1
|
Singh S, Sarkar T, Jakubison B, Gadomski S, Spradlin A, Gudmundsson KO, Keller JR. Inhibitor of DNA binding proteins revealed as orchestrators of steady state, stress and malignant hematopoiesis. Front Immunol 2022; 13:934624. [PMID: 35990659 PMCID: PMC9389078 DOI: 10.3389/fimmu.2022.934624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adult mammalian hematopoiesis is a dynamic cellular process that provides a continuous supply of myeloid, lymphoid, erythroid/megakaryocyte cells for host survival. This process is sustained by regulating hematopoietic stem cells (HSCs) quiescence, proliferation and activation under homeostasis and stress, and regulating the proliferation and differentiation of downstream multipotent progenitor (MPP) and more committed progenitor cells. Inhibitor of DNA binding (ID) proteins are small helix-loop-helix (HLH) proteins that lack a basic (b) DNA binding domain present in other family members, and function as dominant-negative regulators of other bHLH proteins (E proteins) by inhibiting their transcriptional activity. ID proteins are required for normal T cell, B cell, NK and innate lymphoid cells, dendritic cell, and myeloid cell differentiation and development. However, recent evidence suggests that ID proteins are important regulators of normal and leukemic hematopoietic stem and progenitor cells (HSPCs). This chapter will review our current understanding of the function of ID proteins in HSPC development and highlight future areas of scientific investigation.
Collapse
Affiliation(s)
- Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Andrew Spradlin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Kristbjorn O. Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- *Correspondence: Jonathan R. Keller,
| |
Collapse
|
2
|
Jakubison BL, Sarkar T, Gudmundsson KO, Singh S, Sun L, Morris HM, Klarmann KD, Keller JR. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J Clin Invest 2022; 132:152599. [PMID: 35775482 PMCID: PMC9246389 DOI: 10.1172/jci152599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Defining mechanism(s) that maintain tissue stem quiescence is important for improving tissue regeneration, cell therapies, aging, and cancer. We report here that genetic ablation of Id2 in adult hematopoietic stem cells (HSCs) promotes increased HSC activation and differentiation, which results in HSC exhaustion and bone marrow failure over time. Id2Δ/Δ HSCs showed increased cycling, ROS production, mitochondrial activation, ATP production, and DNA damage compared with Id2+/+ HSCs, supporting the conclusion that Id2Δ/Δ HSCs are less quiescent. Mechanistically, HIF-1α expression was decreased in Id2Δ/Δ HSCs, and stabilization of HIF-1α in Id2Δ/Δ HSCs restored HSC quiescence and rescued HSC exhaustion. Inhibitor of DNA binding 2 (ID2) promoted HIF-1α expression by binding to the von Hippel-Lindau (VHL) protein and interfering with proteasomal degradation of HIF-1α. HIF-1α promoted Id2 expression and enforced a positive feedback loop between ID2 and HIF-1α to maintain HSC quiescence. Thus, sustained ID2 expression could protect HSCs during stress and improve HSC expansion for gene editing and cell therapies.
Collapse
Affiliation(s)
- Brad L Jakubison
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kristbjorn O Gudmundsson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Lei Sun
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Holly M Morris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kimberly D Klarmann
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan R Keller
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| |
Collapse
|
3
|
Chu YH, Lin JD, Nath S, Schachtrup C. Id proteins: emerging roles in CNS disease and targets for modifying neural stemcell behavior. Cell Tissue Res 2021; 387:433-449. [PMID: 34302526 PMCID: PMC8975794 DOI: 10.1007/s00441-021-03490-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Neural stem/progenitor cells (NSPCs) are found in the adult brain and spinal cord, and endogenous or transplanted NSPCs contribute to repair processes and regulate immune responses in the CNS. However, the molecular mechanisms of NSPC survival and integration as well as their fate determination and functionality are still poorly understood. Inhibitor of DNA binding (Id) proteins are increasingly recognized as key determinants of NSPC fate specification. Id proteins act by antagonizing the DNA-binding activity of basic helix-loop-helix (bHLH) transcription factors, and the balance of Id and bHLH proteins determines cell fate decisions in numerous cell types and developmental stages. Id proteins are central in responses to environmental changes, as they occur in CNS injury and disease, and cellular responses in adult NSPCs implicate Id proteins as prime candidates for manipulating stemcell behavior. Here, we outline recent advances in understanding Id protein pleiotropic functions in CNS diseases and propose an integrated view of Id proteins and their promise as potential targets in modifying stemcell behavior to ameliorate CNS disease.
