1
|
Yang TH, St John LS, Garber HR, Kerros C, Ruisaard KE, Clise-Dwyer K, Alatrash G, Ma Q, Molldrem JJ. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2018; 201:1389-1399. [PMID: 30021768 DOI: 10.4049/jimmunol.1800324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Proteinase 3 (P3), a serine protease expressed by myeloid cells, localized within azurophil granules, and also expressed on the cellular membrane of polymorphonuclear neutrophils (PMN), is the target of autoimmunity in granulomatosis with polyangiitis. PR1, an HLA-A2 restricted nonameric peptide derived from P3, has been targeted effectively in myeloid leukemia. We previously showed (Molldrem et al. 2003. JClinInvest 111: 639-647) that overexpression of P3 in chronic myeloid leukemia induces apoptosis of high-affinity PR1-specific T cells, leading to deletional tolerance and leukemia outgrowth. In this study, we investigated the effect of membrane P3 (mP3)-expressing PMN and acute myeloid leukemia (AML) blasts on the proliferation of CD4 and CD8 T cells in vitro. We demonstrate that mP3-expressing PMN significantly inhibits autologous healthy donor T cell proliferation but does not affect cytokine production in activated T cells and that this effect requires cell proximity and was abrogated by P3 blockade. This inhibition required P3 enzyme activity. However, suppression was not reversed by either the addition of catalase or the inhibition of arginase I. In addition to P3 blockade, anti-low density lipoprotein receptor-related protein 1 (LRP1) Ab also restored T cells' capacity to proliferate. Last, we show dose-dependent inhibition of T cell proliferation by mP3-expressing AML blasts. Together, our findings demonstrate a novel mechanism whereby PMN- and AML-associated mP3 inhibits T cell proliferation via direct LRP1 and mP3 interaction, and we identify P3 as a novel target to modulate immunity in myeloid leukemia and autoimmune disease.
Collapse
Affiliation(s)
- Tian-Hui Yang
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Lisa S St John
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Haven R Garber
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Celine Kerros
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kathryn E Ruisaard
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Karen Clise-Dwyer
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Gheath Alatrash
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Qing Ma
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jeffrey J Molldrem
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
2
|
Martin KR, Pederzoli-Ribeil M, Pacreau E, Burgener SS, Dahdah A, Candalh C, Lauret E, Foretz M, Mouthon L, Lucas B, Thieblemont N, Benarafa C, Launay P, Witko-Sarsat V. Transgenic Mice Expressing Human Proteinase 3 Exhibit Sustained Neutrophil-Associated Peritonitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:3914-3924. [PMID: 29079698 DOI: 10.4049/jimmunol.1601522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/03/2017] [Indexed: 01/12/2023]
Abstract
Proteinase 3 (PR3) is a myeloid serine protease expressed in neutrophils, monocytes, and macrophages. PR3 has a number of well-characterized proinflammatory functions, including cleaving and activating chemokines and controlling cell survival and proliferation. When presented on the surface of apoptotic neutrophils, PR3 can disrupt the normal anti-inflammatory reprogramming of macrophages following the phagocytosis of apoptotic cells. To better understand the function of PR3 in vivo, we generated a human PR3 transgenic mouse (hPR3Tg). During zymosan-induced peritonitis, hPR3Tg displayed an increased accumulation of neutrophils within the peritoneal cavity compared with wild-type control mice, with no difference in the recruitment of macrophages or B or T lymphocytes. Mice were also subjected to cecum ligation and puncture, a model used to induce peritoneal inflammation through infection. hPR3Tg displayed decreased survival rates in acute sepsis, associated with increased neutrophil extravasation. The decreased survival and increased neutrophil accumulation were associated with the cleavage of annexin A1, a powerful anti-inflammatory protein known to facilitate the resolution of inflammation. Additionally, neutrophils from hPR3Tg displayed enhanced survival during apoptosis compared with controls, and this may also contribute to the increased accumulation observed during the later stages of inflammation. Taken together, our data suggest that human PR3 plays a proinflammatory role during acute inflammatory responses by affecting neutrophil accumulation, survival, and the resolution of inflammation.
