1
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Werner LM, Criss AK. Diverse Functions of C4b-Binding Protein in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1443-1449. [PMID: 37931209 PMCID: PMC10629839 DOI: 10.4049/jimmunol.2300333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 11/08/2023]
Abstract
C4b-binding protein (C4BP) is a fluid-phase complement inhibitor that prevents uncontrolled activation of the classical and lectin complement pathways. As a complement inhibitor, C4BP also promotes apoptotic cell death and is hijacked by microbes and tumors for complement evasion. Although initially characterized for its role in complement inhibition, there is an emerging recognition that C4BP functions in a complement-independent manner to promote cell survival, protect against autoimmune damage, and modulate the virulence of microbial pathogens. In this Brief Review, we summarize the structure and functions of human C4BP, with a special focus on activities that extend beyond the canonical role of C4BP in complement inhibition.
Collapse
Affiliation(s)
- Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
3
|
Zhao F, Bai Y, Xiang X, Pang X. The role of fibromodulin in inflammatory responses and diseases associated with inflammation. Front Immunol 2023; 14:1191787. [PMID: 37483637 PMCID: PMC10360182 DOI: 10.3389/fimmu.2023.1191787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Inflammation is an immune response that the host organism eliminates threats from foreign objects or endogenous signals. It plays a key role in the progression, prognosis as well as therapy of diseases. Chronic inflammatory diseases have been regarded as the main cause of death worldwide at present, which greatly affect a vast number of individuals, producing economic and social burdens. Thus, developing drugs targeting inflammation has become necessary and attractive in the world. Currently, accumulating evidence suggests that small leucine-rich proteoglycans (SLRPs) exhibit essential roles in various inflammatory responses by acting as an anti-inflammatory or pro-inflammatory role in different scenarios of diseases. Of particular interest was a well-studied member, termed fibromodulin (FMOD), which has been largely explored in the role of inflammatory responses in inflammatory-related diseases. In this review, particular focus is given to the role of FMOD in inflammatory response including the relationship of FMOD with the complement system and immune cells, as well as the role of FMOD in the diseases associated with inflammation, such as skin wounding healing, osteoarthritis (OA), tendinopathy, atherosclerosis, and heart failure (HF). By conducting this review, we intend to gain insight into the role of FMOD in inflammation, which may open the way for the development of new anti-inflammation drugs in the scenarios of different inflammatory-related diseases.
Collapse
Affiliation(s)
- Feng Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerong Xiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
FHUSPA2/10 is a bactericidal monoclonal antibody targeting multiple repeated sequences of Moraxella catarrhalis UspA2. Vaccine 2022; 40:6520-6527. [PMID: 36202640 DOI: 10.1016/j.vaccine.2022.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022]
Abstract
Moraxella catarrhalis is an important and common respiratory pathogen that can cause Otitis Media, Community Acquired Pneumonia, and has been associated with an increased risk of exacerbations in chronic obstructive pulmonary disease in adults, leading to morbidity and mortality. Its ubiquitous surface protein A2 (UspA2) has been shown to interact with host structures and extracellular matrix proteins, suggesting a role at an early stage of infection and a contribution to bacterial serum resistance. The UspA proteins are homo-trimeric autotransporters that appear as a lollipop-shaped structure in electron micrographs. They are composed of an N-terminal head with adhesive properties, followed by a stalk, which ends by an amphipathic helix and a C-terminal membrane domain. The three family members UspA1, UspA2 and UspA2H, present different amino acid signatures both at the head and membrane-spanning regions. By combining electron microscopy, hydrogen deuterium exchange mass spectrometry and protein modeling, we identified a shared and repeated epitope recognized by FHUSPA2/10, a potent cross-bactericidal monoclonal antibody raised by UspA2 and deduced key amino acids involved in the binding. The finding strengthens the potential of UspA2 to be incorporated in a vaccine formulation against M. catarrhalis.
Collapse
|
5
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
6
|
Thofte O, Bettoni S, Su YC, Thegerström J, Jonsson S, Mattsson E, Sandblad L, Martí S, Garmendia J, Blom AM, Riesbeck K. Nontypeable Haemophilus influenzae P5 Binds Human C4b-Binding Protein, Promoting Serum Resistance. THE JOURNAL OF IMMUNOLOGY 2021; 207:1566-1577. [PMID: 34433620 PMCID: PMC8428749 DOI: 10.4049/jimmunol.2100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Exposure of P5 at the surface of NTHi positively correlates with C4BP binding. C4BP bound to the bacterial surface retains its complement inhibitory capacity. C4BP binding to P5 is important for NTHi serum resistance.
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sandra Jonsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Emma Mattsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Sara Martí
- Microbiology Department, Research Network for Respiratory Diseases, Bellvitge Institute for Biomedical Research, Bellvitge University Hospital, Barcelona, Spain; and
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Anna M Blom
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden;
| |
Collapse
|
7
|
Ysebaert C, Castado C, Mortier MC, Rioux S, Feron C, Di Paolo E, Weynants V, Blais N, Devos N, Hermand P. UspA2 is a cross-protective Moraxella catarrhalis vaccine antigen. Vaccine 2021; 39:5641-5649. [PMID: 34446318 DOI: 10.1016/j.vaccine.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Moraxella catarrhalis (Mcat) is a key pathogen associated with exacerbations of chronic obstructive pulmonary disease (COPD) in adults and playing a significant role in otitis media in children. A vaccine would help to reduce the morbidity and mortality associated with these diseases. UspA2 is an Mcat surface antigen considered earlier as vaccine candidate before the interest in this molecule vanished due to sequence variability. However, the observation that some conserved domains are the target of bactericidal antibodies prompted us to reconsider UspA2 as a potential vaccine antigen. We first determined its prevalence among the COPD patients from the AERIS study, as the prevalence of UspA2 in a COPD-restricted population had yet to be documented. The gene was found in all Mcat isolates either as UspA2 or UspA2H variant. The percentage of UspA2H variant was higher than in any report so far, reaching 51%. A potential link between the role of UspA2H in biofilm formation and this high prevalence is discussed. To study further UspA2 as a vaccine antigen, recombinant UspA2 molecules were designed and used in animal models and bactericidal assays. We showed that UspA2 is immunogenic and that UspA2 immunization clears Mcat pulmonary challenge in a mouse model. In a serum bactericidal assay, anti-UspA2 antibodies generated in mice, guinea pigs or rabbits were able to kill Mcat strains of various origins, including a subset of isolates from the AERIS study, cross-reacting with UspA2H and even UspA1, a closely related Mcat surface protein. In conclusion, UspA2 is a cross-reactive Mcat antigen presenting the characteristics of a vaccine candidate.
Collapse
|
8
|
Shhadeh A, Galaski J, Alon-Maimon T, Fahoum J, Wiener R, Slade DJ, Mandelboim O, Bachrach G. CEACAM1 Activation by CbpF-Expressing E. coli. Front Cell Infect Microbiol 2021; 11:699015. [PMID: 34395310 PMCID: PMC8358318 DOI: 10.3389/fcimb.2021.699015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Recent studies on the oral, anaerobic, gram-negative bacterium Fusobacterium nucleatum revealed its presence and involvement in colorectal, esophageal and breast cancer. We previously demonstrated that F. nucleatum binds and activates the human inhibitory receptors TIGIT and CEACAM1 leading to inhibition of T and NK cell anti-tumor immunity. CEACAM1 was found to be bound and activated by the fusobacterial trimeric autotransporter adhesin CbpF. Here we report the generation of a recombinant E. coli expressing full-length CbpF that efficiently binds and activates CEACAM1.
