1
|
Lee C, Imran I, Thomas S, Nouri-Shirazi M. A comprehensive method for the phenotypical and functional characterization of recalled human memory B and T cells specific to vaccine antigens. J Immunol Methods 2024; 527:113650. [PMID: 38428517 DOI: 10.1016/j.jim.2024.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Current methodologies for assessing vaccine effectiveness and longevity primarily center on measuring vaccine-induced neutralizing antibodies in serum or plasma. However, these methods overlook additional parameters such as the presence of memory B cells, even as antibody levels wane, and the pivotal role played by memory T cells in shaping antigen-specific memory B cell responses. Several studies have employed a combination of polyclonal activators, such as CpG and R848, along with various cytokines to provoke the recall of memory B cells from peripheral blood mononuclear cells (PBMCs) into antibody-secreting cells (ASCs). Other studies have examined the use of live attenuated viruses to stimulate antigen-specific memory T cells within PBMCs into effector T cells that produce Th1/Th2 cytokines. However, these studies have not fully elucidated the distinct effects of these polyclonal activators on individual subsets, nor have they evaluated whether the vaccine antigen alone is sufficient to trigger the recall of memory T cells. Thus, in this study, we directly compared the capacity of two B cell polyclonal activators to induce the transition of existing vaccine-specific memory cells present in peripheral blood samples into ASCs. Simultaneously, we also assessed the transition of existing memory T cells into effector subsets in response to vaccine antigens. Our findings demonstrate that both polyclonal activator combinations, CpG with IL-6 and IL-15, as well as R848 with IL-2, effectively induce the terminal differentiation of memory B cells into ASCs. Notably, CpG treatment preferentially expanded naïve and non-class-switched B cells, while R848 expanded class-switched memory cells, plasmablasts, and plasma cells. Consequently, R848 treatment led to a greater overall production of total and antigen-specific IgG immunoglobulins. Additionally, the exposure of isolated PBMCs to vaccine antigens alone proved sufficient for recalling the rare antigen-specific memory T cells into effector subsets, predominantly consisting of IFN-γ-producing CD4 T cells and TNF-β-producing CD8 T cells. This study not only establishes a rationale for the selection of methods to expand and detect antigen-specific lymphocyte subsets but also presents a means to quantify vaccine effectiveness by correlating serum antibody levels with preexisting memory cells within peripheral blood samples.
Collapse
Affiliation(s)
- Czdari Lee
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Imtisal Imran
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Sara Thomas
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Mahyar Nouri-Shirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Medicine, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA.
| |
Collapse
|
2
|
Zhang T, Liu W, Yang YG. B cell development and antibody responses in human immune system mice: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:645-652. [PMID: 38270770 DOI: 10.1007/s11427-023-2462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 01/26/2024]
Abstract
Humanized immune system (HIS) mice have been developed and used as a small surrogate model to study human immune function under normal or disease conditions. Although variations are found between models, most HIS mice show robust human T cell responses. However, there has been unsuccessful in constructing HIS mice that produce high-affinity human antibodies, primarily due to defects in terminal B cell differentiation, antibody affinity maturation, and development of primary follicles and germinal centers. In this review, we elaborate on the current knowledge about and previous attempts to improve human B cell development in HIS mice, and propose a potential strategy for constructing HIS mice with improved humoral immunity by transplantation of human follicular dendritic cells (FDCs) to facilitate the development of secondary follicles.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
- International Center of Future Science, Jilin University, Changchun, 130061, China.
| |
Collapse
|
3
|
Hernández-Barranco A, Santos V, Mazariegos MS, Caleiras E, Nogués L, Mourcin F, Léonard S, Oblet C, Genebrier S, Rossille D, Benguría A, Sanz A, Vázquez E, Dopazo A, Efeyan A, Ortega-Molina A, Cogne M, Tarte K, Peinado H. NGFR regulates stromal cell activation in germinal centers. Cell Rep 2024; 43:113705. [PMID: 38307025 DOI: 10.1016/j.celrep.2024.113705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
Nerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment. In accordance with this effect, stromal cells are altered in Ngfr-/- mice with a higher frequency of FDCs, characterized by CD21/35, MAdCAM-1, and VCAM-1 overexpression. GCs are located ectopically in Ngfr-/- mice, with lost polarization together with impaired high-affinity antibody production and an increase in circulating autoantibodies. We observe higher levels of autoantibodies in Bcl2 Tg/Ngfr-/- mice, concomitant with a higher incidence of autoimmunity and lower overall survival. Our work shows that NGFR is involved in maintaining GC structure and function, participating in GC activation, antibody production, and immune tolerance.
Collapse
Affiliation(s)
- Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; Liver Injury and Inflammation Laboratory, Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Biotechnology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Frédéric Mourcin
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Simon Léonard
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Christelle Oblet
- Immunology Department, Faculty of Medicine, Limoges University, CNRS Umr 7276, Inserm U1262, 87000 Limoges, France
| | - Steve Genebrier
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Delphine Rossille
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France; SITI Lab, Pôle Biologie, CHU Rennes, 35000 Rennes, France
| | - Alberto Benguría
- Genomic Unit, Spanish National Cardiovascular Research, Carlos III, 28029 Madrid, Spain
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Enrique Vázquez
- Genomic Unit, Spanish National Cardiovascular Research, Carlos III, 28029 Madrid, Spain
| | - Ana Dopazo
- Genomic Unit, Spanish National Cardiovascular Research, Carlos III, 28029 Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Metabolism in Cancer and Ageing Laboratory, Immune System and Function Department, Centro de Biología Molecular "Severo Ochoa" (CMBSO-CSIC), Madrid 28049, Spain
| | - Michel Cogne
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France
| | - Karin Tarte
- UMR U1236, University Rennes, INSERM, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, 35000 Rennes, France; SITI Lab, Pôle Biologie, CHU Rennes, 35000 Rennes, France
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Maust BS, Petkov S, Herrera C, Feng C, Brown BP, Lebina L, Opoka D, Ssemata A, Pillay N, Serwanga J, Seatlholo P, Namubiru P, Odoch G, Mugaba S, Seiphetlo T, Gray CM, Kaleebu P, Webb EL, Martinson N, Chiodi F, Fox J, Jaspan HB. Bacterial microbiome and host inflammatory gene expression in foreskin tissue. Heliyon 2023; 9:e22145. [PMID: 38053902 PMCID: PMC10694185 DOI: 10.1016/j.heliyon.2023.e22145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
The penile epithelial microbiome remains underexplored. We sequenced human RNA and a segment of the bacterial 16S rRNA gene from the foreskin tissue of 144 adolescents from South Africa and Uganda collected during penile circumcision after receipt of 1-2 doses of placebo, emtricitabine + tenofovir disoproxil fumarate, or emtricitabine + tenofovir alafenamide to investigate the microbiome of foreskin tissue and its potential changes with antiretroviral use. We identified a large number of anaerobic species, including Corynebacterium acnes, which was detected more frequently in participants from South Africa than Uganda. Bacterial populations did not differ by treatment received, and no differentially abundant taxa were identified between placebo versus active drug recipients. The relative abundance of specific bacterial taxa was negatively correlated with expression of genes downstream of the innate immune response to bacteria and regulation of inflammation. Our results show no difference in the tissue microbiome of the foreskin with short-course antiretroviral use but that bacterial taxa were largely inversely correlated with inflammatory gene expression, consistent with commensal colonization.
Collapse
Affiliation(s)
- Brandon S. Maust
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Division of Infectious Disease, Dept of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Carolina Herrera
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - Colin Feng
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Bryan P. Brown
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Division of Infectious Disease, Dept of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Daniel Opoka
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Andrew Ssemata
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Natasha Pillay
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Jennifer Serwanga
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Portia Seatlholo
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Patricia Namubiru
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Geoffrey Odoch
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Thabiso Seiphetlo
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Clive M. Gray
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Pontiano Kaleebu
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Emily L. Webb
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Julie Fox
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Kings College, London, WC2R 2LS, UK
| | - Heather B. Jaspan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Division of Infectious Disease, Dept of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - CHAPS team
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Division of Infectious Disease, Dept of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, 2000, South Africa
- Medical Research Council, Uganda Virus Research Institute, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Kings College, London, WC2R 2LS, UK
| |
Collapse
|
5
|
Sindaco P, Pandey H, Isabelle C, Chakravarti N, Brammer JE, Porcu P, Mishra A. The role of interleukin-15 in the development and treatment of hematological malignancies. Front Immunol 2023; 14:1141208. [PMID: 37153603 PMCID: PMC10157481 DOI: 10.3389/fimmu.2023.1141208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Cytokines are a vital component of the immune system that controls the activation and growth of blood cells. However, chronic overexpression of cytokines can trigger cellular events leading to malignant transformation. The cytokine interleukin-15 (IL-15) is of particular interest, which has been shown to contribute to the development and progression of various hematological malignancies. This review will provide an overview of the impact of the immunopathogenic function of IL-15 by studying its role in cell survival, proliferation, inflammation, and treatment resistance. We will also review therapeutic approaches for inhibiting IL-15 in blood cancers.