Collapse
Affiliation(s)
- Katherine R Martin
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Center of Excellence, Labex Inflamex, 75014 Paris, France
| | - Magali Pederzoli-Ribeil
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Center of Excellence, Labex Inflamex, 75014 Paris, France
| | - Emeline Pacreau
- Center of Excellence, Labex Inflamex, 75014 Paris, France.,INSERM U1149, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Sabrina S Burgener
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.,Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland; and
| | - Albert Dahdah
- Center of Excellence, Labex Inflamex, 75014 Paris, France.,INSERM U1149, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Céline Candalh
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Center of Excellence, Labex Inflamex, 75014 Paris, France
| | - Evelyne Lauret
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Marc Foretz
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Luc Mouthon
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Center of Excellence, Labex Inflamex, 75014 Paris, France.,Department of Internal Medicine, Cochin Hospital, 75014 Paris, France
| | - Bruno Lucas
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Nathalie Thieblemont
- INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Center of Excellence, Labex Inflamex, 75014 Paris, France
| | - Charaf Benarafa
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland.,Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Pierre Launay
- Center of Excellence, Labex Inflamex, 75014 Paris, France.,INSERM U1149, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Véronique Witko-Sarsat
- INSERM U1016, Institut Cochin, 75014 Paris, France; .,CNRS-UMR 8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Center of Excellence, Labex Inflamex, 75014 Paris, France
| |
Collapse
|
3
|
Martin KR, Witko-Sarsat V. Proteinase 3: the odd one out that became an autoantigen. J Leukoc Biol 2017; 102:689-698. [PMID: 28546501 DOI: 10.1189/jlb.3mr0217-069r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils are critical in the defense against bacterial and fungal pathogens, and they also modulate the inflammatory process. The areas where neutrophils are studied have expanded from the restricted field of antibacterial defense to the modulation of inflammation and finally, to fine-tuning immune responses. As a result, recent studies have shown that neutrophils are implicated in several systemic autoimmune diseases, although exactly how neutrophils contribute to these diseases and the molecular mechanisms responsible are still under investigation. In a group of autoimmune vasculitides associated with anti-neutrophil cytoplasmic antibodies (AAVs), granulomatosis with polyangiitis (GPA) illustrates the concept that autoimmunity can develop against one specific neutrophil protein, namely, proteinase 3 (PR3), one of the four serine protease homologs contained within azurophilic granules. In this review, we will focus on recent molecular analyses combined with functional studies that provide clear evidence that the pathogenic properties of PR3 are not only a result of its enzymatic activity but also mediated by a particular structural element-the hydrophobic patch-which facilitates associations with various proteins and lipids and permits anchorage into the plasma membrane. Furthermore, these unique structural and functional characteristics of PR3 might be key contributors to the systemic inflammation and to the immune dysregulation observed in GPA.
Collapse
Affiliation(s)
- Katherine R Martin
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France; .,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| |
Collapse
|
4
|
Korkmaz B, Lesner A, Guarino C, Wysocka M, Kellenberger C, Watier H, Specks U, Gauthier F, Jenne DE. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Pharmacol Rev 2017; 68:603-30. [PMID: 27329045 DOI: 10.1124/pr.115.012104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Adam Lesner
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Carla Guarino
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Magdalena Wysocka
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Christine Kellenberger
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Hervé Watier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Ulrich Specks
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Francis Gauthier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Dieter E Jenne
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| |
Collapse
|
5
|
Ohayon D, De Chiara A, Chapuis N, Candalh C, Mocek J, Ribeil JA, Haddaoui L, Ifrah N, Hermine O, Bouillaud F, Frachet P, Bouscary D, Witko-Sarsat V. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia. Sci Rep 2016; 6:35561. [PMID: 27759041 PMCID: PMC5069676 DOI: 10.1038/srep35561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023] Open
Abstract
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.
Collapse
Affiliation(s)
- Delphine Ohayon
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Alessia De Chiara
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Nicolas Chapuis
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Hematology Department, Cochin Hospital, Assistance publique-Hôpitaux de Paris (APHP), Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Céline Candalh
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Julie Mocek
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Jean-Antoine Ribeil
- Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Biotherapy Department, Necker Hospital, Paris, France
| | - Lamya Haddaoui
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Norbert Ifrah
- FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France.,Hematology Department CHU &UMR INSERM U892/CNRS6299, Université d'Angers, France
| | - Olivier Hermine
- Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Hematology Department, Necker Hospital Assistance publique-Hôpitaux de Paris (APHP), France.,INSERM UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France
| | - Frédéric Bouillaud
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France
| | - Philippe Frachet
- Institut de Biologie Structurale, Centre Etude Atomique, Grenoble, France.,Université Grenoble Alpes, CNRS, UMR 5075, Grenoble, France
| | - Didier Bouscary
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Hematology Department, Cochin Hospital, Assistance publique-Hôpitaux de Paris (APHP), Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Véronique Witko-Sarsat
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| |
Collapse
|
6
|
Abstract
Upon entry to the systemic circulation, neutrophils exhibit a short mean time to cell death. The viability of most cell types in a steady state is preserved by the interplay of the Bcl-2 family of proteins, wherein the anti-apoptotic members inhibit the action of their pro-apoptotic counterparts. Neutrophils, however, display absent or severely reduced expression of several anti-apoptotic Bcl-2 family proteins. Hence, they rely on the expression of Mcl-1, an anti-apoptotic member of the Bcl-2 family, for survival. This protein is uniquely short-lived relative to related proteins and its loss likely precipitates the induction of apoptosis in neutrophils. This review describes the role of Mcl-1 in the neutrophil in the context of apoptosis and highlights the proteins' importance to the cell. We also address neutrophil apoptosis in the broader context of the cells' response to pathogens, focussing particularly on the strategies used by pathogens to manipulate the apoptotic pathway to their own ends.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Old Blessington Road, Tallaght, Dublin 24, Ireland,
| | | |
Collapse
|
7
|
Loison F, Zhu H, Karatepe K, Kasorn A, Liu P, Ye K, Zhou J, Cao S, Gong H, Jenne DE, Remold-O'Donnell E, Xu Y, Luo HR. Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation. J Clin Invest 2014; 124:4445-58. [PMID: 25180606 DOI: 10.1172/jci76246] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022] Open
Abstract
Caspase-3-mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8- or caspase-9-mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death.