Collapse
Affiliation(s)
- Amjad Shhadeh
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Johanna Galaski
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel.,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
9
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
10
|
Laabei M, Colineau L, Bettoni S, Maziarz K, Ermert D, Riesbeck K, Ram S, Blom AM. Antibacterial Fusion Proteins Enhance Moraxella catarrhalis Killing. Front Immunol 2020; 11:2122. [PMID: 32983170 PMCID: PMC7492680 DOI: 10.3389/fimmu.2020.02122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023] Open
Abstract
Moraxella catarrhalis is a human-specific commensal of the respiratory tract and an opportunistic pathogen. It is one of the leading cause of otitis media in children and of acute exacerbations in patients with chronic obstructive pulmonary disease, resulting in significant morbidity and economic burden. Vaccines and new immunotherapeutic strategies to treat this emerging pathogen are needed. Complement is a key component of innate immunity that mediates the detection, response, and subsequent elimination of invading pathogens. Many pathogens including M. catarrhalis have evolved complement evasion mechanisms, which include the binding of human complement inhibitors such as C4b-binding protein (C4BP) and Factor H (FH). Inhibiting C4BP and FH acquisition by M. catarrhalis may provide a novel therapeutic avenue to treat infections. To achieve this, we created two chimeric proteins that combined the Moraxella-binding domains of C4BP and FH fused to human immunoglobulin Fcs: C4BP domains 1 and 2 and FH domains 6 and 7 fused to IgM and IgG Fc, respectively. As expected, FH6-7/IgG displaced FH from the bacterial surface while simultaneously activating complement via Fc-C1q interactions, together increasing pathogen elimination. C4BP1-2/IgM also increased serum killing of the bacteria through enhanced complement deposition, but did not displace C4BP from the surface of M. catarrhalis. These Fc fusion proteins could act as anti-infective immunotherapies. Many microbes bind the complement inhibitors C4BP and FH through the same domains as M. catarrhalis, therefore these Fc fusion proteins may be promising candidates as adjunctive therapy against many different drug-resistant pathogens.
Collapse
Affiliation(s)
- Maisem Laabei
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Karolina Maziarz
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
11
|
Manne K, Chattopadhyay D, Agarwal V, Blom AM, Khare B, Chakravarthy S, Chang C, Ton-That H, Narayana SVL. Novel structure of the N-terminal helical domain of BibA, a group B streptococcus immunogenic bacterial adhesin. Acta Crystallogr D Struct Biol 2020; 76:759-770. [PMID: 32744258 PMCID: PMC7397492 DOI: 10.1107/s2059798320008116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BibA, a group B streptococcus (GBS) surface protein, has been shown to protect the pathogen from phagocytic killing by sequestering a complement inhibitor: C4b-binding protein (C4BP). Here, the X-ray crystallographic structure of a GBS BibA fragment (BibA126-398) and a low-resolution small-angle X-ray scattering (SAXS) structure of the full-length N-terminal domain (BibA34-400) are described. The BibA126-398 fragment crystal structure displayed a novel and predominantly helical structure. The tertiary arrangement of helices forms four antiparallel three-helix-bundle-motif repeats, with one long helix from a bundle extending into the next. Multiple mutations on recombinant BibA34-400 delayed the degradation of the protein, and circular dichroism spectroscopy of BibA34-400 suggested a similar secondary-structure composition to that observed in the crystallized BibA126-398 fragment. A model was generated for the 92 N-terminal residues (BibA34-125) using structural similarity prediction programs, and a BibA34-400 model was generated by combining the coordinates of BibA34-126 and BibA126-398. The X-ray structure of BibA126-398 and the model of BibA34-400 fitted well into the calculated SAXS envelope. One possible binding site for the BibA N-terminal domain was localized to the N-terminal CCP (complement-control protein) domains of the C4BP α-chain, as indicated by the decreased binding of BibA to a ΔCCP1 C4BP α-chain mutant. In summary, it is suggested that the GBS surface protein BibA, which consists of three antiparallel α-helical-bundle motifs, is unique and belongs to a new class of Gram-positive surface adhesins.
Collapse
Affiliation(s)
- Kartik Manne
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| | | | - Vaibhav Agarwal
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Sthanam V. L. Narayana
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| |
Collapse
|
12
|
Riesbeck K. Complement evasion by the human respiratory tract pathogens Haemophilus influenzae and Moraxella catarrhalis. FEBS Lett 2020; 594:2586-2597. [PMID: 32053211 DOI: 10.1002/1873-3468.13758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/26/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
All infective bacterial species need to conquer the innate immune system in order to colonize and survive in their hosts. The human respiratory pathogens Haemophilus influenzae and Moraxella catarrhalis are no exceptions and have developed sophisticated mechanisms to evade complement-mediated killing. Both bacterial species carry lipooligosaccharides preventing complement attacks and attract and utilize host complement regulators C4b binding protein and factor H to inhibit the classical and alternative pathways of complement activation, respectively. In addition, the regulator of the terminal pathway of complement activation, vitronectin, is hijacked by both bacteria. An array of different outer membrane proteins (OMP) in H. influenzae and M. catarrhalis simultaneously binds complement regulators, but also plasminogen. Several of the bacterial complement-binding proteins are important adhesins and contain highly conserved regions for interactions with the host. Thus, some of the OMP are viable targets for new therapeutics, including vaccines aimed at preventing respiratory tract diseases such as otitis media in children and exacerbations in patients suffering from chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
13
|
Bettoni S, Shaughnessy J, Maziarz K, Ermert D, Gulati S, Zheng B, Mörgelin M, Jacobsson S, Riesbeck K, Unemo M, Ram S, Blom AM. C4BP-IgM protein as a therapeutic approach to treat Neisseria gonorrhoeae infections. JCI Insight 2019; 4:131886. [PMID: 31661468 PMCID: PMC6962029 DOI: 10.1172/jci.insight.131886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Gonorrhea is a sexually transmitted infection with 87 million new cases per year globally. Increasing antibiotic resistance has severely limited treatment options. A mechanism that Neisseria gonorrhoeae uses to evade complement attack is binding of the complement inhibitor C4b-binding protein (C4BP). We screened 107 porin B1a (PorB1a) and 83 PorB1b clinical isolates randomly selected from a Swedish strain collection over the last 10 years and noted that 96/107 (89.7%) PorB1a and 16/83 (19.3%) PorB1b bound C4BP; C4BP binding substantially correlated with the ability to evade complement-dependent killing (r = 0.78). We designed 2 chimeric proteins that fused C4BP domains to the backbone of IgG or IgM (C4BP-IgG; C4BP-IgM) with the aim of enhancing complement activation and killing of gonococci. Both proteins bound gonococci (KD C4BP-IgM = 2.4 nM; KD C4BP-IgG 980.7 nM), but only hexameric C4BP-IgM efficiently outcompeted heptameric C4BP from the bacterial surface, resulting in enhanced complement deposition and bacterial killing. Furthermore, C4BP-IgM substantially attenuated the duration and burden of colonization of 2 C4BP-binding gonococcal isolates but not a non-C4BP-binding strain in a mouse vaginal colonization model using human factor H/C4BP-transgenic mice. Our preclinical data present C4BP-IgM as an adjunct to conventional antimicrobials for the treatment of gonorrhea.