Collapse
Affiliation(s)
- Paola Sindaco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hritisha Pandey
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Colleen Isabelle
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nitin Chakravarti
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Pierluigi Porcu
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anjali Mishra
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Anjali Mishra,
| |
Collapse
|
6
|
CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk. Nat Genet 2022; 54:637-648. [PMID: 35513723 PMCID: PMC9117519 DOI: 10.1038/s41588-022-01059-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/21/2022] [Indexed: 01/14/2023]
Abstract
Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is characterized by clonal expansion of natural killer (NK) cells where the underlying genetic mechanisms are incompletely understood. In the present study, we report somatic mutations in the chemokine gene CCL22 as the hallmark of a distinct subset of CLPD-NK. CCL22 mutations were enriched at highly conserved residues, mutually exclusive of STAT3 mutations and associated with gene expression programs that resembled normal CD16dim/CD56bright NK cells. Mechanistically, the mutations resulted in ligand-biased chemokine receptor signaling, with decreased internalization of the G-protein-coupled receptor (GPCR) for CCL22, CCR4, via impaired β-arrestin recruitment. This resulted in increased cell chemotaxis in vitro, bidirectional crosstalk with the hematopoietic microenvironment and enhanced NK cell proliferation in vivo in transgenic human IL-15 mice. Somatic CCL22 mutations illustrate a unique mechanism of tumor formation in which gain-of-function chemokine mutations promote tumorigenesis by biased GPCR signaling and dysregulation of microenvironmental crosstalk.
Collapse
|
7
|
Rascle P, Jacquelin B, Petitdemange C, Contreras V, Planchais C, Lazzerini M, Dereuddre-Bosquet N, Le Grand R, Mouquet H, Huot N, Müller-Trutwin M. NK-B cell cross talk induces CXCR5 expression on natural killer cells. iScience 2021; 24:103109. [PMID: 34622162 PMCID: PMC8479784 DOI: 10.1016/j.isci.2021.103109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
B cell follicles (BCFs) in lymph nodes (LNs) are generally exempt of CD8+ T and NK cells. African green monkeys (AGMs), a natural host of simian immunodeficiency virus (SIV), display NK cell-mediated viral control in BCF. NK cell migration into BCF in chronically SIVagm-infected AGM is associated with CXCR5+ NK cells. We aimed to identify the mechanism leading to CXCR5 expression on NK cells. We show that CXCR5+ NK cells in LN were induced following SIVagm infection. CXCR5+ NK cells accumulated preferentially in BCF with proliferating B cells. Autologous NK-B cell co-cultures in transwell chambers induced CXCR5+ NK cells. Transcriptome analysis of CXCR5+ NK cells revealed expression of bcl6 and IL6R. IL-6 induced CXCR5 on AGM and human NK cells. IL6 mRNA was detected in LN at higher levels during SIVagm than SIVmac infection and often produced by plasma cells. Our study reveals a mechanism of B cell-dependent NK cell regulation. IL-6 can induce CXCR5 on NK cells CXCR5+ NK cells expressed high levels of bcl6 and IL6R More IL-6+ plasmablast/plasma cells in lymph nodes in SIVagm than SIVmac infection B cells participate in the regulation of NK cell migration into BCF
Collapse
Affiliation(s)
- Philippe Rascle
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Béatrice Jacquelin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Petitdemange
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Vanessa Contreras
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Cyril Planchais
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Roger Le Grand
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Nicolas Huot
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
8
|
Poirot J, Medvedovic J, Trichot C, Soumelis V. Compartmentalized multicellular crosstalk in lymph nodes coordinates the generation of potent cellular and humoral immune responses. Eur J Immunol 2021; 51:3146-3160. [PMID: 34606627 PMCID: PMC9298410 DOI: 10.1002/eji.202048977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Distributed throughout the body, lymph nodes (LNs) constitute an important crossroad where resident and migratory immune cells interact to initiate antigen‐specific immune responses supported by a dynamic 3‐dimensional network of stromal cells, that is, endothelial cells and fibroblastic reticular cells (FRCs). LNs are organized into four major subanatomically separated compartments: the subcapsular sinus (SSC), the paracortex, the cortex, and the medulla. Each compartment is underpinned by particular FRC subsets that physically support LN architecture and delineate functional immune niches by appropriately providing environmental cues, nutrients, and survival factors to the immune cell subsets they interact with. In this review, we discuss how FRCs drive the structural and functional organization of each compartment to give rise to prosperous interactions and coordinate immune cell activities. We also discuss how reciprocal communication makes FRCs and immune cells perfect compatible partners for the generation of potent cellular and humoral immune responses.
Collapse
Affiliation(s)
- Justine Poirot
- Université de Paris, INSERM U976, Paris, France.,Université Paris-Saclay, Saint Aubin, France
| | | | | | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.,AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France
| |
Collapse
|
9
|
The Migration of Human Follicular Dendritic Cell-Like Cell Is Facilitated by Matrix Metalloproteinase 3 Expression That Is Mediated through TNF α-ERK1/2-AP1 Signaling. J Immunol Res 2021; 2021:8483938. [PMID: 34222497 PMCID: PMC8225449 DOI: 10.1155/2021/8483938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Follicular dendritic cells are important stromal components of the germinal center (GC) and have pivotal roles in maintaining the GC microenvironment for high-affinity antibody production. Tumor necrosis factor-α (TNFα) is essential for the development and functions of follicular dendritic cells. Despite the importance of follicular dendritic cells in humoral immunity, their molecular control mechanisms have yet to be fully elucidated due to the lack of an adequate investigation system. Here, we have used a unique human primary follicular dendritic cell-like cell (FDCLC) to demonstrate that the migration of these cells is enhanced by TNFα-mediated metalloproteinase 3 (MMP3) expression. MMP3 was found to be highly expressed in normal human GCs and markedly upregulated in human primary FDCLCs by TNFα. TNFα induced ERK1/2 phosphorylation and the transcription of MMP3 through AP1. TNFα treatment increased FDCLC migration, and a knockdown of MMP3 significantly reduced the TNFα-induced migration of FDCLCs. Overall, we have newly identified a control mechanism for the expression of MMP3 in FDCLCs that modulates their migration and may indicate an important role in GC biology. Since GCs are observed in the lesions of autoimmune diseases and lymphomas, targeting the MMP3/TNFα-mediated migration of stromal cells in the B cell follicle may have great potential as a future therapeutic modality against aberrant GC-associated disorders.
Collapse
|
10
|
Rana M, La Bella A, Lederman R, Volpe BT, Sherry B, Diamond B. Follicular dendritic cell dysfunction contributes to impaired antigen-specific humoral responses in sepsis-surviving mice. J Clin Invest 2021; 131:146776. [PMID: 33956665 DOI: 10.1172/jci146776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis survivors exhibit impaired responsiveness to antigen (Ag) challenge associated with increased mortality from infection. The contribution of follicular dendritic cells (FDCs) in the impaired humoral response in sepsis-surviving mice is investigated in this study. We demonstrated that mice subjected to sepsis from cecal ligation and puncture (CLP mice) have reduced NP-specific high-affinity class-switched Ig antibodies (Abs) compared with sham-operated control mice following immunization with the T cell-dependent Ag, NP-CGG. NP-specific germinal center (GC) B cells in CLP mice exhibited reduced TNF-α and AID mRNA expression compared with sham-operated mice. CLP mice showed a reduction in FDC clusters, a reduced binding of immune complexes on FDCs, and reduced mRNA expression of CR2, ICAM-1, VCAM-1, FcγRIIB, TNFR1, IKK2, and LTβR compared with sham-operated mice. Adoptive transfer studies showed that there was no B cell-intrinsic defect. In summary, our data suggest that the reduced Ag-specific Ab response in CLP mice is secondary to a disruption in FDC and GC B cell function.