Collapse
|
8
|
Garcia-Faroldi G, Melo FR, Rönnberg E, Grujic M, Pejler G. Active Caspase-3 Is Stored within Secretory Compartments of Viable Mast Cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1445-52. [DOI: 10.4049/jimmunol.1300216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Somasekharan SP, Koc M, Morizot A, Micheau O, Sorensen PHB, Gaide O, Andera L, Martinou JC. TRAIL promotes membrane blebbing, detachment and migration of cells displaying a dysfunctional intrinsic pathway of apoptosis. Apoptosis 2013. [PMID: 23179179 DOI: 10.1007/s10495-012-0782-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to be a potential candidate for cancer therapy. TRAIL induces apoptosis in various cancer cells but not in normal tissues. Here we show that HCT116 and SW480 cells with a deficient mitochondrial apoptotic pathway were resistant to TRAIL-induced apoptosis, whereas HCT116 and SW480 cells with a functional mitochondrial apoptotic pathway underwent apoptosis upon exposure to TRAIL. Surprisingly, TRAIL induced phenotypic changes in cells with a dysfunctional mitochondrial apoptotic pathway, including membrane blebbing and a transient loss of adhesion properties to the substratum. Accordingly, TRAIL stimulated the ability of these cells to migrate. This behavior was the consequence of a transient TRAIL-induced ROCK1 cleavage. In addition, we report that Bax-deficient HCT116 cells exposed to TRAIL for a prolonged period lost their sensitivity to TRAIL as a result of downregulation of TRAIL receptor expression, and became resistant to combination of TRAIL and other drugs such as MG-132 and bortezomib. These findings may have important consequences for TRAIL anti-cancer therapy.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Cell Biology, University of Geneva, Sciences III, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abdgawad M, Pettersson Å, Gunnarsson L, Bengtsson AA, Geborek P, Nilsson L, Segelmark M, Hellmark T. Decreased neutrophil apoptosis in quiescent ANCA-associated systemic vasculitis. PLoS One 2012; 7:e32439. [PMID: 22403660 PMCID: PMC3293802 DOI: 10.1371/journal.pone.0032439] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/31/2012] [Indexed: 11/25/2022] Open
Abstract
Background ANCA-Associated Systemic Vasculitis (AASV) is characterized by leukocytoclasis, accumulation of unscavenged apoptotic and necrotic neutrophils in perivascular tissues. Dysregulation of neutrophil cell death may contribute directly to the pathogenesis of AASV. Methods Neutrophils from Healthy Blood Donors (HBD), patients with AASV most in complete remission, Polycythemia Vera (PV), Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA) and renal transplant recipients (TP) were incubated in vitro, and the rate of spontaneous apoptosis was measured by FACS. Plasma levels of cytokines and sFAS were measured with cytometric bead array and ELISA. Expression of pro/anti-apoptotic factors, transcription factors C/EBP-α, C/EBP-β and PU.1 and inhibitors of survival/JAK2-pathway were measured by real-time-PCR. Results AASV, PV and RA neutrophils had a significantly lower rate of apoptosis compared to HBD neutrophils (AASV 50±14% vs. HBD 64±11%, p<0.0001). In RA but not in AASV and PV, low apoptosis rate correlated with increased plasma levels of GM-CSF and high mRNA levels of anti-apoptotic factors Bcl-2A1 and Mcl-1. AASV patients had normal levels of G-CSF, GM-CSF and IL-3. Both C/EBP-α, C/EBP-β were significantly higher in neutrophils from AASV patients than HBD. Levels of sFAS were significantly higher in AASV compared to HBD. Conclusion Neutrophil apoptosis rates in vitro are decreased in AASV, RA and PV but mechanisms seem to differ. Increased mRNA levels of granulopoiesis-associated transcription factors and increased levels of sFAS in plasma were observed in AASV. Additional studies are required to define the mechanisms behind the decreased apoptosis rates, and possible connections with accumulation of dying neutrophils in regions of vascular lesions in AASV patients.
Collapse
Affiliation(s)
- Mohamed Abdgawad
- Department of Nephrology, Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Svensson C, Part K, Künnis-Beres K, Kaldmäe M, Fernaeus SZ, Land T. Pro-survival effects of JNK and p38 MAPK pathways in LPS-induced activation of BV-2 cells. Biochem Biophys Res Commun 2011; 406:488-92. [DOI: 10.1016/j.bbrc.2011.02.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 02/08/2023]
|
12
|
C16-Ceramide Analog Combined with Pc 4 Photodynamic Therapy Evokes Enhanced Total Ceramide Accumulation, Promotion of DEVDase Activation in the Absence of Apoptosis, and Augmented Overall Cell Killing. J Lipids 2010; 2011:713867. [PMID: 21490809 PMCID: PMC3066794 DOI: 10.1155/2011/713867] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022] Open
Abstract
Because of the failure of single modality approaches, combination therapy for cancer treatment is a promising alternative. Sphingolipid analogs, with or without anticancer drugs, can improve tumor response. C16-pyridinium ceramide analog LCL30, was used in combination with photodynamic therapy (PDT), an anticancer treatment modality, to test the hypothesis that the combined treatment will trigger changes in the sphingolipid profile and promote cell death. Using SCCVII mouse squamous carcinoma cells, and the silicone phthalocyanine Pc 4 for PDT, we showed that combining PDT with LCL30 (PDT/LCL30) was more effective than individual treatments in raising global ceramide levels, as well as in reducing dihydrosphingosine levels. Unlike LCL30, PDT, alone or combined, increased total dihydroceramide levels. Sphingosine levels were unaffected by LCL30, but were abolished after PDT or the combination. LCL30-triggered rise in sphingosine-1-phosphate was reversed post-PDT or the combination. DEVDase activation was evoked after PDT or LCL30, and was promoted post- PDT/LCL30. Neither mitochondrial depolarization nor apoptosis were observed after any of the treatments. Notably, treatment with the combination resulted in augmented overall cell killing. Our data demonstrate that treatment with PDT/LCL30 leads to enhanced global ceramide levels and DEVDase activation in the absence of apoptosis, and promotion of total cell killing.
