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211, Geneva, Switzerland.
| | | | | |
Collapse
|