Collapse
Affiliation(s)
- Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jutamas Shaughnessy
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karolina Maziarz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Sunita Gulati
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Zheng
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Susanne Jacobsson
- World Health Organization (WHO) Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Magnus Unemo
- World Health Organization (WHO) Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
15
|
Mikula KM, Kolodziejczyk R, Goldman A. Structure of the UspA1 protein fragment from Moraxella catarrhalis responsible for C3d binding. J Struct Biol 2019; 208:77-85. [PMID: 31400508 PMCID: PMC6839023 DOI: 10.1016/j.jsb.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023]
Abstract
UspA1299–452 is a left-handed coiled-coil structure that follows TAA rules. Structure of UspA1299–452 contains part of the long neck domain and of the stalk. UspA1-C3d binding does not saturate at C3d physiological concentrations. The binding constant as measured by thermophoresis is at least 140 μM. Full-length proteins or other factors are important for UspA1-C3d interactions.
The gram-negative bacterium Moraxella catarrhalis infects humans exclusively, causing various respiratory tract diseases, including acute otitis media in children, septicaemia or meningitis in adults, and pneumonia in the elderly. To do so, M. catarrhalis expresses virulence factors facilitating its entry and survival in the host. Among them are the ubiquitous surface proteins (Usps): A1, A2, and A2H, which all belong to the trimeric autotransporter adhesin family. They bind extracellular matrix molecules and inhibit the classical and alternative pathways of the complement cascade by recruiting complement regulators C3d and C4b binding protein. Here, we report the 2.5 Å resolution X-ray structure of UspA1299–452, which previous work had suggested contained the canonical C3d binding site found in both UspA1 and UspA2. We show that this fragment of the passenger domain contains part of the long neck domain (residues 299–336) and a fragment of the stalk (residues 337–452). The coiled-coil stalk is left-handed, with 7 polar residues from each chain facing the core and coordinating chloride ions or water molecules. Despite the previous reports of tight binding in serum-based assays, we were not able to demonstrate binding between C3d and UspA1299–452 using ELISA or biolayer interferometry, and the two proteins run separately on size-exclusion chromatography. Microscale thermophoresis suggested that the dissociation constant was 140.5 ± 8.4 μM. We therefore suggest that full-length proteins or other additional factors are important in UspA1-C3d interactions. Other molecules on the bacterial surface or present in serum may enhance binding of those two molecules.
Collapse
Affiliation(s)
- Kornelia M Mikula
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Robert Kolodziejczyk
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
16
|
Fukutani KF, Nascimento-Carvalho CM, Bouzas ML, Oliveira JR, Barral A, Dierckx T, Khouri R, Nakaya HI, Andrade BB, Van Weyenbergh J, de Oliveira CI. In situ Immune Signatures and Microbial Load at the Nasopharyngeal Interface in Children With Acute Respiratory Infection. Front Microbiol 2018; 9:2475. [PMID: 30473680 PMCID: PMC6238668 DOI: 10.3389/fmicb.2018.02475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory infection (ARI) is the most frequent cause for hospitalization in infants and young children. Using multiplexed nCounter technology to digitally quantify 600 human mRNAs in parallel with 14 virus- and 5 bacterium-specific RNAs, we characterized viral and bacterial presence in nasopharyngeal aspirates (NPA) of 58 children with ARI and determined the corresponding in situ immune profiles. NPA contained different groups of organisms and these were classified into bacterial (n = 27), viral (n = 5), codetection [containing both viral and bacterial transcripts (n = 21), or indeterminate intermediate where microbial load is below threshold (n = 5)]. We then identified differentially expressed immune transcripts (DEITs) comparing NPAs from symptomatic children vs. healthy controls, and comparing children presenting NPAs with detectable microbial load vs. indeterminate. We observed a strong innate immune response in NPAs, due to the presence of evolutionarily conserved type I Interferon (IFN)-stimulated genes (ISG), which was correlated with total bacterial and/or viral load. In comparison with indeterminate NPAs, adaptive immunity transcripts discriminated among viral, bacterial, and codetected microbial profiles. In viral NPAs, B cell transcripts were significantly enriched among DEITs, while only type III IFN was correlated with viral load. In bacterial NPAs, myeloid cells and coinhibitory transcripts were enriched and significantly correlated with bacterial load. In conclusion, digital nCounter transcriptomics provide a microbial and immunological in situ “snapshot” of the nasopharyngeal interface in children with ARI. This enabled discrimination among viral, bacterial, codetection, and indeterminate transcripts in the samples using non-invasive sampling.
Collapse
Affiliation(s)
| | - Cristiana M Nascimento-Carvalho
- School of Medicine, Federal University of Bahia, Salvador, Brazil.,Department of Pediatrics, School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Maiara L Bouzas
- School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Aldina Barral
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador, Brazil.,School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Tim Dierckx
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ricardo Khouri
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador, Brazil.,School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador, Brazil.,School of Medicine, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
17
|
Laabei M, Liu G, Ermert D, Lambris JD, Riesbeck K, Blom AM. Short Leucine-Rich Proteoglycans Modulate Complement Activity and Increase Killing of the Respiratory Pathogen Moraxella catarrhalis. THE JOURNAL OF IMMUNOLOGY 2018; 201:2721-2730. [PMID: 30266767 DOI: 10.4049/jimmunol.1800734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022]
Abstract
The respiratory pathogen Moraxella catarrhalis is a human-specific commensal that frequently causes acute otitis media in children and stimulates acute exacerbations in chronic obstructive pulmonary disease patients. The exact molecular mechanisms defining host-pathogen interactions promoting pathogenesis are not clearly understood. Limited knowledge hampers vaccine and immunotherapeutic development required to treat this emerging pathogen. In this study, we reveal in detail a novel antibacterial role displayed by short leucine-rich proteoglycans (SLRPs) in concert with complement. We show that fibromodulin (FMOD), osteoadherin (OSAD), and biglycan (BGN) but not decorin (DCN) enhance serum killing of M. catarrhalis. Our results suggest that M. catarrhalis binding to SLRPs is a conserved feature, as the overwhelming majority of clinical and laboratory strains bound all four SLRPs. Furthermore, we resolve the binding mechanism responsible for this interaction and highlight the role of the ubiquitous surface protein (Usp) A2/A2H in mediating binding to host SLRPs. A conserved immune evasive strategy used by M. catarrhalis and other pathogens is the surface acquisition of host complement inhibitors such as C4b-binding protein (C4BP). We observed that FMOD, OSAD, and BGN competitively inhibit binding of C4BP to the surface of M. catarrhalis, resulting in increased C3b/iC3b deposition, membrane attack complex (MAC) formation, and subsequently decreased bacterial survival. Furthermore, both OSAD and BGN promote enhanced neutrophil killing in vitro, both in a complement-dependent and independent fashion. In summary, our results illustrate that SLRPs, FMOD, OSAD, and BGN portray complement-modulating activity enhancing M. catarrhalis killing, defining a new antibacterial role supplied by SLRPs.
Collapse
Affiliation(s)
- Maisem Laabei
- Division of Medical Protein Chemistry, Lund University, 21428 Malmö, Sweden
| | - Guanghui Liu
- Division of Medical Protein Chemistry, Lund University, 21428 Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Lund University, 21428 Malmö, Sweden
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Kristian Riesbeck
- Division of Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, 21428 Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Lund University, 21428 Malmö, Sweden;
| |
Collapse
|
18
|
Breda LCD, Vasconcellos SA, de Moraes Vasconcelos D, Isaac L. Binding of human complement C1 sterase inhibitor to Leptospira spp. Immunobiology 2018; 223:183-190. [DOI: 10.1016/j.imbio.2017.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/15/2023]
|
19
|
Perez AC, Murphy TF. A Moraxella catarrhalis vaccine to protect against otitis media and exacerbations of COPD: An update on current progress and challenges. Hum Vaccin Immunother 2017; 13:2322-2331. [PMID: 28853985 PMCID: PMC5647992 DOI: 10.1080/21645515.2017.1356951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 01/03/2023] Open
Abstract
Moraxella catarrhalis is a major cause of morbidity and mortality worldwide, especially causing otitis media in young children and exacerbations of chronic obstructive pulmonary disease in adults. This pathogen uses several virulence mechanisms to colonize and survive in its host, including adherence and invasion of host cells, formation of polymicrobial biofilms with other bacterial pathogens, and production of β-lactamase. Given the global impact of otitis media and COPD, an effective vaccine to prevent M. catarrhalis infection would have a huge impact on the quality of life in both patient populations by preventing disease, thus reducing morbidity and health care costs. A number of promising vaccine antigens have been identified for M. catarrhalis. The development of improved animal models of M. catarrhalis disease and identification of a correlate of protection are needed to accelerate vaccine development. This review will discuss the current state of M. catarrhalis vaccine development, and the challenges that must be addressed to succeed.