Collapse
|
13
|
Design and characterization of a cleavage-resistant Annexin A1 mutant to control inflammation in the microvasculature. Blood 2010; 116:4288-96. [DOI: 10.1182/blood-2010-02-270520] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Human polymorphonuclear leukocytes adhesion to endothelial cells during the early stage of inflammation leads to cell surface externalization of Annexin A1 (AnxA1), an effector of endogenous anti-inflammation. The antiadhesive properties of AnxA1 become operative to finely tune polymorphonuclear leukocytes transmigration to the site of inflammation. Membrane bound proteinase 3 (PR3) plays a key role in this microenvironment by cleaving the N terminus bioactive domain of AnxA1. In the present study, we generated a PR3-resistant human recombinant AnxA1—named superAnxA1 (SAnxA1)—and tested its in vitro and in vivo properties in comparison to the parental protein. SAnxA1 bound and activated formyl peptide receptor 2 in a similar way as the parental protein, while showing a resistance to cleavage by recombinant PR3. SAnxA1 retained anti-inflammatory activities in the murine inflamed microcirculation (leukocyte adhesion being the readout) and in skin trafficking model. When longer-lasting models of inflammation were applied, SAnxA1 displayed stronger anti-inflammatory effect over time compared with the parental protein. Together these results indicate that AnxA1 cleavage is an important process during neutrophilic inflammation and that controlling the balance between AnxA1/PR3 activities might represent a promising avenue for the discovery of novel therapeutic approaches.
Collapse
|
14
|
Hajjar E, Broemstrup T, Kantari C, Witko-Sarsat V, Reuter N. Structures of human proteinase 3 and neutrophil elastase--so similar yet so different. FEBS J 2010; 277:2238-54. [PMID: 20423453 DOI: 10.1111/j.1742-4658.2010.07659.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteinase 3 and neutrophil elastase are serine proteinases of the polymorphonuclear neutrophils, which are considered to have both similar localization and ligand specificity because of their high sequence similarity. However, recent studies indicate that they might have different and yet complementary physiologic roles. Specifically, proteinase 3 has intracellular specific protein substrates resulting in its involvement in the regulation of intracellular functions such as proliferation or apoptosis. It behaves as a peripheral membrane protein and its membrane expression is a risk factor in chronic inflammatory diseases. Moreover, in contrast to human neutrophil elastase, proteinase 3 is the preferred target antigen in Wegener's granulomatosis, a particular type of vasculitis. We review the structural basis for the different ligand specificities and membrane binding mechanisms of both enzymes, as well as the putative anti-neutrophil cytoplasm autoantibody epitopes on human neutrophil elastase 3. We also address the differences existing between murine and human enzymes, and their consequences with respect to the development of animal models for the study of human proteinase 3-related pathologies. By integrating the functional and the structural data, we assemble many pieces of a complicated puzzle to provide a new perspective on the structure-function relationship of human proteinase 3 and its interaction with membrane, partner proteins or cleavable substrates. Hence, precise and meticulous structural studies are essential tools for the rational design of specific proteinase 3 substrates or competitive ligands that modulate its activities.
Collapse
Affiliation(s)
- Eric Hajjar
- Dipartimento di Fisica, University of Cagliari (CA), Italy
| | | | | | | | | |
Collapse
|
15
|
Utilization of the 1,2,3,5-thiatriazolidin-3-one 1,1-dioxide scaffold in the design of potential inhibitors of human neutrophil proteinase 3. Bioorg Med Chem 2009; 18:1093-102. [PMID: 20061159 DOI: 10.1016/j.bmc.2009.12.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022]
Abstract
The S' subsites of human neutrophil proteinase 3 (Pr 3) were probed by constructing diverse libraries of compounds based on the 1,2,3,5-thiatriazolidin-3-one 1,1-dioxide using combinational and click chemistry methods. The multiple points of diversity embodied in the heterocyclic scaffold render it well-suited to the exploration of the S' subsites of Pr 3. Molecular modeling studies suggest that further exploration of the S' subsites of Pr 3 using the aforementioned heterocyclic scaffold may lead to the identification of highly selective, reversible competitive inhibitors of Pr 3.