Collapse
Affiliation(s)
- Minakshi Rana
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| | - Andrea La Bella
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| | - Rivka Lederman
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| | | | - Barbara Sherry
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, New York, New York, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases
| |
Collapse
|
11
|
Lamaison C, Tarte K. B cell/stromal cell crosstalk in health, disease, and treatment: Follicular lymphoma as a paradigm. Immunol Rev 2021; 302:273-285. [PMID: 34060097 DOI: 10.1111/imr.12983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Stromal cells organize specific anatomic compartments within bone marrow (BM) and secondary lymphoid organs where they finely regulate the behavior of mature normal B cells. In particular, lymphoid stromal cells (LSCs) form a phenotypically heterogeneous compartment including various cell subsets variably supporting B-cell survival, activation, proliferation, and differentiation. In turn, activated B cells trigger in-depth remodeling of LSC networks within lymph nodes (LN) and BM. Follicular lymphoma (FL) is one of the best paradigms of a B-cell neoplasia depending on a specific tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs) emerging from the reprogramming of LN LSCs or poorly characterized local BM precursors. FL-CAFs support directly malignant B-cell growth and orchestrate FL permissive cell niche by contributing, through a bidirectional crosstalk, to the recruitment and polarization of immune TME subsets. Recent studies have highlighted a previously unexpected level of heterogeneity of both FL B cells and FL TME, underlined by FL-CAF plasticity. A better understanding of the signaling pathways, molecular mechanisms, and kinetic of stromal cell remodeling in FL would be useful to delineate new predictive markers and new therapeutic approaches in this still fatal malignancy.
Collapse
Affiliation(s)
- Claire Lamaison
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France
| | - Karin Tarte
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France.,SITI, Pôle de Biologie, CHU Pontchaillou, Rennes, France
| |
Collapse
|
12
|
Cinti I, Denton AE. Lymphoid stromal cells-more than just a highway to humoral immunity. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab011. [PMID: 36845565 PMCID: PMC9914513 DOI: 10.1093/oxfimm/iqab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
The generation of high-affinity long-lived antibody responses is dependent on the differentiation of plasma cells and memory B cells, which are themselves the product of the germinal centre (GC) response. The GC forms in secondary lymphoid organs in response to antigenic stimulation and is dependent on the coordinated interactions between many types of leucocytes. These leucocytes are brought together on an interconnected network of specialized lymphoid stromal cells, which provide physical and chemical guidance to immune cells that are essential for the GC response. In this review we will highlight recent advancements in lymphoid stromal cell immunobiology and their role in regulating the GC, and discuss the contribution of lymphoid stromal cells to age-associated immunosenescence.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK
| | - Alice E Denton
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK,Correspondence address. Alice E. Denton, Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London W12 0NN, UK. Tel:+44 (0)20 3313 8213. E-mail:
| |
Collapse
|
13
|
Palacios F, Yan XJ, Ferrer G, Chen SS, Vergani S, Yang X, Gardner J, Barrientos JC, Rock P, Burack R, Kolitz JE, Allen SL, Kharas MG, Abdel-Wahab O, Rai KR, Chiorazzi N. Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia 2021; 35:1037-1052. [PMID: 33504942 PMCID: PMC8024198 DOI: 10.1038/s41375-020-01115-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
Progression of chronic lymphocytic leukemia (CLL) results from the expansion of a small fraction of proliferating leukemic B cells. When comparing the global gene expression of recently divided CLL cells with that of previously divided cells, we found higher levels of genes involved in regulating gene expression. One of these was the oncogene Musashi 2 (MSI2), an RNA-binding protein that induces or represses translation. While there is an established role for MSI2 in normal and malignant stem cells, much less is known about its expression and role in CLL. Here we report for the first time ex vivo and in vitro experiments that MSI2 protein levels are higher in dividing and recently divided leukemic cells and that downregulating MSI2 expression or blocking its function eliminates primary human and murine CLL and mature myeloid cells. Notably, mature T cells and hematopoietic stem and progenitor cells are not affected. We also confirm that higher MSI2 levels correlate with poor outcome markers, shorter time-to-first-treatment, and overall survival. Thus, our data highlight an important role for MSI2 in CLL-cell survival and proliferation and associate MSI2 with poor prognosis in CLL patients. Collectively, these findings pinpoint MSI2 as a potentially valuable therapeutic target in CLL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents
- Apoptosis/drug effects
- Biomarkers, Tumor
- Caspase 3/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Survival/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Disease Models, Animal
- Gene Expression
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Molecular Targeted Therapy
- Prognosis
- RNA, Small Interfering
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey Gardner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaqueline C Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Philip Rock
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Richard Burack
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Jonathan E Kolitz
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Steven L Allen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, New York, NY, USA.
| |
Collapse
|
14
|
Regulatory T Cells Fail to Suppress Fast Homeostatic Proliferation In Vitro. Life (Basel) 2021; 11:life11030245. [PMID: 33809452 PMCID: PMC8002103 DOI: 10.3390/life11030245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.
Collapse
|
15
|
Li X, Zhang Q, Zhang W, Ye G, Ma Y, Wen C, Gu S, Tang L, Li Y. Expanded circulating follicular dendritic cells facilitate immune responses in chronic HBV infection. J Transl Med 2020; 18:417. [PMID: 33160362 PMCID: PMC7648402 DOI: 10.1186/s12967-020-02584-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background The restoration of host hepatitis B virus (HBV)-specific antiviral immunity is an effective strategy for hepatitis B recovery. Follicular dendritic cells (FDCs) play a crucial role in immune regulation. The goal of the present study was to investigate the characteristics and functions of FDCs in chronic HBV infection. Methods The frequencies of FDCs in peripheral blood, liver, and spleen were measured in patients with chronic HBV infection. Isolated FDCs from splenic tissues of HBV-related liver cirrhosis-induced hypersplenism patients were cultured with autologous intrasplenic CD4+ T cells and CD19+ B cells. Results We observed that patients with chronic HBV infection had a significantly increased frequency of circulating FDCs compared to that of healthy controls. Additionally, the frequency of circulating FDCs was positively correlated with that of intrahepatic and intrasplenic counterparts. Moreover, positive correlations were observed between the frequencies of circulating FDCs and plasmablast and memory B cells, as well as C-X-C motif chemokine receptor type 5 (CXCR5)+CD4+ T cells and CXCR5+CD8+ T cells. Notably, in vitro experimental results demonstrated that FDCs derived from splenic tissues of chronic HBV patients facilitated interferon-γ and interleukin-21 production from autologous intrasplenic CD4+ T cells and promoted the proliferation of autologous intrasplenic CD19+ B cells. Conclusions Expanded FDCs in patients with chronic HBV infection may favor host immune responses against HBV. The identification of this unique population of cell may contribute to a better understanding of the immune regulatory mechanisms associated with chronic HBV infection and provide a potential immunotherapeutic target for this disease.