Collapse
Affiliation(s)
- Antonia C. Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Timothy F. Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Microbiology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
20
|
Liu G, Ermert D, Johansson ME, Singh B, Su YC, Paulsson M, Riesbeck K, Blom AM. PRELP Enhances Host Innate Immunity against the Respiratory Tract Pathogen Moraxella catarrhalis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2330-2340. [PMID: 28148731 DOI: 10.4049/jimmunol.1601319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/09/2017] [Indexed: 01/25/2023]
Abstract
Respiratory tract infections are one of the leading causes of mortality worldwide urging better understanding of interactions between pathogens causing these infections and the host. Here we report that an extracellular matrix component proline/arginine-rich end leucine-rich repeat protein (PRELP) is a novel antibacterial component of innate immunity. We detected the presence of PRELP in human bronchoalveolar lavage fluid and showed that PRELP can be found in alveolar fluid, resident macrophages/monocytes, myofibroblasts, and the adventitia of blood vessels in lung tissue. PRELP specifically binds respiratory tract pathogens Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae, but not other bacterial pathogens tested. We focused our study on M. catarrhalis and found that PRELP binds the majority of clinical isolates of M. catarrhalis (n = 49) through interaction with the ubiquitous surface protein A2/A2H. M. catarrhalis usually resists complement-mediated serum killing by recruiting to its surface a complement inhibitor C4b-binding protein, which is also a ligand for PRELP. We found that PRELP competitively inhibits binding of C4b-binding protein to bacteria, which enhances membrane attack complex formation on M. catarrhalis and thus leads to increased serum sensitivity. Furthermore, PRELP enhances phagocytic killing of serum-opsonized M. catarrhalis by human neutrophils in vitro. Moreover, PRELP reduces Moraxella adherence to and invasion of human lung epithelial A549 cells. Taken together, PRELP enhances host innate immunity against M. catarrhalis through increasing complement-mediated attack, improving phagocytic killing activity of neutrophils, and preventing bacterial adherence to lung epithelial cells.
Collapse
Affiliation(s)
- Guanghui Liu
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Martin E Johansson
- Division of Pathology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden; and
| | - Birendra Singh
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Yu-Ching Su
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Magnus Paulsson
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Kristian Riesbeck
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden;
| |
Collapse
|
21
|
Caine JA, Coburn J. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion. Front Immunol 2016; 7:442. [PMID: 27818662 PMCID: PMC5073149 DOI: 10.3389/fimmu.2016.00442] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick-mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.
Collapse
Affiliation(s)
- Jennifer A. Caine
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenifer Coburn
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
22
|
Jusko M, Miedziak B, Ermert D, Magda M, King BC, Bielecka E, Riesbeck K, Eick S, Potempa J, Blom AM. FACIN, a Double-Edged Sword of the Emerging Periodontal Pathogen Filifactor alocis: A Metabolic Enzyme Moonlighting as a Complement Inhibitor. THE JOURNAL OF IMMUNOLOGY 2016; 197:3245-3259. [PMID: 27638863 DOI: 10.4049/jimmunol.1600739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/20/2016] [Indexed: 02/01/2023]
Abstract
Periodontal disease is one of the most common inflammatory infectious diseases worldwide and it is associated with other syndromes, such as cardiovascular disease or rheumatoid arthritis. Recent advances in sequencing allowed for identification of novel periodontopathogens such as Gram-positive Filifactor alocis, but its virulence mechanisms remain largely unknown. We confirmed that F. alocis is a prevalent species in periodontitis patients, and we also observed strong correlation of this bacterium with clinical parameters, highlighting its role in the pathogenesis of the disease. Further, we found that preincubation of human serum with F. alocis resulted in abolished bactericidal activity and that F. alocis was surviving readily in full blood. We demonstrated that one of the key contributors to F. alocis complement resistance is a unique protein, FACIN (F. alocis complement inhibitor), which binds to C3, resulting in suppression of all complement pathways. Interestingly, FACIN is a nonclassical cell surface protein, a cytosolic enzyme acetylornithine transaminase, for which we now identified a moonlighting function. FACIN binds to C3 alone, but more importantly it also captures activated complement factor 3 within the complex with factor B, thereby locking in the convertase in an inactive state. Because of the indispensable role of alternative pathway convertase in amplifying complement cascades, its inhibition by FACIN results in a very potent downregulation of activated complement factor 3 opsonization on the pathogen surface, accompanied by reduction of downstream C5 cleavage.
Collapse
Affiliation(s)
- Monika Jusko
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Beata Miedziak
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - David Ermert
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Michal Magda
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Ben C King
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden
| | - Ewa Bielecka
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Kristian Riesbeck
- Section of Clinical Microbiology, Department of Translational Medicine, Lund University, 202 13 Malmö, Sweden
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, 3010 Bern, Switzerland; and
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.,Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Anna M Blom
- Section of Protein Chemistry, Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden;
| |
Collapse
|
23
|
The serine protease autotransporter Tsh contributes to the virulence of Edwardsiella tarda. Vet Microbiol 2016; 189:68-74. [DOI: 10.1016/j.vetmic.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
|
24
|
Abstract
UNLABELLED Moraxella catarrhalis is a human respiratory pathogen that causes acute otitis media in children and is associated with exacerbations in patients suffering from chronic obstructive pulmonary disease (COPD). The first step in M. catarrhalis colonization is adherence to the mucosa, epithelial cells, and extracellular matrix (ECM). The objective of this study was to evaluate the role of M. catarrhalis interactions with collagens from various angles. Clinical isolates (n= 43) were tested for collagen binding, followed by a detailed analysis of protein-protein interactions using recombinantly expressed proteins.M. catarrhalis-dependent interactions with collagen produced by human lung fibroblasts and tracheal tissues were studied by utilizing confocal immunohistochemistry and high-resolution scanning electron microscopy. A mouse smoke-induced chronic obstructive pulmonary disease (COPD) model was used to estimate the adherence of M. catarrhalis in vivo. We found that all M. catarrhalis clinical isolates tested adhered to fibrillar collagen types I, II, and III and network-forming collagens IV and VI. The trimeric autotransporter adhesins ubiquitous surface protein A2(UspA2) and UspA2H were identified as major collagen-binding receptors.M. catarrhalis wild type adhered to human tracheal tissue and collagen-producing lung fibroblasts, whereas UspA2 and UspA2H deletion mutants did not. Moreover, in the COPD mouse model, bacteria devoid of UspA2 and UspA2H had a reduced level of adherence to the respiratory tract compared to the adherence of wild-type bacteria. Our data therefore suggest that theM. catarrhalisUspA2 and UspA2H-dependent interaction with collagens is highly critical for adherence in the host and, furthermore, may play an important role in the establishment of disease. IMPORTANCE The respiratory tract pathogen Moraxella catarrhalis adheres to the host by interacting with several components, including the ECM. Collagen accounts for 30% of total body proteins, and therefore, bacterial adherence to abundant host collagens mediates bacterial persistence and colonization. In this study, we characterized previously unknown M. catarrhalis-dependent interactions with host collagens and found that the trimeric autotransporter adhesins ubiquitous surface protein A2(UspA2) and UspA2H are highly important. Our observations also suggested that collagen-mediated adherence ofM. catarrhalis is indispensable for bacterial survival in the host, as exemplified by a mouse COPD model.
