1
|
Li G, Zeng M, Yan Z, Cai S, Ma Y, Wang Y, Li S, Li Y, Zhong K, Xiao M, Fu G, Weng J, Gao Y. HDAC inhibitors support long-term expansion of porcine hepatocytes in vitro. Biomed Pharmacother 2024; 177:116973. [PMID: 38908204 DOI: 10.1016/j.biopha.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Hepatocyte transplantation is an effective treatment for end-stage liver disease. However, due to the limited supply of human hepatocytes, porcine hepatocytes have garnered attention as a potential alternative source. Nonetheless, traditional primary porcine hepatocytes exhibit certain limitations in function maintenance and in vitro proliferation. This study has discovered that by using histone deacetylase inhibitors (HDACi), primary porcine hepatocytes can be successfully reprogrammed into liver progenitor cells with high proliferative potential. This method enables porcine hepatocytes to proliferate over an extended period in vitro and exhibit increased susceptibility in lentivirus-mediated gene modification. These liver progenitor cells can readily differentiate into mature hepatocytes and, upon microencapsulation transplantation into mice with acute liver failure, significantly improve the survival rate. This research provides new possibilities for the application of porcine hepatocytes in the treatment of end-stage liver disease.
Collapse
Affiliation(s)
- Guanhong Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou 510000, China
| | - Min Zeng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zhengming Yan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shaoru Cai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi Ma
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yuting Wang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shao Li
- Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Kebo Zhong
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Mingjia Xiao
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| | - Gongbo Fu
- Department of Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210000, China.
| | - Jun Weng
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510000, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
2
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
Accommodation in allogeneic and xenogeneic organ transplantation: Prevalence, impact, and implications for monitoring and for therapeutics. Hum Immunol 2023; 84:5-17. [PMID: 36244871 DOI: 10.1016/j.humimm.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Accommodation refers to acquired resistance of organs or tissues to immune or inflammatory reactions that might otherwise cause severe injury or rejection. As first observed in ABO-incompatible kidney transplants and heterotopic cardiac xenografts, accommodation was identified when organ transplants continued to function despite the presence of anti-graft antibodies and/or other reactants in the blood of recipients. Recent evidence suggests many and perhaps most organ transplants have accommodation, as most recipients mount B cell responses specific for the graft. Wide interest in the impact of graft-specific antibodies on the outcomes of transplants prompts questions about which mechanisms confer protection against such antibodies, how accommodation might be detected and whether and how rejection could be superimposed on accommodation. Xenotransplantation offers a unique opportunity to address these questions because immune responses to xenografts are easily detected and the pathogenic impact of immune responses is so severe. Xenotransplantation also provides a compelling need to apply these and other insights to decrease the intensity and toxicity of immunosuppression that otherwise could limit clinical application.
Collapse
|
4
|
Kenta I, Takaaki K. Molecular Mechanisms of Antibody-Mediated Rejection and Accommodation in Organ Transplantation. Nephron Clin Pract 2020; 144 Suppl 1:2-6. [PMID: 33238285 DOI: 10.1159/000510747] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 11/19/2022] Open
Abstract
Antibody-mediated rejection (ABMR) in organ transplantation has been recognized as the main cause of graft rejection. Binding of donor-specific HLA antibody (DSA) and A/B blood type antibody on graft endothelial cells causes complement-dependent tissue damage. C4d, a product of the complement cascade, has long been an indicator of graft tissue damage in graft endothelial cells. By contrast, recent evidences indicated histological findings of ABMR without C4d deposition in many cases and Banff classification criteria included a category of C4d-negative ABMR. Several mechanisms have been proposed for complement-independent tissue injury in the presence of DSA. It is well known that activated monocytes and macrophages infiltrate into graft tissues. The inflammatory environment triggered by the binding of DSA to endothelial cells alone can induce an allo-reaction of CD4 T-cells via graft endothelial cell HLA-class II. Accommodation is a condition that no rejections occur even in the presence of an antibody against donor organs and becomes attracting considerable attention as a therapeutic strategy to acquire long-term survival of the transplanted organs. Several recent publications have suggested some mechanistic insights about graft accommodation, including the upregulation of antioxidant, anti-apoptotic, and complement regulatory proteins genes via activation of PI3K/AKT survival signal or inactivation of extracellular signal-regulated protein kinase pro-inflammatory signals after DSA and anti-A/B antibody ligation on endothelial cells.