Collapse
Affiliation(s)
- Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jia-di Lin
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are defined by their ability to self-renew and differentiate to replenish all blood lineages throughout adult life. Under homeostasis, the majority of HSCs are quiescent, and few stem cells are cycling to sustain hematopoiesis. However, HSCs can be induced to proliferate and differentiate in response to stress signals produced during infection, inflammation, chemotherapy, radiation, bone marrow transplantation, and aging. Recent evidence suggests that acute and chronic stress impact the number and function of HSCs including their ability to repopulate and produce mature cells. This review will focus on how chronic stress affects HSC biology and methods to mitigate HSC loss during chronic hematopoietic stress. RECENT FINDINGS Quiescent HSCs exit dormancy, divide, and differentiate to maintain steady-state hematopoiesis. Under conditions of acute stress including infection or blood loss some HSCs are pushed into division by cytokines and proinflammatory stimuli to differentiate and provide needed myeloid and erythroid cells to protect and reconstitute the host; after which, hematopoiesis returns to steady-state with minimal loss of HSC function. However, under conditions of chronic stress including serial bone marrow transplantation (BMT), chronic inflammation, and genotoxic stress (chemotherapy) and aging, HSCs are continuously induced to proliferate and undergo accelerated exhaustion. Recent evidence demonstrates that ablation of inhibitor of DNA binding 1 (Id1) gene can protect HSCs from exhaustion during chronic proliferative stress by promoting HSC quiescence. SUMMARY Increasing our understanding of the molecular processes that protect HSCs from chronic proliferative stress could lead to therapeutic opportunities to prevent accelerated HSC exhaustion during physiological stress, genotoxic stress, BMT, and aging.
Collapse
|
5
|
Ha TC, Stahlhut M, Rothe M, Paul G, Dziadek V, Morgan M, Brugman M, Fehse B, Kustikova O, Schambach A, Baum C. Multiple Genes Surrounding Bcl-xL, a Common Retroviral Insertion Site, Can Influence Hematopoiesis Individually or in Concert. Hum Gene Ther 2020; 32:458-472. [PMID: 33012194 DOI: 10.1089/hum.2019.344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is both a relevant risk in gene therapy and a powerful tool for identifying genes that enhance the competitiveness of repopulating hematopoietic stem and progenitor cells (HSPCs). However, focusing only on the gene closest to the retroviral vector insertion site (RVIS) may underestimate the effects of RIM, as dysregulation of distal and/or multiple genes by a single insertion event was reported in several studies. As a proof of concept, we examined the common insertion site (CIS) Bcl-xL, which revealed seven genes located within ±150 kb from the RVIS for our study. We confirmed that Bcl-xL enhanced the competitiveness of HSPCs, whereas the Bcl-xL neighbor Id1 hindered HSPC long-term repopulation. This negative influence of Id1 could be counteracted by co-expressing Bcl-xL. Interestingly, >90% of early reconstituted myeloid cells were found to originate from transduced HSPCs upon simultaneous overexpression of Bcl-xL and Id1, which implies that Bcl-xL and Id1 can collaborate to rapidly replenish the myeloid compartment under stress conditions. To directly compare the competitiveness of HSPCs conveyed by multiple transgenes, we developed a multiple competitor competitive repopulation (MCCR) assay to simultaneously screen effects on HSPC repopulating capacity in a single mouse. The MCCR assay revealed that multiple genes within a CIS can have positive or negative impact on hematopoiesis. Furthermore, these data highlight the importance of studying multiple genes located within the proximity of an insertion site to understand complex biological effects, especially as the number of gene therapy patients increases.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Hannover Biomedical Research School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Gabi Paul
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martijn Brugman
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UKE) Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Singh SK, Singh S, Gadomski S, Sun L, Pfannenstein A, Magidson V, Chen X, Kozlov S, Tessarollo L, Klarmann KD, Keller JR. Id1 Ablation Protects Hematopoietic Stem Cells from Stress-Induced Exhaustion and Aging. Cell Stem Cell 2018; 23:252-265.e8. [PMID: 30082068 PMCID: PMC6149219 DOI: 10.1016/j.stem.2018.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 01/16/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Defining mechanisms that maintain tissue stem cells during homeostasis, stress, and aging is important for improving tissue regeneration and repair and enhancing cancer therapies. Here, we show that Id1 is induced in hematopoietic stem cells (HSCs) by cytokines that promote HSC proliferation and differentiation, suggesting that it functions in stress hematopoiesis. Genetic ablation of Id1 increases HSC self-renewal in serial bone marrow transplantation (BMT) assays, correlating with decreases in HSC proliferation, mitochondrial biogenesis, and reactive oxygen species (ROS) production. Id1-/- HSCs have a quiescent molecular signature and harbor less DNA damage than control HSCs. Cytokines produced in the hematopoietic microenvironment after γ-irradiation induce Id1 expression. Id1-/- HSCs display a blunted proliferative response to such cytokines and other inducers of chronic proliferation including genotoxic and inflammatory stress and aging, protecting them from chronic stress and exhaustion. Thus, targeting Id1 may be therapeutically useful for improving HSC survival and function during BMT, chronic stress, and aging.