Collapse
|
25
|
Liu G, Gradstedt H, Ermert D, Englund E, Singh B, Su YC, Johansson ME, Aspberg A, Agarwal V, Riesbeck K, Blom AM. Moraxella catarrhalis Evades Host Innate Immunity via Targeting Cartilage Oligomeric Matrix Protein. THE JOURNAL OF IMMUNOLOGY 2015; 196:1249-58. [DOI: 10.4049/jimmunol.1502071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
26
|
Ermert D, Blom AM. C4b-binding protein: The good, the bad and the deadly. Novel functions of an old friend. Immunol Lett 2015; 169:82-92. [PMID: 26658464 DOI: 10.1016/j.imlet.2015.11.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/29/2023]
Abstract
C4b-binding protein (C4BP) is best known as a potent soluble inhibitor of the classical and lectin pathways of the complement system. This large 500 kDa multimeric plasma glycoprotein is expressed mainly in the liver but also in lung and pancreas. It consists of several identical 75 kDa α-chains and often also one 40 kDa β-chain, both of which are mainly composed of complement control protein (CCP) domains. Structure-function studies revealed that one crucial binding site responsible for inhibition of complement is located to CCP1-3 of the α-chain. Binding of anticoagulant protein S to the CCP1 of the β-chain provides C4BP with the ability to strongly bind apoptotic and necrotic cells in order to prevent inflammation arising from activation of complement by these cells. Further, C4BP interacts strongly with various types of amyloid and enhances fibrillation of islet amyloid polypeptide secreted from pancreatic beta cells, which may attenuate pro-inflammatory and cytotoxic effects of this amyloid. Full deficiency of C4BP has not been identified but non-synonymous alterations in its sequence have been found in haemolytic uremic syndrome and recurrent pregnancy loss. Furthermore, C4BP is bound by several bacterial pathogens, notably Streptococcus pyogenes, which due to inhibition of complement and enhancement of bacterial adhesion to endothelial cells provides these bacteria with a survival advantage in the host. Thus, depending on the context, C4BP has a protective or detrimental role in the organism.
Collapse
Affiliation(s)
- David Ermert
- Lund University, Department of Translational Medicine, Division of Medical Protein Chemistry, Inga Marie Nilssons Street 53, Malmö, 20502, Sweden.
| | - Anna M Blom
- Lund University, Department of Translational Medicine, Division of Medical Protein Chemistry, Inga Marie Nilssons Street 53, Malmö, 20502, Sweden.
| |
Collapse
|
27
|
Bartra SS, Ding Y, Miya Fujimoto L, Ring JG, Jain V, Ram S, Marassi FM, Plano GV. Yersinia pestis uses the Ail outer membrane protein to recruit vitronectin. MICROBIOLOGY (READING, ENGLAND) 2015; 161:2174-2183. [PMID: 26377177 PMCID: PMC4806588 DOI: 10.1099/mic.0.000179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/24/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022]
Abstract
Yersinia pestis, the agent of plague, requires the Ail (attachment invasion locus) outer membrane protein to survive in the blood and tissues of its mammalian hosts. Ail is important for both attachment to host cells and for resistance to complement-dependent bacteriolysis. Previous studies have shown that Ail interacts with components of the extracellular matrix, including fibronectin, laminin and heparan sulfate proteoglycans, and with the complement inhibitor C4b-binding protein. Here, we demonstrate that Ail-expressing Y. pestis strains bind vitronectin - a host protein with functions in cell attachment, fibrinolysis and inhibition of the complement system. The Ail-dependent recruitment of vitronectin resulted in efficient cleavage of vitronectin by the outer membrane Pla (plasminogen activator protease). Escherichia coli DH5α expressing Y. pestis Ail bound vitronectin, but not heat-treated vitronectin. The ability of Ail to directly bind vitronectin was demonstrated by ELISA using purified refolded Ail in nanodiscs.
Collapse
Affiliation(s)
- Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Yi Ding
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - L. Miya Fujimoto
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Joshua G. Ring
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Vishal Jain
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| | | | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
28
|
Breda LCD, Hsieh CL, Castiblanco Valencia MM, da Silva LB, Barbosa AS, Blom AM, Yung-Fu C, Isaac L. Fine Mapping of the Interaction between C4b-Binding Protein and Outer Membrane Proteins LigA and LigB of Pathogenic Leptospira interrogans. PLoS Negl Trop Dis 2015; 9:e0004192. [PMID: 26517116 PMCID: PMC4627802 DOI: 10.1371/journal.pntd.0004192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The complement system consists of more than 40 proteins that participate in the inflammatory response and in pathogen killing. Complement inhibitors are necessary to avoid the excessive consumption and activation of this system on host cells. Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Pathogenic leptospires are able to escape from complement activation by binding to host complement inhibitors Factor H [FH] and C4b-binding protein (C4BP) while non-pathogenic leptospires are rapidly killed in the presence of fresh serum. In this study, we demonstrate that complement control protein domains (CCP) 7 and 8 of C4BP α-chain interact with the outer membrane proteins LcpA, LigA and LigB from the pathogenic leptospire L. interrogans. The interaction between C4BP and LcpA, LigA and LigB is sensitive to ionic strength and inhibited by heparin. We fine mapped the LigA and LigB domains involved in its binding to C4BP and heparin and found that both interactions are mediated through the bacterial immunoglobulin-like (Big) domains 7 and 8 (LigA7-8 and LigB7-8) of both LigA and LigB and also through LigB9-10. Therefore, C4BP and heparin may share the same binding sites on Lig proteins.
Collapse
Affiliation(s)
- Leandro C. D. Breda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ching-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | | | | | - Anna M. Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmo, Sweden
| | - Chang Yung-Fu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
29
|
Abstract
INTRODUCTION Moraxella catarrhalis is a prominent pathogen that causes acute otitis media in children and lower respiratory tract infections in adults, resulting in a significant socioeconomic burden on healthcare systems globally. No vaccine is currently available for M. catarrhalis. Promising M. catarrhalis target antigens have been characterized in animal models and should soon enter human clinical trials. AREAS COVERED This review discusses the detailed features and research status of current candidate target antigens for an M. catarrhalis vaccine. The approaches for assessing M. catarrhalis vaccine efficacy are also discussed. EXPERT OPINION Targeting the key molecules contributing to serum resistance may be a viable strategy to identify effective vaccine targets among M. catarrhalis antigens. Elucidating the role and mechanisms of the serum and mucosal immune responses to M. catarrhalis is significant for vaccine target selection, testing and evaluation. Developing animal models closely simulating M. catarrhalis-caused human respiratory diseases is of great benefit in better understanding pathogenesis and evaluating vaccine efficacy. Carrying out clinical trials will be a landmark in the progress of M. catarrhalis vaccine research. Combined multicomponent vaccines will be a focus of future M. catarrhalis vaccine studies.