Collapse
Affiliation(s)
- Iwasaki Kenta
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan,
| | - Kobayashi Takaaki
- Department of Kidney Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
5
|
Platt JL, Cascalho M, Piedrahita JA. Xenotransplantation: Progress Along Paths Uncertain from Models to Application. ILAR J 2019; 59:286-308. [PMID: 30541147 DOI: 10.1093/ilar/ily015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health. However, biological barriers to xenotransplantation, including immunity of the recipient, incompatibility of biological systems, and transmission of novel infectious agents, are believed to exceed the barriers to allotransplantation and presently to hinder clinical applications. One way potentially to address the barriers to xenotransplantation is by genetic engineering animal sources. The last 2 decades have brought progressive advances in approaches that can be applied to genetic modification of large animals. Application of these approaches to genetic engineering of pigs has contributed to dramatic improvement in the outcome of experimental xenografts in nonhuman primates and have encouraged the development of a new type of xenograft, a reverse xenograft, in which human stem cells are introduced into pigs under conditions that support differentiation and expansion into functional tissues and potentially organs. These advances make it appropriate to consider the potential limitation of genetic engineering and of current models for advancing the clinical applications of xenotransplantation and reverse xenotransplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Marilia Cascalho
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Jorge A Piedrahita
- Translational Medicine and The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
6
|
Platt JL, Garcia de Mattos Barbosa M, Cascalho M. The five dimensions of B cell tolerance. Immunol Rev 2019; 292:180-193. [PMID: 31609002 PMCID: PMC10387221 DOI: 10.1111/imr.12813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
B cell tolerance has been generally understood to be an acquired property of the immune system that governs antibody specificity in ways that avoid auto-toxicity. As useful as this understanding has proved, it fails to fully explain the existence of auto-reactive specificities in healthy individuals and contribution these may have to health. Mechanisms underlying B cell tolerance are considered to select a clonal repertoire that generates a collection of antibodies that do not bind self, ie tolerance operates more or less in three dimensions that largely spare autologous cells and antigens. Yet, most B lymphocytes in humans and probably in other vertebrates are auto-reactive and absence of these auto-reactive B cells is associated with disease. We suggest that auto-reactivity can be embodied by extending the concept of tolerance by two further dimensions, one of time and circumstance and one that allows healthy cells to actively resist injury. In this novel concept, macromolecular recognition by the B cell receptor leading to deletion, anergy, receptor editing or B cell activation is extended by taking account of the time of development of normal immune responses (4th dimension) and the accommodation (or tolerance) of normal cells to bound antibody, activation of complement, and interaction with inflammatory cells (fifth dimension). We discuss how these dimensions contribute to understanding B cell biology in health or disease.
Collapse
Affiliation(s)
- Jeffrey L. Platt
- Department of Surgery University of Michigan Ann Arbor MI USA
- Department of Microbiology and Immunology and Department of Surgery University of Michigan Ann Arbor MI USA
- Lead Contacts Ann Arbor MI USA
| | | | - Marilia Cascalho
- Department of Surgery University of Michigan Ann Arbor MI USA
- Department of Microbiology and Immunology and Department of Surgery University of Michigan Ann Arbor MI USA
- Lead Contacts Ann Arbor MI USA
| |
Collapse
|
7
|
Wang Q, Zhang X, Wang B, Bai G, Pan D, Yang P, Tao K, Li X, Dou K. Immortalization of porcine hepatocytes with a α-1,3-galactosyltransferase knockout background. Xenotransplantation 2019; 27:e12550. [PMID: 31435990 DOI: 10.1111/xen.12550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND In vivo pig liver xenotransplantation preclinical trials appear to have poor efficiency compared to heart or kidney xenotransplantation because of xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia. In contrast, ex vivo pig liver (wild type) perfusion systems have been proven to be effective in "bridging" liver failure patients until subsequent liver allotransplantation, and transgenic (human CD55/CD59) modifications have even prolonged the duration of pig liver perfusion. Despite the fact that hepatocyte cell lines have also been proposed for extracorporeal blood circulation in conditions of acute liver failure, porcine hepatocyte cell lines, and the GalT-KO background in particular, have not been developed and applied in this field. Herein, we established immortalized wild-type and GalT-KO porcine hepatocyte cell lines, which can be used for artificial liver support systems, cell transplantation, and even in vitro studies of xenotransplantation. METHODS Primary hepatocytes extracted from GalT-KO and wild-type pigs were transfected with SV40 LT lentivirus to establish immortalized GalT-KO porcine hepatocytes (GalT-KO-hep) and wild-type porcine hepatocytes (WT). Hepatocyte biomarkers and function-related genes were assessed by immunofluorescence, periodic acid-Schiff staining, indocyanine green (ICG) uptake, biochemical analysis, ELISA, and RT-PCR. Furthermore, the tumorigenicity of immortalized cells was detected. In addition, a complement-dependent cytotoxicity (CDC) assay was performed with GalT-KO-hep and WT cells. Cell death and viability rates were assessed by flow cytometry and CCK-8 assay. RESULTS GalT-KO and wild-type porcine hepatocytes were successfully immortalized and maintained the characteristics of primary porcine hepatocytes, including albumin secretion, ICG uptake, urea and glycogen production, and expression of hepatocyte marker proteins and specific metabolic enzymes. GalT-KO-hep and WT cells were confirmed as having no tumorigenicity. In addition, GalT-KO-hep cells showed less apoptosis and more viability than WT cells when exposed to complement and xenogeneic serum. CONCLUSIONS Two types of immortalized cell lines of porcine hepatocytes with GalT-KO and wild-type backgrounds were successfully established. GalT-KO-hep cells exhibited higher viability and injury resistance against a xenogeneic immune response.