Collapse
Affiliation(s)
- Satyendra K Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Department of Stem Cell and Cell Culture, Center for Advanced Research, King George's Medical University, Lucknow 226003, India
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lei Sun
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Alexander Pfannenstein
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiongfong Chen
- Advanced Biomedical and Computation Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program and Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program and Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Combined Id1 and Id3 Deletion Leads to Severe Erythropoietic Disturbances. PLoS One 2016; 11:e0154480. [PMID: 27128622 PMCID: PMC4851361 DOI: 10.1371/journal.pone.0154480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
The Inhibitor of DNA Binding (Id) proteins play a crucial role in regulating hematopoiesis and are known to interact with E proteins and the bHLH family of transcription factors. Current efforts seek to elucidate the individual roles of Id members in regulating hematopoietic development and specification. However, the nature of their functional redundancies remains elusive since ablation of multiple Id genes is embryonically lethal. We developed a model to test this compensation in the adult. We report that global Id3 ablation with Tie2Cre-mediated conditional ablation of Id1 in both hematopoietic and endothelial cells (Id cDKO) extends viability to 1 year but leads to multi-lineage hematopoietic defects including the emergence of anemia associated with defective erythroid development, a novel phenotype unreported in prior single Id knockout studies. We observe decreased cell counts in the bone marrow and splenomegaly to dimensions beyond what is seen in single Id knockout models. Transcriptional dysregulation of hematopoietic regulators observed in bone marrow cells is also magnified in the spleen. E47 protein levels were elevated in Id cDKO bone marrow cell isolates, but decreased in the erythroid lineage. Chromatin immunoprecipitation (ChIP) studies reveal increased occupancy of E47 and GATA1 at the promoter regions of β-globin and E2A. Bone marrow transplantation studies highlight the importance of intrinsic Id signals in maintaining hematopoietic homeostasis while revealing a strong extrinsic influence in the development of anemia. Together, these findings demonstrate that loss of Id compensation leads to dysregulation of the hematopoietic transcriptional network and multiple defects in erythropoietic development in adult mice.
Collapse
|
8
|
Analysis of Jak2 signaling reveals resistance of mouse embryonic hematopoietic stem cells to myeloproliferative disease mutation. Blood 2016; 127:2298-309. [PMID: 26864339 DOI: 10.1182/blood-2015-08-664631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/06/2016] [Indexed: 01/28/2023] Open
Abstract
The regulation of hematopoietic stem cell (HSC) emergence during development provides important information about the basic mechanisms of blood stem cell generation, expansion, and migration. We set out to investigate the role that cytokine signaling pathways play in these early processes and show here that the 2 cytokines interleukin 3 and thrombopoietin have the ability to expand hematopoietic stem and progenitor numbers by regulating their survival and proliferation. For this, they differentially use the Janus kinase (Jak2) and phosphatidylinositol 3-kinase (Pi3k) signaling pathways, with Jak2 mainly relaying the proproliferation signaling, whereas Pi3k mediates the survival signal. Furthermore, using Jak2-deficient embryos, we demonstrate that Jak2 is crucially required for the function of the first HSCs, whereas progenitors are less dependent on Jak2. The JAK2V617F mutation, which renders JAK2 constitutively active and has been linked to myeloproliferative neoplasms, was recently shown to compromise adult HSC function, negatively affecting their repopulation and self-renewal ability, partly through the accumulation of JAK2V617F-induced DNA damage. We report here that nascent HSCs are resistant to the JAK2V617F mutation and show no decrease in repopulation or self-renewal and no increase in DNA damage, even in the presence of 2 mutant copies. More importantly, this unique property of embryonic HSCs is stably maintained through ≥1 round of successive transplantations. In summary, our dissection of cytokine signaling in embryonic HSCs has uncovered unique properties of these cells that are of clinical importance.