Collapse
|
16
|
Lamprecht P, Wieczorek S, Epplen JT, Ambrosch P, Kallenberg CGM. Granuloma formation in ANCA-associated vasculitides. APMIS 2009:32-6. [PMID: 19515137 DOI: 10.1111/j.1600-0463.2009.02474.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Granuloma formation is a key pathologic finding in two of the anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides: Wegener's granulomatosis (WG) and Churg-Strauss syndrome (CSS). So far, no animal models have been established convincingly reproducing both vasculitic and granulomatous features typical of WG and CSS. In biopsies, granulomatous lesions are found both at distant extravascular sites and in the vicinity of inflamed vessels, e.g. in the lung. Intriguingly, WG-granulomata appear to display features of tertiary lymphoid tissue. Cartilaginous and osseous destruction is caused by granulomatous inflammation invading adjacent tissues. Rhinosinusitis is regularly encountered in WG and CSS. Septal perforation, saddle nose deformity, middle and inner ear symptoms, and granulomatous invasion of the palate, orbita, meninges, or the pituitary gland may complicate WG. Both common (e.g. FCGR3B copy number) and distinct (e.g. HLA-DP, IL-10.2) genetic factors have been identified in AAV potentially favouring inflammation and autoimmunity. The HLA-DPB1/RING1/RXRB region constitutes a quantitative trait locus for ANCA-positive WG with the strongest association to be reported up to now. A profound alteration of the T-cell response including Th1 and Th17 responses, anomalously NK-receptor-expressing 'NK-like' T cells, and dysfunctional regulatory T cells could facilitate and sustain granuloma formation and autoimmunity.
Collapse
Affiliation(s)
- Peter Lamprecht
- Department of Rheumatology, Vasculitis Center UKSH & Klinikum Bad Bramstedt, University of Lübeck, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
17
|
Lamprecht P, Gross WL. Antineutrophil cytoplasmic antibody-associated vasculitis: autoinflammation, autodestruction and autoimmunity – key to new therapies. Trends Immunol 2008; 29:587-8. [DOI: 10.1016/j.it.2008.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 08/26/2008] [Accepted: 09/19/2008] [Indexed: 11/28/2022]
|
18
|
Greiner J, Bullinger L, Guinn BA, Döhner H, Schmitt M. Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res 2008; 14:7161-6. [PMID: 19010831 DOI: 10.1158/1078-0432.ccr-08-1102] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. With intensive induction therapy, most patients younger than 60 years achieve complete remission. However, even if these younger patients were treated intensively, more than 50% will relapse. Clinical results of patients older than 60 years are more unfavorable. Therefore, in all patients with AML, the overall survival is still low. In the past decade, several leukemia-associated antigens (LAA) have been identified in patients with acute myeloid leukemia. BAGE, BCL-2, OFA-iLRP, FLT3-ITD, G250, hTERT, PRAME, proteinase 3, RHAMM, survivin, and WT-1 are all LAAs that have been shown to induce CD8+ T-cell recognition and for some antigens also humoral immune responses. Interestingly, most of these LAAs are linked to cell cycle or proliferation. This article discusses the balance between LAA-driven leukemia cell expansion and the elimination of these cells through attacks on LAAs by the immune system. Current knowledge of the function and CD8+ T-cell recognition of LAAs is reviewed and an outlook is given on how to improve T-cell responses to LAAs in acute myeloid leukemia cells.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
19
|
Lamprecht P, Gross WL. A little help from our friends: what an epidemiologic study teaches us about autoinflammation, granuloma and proteinase-3-specific antineutrophil cytoplasmic autoantibodies. Nephrol Dial Transplant 2008; 23:3743-5. [DOI: 10.1093/ndt/gfn561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Hajjar E, Korkmaz B, Reuter N. Differences in the substrate binding sites of murine and human proteinase 3 and neutrophil elastase. FEBS Lett 2007; 581:5685-90. [PMID: 18023421 DOI: 10.1016/j.febslet.2007.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/26/2007] [Accepted: 11/09/2007] [Indexed: 01/13/2023]
Abstract
Understanding the differences between murine (m) and human (h) proteinase 3 (PR3) and neutrophil elastase (NE) is crucial for the interpretation of in vivo studies of inflammatory processes. We built structural models of mPR3 and mNE and analyzed their surface properties. We performed molecular dynamics (MD) simulations on several enzyme-peptide complexes to investigate their interaction patterns. The analysis of trajectories confirms that murine and human complexes have different interaction patterns with peptidic substrates. We provide a map of the binding sites of the murine proteases and suggest sequence motifs that we predict to be specific for mPR3 or mNE.
Collapse
Affiliation(s)
- Eric Hajjar
- Computational Biology Unit, Bergen Center for Computational Science, BCCS, University of Bergen, Thormohlensgt 55, N-5008, Bergen, Norway
| | | | | |
Collapse
|
21
|
Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 2007; 90:227-42. [PMID: 18021746 DOI: 10.1016/j.biochi.2007.10.009] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/19/2007] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils form a primary line of defense against bacterial infections using complementary oxidative and non-oxidative pathways to destroy phagocytized pathogens. The three serine proteases elastase, proteinase 3 and cathepsin G, are major components of the neutrophil primary granules that participate in the non-oxidative pathway of intracellular pathogen destruction. Neutrophil activation and degranulation results in the release of these proteases into the extracellular medium as proteolytically active enzymes, part of them remaining exposed at the cell surface. Extracellular neutrophil serine proteases also help kill bacteria and are involved in the degradation of extracellular matrix components during acute and chronic inflammation. But they are also important as specific regulators of the immune response, controlling cellular signaling through the processing of chemokines, modulating the cytokine network, and activating specific cell surface receptors. Neutrophil serine proteases are also involved in the pathogenicity of a variety of human diseases. This review focuses on the structural and functional properties of these proteases that may explain their specific biological roles, and facilitate their use as molecular targets for new therapeutic strategies.