Collapse
Affiliation(s)
- Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ge Bai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dengke Pan
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Thorgersen EB, Barratt‐Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, Mollnes TE. The Role of Complement in Liver Injury, Regeneration, and Transplantation. Hepatology 2019; 70:725-736. [PMID: 30653682 PMCID: PMC6771474 DOI: 10.1002/hep.30508] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
The liver is both an immunologically complex and a privileged organ. The innate immune system is a central player, in which the complement system emerges as a pivotal part of liver homeostasis, immune responses, and crosstalk with other effector systems in both innate and adaptive immunity. The liver produces the majority of the complement proteins and is the home of important immune cells such as Kupffer cells. Liver immune responses are delicately tuned between tolerance to many antigens flowing in from the alimentary tract, a tolerance that likely makes the liver less prone to rejection than other solid organ transplants, and reaction to local injury, systemic inflammation, and regeneration. Notably, complement is a double-edged sword as activation is detrimental by inducing inflammatory tissue damage in, for example, ischemia-reperfusion injury and transplant rejection yet is beneficial for liver tissue regeneration. Therapeutic complement inhibition is rapidly developing for routine clinical treatment of several diseases. In the liver, targeted inhibition of damaged tissue may be a rational and promising approach to avoid further tissue destruction and simultaneously preserve beneficial effects of complement in areas of proliferation. Here, we argue that complement is a key system to manipulate in the liver in several clinical settings, including liver injury and regeneration after major surgery and preservation of the organ during transplantation.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Department of Gastroenterological SurgeryThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Andreas Barratt‐Due
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway
| | - Håkon Haugaa
- Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway,Lovisenberg Diaconal University CollegeOsloNorway
| | - Morten Harboe
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Søren Erik Pischke
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway
| | - Per H. Nilsson
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Linnaeus Centre for Biomaterials ChemistryLinnaeus UniversityKalmarSweden
| | - Tom Eirik Mollnes
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Reserach Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TRECUniversity of TromsøTromsøNorway,Centre of Molecular Inflammation ResearchNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
9
|
Platt JL, Cascalho M. Non-canonical B cell functions in transplantation. Hum Immunol 2019; 80:363-377. [PMID: 30980861 PMCID: PMC6544480 DOI: 10.1016/j.humimm.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
B cells are differentiated to recognize antigen and respond by producing antibodies. These activities, governed by recognition of ancillary signals, defend the individual against microorganisms and the products of microorganisms and constitute the canonical function of B cells. Despite the unique differentiation (e.g. recombination and mutation of immunoglobulin gene segments) toward this canonical function, B cells can provide other, "non-canonical" functions, such as facilitating of lymphoid organogenesis and remodeling and fashioning T cell repertoires and modifying T cell responses. Some non-canonical functions are exerted by antibodies, but most are mediated by other products and/or direct actions of B cells. The diverse set of non-canonical functions makes the B cell as much as any cell a central organizer of innate and adaptive immunity. However, the diverse products and actions also confound efforts to weigh the importance of individual non-canonical B cell functions. Here we shall describe the non-canonical functions of B cells and offer our perspective on how those functions converge in the development and governance of immunity, particularly immunity to transplants, and hurdles to advancing understanding of B cell functions in transplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
de Mattos Barbosa MG, Cascalho M, Platt JL. Accommodation in ABO-incompatible organ transplants. Xenotransplantation 2018; 25:e12418. [PMID: 29913044 PMCID: PMC6047762 DOI: 10.1111/xen.12418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