Collapse
Affiliation(s)
- Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qifan Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyue Zhang
- The Air Force Hospital of Southern Theater Command, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yanchen Ma
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Serrat N, Guerrero-Hernández M, Matas-Céspedes A, Yahiaoui A, Valero JG, Nadeu F, Clot G, Di Re M, Corbera-Bellalta M, Magnano L, Rivas-Delgado A, Enjuanes A, Beà S, Cid MC, Campo E, Montero J, Hodson DJ, López-Guillermo A, Colomer D, Tannheimer S, Pérez-Galán P. PI3Kδ inhibition reshapes follicular lymphoma-immune microenvironment cross talk and unleashes the activity of venetoclax. Blood Adv 2020; 4:4217-4231. [PMID: 32898249 PMCID: PMC7479943 DOI: 10.1182/bloodadvances.2020001584] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Despite idelalisib approval in relapsed follicular lymphoma (FL), a complete characterization of the immunomodulatory consequences of phosphatidylinositol 3-kinase δ (PI3Kδ) inhibition, biomarkers of response, and potential combinatorial therapies in FL remain to be established. Using ex vivo cocultures of FL patient biopsies and follicular dendritic cells (FDCs) to mimic the germinal center (n = 42), we uncovered that PI3Kδ inhibition interferes with FDC-induced genes related to angiogenesis, extracellular matrix formation, and transendothelial migration in a subset of FL samples, defining an 18-gene signature fingerprint of idelalisib sensitivity. A common hallmark of idelalisib found in all FL cases was its interference with the CD40/CD40L pathway and induced proliferation, together with the downregulation of proteins crucial for B-T-cell synapses, leading to an inefficient cross talk between FL cells and the supportive T-follicular helper cells (TFH). Moreover, idelalisib downmodulates the chemokine CCL22, hampering the recruitment of TFH and immunosupressive T-regulatory cells to the FL niche, leading to a less supportive and tolerogenic immune microenvironment. Finally, using BH3 profiling, we uncovered that FL-FDC and FL-macrophage cocultures augment tumor addiction to BCL-XL and MCL-1 or BFL-1, respectively, limiting the cytotoxic activity of the BCL-2 inhibitor venetoclax. Idelalisib restored FL dependence on BCL-2 and venetoclax activity. In summary, idelalisib exhibits a patient-dependent activity toward angiogenesis and lymphoma dissemination. In all FL cases, idelalisib exerts a general reshaping of the FL immune microenvironment and restores dependence on BCL-2, predisposing FL to cell death, providing a mechanistic rationale for investigating the combination of PI3Kδ inhibitors and venetoclax in clinical trials.
Collapse
Affiliation(s)
- Neus Serrat
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Martina Guerrero-Hernández
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Matas-Céspedes
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Anella Yahiaoui
- Department of Biomarker Sciences, Gilead Sciences, Inc., Seattle, WA
| | - Juan G Valero
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Ferran Nadeu
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Guillem Clot
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Miriam Di Re
- Department of Haematology, Wellcome Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Laura Magnano
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Alfredo Rivas-Delgado
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Anna Enjuanes
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Silvia Beà
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Elías Campo
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain; and
| | - Joan Montero
- Department of Nanobioengineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel J Hodson
- Department of Haematology, Wellcome Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Armando López-Guillermo
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Dolors Colomer
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain; and
| | - Stacey Tannheimer
- Department of Biomarker Sciences, Gilead Sciences, Inc., Seattle, WA
| | - Patricia Pérez-Galán
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| |
Collapse
|
17
|
Dubois N, Crompot E, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Importance of Crosstalk Between Chronic Lymphocytic Leukemia Cells and the Stromal Microenvironment: Direct Contact, Soluble Factors, and Extracellular Vesicles. Front Oncol 2020; 10:1422. [PMID: 32974152 PMCID: PMC7466743 DOI: 10.3389/fonc.2020.01422] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the accumulation of malignant B cells due to a defect in apoptosis and the presence of small population of proliferating cells principally in the lymph nodes. The abnormal survival of CLL B cells is explained by a plethora of supportive stimuli produced by the surrounding cells of the microenvironment, including follicular dendritic cells (FDCs), and mesenchymal stromal cells (MSCs). This crosstalk between malignant cells and normal cells can take place directly by cell-to-cell contact (assisted by adhesion molecules such as VLA-4 or CD100), indirectly by soluble factors (chemokines such as CXCL12, CXCL13, or CCL2) interacting with their receptors or by the exchange of material (protein, microRNAs or long non-coding RNAs) via extracellular vesicles. These different communication methods lead to different activation pathways (including BCR and NFκB pathways), gene expression modifications (chemokines, antiapoptotic protein increase, prognostic biomarkers), chemotaxis, homing in lymphoid tissues and survival of leukemic cells. In addition, these interactions are bidirectional, and CLL cells can manipulate the normal surrounding stromal cells in different ways to establish a supportive microenvironment. Here, we review this complex crosstalk between CLL cells and stromal cells, focusing on the different types of interactions, activated pathways, treatment strategies to disrupt this bidirectional communication, and the prognostic impact of these induced modifications.
Collapse
Affiliation(s)
- Nathan Dubois
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
18
|
Guo L, Liu MF, Huang JN, Li JM, Jiang J, Wang JA. Role of interleukin-15 in cardiovascular diseases. J Cell Mol Med 2020; 24:7094-7101. [PMID: 32406586 PMCID: PMC7339208 DOI: 10.1111/jcmm.15296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)‐15 is a recently identified cytokine, which belongs to the interleukin‐2(IL‐2) family, and plays an important role in innate and adaptive immunoreaction. Given the fact that the structure of IL‐15 is partially similar to IL‐2, they share some common biological effects, including immunoregulation. IL‐2 was proven to protect cardiac function in mouse myocardial infarction models. Cardiovascular diseases (CVDs) dominate the cause of mortality worldwide. Besides atherosclerosis, inflammation is also widely involved in the pathogenesis of many CVDs including hypertension, heart failure (HF) and aneurysm. IL‐15, as a pro‐inflammatory cytokine, is up‐regulated in some cardiovascular diseases, such as myocardial infarction and atherosclerosis. The current understanding of IL‐15, including its signal pathway and cellular function, was described. Furthermore, IL‐15 has a protective effect in myocardial infarction and myocarditis by decreasing cardiomyocyte death and improving heart function. The inhibited effect of IL‐15 in ductus arteriosus (DA) should be focused on. IL‐15 promoted atherogenesis. IL‐15 may be a good target in treatment of cardiovascular diabetology. Finally, future research direction of IL‐15 deserves attention. Since IL‐15 plays several roles in CVDs, understanding the role of the IL‐15/IL‐15R system may provide a scientific basis for the development of new approaches that use IL‐15 for the treatment of CVDs.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ming-Fei Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ji-Niu Huang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jia-Min Li
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jian-An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Lamaison C, Tarte K. Impact of B cell/lymphoid stromal cell crosstalk in B-cell physiology and malignancy. Immunol Lett 2019; 215:12-18. [DOI: 10.1016/j.imlet.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022]
|
20
|
Nigar S, Shimosato T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front Nutr 2019; 6:140. [PMID: 31508424 PMCID: PMC6718720 DOI: 10.3389/fnut.2019.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unmethylated cytosine–guanine dinucleotide (CpG) motifs are potent stimulators of the host immune response. Cellular recognition of CpG motifs occurs via Toll-like receptor 9 (TLR9), which normally activates immune responses to pathogen-associated molecular patterns (PAMPs) indicative of infection. Oligodeoxynucleotides (ODNs) containing unmethylated CpGs mimic the immunostimulatory activity of viral/microbial DNA. Synthetic ODNs harboring CpG motifs resembling those identified in viral/microbial DNA trigger an identical response, such that these immunomodulatory ODNs have therapeutic potential. CpG DNA has been investigated as an agent for the management of malignancy, asthma, allergy, and contagious diseases, and as an adjuvant in immunotherapy. In this review, we discuss the potential synergy between synthetic ODNs and other synthetic molecules and their immunomodulatory effects. We also summarize the different synthetic molecules that function as immune modulators and outline the phenomenon of TLR-mediated immune responses. We previously reported a novel synthetic ODN that acts synergistically with other synthetic molecules (including CpG ODNs, the synthetic triacylated lipopeptide Pam3CSK4, lipopolysaccharide, and zymosan) that could serve as an immune therapy. Additionally, several clinical trials have evaluated the use of CpG ODNs with other immune factors such as granulocyte-macrophage colony-stimulating factor, cytokines, and both endosomal and cell-surface TLR ligands as adjuvants for the augmentation of vaccine activity. Furthermore, we discuss the structural recognition of ODNs by TLRs and the mechanism of functional modulation of TLRs in the context of the potential application of ODNs as wide-spectrum therapeutic agents.