Collapse
|
22
|
Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH, Pasinelli P, Trotti D. A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 2007; 282:32480-90. [PMID: 17823119 DOI: 10.1074/jbc.m704314200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
EAAT2 (excitatory amino acid transporter 2) is a high affinity, Na+-dependent glutamate transporter of glial origin that is essential for the clearance of synaptically released glutamate and prevention of excitotoxicity. During the course of human amyotrophic lateral sclerosis (ALS) and in a transgenic mutant SOD1 mouse model of the disease, expression and activity of EAAT2 is remarkably reduced. We previously showed that some of the mutant SOD1 proteins exposed to oxidative stress inhibit EAAT2 by triggering caspase-3 cleavage of EAAT2 at a single defined locus. This gives rise to two fragments that we termed truncated EAAT2 and COOH terminus of EAAT2 (CTE). In this study, we report that analysis of spinal cord homogenates prepared from mutant G93A-SOD1 mice reveals CTE to be of a higher molecular weight than expected because it is conjugated with SUMO-1. The sumoylated CTE fragment (CTE-SUMO-1) accumulates in the spinal cord of these mice as early as presymptomatic stage (70 days of age) and not in other central nervous system areas unaffected by the disease. The presence and accumulation of CTE-SUMO-1 is specific to ALS mice, since it does not occur in the R6/2 mouse model for Huntington disease. Furthermore, using an astroglial cell line, primary culture of astrocytes, and tissue samples from G93A-SOD1 mice, we show that CTE-SUMO-1 is targeted to promyelocytic leukemia nuclear bodies. Since one of the proposed functions of promyelocytic leukemia nuclear bodies is regulation of gene transcription, we suggest a possible novel mechanism by which the glial glutamate transporter EAAT2 could contribute to the pathology of ALS.
Collapse
Affiliation(s)
- Stuart L Gibb
- Farber Institute for Neurosciences, Weinberg Unit for ALS Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and Cecil B. Day Laboratory for Neuromuscular Research, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kantari C, Pederzoli-Ribeil M, Amir-Moazami O, Gausson-Dorey V, Moura IC, Lecomte MC, Benhamou M, Witko-Sarsat V. Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood 2007; 110:4086-95. [PMID: 17712045 DOI: 10.1182/blood-2007-03-080457] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Proteinase 3 (PR3), a serine proteinase contained in neutrophil azurophilic granules, is considered a risk factor for vasculitides and rheumatoid arthritis when expressed on the outer leaflet of neutrophil plasma membrane and is the preferred target of antineutrophil cytoplasm autoantibodies (ANCA) in Wegener granulomatosis. ANCA binding to PR3 expressed at the surface of neutrophils activates them. Evidence is provided that neutrophil apoptosis induced significantly more membrane PR3 expression without degranulation (but no enhanced membrane CD35, CD66b, CD63, myeloperoxidase, or elastase expression). This observation was confirmed on cytoplasts, a model of granule-free neutrophils. We hypothesized that PR3 could interact with proteins involved in membrane flip-flop (eg, phospholipid scramblase 1 [PLSCR1]). PR3-PLSCR1 interaction in neutrophils was demonstrated by confocal microscopy and coimmunoprecipitation. In the RBL-2H3 rat mast-cell line stably transfected with PR3 or its inactive mutant (PR3S203A), PR3 externalization depended on PLSCR1, as shown by less PR3 externalization in the presence of rPLSCR1 siRNA, but independently of its serine-proteinase activity. Finally, apoptosis-externalized PR3 decreased the human macrophage-phagocytosis rate of apoptotic PR3 transfectants. Therefore, in addition to ANCA binding in vasculitis, the proinflammatory role of membrane PR3 expression may involve interference with macrophage clearance of apoptotic neutrophils.