Accommodation refers to a condition in which a transplant (or any tissue) appears to resist immune-mediated injury and loss of function. Accommodation was discovered and has been explored most thoroughly in ABO-incompatible kidney transplantation. In this setting, kidney transplants bearing blood group A or B antigens often are found to function normally in recipients who lack and hence produce antibodies directed against the corresponding antigens. Whether accommodation is owed to changes in anti-blood group antibodies, changes in antigen or a change in the response of the transplant to antibody binding are critically reviewed and a new working model that allows for the kinetics of development of accommodation is put forth. Regardless of how accommodation develops, observations on the fate of ABO-incompatible transplants offer lessons applicable more broadly in transplantation and in other fields.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The outcome of vascularized composite allografts (VCA) often appear unrelated to the presence of donor-specific antibodies (DSA) in blood of the recipient or deposition of complement in the graft. The attenuation of injury and the absence of rejection in other types of grafts despite manifest donor-specific immunity have been explained by accommodation (acquired resistance to immune-mediated injury), adaptation (loss of graft antigen) and/or enhancement (antibody-mediated antigen blockade). Whether and how accommodation, adaptation and/or enhancement impact on the outcome of VCA is unknown. Here we consider how recent observations concerning accommodation in organ transplants might advance understanding and resolve uncertainties about the clinical course of VCA. RECENT FINDINGS Investigation of the mechanisms through which kidney allografts avert antibody-mediated injury and rejection provide insights potentially applicable to VCA. Interaction of DSA can facilitate replacement of donor by recipient endothelial cells, modulate or decrease synthesis of antigen, mobilize antigen that in turn blocks further immune recognition and limit the amount of bound antibody, allowing accommodation to ensue. These processes also can explain the apparent dissociation between the presence and levels of DSA in blood, deposition of C4d in grafts and antibody-mediated rejection. Over time the processes might also explain the inception of chronic graft changes. SUMMARY The disrupted tissue in VCA and potential for repopulation by endothelial cells of the recipient establish conditions that potentially decrease susceptibility to acute antibody-mediated rejection. These conditions include clonal suppression of donor-specific B cells, and adaptation, enhancement and accommodation. This setting also potentially highlights heretofore unrecognized interactions between these 'protective' processes.
Collapse
|
12
|
Li D, He W, Liu X, Zheng S, Qi Y, Li H, Mao F, Liu J, Sun Y, Pan L, Du K, Ye K, Li W, Sui J. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. eLife 2017; 6. [PMID: 28949917 PMCID: PMC5614562 DOI: 10.7554/elife.26738] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem. Currently-available therapies are ineffective in curing chronic HBV infection. HBV and its satellite hepatitis D virus (HDV) infect hepatocytes via binding of the preS1 domain of its large envelope protein to sodium taurocholate cotransporting polypeptide (NTCP). Here, we developed novel human monoclonal antibodies that block the engagement of preS1 with NTCP and neutralize HBV and HDV with high potency. One antibody, 2H5-A14, functions at picomolar level and exhibited neutralization-activity-mediated prophylactic effects. It also acts therapeutically by eliciting antibody-Fc-dependent immunological effector functions that impose durable suppression of viral infection in HBV-infected mice, resulting in reductions in the levels of the small envelope antigen and viral DNA, with no emergence of escape mutants. Our results illustrate a novel antibody-Fc-dependent approach for HBV treatment and suggest 2H5-A14 as a novel clinical candidate for HBV prevention and treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Dan Li
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Ximing Liu
- National Institute of Biological Sciences, Beijing, China.,PTN Joint Graduate Program, College of Life Sciences, Peking University, Beijing, China
| | - Sanduo Zheng
- National Institute of Biological Sciences, Beijing, China
| | - Yonghe Qi
- National Institute of Biological Sciences, Beijing, China
| | - Huiyu Li
- National Institute of Biological Sciences, Beijing, China
| | - Fengfeng Mao
- National Institute of Biological Sciences, Beijing, China.,Graduate Program in College of Life Sciences, Beijing Normal University, Beijing, China
| | - Juan Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Lijing Pan
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Kaixin Du