Collapse
|
9
|
Abstract
The corepressor Rcor1 has been linked biochemically to hematopoiesis, but its function in vivo remains unknown. We show that mice deleted for Rcor1 are profoundly anemic and die in late gestation. Definitive erythroid cells from mutant mice arrest at the transition from proerythroblast to basophilic erythroblast. Remarkably, Rcor1 null erythroid progenitors cultured in vitro form myeloid colonies instead of erythroid colonies. The mutant proerythroblasts also aberrantly express genes of the myeloid lineage as well as genes typical of hematopoietic stem cells (HSCs) and/or progenitor cells. The colony-stimulating factor 2 receptor β subunit (Csf2rb), which codes for a receptor implicated in myeloid cytokine signaling, is a direct target for both Rcor1 and the transcription repressor Gfi1b in erythroid cells. In the absence of Rcor1, the Csf2rb gene is highly induced, and Rcor1(-/-) progenitors exhibit CSF2-dependent phospho-Stat5 hypersensitivity. Blocking this pathway can partially reduce myeloid colony formation by Rcor1-deficient erythroid progenitors. Thus, Rcor1 promotes erythropoiesis by repressing HSC and/or progenitor genes, as well as the genes and signaling pathways that lead to myeloid cell fate.
Collapse
|
10
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
11
|
May AM, Frey AV, Bogatyreva L, Benkisser-Petersen M, Hauschke D, Lübbert M, Wäsch R, Werner M, Hasskarl J, Lassmann S. ID2 and ID3 protein expression mirrors granulopoietic maturation and discriminates between acute leukemia subtypes. Histochem Cell Biol 2013; 141:431-40. [PMID: 24292846 DOI: 10.1007/s00418-013-1169-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 01/21/2023]
Abstract
The inhibitors of DNA binding (ID) inhibit basic helix-loop-helix transcription factors and thereby guide cellular differentiation and proliferation. To elucidate the involvement of IDs in hematopoiesis and acute leukemias (AL), we analyzed ID2 and ID3 expression in hematopoiesis and leukemic blasts in bone marrow biopsies (BMB). BMB of healthy stem cell donors (n = 19) and BMB of patients with acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MD; n = 19), de novo AML (n = 20), B-acute lymphoblastic leukemia (B-ALL) (n = 23), T-ALL (n = 19), were immunohistochemically stained for ID2 and ID3 expression. The expression patterns were evaluated and quantified for each hematopoietic lineage and each leukemia subtype. In normal BMB, immature granulopoiesis showed weak ID2 and strong ID3 expression, which was lost during maturation (p < 0.001). Erythropoiesis remained negative for ID2/3 (p < 0.001). ID2/3 expression differed between immature granulopoiesis and leukemic blasts (p < 0.001). Moreover, differential ID2/3 expression was seen between AL subgroups: AML, especially AML-MD, had more ID2- (p < 0.001) and ID3-positive (p < 0.001) blasts than ALL. We show a comprehensive in situ picture of ID2/3 expression in hematopoiesis and AL. Morphologically, ID2/3 proteins seem to be involved in the granulopoietic maturation. Importantly, the distinct ID2/3 expression patterns in AL indicate a specific deregulation of ID2/3 in the various types of AL and may support subtyping of AL.
Collapse
Affiliation(s)
- Annette M May
- Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liss A, Ooi CH, Zjablovskaja P, Benoukraf T, Radomska HS, Ju C, Wu M, Balastik M, Delwel R, Brdicka T, Tan P, Tenen DG, Alberich-Jorda M. The gene signature in CCAAT-enhancer-binding protein α dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors. Haematologica 2013; 99:697-705. [PMID: 24162792 DOI: 10.3324/haematol.2013.093278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
C/EPBα proteins, encoded by the CCAAT-enhancer-binding protein α gene, play a crucial role in granulocytic development, and defects in this transcription factor have been reported in acute myeloid leukemia. Here, we defined the C/EBPα signature characterized by a set of genes up-regulated upon C/EBPα activation. We analyzed expression of the C/EBPα signature in a cohort of 525 patients with acute myeloid leukemia and identified a subset characterized by low expression of this signature. We referred to this group of patients as the C/EBPα dysfunctional subset. Remarkably, a large percentage of samples harboring C/EBPα biallelic mutations clustered within this subset. We hypothesize that re-activation of the C/EBPα signature in the C/EBPα dysfunctional subset could have therapeutic potential. In search for small molecules able to reverse the low expression of the C/EBPα signature we applied the connectivity map. This analysis predicted positive connectivity between the C/EBPα activation signature and histone deacetylase inhibitors. We showed that these inhibitors reactivate expression of the C/EBPα signature and promote granulocytic differentiation of primary samples from the C/EBPα dysfunctional subset harboring biallelic C/EBPα mutations. Altogether, our study identifies histone deacetylase inhibitors as potential candidates for the treatment of certain leukemias characterized by down-regulation of the C/EBPα signature.