Collapse
Affiliation(s)
- Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
21
|
Gupta R, Li W, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Mechanism for IL-15-Driven B Cell Chronic Lymphocytic Leukemia Cycling: Roles for AKT and STAT5 in Modulating Cyclin D2 and DNA Damage Response Proteins. THE JOURNAL OF IMMUNOLOGY 2019; 202:2924-2944. [PMID: 30988120 DOI: 10.4049/jimmunol.1801142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Clonal expansion of B cell chronic lymphocytic leukemia (B-CLL) occurs within lymphoid tissue pseudofollicles. IL-15, a stromal cell-associated cytokine found within spleens and lymph nodes of B-CLL patients, significantly boosts in vitro cycling of blood-derived B-CLL cells following CpG DNA priming. Both IL-15 and CpG DNA are elevated in microbe-draining lymphatic tissues, and unraveling the basis for IL-15-driven B-CLL growth could illuminate new therapeutic targets. Using CpG DNA-primed human B-CLL clones and approaches involving both immunofluorescent staining and pharmacologic inhibitors, we show that both PI3K/AKT and JAK/STAT5 pathways are activated and functionally important for IL-15→CD122/ɣc signaling in ODN-primed cells expressing activated pSTAT3. Furthermore, STAT5 activity must be sustained for continued cycling of CFSE-labeled B-CLL cells. Quantitative RT-PCR experiments with inhibitors of PI3K and STAT5 show that both contribute to IL-15-driven upregulation of mRNA for cyclin D2 and suppression of mRNA for DNA damage response mediators ATM, 53BP1, and MDC1. Furthermore, protein levels of these DNA damage response molecules are reduced by IL-15, as indicated by Western blotting and immunofluorescent staining. Bioinformatics analysis of ENCODE chromatin immunoprecipitation sequencing data from cell lines provides insight into possible mechanisms for STAT5-mediated repression. Finally, pharmacologic inhibitors of JAKs and STAT5 significantly curtailed B-CLL cycling when added either early or late in a growth response. We discuss how the IL-15-induced changes in gene expression lead to rapid cycling and possibly enhanced mutagenesis. STAT5 inhibitors might be an effective modality for blocking B-CLL growth in patients.
Collapse
Affiliation(s)
- Rashmi Gupta
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Wentian Li
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Xiao J Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | | | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Kanti Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Patricia K A Mongini
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| |
Collapse
|
22
|
Stebegg M, Kumar SD, Silva-Cayetano A, Fonseca VR, Linterman MA, Graca L. Regulation of the Germinal Center Response. Front Immunol 2018; 9:2469. [PMID: 30410492 PMCID: PMC6209676 DOI: 10.3389/fimmu.2018.02469] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022] Open
Abstract
The germinal center (GC) is a specialized microstructure that forms in secondary lymphoid tissues, producing long-lived antibody secreting plasma cells and memory B cells, which can provide protection against reinfection. Within the GC, B cells undergo somatic mutation of the genes encoding their B cell receptors which, following successful selection, can lead to the emergence of B cell clones that bind antigen with high affinity. However, this mutation process can also be dangerous, as it can create autoreactive clones that can cause autoimmunity. Because of this, regulation of GC reactions is critical to ensure high affinity antibody production and to enforce self-tolerance by avoiding emergence of autoreactive B cell clones. A productive GC response requires the collaboration of multiple cell types. The stromal cell network orchestrates GC cell dynamics by controlling antigen delivery and cell trafficking. T follicular helper (Tfh) cells provide specialized help to GC B cells through cognate T-B cell interactions while Foxp3+ T follicular regulatory (Tfr) cells are key mediators of GC regulation. However, regulation of GC responses is not a simple outcome of Tfh/Tfr balance, but also involves the contribution of other cell types to modulate the GC microenvironment and to avoid autoimmunity. Thus, the regulation of the GC is complex, and occurs at multiple levels. In this review we outline recent developments in the biology of cell subsets involved in the regulation of GC reactions, in both secondary lymphoid tissues, and Peyer's patches (PPs). We discuss the mechanisms which enable the generation of potent protective humoral immunity whilst GC-derived autoimmunity is avoided.
Collapse
Affiliation(s)
| | - Saumya D Kumar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Valter R Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro Hospitalar Lisboa Norte-Hospital de Santa Maria, Lisbon, Portugal
| | | | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
23
|
Gupta R, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Mechanistic Insights into CpG DNA and IL-15 Synergy in Promoting B Cell Chronic Lymphocytic Leukemia Clonal Expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1570-1585. [PMID: 30068596 PMCID: PMC6103916 DOI: 10.4049/jimmunol.1800591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
Malignant cell growth within patients with B cell chronic lymphocytic leukemia (B-CLL) is largely restricted to lymphoid tissues, particularly lymph nodes. The recent in vitro finding that TLR-9 ligand (oligodeoxynucleotide [ODN]) and IL-15 exhibit strong synergy in promoting B-CLL growth may be particularly relevant to growth in these sites. This study shows IL-15-producing cells are prevalent within B-CLL-infiltrated lymph nodes and, using purified B-CLL cells from blood, investigates the mechanism for ODN and IL-15 synergy in driving B-CLL growth. ODN boosts baseline levels of phospho-RelA(S529) in B-CLL and promotes NF-κB-driven increases in IL15RA and IL2RB mRNA, followed by elevated IL-15Rα and IL-2/IL-15Rβ (CD122) protein. IL-15→CD122 signaling during a critical interval, 20 to 36-48 h following initial ODN exposure, is required for optimal induction of the cycling process. Furthermore, experiments with neutralizing anti-IL-15 and anti-CD122 mAbs indicate that clonal expansion requires continued IL-15/CD122 signaling during cycling. The latter is consistent with evidence of heightened IL2RB mRNA in the fraction of recently proliferated B-CLL cells within patient peripheral blood. Compromised ODN+IL-15 growth with limited cell density is consistent with a role for upregulated IL-15Rα in facilitating homotypic trans IL-15 signaling, although there may be other explanations. Together, the findings show that ODN and IL-15 elicit temporally distinct signals that function in a coordinated manner to drive B-CLL clonal expansion.
Collapse
Affiliation(s)
- Rashmi Gupta
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Xiao J Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Kanti Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Patricia K A Mongini
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030;
| |
Collapse
|
24
|
Papa I, Vinuesa CG. Synaptic Interactions in Germinal Centers. Front Immunol 2018; 9:1858. [PMID: 30150988 PMCID: PMC6099157 DOI: 10.3389/fimmu.2018.01858] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
The germinal center (GC) is a complex, highly dynamic microanatomical niche that allows the generation of high-affinity antibody-producing plasma cells and memory B cells. These cells constitute the basis of long-lived highly protective antibody responses. For affinity maturation to occur, B cells undergo multiple rounds of proliferation and mutation of the genes that encode the immunoglobulin V region followed by selection by specialized T cells called follicular helper T (TFH) cells. In order to achieve this result, the GC requires spatially and temporally coordinated interactions between the different cell types, including B and T lymphocytes and follicular dendritic cells. Cognate interactions between TFH and GC B cells resemble cellular connections and synaptic communication within the nervous system, which allow signals to be transduced rapidly and effectively across the synaptic cleft. Such immunological synapses are particularly critical in the GC where the speed of T–B cell interactions is faster and their duration shorter than at other sites. In addition, the antigen-based specificity of cognate interactions in GCs is critical for affinity-based selection in which B cells compete for T cell help so that rapid modulation of the signaling threshold determines the outcome of the interaction. In the context of GCs, which contain large numbers of cells in a highly compacted structure, focused delivery of signals across the interacting cells becomes particularly important. Promiscuous or bystander delivery of positive selection signals could potentially lead to the appearance of long-lived self-reactive B cell clones. Cytokines, cytotoxic granules, and more recently neurotransmitters have been shown to be transferred from TFH to B cells upon cognate interactions. This review describes the current knowledge on immunological synapses occurring during GC responses including the type of granules, their content, and function in TFH-mediated help to B cells.