Collapse
MESH Headings
- Animals
- Antibodies, Antineutrophil Cytoplasmic/immunology
- Antibodies, Antineutrophil Cytoplasmic/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Apoptosis/genetics
- Apoptosis/immunology
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Cell Line
- Cell Membrane/enzymology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Gene Expression Regulation, Enzymologic/immunology
- Granulomatosis with Polyangiitis/enzymology
- Granulomatosis with Polyangiitis/genetics
- Granulomatosis with Polyangiitis/immunology
- Humans
- Macrophages/enzymology
- Macrophages/immunology
- Mast Cells/enzymology
- Mast Cells/immunology
- Mutation/immunology
- Myeloblastin/genetics
- Myeloblastin/immunology
- Myeloblastin/metabolism
- Neutrophil Activation/genetics
- Neutrophil Activation/immunology
- Neutrophils/enzymology
- Neutrophils/immunology
- Neutrophils/metabolism
- Pancreatic Elastase/genetics
- Pancreatic Elastase/immunology
- Pancreatic Elastase/metabolism
- Peroxidase/genetics
- Peroxidase/immunology
- Peroxidase/metabolism
- Phagocytosis/genetics
- Phagocytosis/immunology
- Phospholipid Transfer Proteins/genetics
- Phospholipid Transfer Proteins/immunology
- Phospholipid Transfer Proteins/metabolism
- Protein Transport/genetics
- Protein Transport/immunology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- Rats
- Risk Factors
- Secretory Vesicles/enzymology
- Secretory Vesicles/genetics
- Secretory Vesicles/immunology
- Vasculitis/enzymology
- Vasculitis/genetics
- Vasculitis/immunology
Collapse
Affiliation(s)
- Chahrazade Kantari
- Institut National de la Santé et de la Recherche Médicale, U845, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Park HY, Song MG, Lee JS, Kim JW, Jin JO, Park JI, Chang YC, Kwak JY. Apoptosis of human neutrophils induced by protein phosphatase 1/2A inhibition is caspase-independent and serine protease-dependent. J Cell Physiol 2007; 212:450-62. [PMID: 17311286 DOI: 10.1002/jcp.21039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Protein phosphatase (PP) activity is associated with the regulation of apoptosis in neutrophils. However, the underlying regulatory mechanism(s) in apoptosis remain unclear. The type of cell death induced by okadaic acid (OA), the inhibitor of PP1 and PP2A, is characterized by apoptotic morphological changes of the cells and annexin V-positive staining without DNA fragmentation. The apoptotic effects of OA and calyculin A on neutrophils were observed at concentrations ranging from 50 to 200 nM, or 10 to 50 nM, respectively. Cyclosporine A (a PP2B specific inhibitor), however, did not exhibit any pro-apoptotic effects. OA and calyculin A, but not cyclosporine A, exhibited significant effects on protein levels and on the electrophoretic mobility of Mcl-1. zVAD-fmk, a pancaspase inhibitor, failed to inhibit the effect of OA on the caspase-3 activity, procaspase-3 processing, and the apoptotic rate of neutrophils. However, 4-(2-aminoethyl) benzenesulfonylfluoride (AEBSF), a general serine protease inhibitor, significantly abrogated the OA-induced mobility shift in procaspase-3, caspase-3 activation, and the apoptotic morphological changes in neutrophils. Moreover, OA enhanced the serine protease activity of the neutrophils. The addition of the proteinase-3 protein increased the rate of neutrophil apoptosis, which was also blocked by AEBSF but not by zVAD-fmk. These results suggest that OA induces procaspase-3 processing but that OA-induced apoptosis is caspase-independent and serine protease-dependent.
Collapse
Affiliation(s)
- Hae-Young Park
- Department of Biochemistry, School of Medicine and Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Vong L, D'Acquisto F, Pederzoli-Ribeil M, Lavagno L, Flower RJ, Witko-Sarsat V, Perretti M. Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3. J Biol Chem 2007; 282:29998-30004. [PMID: 17681950 PMCID: PMC2772024 DOI: 10.1074/jbc.m702876200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin 1 is an anti-inflammatory protein that plays a key role in innate immunity by modulating the activation of several types of cells, including neutrophils. Here we have developed a cleavage assay using tagged annexin 1 and observed marked activity in the membrane fraction of activated neutrophils. A combination of inhibitors, transfected cells, and proteomic analyses allowed us to identify proteinase 3 as the main enzyme responsible for this cleavage in the N terminus region of the protein, at least in the context of neutrophil activation. Because annexin 1 is an important endogenous anti-inflammatory mediator, blocking its cleavage by proteinase 3 would augment its homeostatic pro-resolving actions and could represent an opportunity for innovative anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Linda Vong
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | - Luisa Lavagno
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Roderick J. Flower
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Véronique Witko-Sarsat
- INSERM U845 and Paris V University, Necker Hospital, 161 Rue de Sèvres, 75015 Paris, France
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- To whom correspondence should be addressed. Tel.: 44-207-882-6065; Fax: 44-207-882-6076;
| |
Collapse
|
26
|
Huelsenbeck J, Dreger S, Gerhard R, Barth H, Just I, Genth H. Difference in the cytotoxic effects of toxin B from Clostridium difficile strain VPI 10463 and toxin B from variant Clostridium difficile strain 1470. Infect Immun 2006; 75:801-9. [PMID: 17145947 PMCID: PMC1828479 DOI: 10.1128/iai.01705-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glucosylation of RhoA, Rac1, and Cdc42 by Clostridium difficile toxin B from strain VPI 10463 (TcdB) results in actin reorganization (cytopathic effect) and apoptosis (cytotoxic effect). Toxin B from variant C. difficile strain 1470 serotype F (TcdBF) differs from TcdB with regard to substrate proteins, as it glucosylates Rac1 and R-Ras but not RhoA and Cdc42. In this study, we addressed the question of whether the cellular effects of the toxins depend on their protein substrate specificity. Rat basophilic leukemia (RBL) cells were synchronized using the thymidine double-block technique. We show that cells were most sensitive to the cytotoxic effect of TcdB in S phase, as analyzed in terms of phosphatidyl serine externalization, fragmentation of nuclei, and activation of caspase-3; in contrast, TcdBF induced only a marginal cytotoxic effect, suggesting that inactivation of RhoA (but not of Rac1) was required for the cytotoxic effect. The glucosylation of Rac1 was correlated to the cytopathic effect of either toxin, suggesting a close connection of the two effects. The cytotoxic effect of TcdB was executed by caspase-3, as it was responsive to inhibition by acetyl-Asp-Met-Gln-Asp-aldehyde (Ac-DMQD-CHO), an inhibitor of caspase-3. The viability of TcdB-treated RBL cells was reduced, whereas the viability of TcdBF-treated cells was unchanged, further confirming that inactivation of RhoA is required for the cytotoxic effect. In conclusion, the protein substrate specificity of the glucosylating toxins determines their biological activity.