Collapse
|
13
|
Tang Y, Ma X, Zhang H, Gu Z, Hou Y, Gilkeson GS, Lu L, Zeng X, Sun L. Gene expression profile reveals abnormalities of multiple signaling pathways in mesenchymal stem cell derived from patients with systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:826182. [PMID: 22966240 PMCID: PMC3433142 DOI: 10.1155/2012/826182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 12/22/2022]
Abstract
We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs) between systemic lupus erythematosus (SLE) and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO) analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.
Collapse
Affiliation(s)
- Yu Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Xiaolei Ma
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Huayong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Zhifeng Gu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Yayi Hou
- Immunology and Reproductive Biology Lab, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Gary S. Gilkeson
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, The University of Hong Kong, Hong Kong
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking 100730, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| |
Collapse
|
14
|
Oh J, Lee MS, Yeon JT, Choi SW, Kim HS, Shim H, Lee SY, Youn BS, Yokota Y, Kim JH, Kwak HB. Inhibitory regulation of osteoclast differentiation by interleukin-3 via regulation of c-Fos and Id protein expression. J Cell Physiol 2012; 227:1851-60. [PMID: 21732357 DOI: 10.1002/jcp.22913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interleukin-3 (IL-3) is produced under various pathological conditions and is thought to be involved in the pathogenesis of inflammatory diseases; however, its function in bone homeostasis under normal conditions or nature of the downstream molecular targets remains unknown. Here we examined the effect of IL-3 on osteoclast differentiation from mouse and human bone marrow-derived macrophages (BMMs). Although IL-3 can induce osteoclast differentiation of multiple myeloma bone marrow cells, IL-3 greatly inhibited osteoclast differentiation of human BMMs isolated from healthy donors. These inhibitory effects of IL-3 were only observed at early time points (days 0 and 1). IL-3 inhibited the expression of c-Fos and NFATc1 in BMMs treated with RANKL. However, IL-3-mediated inhibition of osteoclast differentiation was not completely reversed by ectopic expression of c-Fos or NFATc1. Importantly, IL-3 induced inhibitor of DNA binding/differentiation (Id)1 in hBMMs, while Id2 were sustained during osteoclast differentiation of mBMMs treated with IL-3. Ectopic expression of NFATc1 in Id2-deficient BMMs completely reversed the inhibitory effect of IL-3 on osteoclast differentiation. Furthermore, inflammation-induced bone erosion was markedly inhibited by IL-3 administration. Taken together, our results suggest that IL-3 plays an inhibitory role in osteoclast differentiation by regulating c-Fos and Ids, and also exerts anti-bone erosion effects.
Collapse
Affiliation(s)
- Jaemin Oh
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Identification of Flt3⁺CD150⁻ myeloid progenitors in adult mouse bone marrow that harbor T lymphoid developmental potential. Blood 2011; 118:2723-32. [PMID: 21791413 DOI: 10.1182/blood-2010-09-309989] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Common myeloid progenitors (CMPs) were first identified as progenitors that were restricted to myeloid and erythroid lineages. However, it was recently demonstrated that expression of both lymphoid- and myeloid-related genes could be detected in myeloid progenitors. Furthermore, these progenitors were able to give rise to T and B lymphocytes, in addition to myeloid cells. Yet, it was not known whether these progenitors were multipotent at the clonogenic level or there existed heterogeneity within these progenitors with different lineage potential. Here we report that previously defined CMPs possess T-lineage potential, and that this is exclusively found in the Flt3(+)CD150(-) subset of CMPs at the clonal level. In contrast, we did not detect B-lineage potential in CMP subsets. Therefore, these Flt3(+)CD150(-) myeloid progenitors were T/myeloid potent. Yet, Flt3(+)CD150(-) myeloid progenitors are not likely to efficiently traffic to the thymus and contribute to thymopoiesis under normal conditions because of the lack of CCR7 and CCR9 expression. Interestingly, both Flt3(+)CD150(-) and Flt3(-)CD150(-) myeloid progenitors are susceptible to Notch1-mediated T-cell acute lymphoblastic leukemia (T-ALL). Hence, gain-of-function Notch1 mutations occurring in developing myeloid progenitors, in addition to known T-lineage progenitors, could lead to T-ALL oncogenesis.