Collapse
Affiliation(s)
- Dabin Ren
- a 1 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA +1 585 922 3706 ;
| | - Michael E Pichichero
- b 2 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA
| |
Collapse
|
30
|
Su YC, Mukherjee O, Singh B, Hallgren O, Westergren-Thorsson G, Hood D, Riesbeck K. Haemophilus influenzae P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance. J Infect Dis 2015; 213:314-23. [PMID: 26153407 DOI: 10.1093/infdis/jiv374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023] Open
Abstract
Interaction with the extracellular matrix (ECM) is one of the successful colonization strategies employed by nontypeable Haemophilus influenzae (NTHi). Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM proteins. Purified recombinant P4 displayed a high binding affinity for laminin (Kd = 9.26 nM) and fibronectin (Kd = 10.19 nM), but slightly less to vitronectin (Kd = 16.51 nM). A P4-deficient NTHi mutant showed a significantly decreased binding to these ECM components. Vitronectin acquisition conferred serum resistance to both P4-expressing NTHi and Escherichia coli transformants. P4-mediated bacterial adherence to pharynx, type II alveolar, and bronchial epithelial cells was mainly attributed to fibronectin. Importantly, a significantly reduced bacterial infection was observed in the middle ear of the Junbo mouse model when NTHi was devoid of P4. In conclusion, our data provide new insight into the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory tract infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| | - Oindrilla Mukherjee
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| | - Oskar Hallgren
- Department for Experimental Medical Sciences Department of Respiratory Medicine and Allergology, Lund University, Sweden
| | | | - Derek Hood
- Mammalian Genetics Unit, MRC Harwell, Harwell Science & Innovation Campus, Oxfordshire, United Kingdom
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö
| |
Collapse
|
31
|
Moraxella catarrhalis Binds Plasminogen To Evade Host Innate Immunity. Infect Immun 2015; 83:3458-69. [PMID: 26099590 DOI: 10.1128/iai.00310-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/12/2015] [Indexed: 11/20/2022] Open
Abstract
Several bacterial species recruit the complement regulators C4b-binding protein, factor H, and vitronectin, resulting in resistance against the bactericidal activity of human serum. It was recently demonstrated that bacteria also bind plasminogen, which is converted to plasmin that degrades C3b and C5. In this study, we found that a series of clinical isolates (n = 58) of the respiratory pathogen Moraxella catarrhalis, which is commonly isolated from preschool children and adults with chronic obstructive pulmonary disease (COPD), significantly binds human plasminogen. Ubiquitous surface protein A2 (UspA2) and hybrid UspA2 (UspA2H) were identified as the plasminogen-binding factors in the outer membrane proteome of Moraxella. Furthermore, expression of a series of truncated recombinant UspA2 and UspA2H proteins followed by a detailed analysis of protein-protein interactions suggested that the N-terminal head domains bound to the kringle domains of plasminogen. The binding affinity constant (KD) values of full-length UspA2(30-539) (amino acids 30 to 539 of UspA2) and full-length UspA2H(50-720) for immobilized plasminogen were 4.8 × 10(-8) M and 3.13 × 10(-8) M, respectively, as measured by biolayer interferometry. Plasminogen bound to intact M. catarrhalis or to recombinant UspA2/UspA2H was readily accessible for a urokinase plasminogen activator that converted the zymogen into active plasmin, as verified by the specific substrate S-2251 and a degradation assay with fibrinogen. Importantly, plasmin bound at the bacterial surface also degraded C3b and C5, which consequently may contribute to reduced bacterial killing. Our findings suggest that binding of plasminogen to M. catarrhalis may lead to increased virulence and, hence, more efficient colonization of the host.
Collapse
|
32
|
Qin W, Wang L, Lei L. New findings on the function and potential applications of the trimeric autotransporter adhesin. Antonie van Leeuwenhoek 2015; 108:1-14. [PMID: 26014492 DOI: 10.1007/s10482-015-0477-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Trimeric autotransporter adhesins (TAAs) are located on the surface of many pathogenic Gram-negative bacteria. TAAs belong to the autotransporter protein family and consist of three identical monomers. These obligate homotrimeric proteins are secreted through the bacterial type Vc secretion system and share a common molecular organization that each monomer consists of a N-terminal "passenger" domain and a C-terminal translocation domain. TAAs are important virulence factors that are involved in bacterial life cycle and participate in mediating infection, invasion, dissemination and evasion of host immune responses. TAAs have also proved to be useful for many applications, such as vaccines and disease biomarkers. We here mainly focused on new findings on bio-function and application of TAAs in addition to their common structure and secretion mechanisms.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China,
| | | | | |
Collapse
|
33
|
Adler NRL, Stevens MP, Dean RE, Saint RJ, Pankhania D, Prior JL, Atkins TP, Kessler B, Nithichanon A, Lertmemongkolchai G, Galyov EE. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance. PLoS One 2015; 10:e0121271. [PMID: 25830295 PMCID: PMC4382181 DOI: 10.1371/journal.pone.0121271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were recognised by seropositive human sera from the endemic area. To conclude, several predicted autotransporters contribute to B. pseudomallei virulence and BpaC may do so by conferring resistance against complement-mediated killing.
Collapse
Affiliation(s)
- Natalie R. Lazar Adler
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Rachel E. Dean
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Richard J. Saint
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Depesh Pankhania
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Joann L. Prior
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Timothy P. Atkins
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Bianca Kessler
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ganjana Lertmemongkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Edouard E. Galyov
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Bernhard S, Fleury C, Su YC, Zipfel PF, Koske I, Nordström T, Riesbeck K. Outer membrane protein OlpA contributes to Moraxella catarrhalis serum resistance via interaction with factor H and the alternative pathway. J Infect Dis 2014; 210:1306-10. [PMID: 24771863 DOI: 10.1093/infdis/jiu241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Factor H is an important complement regulator of the alternative pathway commonly recruited by pathogens to achieve increased rates of survival in the human host. The respiratory pathogen Moraxella catarrhalis, which resides in the mucosa, is highly resistant to the bactericidal activity of serum and causes otitis media in children and respiratory tract infections in individuals with underlying diseases. In this study, we show that M. catarrhalis binds factor H via the outer membrane protein OlpA. M. catarrhalis serum resistance was dramatically decreased in the absence of either OlpA or factor H, demonstrating that this inhibition of the alternative pathway significantly contributes to the virulence of M. catarrhalis.
Collapse
Affiliation(s)
- Sara Bernhard
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Christophe Fleury
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Iris Koske
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Therése Nordström
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Sweden
| |
Collapse
|
36
|
Pan X, Yang Y, Zhang JR. Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 2014; 3:e23. [PMID: 26038515 PMCID: PMC3974339 DOI: 10.1038/emi.2014.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.
Collapse
Affiliation(s)
- Xiaolei Pan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Yang Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| |
Collapse
|
37
|
de Vries SPW, Rademakers RJA, van der Gaast-de Jongh CE, Eleveld MJ, Hermans PWM, Bootsma HJ. Deciphering the genetic basis ofMoraxella catarrhaliscomplement resistance: a critical role for the disulphide bond formation system. Mol Microbiol 2013; 91:522-37. [DOI: 10.1111/mmi.12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Stefan P. W. de Vries
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Rob J. A. Rademakers
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | | | - Marc J. Eleveld
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases; Radboud University Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
38
|
Ruiz-Ranwez V, Posadas DM, Estein SM, Abdian PL, Martin FA, Zorreguieta A. The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence. PLoS One 2013; 8:e79770. [PMID: 24236157 PMCID: PMC3827427 DOI: 10.1371/journal.pone.0079770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023] Open
Abstract
The adhesion of bacterial pathogens to host cells is an event that determines infection, and ultimately invasion and intracellular multiplication. Several evidences have recently shown that this rule is also truth for the intracellular pathogen Brucella. Brucella suis displays the unipolar BmaC and BtaE adhesins, which belong to the monomeric and trimeric autotransporter (TA) families, respectively. It was previously shown that these adhesins are involved in bacterial adhesion to host cells and components of the extracellular matrix (ECM). In this work we describe the role of a new member of the TA family of B. suis (named BtaF) in the adhesive properties of the bacterial surface. BtaF conferred the bacteria that carried it a promiscuous adhesiveness to various ECM components and the ability to attach to an abiotic surface. Furthermore, BtaF was found to participate in bacterial adhesion to epithelial cells and was required for full virulence in mice. Similar to BmaC and BtaE, the BtaF adhesin was expressed in a small subpopulation of bacteria, and in all cases, it was detected at the new pole generated after cell division. Interestingly, BtaF was also implicated in the resistance of B. suis to porcine serum. Our findings emphasize the impact of TAs in the Brucella lifecycle.