Collapse
Affiliation(s)
- Ilenia Papa
- John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| | - Carola G Vinuesa
- John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| |
Collapse
|
25
|
Huang J, Hilchey SP, Wang J, Gerigan J, Zand MS. IL-15 enhances cross-reactive antibody recall responses to seasonal H3 influenza viruses in vitro. F1000Res 2017; 6:2015. [PMID: 29479423 PMCID: PMC5801566 DOI: 10.12688/f1000research.12999.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 01/26/2023] Open
Abstract
Background: Recently, several human monoclonal antibodies that target conserved epitopes on the stalk region of influenza hemagglutinin (HA) have shown broad reactivity to influenza A subtypes. Also, vaccination with recombinant chimeric HA or stem fragments from H3 influenza viruses induce broad immune protection in mice and humans. However, it is unclear whether stalk-binding antibodies can be induced in human memory B cells by seasonal H3N2 viruses. Methods: In this study, we recruited 13 donors previously exposed to H3 viruses, the majority (12 of 13) of which had been immunized with seasonal influenza vaccines. We evaluated plasma baseline strain-specific and stalk-reactive anti-HA antibodies and B cell recall responses to inactivated H3N2 A/Victoria/361/2011 virus
in vitro using a high throughput multiplex (mPlex-Flu) assay. Results: Stalk-reactive IgG was detected in the plasma of 7 of the subjects. Inactivated H3 viral particles rapidly induced clade cross-reactive antibodies in B cell cultures derived from all 13 donors. In addition, H3 stalk-reactive antibodies were detected in culture supernatants from 7 of the 13 donors (53.8%). H3 stalk-reactive antibodies were also induced by H1 and H7 subtypes. Interestingly, broadly cross-reactive antibody recall responses to H3 strains were also enhanced by stimulating B cells
in vitro with CpG
2006 ODN in the presence of IL-15. H3 stalk-reactive antibodies were detected in CpG
2006 ODN + IL-15 stimulated B cell cultures derived from 12 of the 13 donors (92.3%), with high levels detected in cultures from 7 of the 13 donors. Conclusions: Our results demonstrate that stalk-reactive antibody recall responses induced by seasonal H3 viruses and CpG
2006 ODN can be enhanced by IL-15.
Collapse
Affiliation(s)
- Junqiong Huang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi Guizhou, 563099, China
| | - Shannon P Hilchey
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| | - Jiong Wang
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| | - Jessica Gerigan
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| | - Martin S Zand
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| |
Collapse
|
26
|
Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat Med 2017; 23:1277-1286. [PMID: 29035370 DOI: 10.1038/nm.4421] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells play an essential role in antiviral immunity, but knowledge of their function in secondary lymphoid organs is incomplete. Lymph node follicles constitute a major viral reservoir during infections with HIV-1 and simian immunodeficiency virus of macaques (SIVmac). In contrast, during nonpathogenic infection with SIV from African green monkeys (SIVagm), follicles remain generally virus free. We show that NK cells in secondary lymphoid organs from chronically SIVagm-infected African green monkeys (AGMs) were frequently CXCR5+ and entered and persisted in lymph node follicles throughout the follow-up (240 d post-infection). These follicles were strongly positive for IL-15, which was primarily presented in its membrane-bound form by follicular dendritic cells. NK cell depletion through treatment with anti-IL-15 monoclonal antibody during chronic SIVagm infection resulted in high viral replication rates in follicles and the T cell zone and increased viral DNA in lymph nodes. Our data suggest that, in nonpathogenic SIV infection, NK cells migrate into follicles and play a major role in viral reservoir control in lymph nodes.
Collapse
|
27
|
Denton AE, Linterman MA. Stromal networking: cellular connections in the germinal centre. Curr Opin Immunol 2017; 45:103-111. [PMID: 28319729 DOI: 10.1016/j.coi.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/14/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
Secondary lymphoid organs are organized into distinct zones, governed by different types of mesenchymal stromal cells. These stromal cell subsets are critical for the generation of protective humoral immunity because they direct the migration of, and interaction between, multiple immune cell types to form the germinal centre. The germinal centre response generates long-lived antibody-secreting plasma cells and memory B cells which can provide long-term protection against re-infection. Stromal cell subsets mediate this response through control of immune cell trafficking, activation, localization and antigen access within the secondary lymphoid organ. Further, distinct populations of stromal cells underpin the delicate spatial organization of immune cells within the germinal centre. Because of this, the interactions between immune cells and stromal cells in secondary lymphoid organs are fundamental to the germinal centre response. Herein we review how this unique relationship leads to effective germinal centre responses.
Collapse
Affiliation(s)
- Alice E Denton
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom.
| |
Collapse
|
28
|
Choe J, Park J, Lee S, Kim YM, Jeoung D. Opposing roles of TGF-β in prostaglandin production by human follicular dendritic cell-like cells. Mol Immunol 2016; 76:41-8. [PMID: 27344616 DOI: 10.1016/j.molimm.2016.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/12/2016] [Indexed: 01/22/2023]
Abstract
Prostaglandins (PGs) are recognized as important immune regulators. Using human follicular dendritic cell (FDC)-like HK cells, we have investigated the immunoregulatory role of PGs and their production mechanisms. The present study was aimed at determining the role of TGF-β in IL-1β-induced cyclooxygenase-2 (COX-2) expression by immunoblotting. COX-2 is the key enzyme responsible for PG production in HK cells. TGF-β, when added simultaneously with IL-1β, gave rise to an additive effect on COX-2 expression in a dose-dependent manner. However, TGF-β inhibited IL-1β-stimulated COX-2 expression when it was added at least 12h before IL-1β addition. The inhibitory effect of TGF-β was specific to IL-1β-induced COX-2 expression in HK cells. The stimulating and inhibitory effects of TGF-β were reproduced in IL-1β-stimulated PG production. Based on our previous results of the essential requirement of ERK and p38 MAPKs in TGF-β-induced COX-2 expression, we examined whether the differential activation of these MAPKs would underlie the opposing activities of TGF-β. The phosphorylation of ERK and p38 MAPKs was indeed enhanced or suppressed by the simultaneous treatment or pre-treatment, respectively. These results suggest that TGF-β exerts opposing effects on IL-1β-induced COX-2 expression in HK cells by differentially regulating activation of ERK and p38 MAPKs.
Collapse
Affiliation(s)
- Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Jihoon Park
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seungkoo Lee
- Department of Anatomic Pathology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
29
|
Patidar M, Yadav N, Dalai SK. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016; 31:49-59. [PMID: 27325459 DOI: 10.1016/j.cytogfr.2016.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/20/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-15, a member of the immunoregulatory cytokines family, is a pluripotent molecule with therapeutic potential. It is predominantly expressed by the myeloid cells, as well as other cell types. IL-15 serves multiple functions including dictating T cell response, regulating tissue repair and B cell homing, modulating inflammation, and activating NK cells. Among cytokines, IL-15 is unique because of its wide expression, tightly regulated secretion, trans-presentation, and therapeutic potential. IL-15 has been investigated for its therapeutic potential for the induction and maintenance of T cell responses. In addition, IL-15 can be targeted by antibody- or mutant IL-15 therapy to reduce inflammation. Its multifaceted biological applications are crucial in immunotherapy. In this article, we review the functions, expression, and regulation of IL-15 for designing an improved IL-15-based therapy targeting the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Manoj Patidar
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
30
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
31
|
Donors define whether CD19
+
CD27
+
tonsillar B cells are mostly memory or germinal‐center B cells. Immunol Cell Biol 2015; 93:431-2. [DOI: 10.1038/icb.2015.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Kanti Ghosh A, Sinha D, Mukherjee S, Biswas R, Biswas T. IL-15 temporally reorients IL-10 biased B-1a cells toward IL-12 expression. Cell Mol Immunol 2015; 13:229-39. [PMID: 25748019 DOI: 10.1038/cmi.2015.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/23/2014] [Accepted: 01/16/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-15 is known to strongly modulate T-cell function; however, its role in controlling mucosal immunity, including its ability to modulate B-1a cell activity, remains to be elucidated. Here, we show that IL-15 upregulates activation molecules and the costimulatory molecule CD80 on viable B-1a cells. Cell activation was accompanied by the depletion of sialic acid-binding immunoglobulin-like lectin (Siglec)-G, an inhibitor of cell activation that is present on B-1a cells. The IL-15 receptor CD122 was stimulated on B-1a cells by the cytokine showing its direct involvement in IL-15-mediated responses. IL-10 is responsible for the long term survival of B-1a cells in culture, which is initially promoted by IL-15. The upregulation of IL-10 was followed by the appearance of suppressor of cytokine signaling (SOCS)1 in the presence of IL-15 and the loss of IL-10. This resulted in the cells switching to IL-12 expression. This anti-inflammatory to pro-inflammatory shift in the B-1a cell character was independent of the cell-specific marker CD5, which remained highly expressed throughout the in vitro life of the cells. The presence of the immunosuppressive receptor programmed cell death (PD)-1 and its ligand PD-L2 were features of a predominantly IL-10 response. PD-1 and PD-L2 can mediate juxtacrine signaling. However, the abrogation of PD-1 and its ligand was observed when the cells expressed IL-12. This demonstrates an inverse relationship between the receptor and ligand and the pro-inflammatory cytokine. The induction of IgM and IgA, which can play pivotal roles in mucosal immunity, was promoted in the presence of IL-15. Collectively, the data implicate IL-15 as the master cytokine that induces B-1a cells to mount a mucosal immune response.