Collapse
|
16
|
Cochrane SW, Zhao Y, Perry SS, Urbaniak T, Sun XH. Id1 has a physiological role in regulating early B lymphopoiesis. Cell Mol Immunol 2010; 8:41-9. [PMID: 21200383 DOI: 10.1038/cmi.2010.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Basic helix-loop-helix E proteins play critical roles in B-cell development by stimulating B cell-specific gene expression and immunoglobulin gene rearrangement. The function of E proteins can be effectively suppressed by their naturally occurring inhibitors, Id1 to 4. Ectopic expression of Id1 has been shown to block B-cell development at the early pro-B cell stage. However, whether Id1 plays a physiological role in controlling B lymphopoiesis was not known. Although Id1-deficient mice do not exhibit significant abnormalities in steady-state B lymphopoiesis, we detected more robust B-cell engraftment in transplant recipients of Id1-deficient bone marrow compared to those of wild-type donor cells. In culture, Id1 ablation dramatically enhances B-lineage cell production without any marked effects on myeloid differentiation. Consistently, Id1 expression was found in pro-B but not pre-B cells as measured by enhanced green fluorescent protein (EGFP) fluorescence and by quantitative reverse transcription-PCR. Although loss of Id1 did not alter the number of B-cell colonies generated from whole bone marrow or the proliferation rate of developing B cells, B-cell colonies were detectable at a much earlier time point and the size of the colonies were larger. Therefore, we infer that Id1-deficient progenitors possess higher potential to differentiate to the pre-B cell stage when a proliferative burst occurs. Taken together, we present evidence to suggest that Id1 plays a physiological role in restraining the developmental progression, which may be important for proper B-cell differentiation in the bone marrow.
Collapse
Affiliation(s)
- Shawn W Cochrane
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
17
|
Li H, Ji M, Klarmann KD, Keller JR. Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development. Blood 2010; 116:1060-9. [PMID: 20453161 PMCID: PMC2938128 DOI: 10.1182/blood-2009-11-255075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/01/2010] [Indexed: 02/06/2023] Open
Abstract
The development of mature blood cells from hematopoietic stem cells requires coordinated activities of transcriptional networks. Transcriptional repressor growth factor independence 1 (Gfi-1) is required for the development of B cells, T cells, neutrophils, and for the maintenance of hematopoietic stem cell function. However, the mechanisms by which Gfi-1 regulates hematopoiesis and how Gfi-1 integrates into transcriptional networks remain unclear. Here, we provide evidence that Id2 is a transcriptional target of Gfi-1, and repression of Id2 by Gfi-1 is required for B-cell and myeloid development. Gfi-1 binds to 3 conserved regions in the Id2 promoter and represses Id2 promoter activity in transient reporter assays. Increased Id2 expression was observed in multipotent progenitors, myeloid progenitors, T-cell progenitors, and B-cell progenitors in Gfi-1(-/-) mice. Knockdown of Id2 expression or heterozygosity at the Id2 locus partially rescues the B-cell and myeloid development but not the T-cell development in Gfi-1(-/-) mice. These studies demonstrate a role of Id2 in mediating Gfi-1 functions in B-cell and myeloid development and provide a direct link between Gfi-1 and the B-cell transcriptional network by its ability to repress Id2 expression.
Collapse
Affiliation(s)
- Huajie Li
- Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Development of hematopoietic stem cells (HSCs) and their immediate progeny is maintained by the interaction with cells in the microenvironment. We found that hematopoiesis was dysregulated in Id1(-/-) mice. Although the frequency of HSCs in Id1(-/-) bone marrow was increased, their total numbers remained unchanged as the result of decreased bone marrow cellularity. In addition, the ability of Id1(-/-) HSCs to self-renew was normal, suggesting Id1 does not affect HSC function. Id1(-/-) progenitors showed increased cycling in vivo but not in vitro, suggesting cell nonautonomous mechanisms for the increased cycling. Id1(-/-) HSCs developed normally when transplanted into Id1(+/+) mice, whereas the development of Id1(+/+) HSCs was impaired in Id1(-/-) recipients undergoing transplantation and reproduced the hematologic features of Id1(-/-) mice, indicating that the Id1(-/-) microenvironment cannot support normal hematopoietic development. Id1(-/-) stromal cells showed altered production of cytokines in vitro, and cytokine levels were deregulated in vivo, which could account for the Id1(-/-) hematopoietic phenotypes. Thus, Id1 is required for regulating the hematopoietic progenitor cell niche but is dispensable for maintaining HSCs.