Collapse
|
39
|
Ermert D, Weckel A, Agarwal V, Frick IM, Björck L, Blom AM. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J Biol Chem 2013; 288:32172-32183. [PMID: 24064215 DOI: 10.1074/jbc.m113.502955] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pyogenes AP1, a strain of the highly virulent M1 serotype, uses exclusively protein H to bind the complement inhibitor C4b-binding protein (C4BP). We found a strong correlation between the ability of AP1 and its isogenic mutants lacking protein H to inhibit opsonization with complement C3b and binding of C4BP. C4BP bound to immobilized protein H or AP1 bacteria retained its cofactor activity for degradation of (125)I-C4b. Furthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments, which did not occur on strains unable to bind C4BP. Recombinant C4BP mutants, which (i) lack certain CCP domains or (ii) have mutations in single aa as well as (iii) mutants with additional aa between different CCP domains were used to determine that the binding is mainly mediated by a patch of positively charged amino acid residues at the interface of domains CCP1 and CCP2. Using recombinant protein H fragments, we narrowed down the binding site to the N-terminal domain A. With a peptide microarray, we identified one single 18-amino acid-long peptide comprising residues 92-109, which specifically bound C4BP. Biacore was used to determine KD = 6 × 10(-7) M between protein H and a single subunit of C4BP. C4BP binding also correlated with elevated levels of adhesion and invasion to endothelial cells. Taken together, we identified the molecular basis of C4BP-protein H interaction and found that it is not only important for decreased opsonization but also for invasion of endothelial cells by S. pyogenes.
Collapse
Affiliation(s)
- David Ermert
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden
| | - Antonin Weckel
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden
| | - Vaibhav Agarwal
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden
| | - Inga-Maria Frick
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden
| | - Lars Björck
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden
| | - Anna M Blom
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden.
| |
Collapse
|
40
|
Agrahari G, Liang Z, Mayfield JA, Balsara RD, Ploplis VA, Castellino FJ. Complement-mediated opsonization of invasive group A Streptococcus pyogenes strain AP53 is regulated by the bacterial two-component cluster of virulence responder/sensor (CovRS) system. J Biol Chem 2013; 288:27494-27504. [PMID: 23928307 DOI: 10.1074/jbc.m113.494864] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively.
Collapse
Affiliation(s)
- Garima Agrahari
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | | | | | - Rashna D Balsara
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
41
|
Moraxella catarrhalis uses a twin-arginine translocation system to secrete the β-lactamase BRO-2. BMC Microbiol 2013; 13:140. [PMID: 23782650 PMCID: PMC3695778 DOI: 10.1186/1471-2180-13-140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
Background Moraxella catarrhalis is a human-specific gram-negative bacterium readily isolated from the respiratory tract of healthy individuals. The organism also causes significant health problems, including 15-20% of otitis media cases in children and ~10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. Virtually all Moraxella catarrhalis isolates are resistant to β-lactam antibiotics, which are generally the first antibiotics prescribed to treat otitis media in children. The enzymes responsible for this resistance, BRO-1 and BRO-2, are lipoproteins and the mechanism by which they are secreted to the periplasm of M. catarrhalis cells has not been described. Results Comparative genomic analyses identified M. catarrhalis gene products resembling the TatA, TatB, and TatC proteins of the well-characterized Twin Arginine Translocation (TAT) secretory apparatus. Mutations in the M. catarrhalis tatA, tatB and tatC genes revealed that the proteins are necessary for optimal growth and resistance to β-lactams. Site-directed mutagenesis was used to replace highly-conserved twin arginine residues in the predicted signal sequence of M. catarrhalis strain O35E BRO-2, which abolished resistance to the β-lactam antibiotic carbanecillin. Conclusions Moraxella catarrhalis possesses a TAT secretory apparatus, which plays a key role in growth of the organism and is necessary for secretion of BRO-2 into the periplasm where the enzyme can protect the peptidoglycan cell wall from the antimicrobial activity of β-lactam antibiotics.
Collapse
|
42
|
Su YC, Hallström BM, Bernhard S, Singh B, Riesbeck K. Impact of sequence diversity in the Moraxella catarrhalis UspA2/UspA2H head domain on vitronectin binding and antigenic variation. Microbes Infect 2013; 15:375-87. [DOI: 10.1016/j.micinf.2013.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/15/2013] [Accepted: 02/11/2013] [Indexed: 12/31/2022]
|
43
|
Potempa M, Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem 2013; 393:873-88. [PMID: 22944688 DOI: 10.1515/hsz-2012-0174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/06/2012] [Indexed: 12/11/2022]
Abstract
The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.
Collapse
Affiliation(s)
- Michal Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | |
Collapse
|
44
|
Su YC, Jalalvand F, Mörgelin M, Blom AM, Singh B, Riesbeck K. Haemophilus influenzae acquires vitronectin via the ubiquitous Protein F to subvert host innate immunity. Mol Microbiol 2013; 87:1245-66. [PMID: 23387957 DOI: 10.1111/mmi.12164] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Acquisition of the complement inhibitor vitronectin (Vn) is important for the respiratory tract pathogen nontypeable Haemophilus influenzae (NTHi) to escape complement-mediated killing. NTHi actively recruits Vn, and we previously showed that this interaction involves Protein E (PE). Here we describe a second Vn-binding protein, a 30 kDa Yersinia YfeA homologue designated as Protein F (PF). An isogenic NTHi 3655Δhpf mutant devoid of PF displayed a reduced binding of Vn, and was consequently more sensitive to killing by human serum compared with the wild type. Surface expression of PF on Escherichia coli conferred binding of Vn that resulted in a serum resistant phenotype. Molecular analyses revealed that the N-terminal of PF (Lys23-Glu48) bound to the C-terminal of Vn (Phe352-Ser374) without disrupting the inhibitory role of Vn on the membrane attack complex. The PF-Vn complex actively delayed C9 deposition on PF-expressing bacteria. Comparative studies of binding affinity and multiple mutants demonstrated that both PE and PF contribute individually to NTHi serum survival. PF was highly conserved and ubiquitously expressed in a series of randomly selected NTHi clinical isolates (n = 18). In conclusion, the multifaceted binding of Vn is beneficial for NTHi survival in serum and may contribute to successful colonization and consequently infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Offense and defense: microbial membrane vesicles play both ways. Res Microbiol 2012; 163:607-18. [PMID: 23123555 DOI: 10.1016/j.resmic.2012.10.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/24/2012] [Indexed: 12/12/2022]
Abstract
Microbes have evolved over millennia to become adapted and specialized to the environments that they occupy. These environments may include water or soil, extreme environments such as hydrothermal vents, and can even include a host organism. To become adapted to these locations, microbes have evolved specific tools to mediate interactions with the environment. One such tool that prokaryotes have evolved includes the production of membrane vesicles (MVs). MVs are 10-300 nm spherical blebs derived from the outermost membrane and have known functions in protein secretion, immune activation and suppression, stress response, attachment, internalization and virulence. In this review, we consider the highly conserved role of membrane vesicles derived from Gram-negative, Gram-positive and archaeal species as a mechanism to facilitate intermicrobial and microbe-host interaction. We examine both the offensive and defensive capabilities of MVs in regard to the interaction of MVs with both host and microbial cells in their environment.