Collapse
Affiliation(s)
- Amlan Kanti Ghosh
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debolina Sinha
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Subhadeep Mukherjee
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ratna Biswas
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Tapas Biswas
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
33
|
Connexin 43 communication channels in follicular dendritic cell development and in follicular lymphomas. J Immunol Res 2015; 2015:528098. [PMID: 25815348 PMCID: PMC4359865 DOI: 10.1155/2015/528098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Follicular dendritic cells (FDC) show homo- and heterocellular metabolic coupling through connexin 43 (Cx43) gap junctions and support B cell selection and maturation in germinal centers. In follicular lymphomas B cells escape apoptosis while FDC develop abnormally. Here we tested Cx43 channels in reactive FDC development and follicular lymphomas. In culture, the treatment of FDC-B cell clusters (resembling to “ex vivo” germinal centers) with Gap27 peptide, mimicking the 2nd extracellular loop of Cx43 protein, significantly impaired FDC-B cell cluster formation and cell survival. In untreated cultures of intact clusters, cell proliferation showed a moderate reduction. In tissues, Cx43 protein levels run parallel with the density of FDC both in reactive germinal centers and in malformed follicles of follicular lymphomas and showed strong upregulation in newly generated and/or degrading bi-/multinuclear FDC of rudimentary processes. However, the inverse correlation between Cx43 expression and B cell proliferation seen in reactive germinal centers was not detected in follicular lymphomas. Furthermore, Cx43 levels were not associated with either lymphoma grade or bone marrow involvement. Our results suggest that Cx43 channels are critical in FDC and “ex vivo” germinal center development and in the persistence of FDC in follicular lymphomas but do not affect tumor progression.
Collapse
|
34
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
35
|
The IL-15 cytokine system provides growth and survival signals in Hodgkin lymphoma and enhances the inflammatory phenotype of HRS cells. Leukemia 2014; 29:1213-8. [DOI: 10.1038/leu.2014.345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
37
|
Kaebisch R, Mejías-Luque R, Prinz C, Gerhard M. Helicobacter pyloriCytotoxin-Associated Gene A Impairs Human Dendritic Cell Maturation and Function through IL-10–Mediated Activation of STAT3. THE JOURNAL OF IMMUNOLOGY 2013; 192:316-23. [DOI: 10.4049/jimmunol.1302476] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Amé-Thomas P, Tarte K. The yin and the yang of follicular lymphoma cell niches: role of microenvironment heterogeneity and plasticity. Semin Cancer Biol 2013; 24:23-32. [PMID: 23978491 DOI: 10.1016/j.semcancer.2013.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 12/20/2022]
Abstract
Follicular lymphoma (FL) results from the malignant transformation of germinal center B cells and is characterized by recurrent genetic alterations providing a direct growth advantage or facilitating interaction with tumor microenvironment. In agreement, accumulating evidences suggest a dynamic bidirectional crosstalk between FL B cells and surrounding non-malignant cells within specialized tumor niches in both invaded lymph nodes and bone marrow. Infiltrating stromal cells, macrophages, and T/NK cell subsets either contribute to anti-tumor immune response, or conversely form a tumor supportive network promoting FL B cell survival, growth, and drug resistance. This review depicts the phenotypic heterogeneity and functional plasticity of the most important FL cell partners and describes their complex interplay. We also unravel how malignant B cells recruit and subvert accessory immune and stromal cells to trigger their polarization toward a supportive phenotype. Based on these observations, innovative therapeutic approaches have been recently proposed, in order to benefit from local anti-tumor immunity and/or to selectively target the protective cell niche.
Collapse
Affiliation(s)
- Patricia Amé-Thomas
- INSERM, UMR U917, Equipe Labellisée Ligue Contre le Cancer, Faculté de Médecine, Rennes, France; Université Rennes 1, Rennes, France; CHU de Rennes, Hôpital Pontchaillou, Service ITeCH, Pôle de Biologie, Rennes, France
| | - Karin Tarte
- INSERM, UMR U917, Equipe Labellisée Ligue Contre le Cancer, Faculté de Médecine, Rennes, France; Université Rennes 1, Rennes, France; CHU de Rennes, Hôpital Pontchaillou, Service ITeCH, Pôle de Biologie, Rennes, France; Etablissement Français du Sang Bretagne, Rennes, France.
| |
Collapse
|
39
|
Croce M, Orengo AM, Azzarone B, Ferrini S. Immunotherapeutic applications of IL-15. Immunotherapy 2013; 4:957-69. [PMID: 23046239 DOI: 10.2217/imt.12.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IL-15 is a member of the IL-2 family of cytokines, which play a fundamental role in innate and adaptive immune responses. IL-15 has pleiotropic immune-enhancing activities, as it stimulates NK, T and NKT cell proliferation, survival and effector functions. In view of these properties, IL-15 is regarded as a good candidate for cancer immunotherapy. This possibility is reinforced by its low toxicity and efficacy in preclinical tumor models. The use of IL-15 to boost the immune response in HIV infection has also been proposed, although further studies are required to establish potential risks and benefits. Clinical trials of IL-15 have been initiated in cancer patients and in HIV vaccination and will elucidate the potential of IL-15-based immunotherapy. The purpose of this review is to provide an update on the potential applications of IL-15 in cancer immunotherapy and HIV infection.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS-AOU San-Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | |
Collapse
|
40
|
El Shikh MEM, Pitzalis C. Follicular dendritic cells in health and disease. Front Immunol 2012; 3:292. [PMID: 23049531 PMCID: PMC3448061 DOI: 10.3389/fimmu.2012.00292] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/31/2012] [Indexed: 12/17/2022] Open
Abstract
Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | | |
Collapse
|
41
|
Mourcin F, Pangault C, Amin-Ali R, Amé-Thomas P, Tarte K. Stromal cell contribution to human follicular lymphoma pathogenesis. Front Immunol 2012; 3:280. [PMID: 22973275 PMCID: PMC3433684 DOI: 10.3389/fimmu.2012.00280] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/16/2012] [Indexed: 12/19/2022] Open
Abstract
Follicular lymphoma (FL) is the prototypical model of indolent B cell lymphoma displaying a strong dependence on a specialized cell microenvironment mimicking normal germinal center. Within malignant cell niches in invaded lymph nodes and bone marrow, external stimuli provided by infiltrating stromal cells make a pivotal contribution to disease development, progression, and drug resistance. The crosstalk between FL B cells and stromal cells is bidirectional, causing activation of both partners. In agreement, FL stromal cells exhibit specific phenotypic, transcriptomic, and functional properties. This review highlights the critical pathways involved in the direct tumor-promoting activity of stromal cells but also their role in the organization of FL cell niche through the recruitment of accessory immune cells and their polarization to a B cell supportive phenotype. Finally, deciphering the interplay between stromal cells and FL cells provides potential new therapeutic targets with the aim to mobilize malignant cells outside their protective microenvironment and increase their sensitivity to conventional treatment.
Collapse
|
42
|
Benito-Miguel M, García-Carmona Y, Balsa A, Bautista-Caro MB, Arroyo-Villa I, Cobo-Ibáñez T, Bonilla-Hernán MG, de Ayala CP, Sánchez-Mateos P, Martín-Mola E, Miranda-Carús ME. IL-15 expression on RA synovial fibroblasts promotes B cell survival. PLoS One 2012; 7:e40620. [PMID: 22792388 PMCID: PMC3392224 DOI: 10.1371/journal.pone.0040620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/11/2012] [Indexed: 02/03/2023] Open
Abstract
Introduction The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib) IL-15 expression on B cell survival. Methods Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. Results RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/−8% (p<0.001). IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/−6% (p<0.05). Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. Conclusion IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.