Collapse
|
19
|
|
20
|
Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals. Blood 2009; 113:4534-40. [PMID: 19224760 DOI: 10.1182/blood-2008-12-192559] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported the inhibitory action of interleukin-6 (IL-6) on B lymphopoiesis with SHIP(-/-) mice and showed that IL-6 biases lineage commitment toward myeloid cell fates in vitro and in vivo. Because elevated IL-6 is a feature of chronic inflammatory diseases, we applied an animal model of systemic lupus erythematosus (SLE) to determine whether IL-6 has similar effects on hematopoiesis. We found that IL-6 levels were elevated in the B6.Sle1.Yaa mice, and the increase was accompanied by losses of CD19(+) B cells and more primitive B-lymphoid progenitors in bone marrow. Both the CD19(+) B-cell population and their progenitors recovered in an IL-6(-/-) background. The uncommitted progenitors, containing precursors for both lymphoid and myeloid fates, expressed IL-6 receptor-alpha chain and responded to IL-6 by phosphorylation of STAT3. IL-6 stimulation caused uncommitted progenitors to express the Id1 transcription factor, which is known to inhibit lymphopoiesis and elevate myelopoiesis, and its expression was MAPK dependent. We conclude that chronic inflammatory conditions accompanied by increased IL-6 production bias uncommitted progenitors to a myeloid fate by inducing Id1 expression.
Collapse
|
21
|
Abstract
Hematopoiesis consists of a series of lineage decisions controlled by specific gene expression that is regulated by transcription factors and intracellular signaling events in response to environmental cues. Here, we demonstrate that the balance between E-protein transcription factors and their inhibitors, Id proteins, is important for the myeloid-versus-lymphoid fate choice. Using Id1-GFP knockin mice, we show that transcription of the Id1 gene begins to be up-regulated at the granulocyte-macrophage progenitor stage and continues throughout myelopoiesis. Id1 expression is also stimulated by cytokines favoring myeloid differentiation. Forced expression of Id1 in multipotent progenitors promotes myeloid development and suppresses B-cell formation. Conversely, enhancing E-protein activity by expressing a variant of E47 resistant to Id-mediated inhibition prevents the myeloid cell fate while driving B-cell differentiation from lymphoid-primed multipotent progenitors. Together, these results suggest a crucial function for E proteins in the myeloid-versus-lymphoid lineage decision.
Collapse
|
22
|
Suh HC, Leeanansaksiri W, Ji M, Klarmann KD, Renn K, Gooya J, Smith D, McNiece I, Lugthart S, Valk PJM, Delwel R, Keller JR. Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo. Oncogene 2008; 27:5612-23. [PMID: 18542061 PMCID: PMC3073486 DOI: 10.1038/onc.2008.175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/25/2008] [Accepted: 04/25/2008] [Indexed: 01/21/2023]
Abstract
Id1 is frequently overexpressed in many cancer cells, but the functional significance of these findings is not known. To determine if Id1 could contribute to the development of hematopoietic malignancy, we reconstituted mice with hematopoietic cells overexpressing Id1. We showed for the first time that deregulated expression of Id1 leads to a myeloproliferative disease in mice, and immortalizes myeloid progenitors in vitro. In human cells, we demonstrate that Id genes are expressed in human acute myelogenous leukemia cells, and that knock down of Id1 expression inhibits leukemic cell line growth, suggesting that Id1 is required for leukemic cell proliferation. These findings established a causal relationship between Id1 overexpression and hematologic malignancy. Thus, deregulated expression of Id1 may contribute to the initiation of myeloid malignancy, and Id1 may represent a potential therapeutic target for early stage intervention in the treatment of hematopoietic malignancy.
Collapse
Affiliation(s)
- HC Suh
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - W Leeanansaksiri
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - M Ji
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - KD Klarmann
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - K Renn
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - J Gooya
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - D Smith
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - I McNiece
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - S Lugthart
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - PJM Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - JR Keller
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| |
Collapse
|
23
|
Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 2008; 112:1068-77. [PMID: 18523151 DOI: 10.1182/blood-2008-01-133504] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development. Overexpression of Id1, Id2, or Id3 has similar effects on lymphocyte development. However, which Id protein plays a physiologic role during lymphocyte development is not clear. By analyzing Id2 knock-out mice and retroviral transduced hematopoietic progenitors, we demonstrated that Id2 is an intrinsic negative regulator of B-cell development. Hematopoietic progenitor cells overexpressing Id2 did not reconstitute B-cell development in vivo, which resembled the phenotype of E2A null mice. The B-cell population in bone marrow was significantly expanded in Id2 knock-out mice compared with their wild-type littermates. Knock-down of Id2 by shRNA in hematopoietic progenitor cells promoted B-cell differentiation and induced the expression of B-cell lineage-specific genes. These data identified Id2 as a physiologically relevant regulator of E2A during B lymphopoiesis. Furthermore, we identified a novel Id2 function in erythroid development. Overexpression of Id2 enhanced erythroid development, and decreased level of Id2 impaired normal erythroid development. Id2 regulation of erythroid development is mediated via interacting with transcription factor PU.1 and modulating PU.1 and GATA-1 activities. We conclude that Id2 regulates lymphoid and erythroid development via interaction with different target proteins.