Collapse
|
27
|
Bauer S, Abdgawad M, Gunnarsson L, Segelmark M, Tapper H, Hellmark T. Proteinase 3 and CD177 are expressed on the plasma membrane of the same subset of neutrophils. J Leukoc Biol 2006; 81:458-64. [PMID: 17077162 DOI: 10.1189/jlb.0806514] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Proteinase 3 (PR3) is found in granules of all neutrophils but also on the plasma membrane of a subset of neutrophils (mPR3). CD177, another neutrophil protein, also displays a bimodal surface expression. In this study, we have investigated the coexpression of these two molecules, as well as the effect of cell activation on their surface expression. We can show that CD177 is expressed on the same subset of neutrophils as mPR3. Experiments show that the expression of mPR3 and CD177 on the plasma membrane is increased or decreased in parallel during cell stimulation or spontaneous apoptosis. Furthermore, we observed a rapid internalization and recirculation of mPR3 and plasma membrane CD177, where all mPR3 is replaced within 30 min. Our findings suggest that the PR3 found on the plasma membrane has its origin in the same intracellular storage as CD177, i.e., secondary granules and secretory vesicles and not primary granules. PR3- and CD177-expressing neutrophils constitute a subpopulation of neutrophils with an unknown role in the innate immune system, which may play an important role in diseases such as Wegener's granulomatosis and polycythemia vera.
Collapse
Affiliation(s)
- Susanne Bauer
- Department of Clinical Sciences, Clinical Sciences in Lund, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Hajjar E, Korkmaz B, Gauthier F, Brandsdal BO, Witko-Sarsat V, Reuter N. Inspection of the binding sites of proteinase3 for the design of a highly specific substrate. J Med Chem 2006; 49:1248-60. [PMID: 16480262 DOI: 10.1021/jm051018t] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteinase3 (PR3) and human neutrophil elastase (HNE) are homologous proteases from the polymorphonuclear neutrophils and have been thought for a long time to have close enzymatic specificity. We have used molecular dynamics simulations to investigate and compare the interactions between different peptides and the two enzymes. The important role played especially by the C-terminal part of the peptides is confirmed. We provide a map of the subsites of PR3 and a description of the interaction scheme for six ligands. The main difference between HNE and PR3 concerns S2, S1', S2', and S3'. The recognition subsites in PR3 are interconnected; in particular, Lys99 participates to a hydrophobic (S4) and a polar (S2) pocket. On the basis of the simulations, we suggest that VADVKDR is a highly specific sequence for PR3; enzymatic assays confirm that it is cleaved by PR3 with a high specificity constant (k(cat)/K(m) = 3,400,000 M(-1) s(-1)) and not by HNE.
Collapse
Affiliation(s)
- Eric Hajjar
- Computational Biology Unit, BCCS, University of Bergen, N-5008 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
29
|
Dublet B, Ruello A, Pederzoli M, Hajjar E, Courbebaisse M, Canteloup S, Reuter N, Witko-Sarsat V. Cleavage of p21/WAF1/CIP1 by Proteinase 3 Modulates Differentiation of a Monocytic Cell Line. J Biol Chem 2005; 280:30242-53. [PMID: 15975933 DOI: 10.1074/jbc.m414609200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinase 3 (PR3), also called myeloblastin, is involved in the control of myeloid cell growth, but the underlying molecular mechanisms have not been elucidated. In U937/PR3, stably transfected with PRCRSV/PR3 to overexpress PR3, PMA-induced p21 expression was significantly decreased as compared with control U937, and this phenomenon was reversed in the presence of the serine proteinase inhibitor, pefabloc. Conversely, when PR3 was inactivated by small interfering RNA, p21 protein was increased, and PMA-induced monocytic differentiation was potentiated. Mass spectrometry analysis identified Ala45 as the primary cleavage site on p21, and the recombinant mutated p21A45R, generated by site-directed mutagenesis and expressed in Escherichia coli, was resistant to in vitro PR3 cleavage. The U937 cells were then stably transfected with either PRCRSV/p21 or PRCRSV/p21A45R, to ectopically express wild type p21 or PR3-resistant p21, respectively. In U937/p21A45R treated with PS-341, a selective proteasome inhibitor, a significant decrease in the S phase and a blockade in the G0-G1 phase of cell cycle were observed when compared with U937/p21 or control U937. This suggested that both PR3 and the proteasome are efficiently involved in the proteolytic regulation of p21 expression in myeloid cells. Moreover, PMA-induced p21 expression was more pronounced in U937/p21A45R compared with U937/p21 and was concomitant with the morphological features of early differentiation. Our data demonstrated that p21 is one specific target of PR3 and that PR3-mediated p21 cleavage prevents monocytic differentiation.
Collapse
Affiliation(s)
- Bernard Dublet
- Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, Commissariat à l'Energie Atomique-CNRS-Université Joseph Fourier, Grenoble 38000, France
| | | | | | | | | | | | | | | |
Collapse
|