Collapse
Affiliation(s)
| | | | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Irene Arroyo-Villa
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Hospital General Universitario Gregorio Marañón Madrid, Spain
| | - Emilio Martín-Mola
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
43
|
Perera PY, Lichy JH, Waldmann TA, Perera LP. The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. Microbes Infect 2012; 14:247-61. [PMID: 22064066 PMCID: PMC3270128 DOI: 10.1016/j.micinf.2011.10.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine with a broad range of biological functions in many diverse cell types. It plays a major role in the development of inflammatory and protective immune responses to microbial invaders and parasites by modulating immune cells of both the innate and adaptive immune systems. This review provides an overview of the mechanisms by which IL-15 modulates the host response to infectious agents and its utility as a cytokine adjuvant in vaccines against infectious pathogens.
Collapse
Affiliation(s)
- Pin-Yu Perera
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Jack H. Lichy
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Kim J, Kim DW, Chang W, Choe J, Kim J, Park CS, Song K, Lee I. Wnt5a is secreted by follicular dendritic cells to protect germinal center B cells via Wnt/Ca2+/NFAT/NF-κB-B cell lymphoma 6 signaling. THE JOURNAL OF IMMUNOLOGY 2011; 188:182-9. [PMID: 22124122 DOI: 10.4049/jimmunol.1102297] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Follicular dendritic cells (FDCs) protect germinal center (GC) B cells from rapid apoptosis to allow their survival and maturation. In this article, we show that FDCs normally produce and secrete Wnt5a to protect GC B cells. Wnt5a production is upregulated by polyI:C. Purified Wnt5a protects GC B cells from apoptosis in a dose-dependent manner. GC B cells are protected by FDC coculture or conditioned medium, and the protection is inhibited significantly by anti-Wnt5a Ab, suggesting a major role of Wnt5a in the FDC-mediated GC B cell protection. A calcium chelator BAPTA-AM blocks the Wnt5a-mediated GC B cell protection, implying a role of Wnt/Ca(2+) signaling in the GC B cell survival. Wnt5a and calcium ionophore activate NFATc1, NFATc2, NF-κB, and B cell lymphoma 6 (BCL-6) promptly and upregulate CD40 expression in GC B and Ramos cells, whereas p53 and JNK are not upregulated or activated. Cyclosporine A inhibits the Wnt5a and calcium-induced activation of NF-κB and BCL-6 in Ramos cells, supporting a role of β-catenin-independent Wnt/Ca(2+)/NFAT/NF-κB-BCL-6 signaling. Our data support that Wnt5a is a novel survival factor for GC B cells and might be a potential target for the regulation of B cell immunity.
Collapse
Affiliation(s)
- Jungtae Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jourdan M, Caraux A, Caron G, Robert N, Fiol G, Rème T, Bolloré K, Vendrell JP, Le Gallou S, Mourcin F, De Vos J, Kassambara A, Duperray C, Hose D, Fest T, Tarte K, Klein B. Characterization of a Transitional Preplasmablast Population in the Process of Human B Cell to Plasma Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3931-41. [DOI: 10.4049/jimmunol.1101230] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling. Leukemia 2011; 26:139-48. [PMID: 21788945 DOI: 10.1038/leu.2011.179] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-15 (IL-15) has been extensively studied for its role in the survival and proliferation of NK and T cells through a unique mechanism of trans-presentation by producer cells. Conversely, whereas activated B cells have been described as IL-15-responding cells, the cellular and molecular context sustaining this effect remains unexplored. In this study, we found that, whereas human B cells could not respond to soluble IL-15, monocytes and lymphoid tissue-derived macrophages but not stromal cells efficiently trans-present IL-15 to normal B cells and cooperate with T-cell-derived CD40L to promote IL-15-dependent B-cell proliferation. Furthermore, CD40L signaling triggers a Src-independent upregulation of STAT5 expression and favors a Src-dependent phosphorylation of STAT5 in response to IL-15. In follicular lymphoma (FL), immunohistochemical studies reported a strong relationship between malignant B cells, infiltrating macrophages and T cells. We show here an overexpression of IL-15 in purified tumor-associated macrophages, and STAT5A in purified tumor B cells. Moreover, FL B cells respond to IL-15 trans-presented by monocytes/macrophages, in particular, in the presence of CD40L-mediated signaling. This cooperation between IL-15 and CD40L reinforces the importance of tumor microenvironment and unravels a mechanism of FL growth that should be considered if using IL-15 as a drug in this disease.
Collapse
|
47
|
Fritz JH, Gommerman JL. Cytokine/stromal cell networks and lymphoid tissue environments. J Interferon Cytokine Res 2010; 31:277-89. [PMID: 21133813 DOI: 10.1089/jir.2010.0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Initiation of an effective adaptive immune response against a foreign pathogen requires orchestrated encounters between lymphocytes and antigen-presenting cells. The tissues of the lymphoid system provide the ideal environment for increasing the efficiency of these encounters. Within the spleen, the mucosal-associated lymphoid tissues, and the lymph nodes, an intricate network of stromal cells, collagen fibers, and extracellular matrix exists that effectively compartmentalizes immune cells as they transit through these tissues. The stromal cells within lymphoid tissues are by no means homogenous, and it is now clear that these cells are not merely sessile bystanders during immune responses. Indeed, stromal cells within lymphoid tissues are the source of important cytokines and chemokines that guide and polarize immune cells. Here, we review the cytokines that maintain the integrity of this important stromal scaffold system within the lymphoid tissue, paying particular attention to the Lymphotoxin pathway, which is an important player in stromal cell biology. How cytokines maintain the organization of lymphoid tissues during development, in the adult animal, during inflammation and during disease will be discussed in sequence, and the clinical implications of targeting cytokines that regulate lymphoid tissue stroma will be considered.
Collapse
Affiliation(s)
- Jörg H Fritz
- Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Hauser AE, Kerfoot SM, Haberman AM. Cellular choreography in the germinal center: new visions from in vivo imaging. Semin Immunopathol 2010; 32:239-55. [PMID: 20614218 DOI: 10.1007/s00281-010-0214-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/22/2010] [Indexed: 11/25/2022]
Abstract
Germinal centers (GC) are large aggregates of proliferating B lymphocytes within follicles of lymphoid tissue that form during adaptive immune responses. GCs are the source of long-lived B cells that form the basis for pathogen-specific lifelong B cell immunity. The complex architecture of these structures includes subdomains that differ significantly in their stromal cell and T lymphocyte subset composition. In part due to their structural complexity and potential to generate some lymphomas, much interest and many theories about GC dynamics have emerged. Here, we review recent research employing in vivo imaging that has begun to untangle some of the mysteries.
Collapse
Affiliation(s)
- Anja E Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin 10117, Germany
| | | | | |
Collapse
|
49
|
Garin A, Meyer-Hermann M, Contie M, Figge MT, Buatois V, Gunzer M, Toellner KM, Elson G, Kosco-Vilbois MH. Toll-like Receptor 4 Signaling by Follicular Dendritic Cells Is Pivotal for Germinal Center Onset and Affinity Maturation. Immunity 2010; 33:84-95. [PMID: 20643339 DOI: 10.1016/j.immuni.2010.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/08/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
|
50
|
Gil M, Park SJ, Chung YS, Park CS. Interleukin-15 enhances proliferation and chemokine secretion of human follicular dendritic cells. Immunology 2010; 130:536-44. [PMID: 20331472 DOI: 10.1111/j.1365-2567.2010.03252.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The germinal centre (GC) is a specialized microenvironment where high-affinity antibodies are produced through hypermutation and isotype switching. Follicular dendritic cells (FDCs) are the stromal cells of the GC. The timely expansion and establishment of an FDC network is essential for a protective GC reaction; however, only a few factors modulating FDC development have been recognized. In this study, we report that interleukin-15 (IL-15) enhances human primary FDC proliferation and regulates cytokine secretion. The FDCs express IL-15 receptor complexes for IL-15 signal transduction as well as for specific binding. Moreover, the secretion of chemokines CCL-2, CCL-5, CXCL-5 and CXCL-8 was reduced by blocking IL-15 signalling while the secretion of other cytokines, and the expression of CD14, CD44, CD54 (ICAM-1) and CD106 (VCAM-1) proteins remained unchanged. These results suggest that IL-15 plays a crucial role in the development of FDC networks during GC reaction, offering a new target for immune modulation.
Collapse
Affiliation(s)
- Minchan Gil
- Department of Pathology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|