Collapse
|
24
|
Wolff L, Ackerman SJ, Nucifora G. Meeting report: Seventh International Workshop on Molecular Aspects of Myeloid Stem Cell Development and Leukemia, Annapolis, MD, May 13-16, 2007. Exp Hematol 2008; 36:523-32. [PMID: 18295966 DOI: 10.1016/j.exphem.2007.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/13/2007] [Accepted: 12/21/2007] [Indexed: 11/27/2022]
Affiliation(s)
- Linda Wolff
- National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Zhang H, Lawson WE, Polosukhin VV, Pozzi A, Blackwell TS, Litingtung Y, Chiang C. Inhibitor of differentiation 1 promotes endothelial survival in a bleomycin model of lung injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1113-26. [PMID: 17717145 PMCID: PMC1988863 DOI: 10.2353/ajpath.2007.070226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Id family of genes encodes negative regulators of basic helix-loop-helix transcription factors and has been implicated in diverse cellular processes such as proliferation, apoptosis, differentiation, and migration. However, the specific role of Id1 in lung injury has not been investigated. Bleomycin has been widely used to generate animal models of acute lung injury and fibrogenesis. In this study we found that, on bleomycin challenge, Id1 expression was significantly up-regulated in the lungs, predominantly in endothelial cells, as revealed by double immunolabeling and quantitative flow cytometric analysis. Mice with Id1 loss-of-function (Id1(-/-)) displayed increased vascular permeability and endothelial apoptosis in the lungs after bleomycin-induced injury. Cultured Id1(-/-) lung microvascular endothelial cells also showed decreased survival when exposed to bleomycin. We detected a decrease in the level of Bcl-2, a primary anti-apoptotic protein, in Id1(-/-) endothelial cells, suggesting that down-regulated Bcl-2 may promote endothelial apoptosis in the lung. Therefore, we propose that Id1 plays a crucial role in promoting endothelial survival in the adult lung on injury. In addition, bleomycin-exposed Id1(-/-) mice showed increased lung collagen accumulation and fibrogenesis, suggesting that Id1 up-regulation in the lung may play a critical role in lung homeostasis.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Perry SS, Zhao Y, Nie L, Cochrane SW, Huang Z, Sun XH. Id1, but not Id3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood 2007; 110:2351-60. [PMID: 17622570 PMCID: PMC1988946 DOI: 10.1182/blood-2007-01-069914] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
E-proteins are widely expressed basic helix-loop-helix (HLH) transcription factors that regulate differentiation in many cell lineages, including lymphoid, muscle, and neuronal cells. E-protein function is controlled by HLH inhibitors such as Id and SCL/TAL1 proteins, which recently have been suggested to play a role in hematopoietic stem cell (HSC) differentiation. However, the precise stages when these proteins are expressed and their specific functions are not entirely clear. Using a knock-in mouse model where the sequence for the enhanced green fluorescent protein (GFP) was inserted downstream of the Id1 promoter, we were able to track Id1 expression on an individual cell basis and detected Id1 expression in long-term repopulating HSCs (LT-HSCs). Functional assays showed that the Id1/GFP(+)Lin(-)Sca1(+)c-kit(Hi) population was highly enriched for LT-HSCs. Consistent with this expression pattern, Id1 deficiency led to a 2-fold reduction in the number of LT-HSCs defined as Lin(-)Sca1(+)c-kit(Hi)CD48(-)CD150(+). Primary bone marrow transplantation studies revealed that Id1 is dispensable for short-term engraftment. In contrast, both Id1(-/-) whole bone marrow and Lin(-)Sca1(+)c-kit(Hi)Thy1.1(Lo)-enriched HSCs, but not Id3(-/-) marrow, displayed impaired engraftment relative to wild-type controls in secondary transplantation assays. These findings suggest a unique role for Id1 in LT-HSC maintenance and hematopoietic development.
Collapse
Affiliation(s)
- S Scott Perry
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
28
|
Wolff L, Ackerman SJ, Nucifora G. Meeting report: Sixth International Workshop on Molecular Aspects of Myeloid Stem Cell Development and Leukemia, Annapolis, May 1-4, 2005. Exp Hematol 2005; 33:1436-42. [PMID: 16338485 DOI: 10.1016/j.exphem.2005.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 11/20/2022]
Affiliation(s)
- Linda Wolff
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|