Collapse
|
46
|
A novel group of Moraxella catarrhalis UspA proteins mediates cellular adhesion via CEACAMs and vitronectin. PLoS One 2012; 7:e45452. [PMID: 23049802 PMCID: PMC3458076 DOI: 10.1371/journal.pone.0045452] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/22/2012] [Indexed: 02/01/2023] Open
Abstract
Moraxella catarrhalis (Mx) is a common cause of otitis media and exacerbation of chronic obstructive pulmonary disease, an increasing worldwide problem. Surface proteins UspA1 and UspA2 of Mx bind to a number of human receptors and may function in pathogenesis. Genetic recombination events in the pathogen can generate hybrid proteins termed UspA2H. However, whether certain key functions (e.g. UspA1-specific CEACAM binding) can be exchanged between these adhesin families remains unknown. In this study, we have shown that Mx can incorporate the UspA1 CEACAM1-binding region not only into rare UspA1 proteins devoid of CEACAM-binding ability, but also into UspA2 which normally lack this capacity. Further, a screen of Mx isolates revealed the presence of novel UspA2 Variant proteins (UspA2V) in ∼14% of the CEACAM-binding population. We demonstrate that the expression of UspA2/2V with the CEACAM-binding domain enable Mx to bind both to cell surface CEACAMs and to integrins, the latter via vitronectin. Such properties of UspA2/2V have not been reported to date. The studies demonstrate that the UspA family is much more heterogeneous than previously believed and illustrate the in vivo potential for exchange of functional regions between UspA proteins which could convey novel adhesive functions whilst enhancing immune evasion.
Collapse
|
47
|
Agarwal V, Hammerschmidt S, Malm S, Bergmann S, Riesbeck K, Blom AM. Enolase of Streptococcus pneumoniae binds human complement inhibitor C4b-binding protein and contributes to complement evasion. THE JOURNAL OF IMMUNOLOGY 2012; 189:3575-84. [PMID: 22925928 DOI: 10.4049/jimmunol.1102934] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a pathogen that causes severe local and life-threatening invasive diseases, which are associated with high mortality rates. Pneumococci have evolved several strategies to evade the host immune system, including complement to disseminate and to survive in various host niches. Thus, pneumococci bind complement inhibitors such as C4b-binding protein (C4BP) and factor H via pneumococcal surface protein C, thereby inhibiting the classical and alternative complement pathways. In this study, we identified the pneumococcal glycolytic enzyme enolase, a nonclassical cell surface and plasminogen-binding protein, as an additional pneumococcal C4BP-binding protein. Furthermore, we demonstrated that human, but not mouse, C4BP bound pneumococci. Recombinant enolase bound in a dose-dependent manner C4BP purified from plasma, and the interaction was reduced by increasing ionic strength. Enolase recruited C4BP and plasminogen, but not factor H, from human serum. Moreover, C4BP and plasminogen bound to different domains of enolase as they did not compete for the interaction with enolase. In direct binding assays with recombinant C4BP mutants lacking individual domains, two binding sites for enolase were identified on the complement control protein (CCP) domain 1/CCP2 and CCP8 of the C4BP α-chains. C4BP bound to the enolase retained its cofactor activity as determined by C4b degradation. Furthermore, in the presence of exogenously added enolase, an increased C4BP binding to and subsequently decreased C3b deposition on pneumococci was observed. Taken together, pneumococci specifically interact with human C4BP via enolase, which represents an additional mechanism of human complement control by this versatile pathogen.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Medical Protein Chemistry, Department of Laboratory Medicine, Lund University, S-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Mil-Homens D, Fialho AM. A BCAM0223 mutant of Burkholderia cenocepacia is deficient in hemagglutination, serum resistance, adhesion to epithelial cells and virulence. PLoS One 2012; 7:e41747. [PMID: 22848588 PMCID: PMC3404963 DOI: 10.1371/journal.pone.0041747] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria are a problematic group of microorganisms causing severe infections in patients with Cystic Fibrosis. In early stages of infection, Bcc bacteria must be able to adhere to and colonize the respiratory epithelium. Although this is not fully understood, this primary stage of infection is believed to be in part mediated by a specific type of adhesins, named trimeric autotransporter adhesins (TAAs). These homotrimeric proteins exist on the surface of many gram negative pathogens and often mediate a number of critical functions, including biofilm formation, serum resistance and adherence to an invasion of host cells. We have previously identified in the genome of the epidemic clinical isolate B. cenocepacia J2315, a novel cluster of genes putatively encoding three TAAs (BCAM0219, BCAM0223 and BCAM0224). In this study, the genomic organization of the TAA cluster has been determined. To further address the direct role of the putative TAA BCAM0223 in B. cenocepacia pathogenicity, an isogenic mutant was constructed via insertional inactivation. The BCAM0223::Tp mutant is deficient in hemagglutination, affected in adherence to vitronectin and in biofilm formation and showed attenuated virulence in the Galleria mellonella model of infection. Moreover, the BCAM0223::Tp mutant also showed a significant reduction in its resistance to human serum as well as in adherence, but not in invasion of, cultured human bronchial epithelial cells. Altogether these results demonstrate that the BCAM0223 protein is a multifunctional virulence factor that may contribute to the pathogenicity of B. cenocepacia.
Collapse
Affiliation(s)
- Dalila Mil-Homens
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Arsenio M. Fialho
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
49
|
NlpI facilitates deposition of C4bp on Escherichia coli by blocking classical complement-mediated killing, which results in high-level bacteremia. Infect Immun 2012; 80:3669-78. [PMID: 22802341 DOI: 10.1128/iai.00320-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neonatal meningitis Escherichia coli (NMEC) is the most common Gram-negative organism that is associated with neonatal meningitis, which usually develops as a result of hematogenous spread of the bacteria. There are two key pathogenesis processes for NMEC to penetrate into the brain, the essential step for the development of E. coli meningitis: a high-level bacteremia and traversal of the blood-brain barrier (BBB). Our previous study has shown that the bacterial outer membrane protein NlpI contributes to NMEC binding to and invasion of brain microvascular endothelial cells, the major component cells of the BBB, suggesting a role for NlpI in NMEC crossing of the BBB. In this study, we showed that NlpI is involved in inducing a high level of bacteremia. In addition, NlpI contributed to the recruitment of the complement regulator C4bp to the surface of NMEC to evade serum killing, which is mediated by the classical complement pathway. NlpI may be involved in the interaction between C4bp and OmpA, which is an outer membrane protein that directly interacts with C4bp on the bacterial surface. The involvement of NlpI in two key pathogenesis processes of NMEC meningitis may make this bacterial factor a potential target for prevention and therapy of E. coli meningitis.
Collapse
|
50
|
Malm S, Jusko M, Eick S, Potempa J, Riesbeck K, Blom AM. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia. PLoS One 2012; 7:e34852. [PMID: 22514678 PMCID: PMC3325944 DOI: 10.1371/journal.pone.0034852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/09/2012] [Indexed: 01/01/2023] Open
Abstract
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Collapse
Affiliation(s)
- Sven Malm
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Monika Jusko
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Krakow, Poland
- Center of Oral Health and Systemic Diseases, University of Louisville Dental School, Louisville, Kentucky, United States of America
| | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|