- National Institute of Biological Sciences, Beijing, China.,Graduate Program in College of Life Sciences, Beijing Normal University, Beijing, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
13
|
Dubruc E, Nadaud B, Ruchelli E, Heissat S, Baruteau J, Broué P, Debray D, Cordier MP, Miossec P, Russo P, Collardeau-Frachon S. Relevance of C5b9 immunostaining in the diagnosis of neonatal hemochromatosis. Pediatr Res 2017; 81:712-721. [PMID: 28085791 DOI: 10.1038/pr.2017.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/04/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Neonatal hemochromatosis caused by a gestational alloimmune mechanism or gestational alloimmune liver disease (GALD) is a rare perinatal disorder characterized by intra- and extrahepatic iron overload. It is believed to result from complement-mediated liver injury, in which the classical complement pathway is activated by maternal antibody/fetal antigen complexes, leading to hepatocyte lysis by the membrane attack complex C5b9. According to some authors, C5b9 expression in more than 75% of liver parenchyma is specific for GALD. METHODS We conducted a retrospective multicentric immunohistochemical study with anti-C5b9 in GALD cases (n = 25) and non-GALD cases with iron overload (n = 36) and without iron overload (n = 18). RESULTS C5b9 was expressed in 100% of GALD cases but involved more than 75% of the liver parenchyma in only 26% of the cases. C5b9 was detected in 26.75% of the non-GALD cases with more than 75% of positive parenchyma in maternal erythrocytic alloimmunization, herpes and enterovirus hepatitis, bile acid synthetic defect, DGUOK mutation, Gaucher disease, cystic fibrosis, and giant-cell hepatitis with autoimmune hemolytic anemia. CONCLUSION Diagnosis and therapeutic management of GALD cannot only be based on C5b9 expression in liver samples as it is not specific of this disease.
Collapse
Affiliation(s)
- Estelle Dubruc
- Department of pathology, Hôpital Femme-Mère-Enfant, CHU de Lyon, France
| | - Béatrice Nadaud
- Department of pathology, Hôpital Femme-Mère-Enfant, CHU de Lyon, France
| | - Eduardo Ruchelli
- Department of pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sophie Heissat
- Department of pediatrics, Hôpital Femme-Mère-Enfant, CHU de Lyon, France
| | - Julien Baruteau
- Pediatric Hepatology and Inborn Metabolic Diseases Unit, University Children's Hospital, Toulouse, France
| | - Pierre Broué
- Pediatric Hepatology and Inborn Metabolic Diseases Unit, University Children's Hospital, Toulouse, France
| | - Dominique Debray
- Department of Pediatric Surgery, Hepatology, and Transplantation, Necker Enfants Malades Hospital, Paris, France
| | | | - Pierre Miossec
- Department of immunology, Hôpital Edouard Herriot, CHU de Lyon, France.,Université Claude Bernard Lyon 1, France
| | - Pierre Russo
- Department of pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, CHU de Lyon, France.,Université Claude Bernard Lyon 1, France.,SOFFOET, Société Française de Foetopathologie, Paris, France
| |
Collapse
|
14
|
Korkmaz HI, Krijnen PAJ, Ulrich MMW, de Jong E, van Zuijlen PPM, Niessen HWM. The role of complement in the acute phase response after burns. Burns 2017; 43:1390-1399. [PMID: 28410933 DOI: 10.1016/j.burns.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/03/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Severe burns induce a complex systemic inflammatory response characterized by a typical prolonged acute phase response (APR) that starts approximately 4-8h after-burn and persists for months up to a year after the initial burn trauma. During this APR, acute phase proteins (APPs), including C-reactive protein (CRP) and complement (e.g. C3, C4 and C5) are released in the blood, resulting amongst others, in the recruitment and migration of inflammatory cells. Although the APR is necessary for proper wound healing, a prolonged APR can induce local tissue damage, hamper the healing process and cause negative systemic effects in several organs, including the heart, lungs, kidney and the central nervous system. In this review, we will discuss the role of the APR in burns with a specific focus on complement.
Collapse
Affiliation(s)
- H Ibrahim Korkmaz
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands.
| | - Paul A J Krijnen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Magda M W Ulrich
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - E de Jong
- Department of Intensive Care, Red Cross Hospital, Beverwijk, The Netherlands
| | - Paul P M van Zuijlen
- Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Center, Amsterdam, The Netherlands; Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, The Netherlands; Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands; Institute of Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Iwase H, Liu H, Schmelzer E, Ezzelarab M, Wijkstrom M, Hara H, Lee W, Singh J, Long C, Lagasse E, Gerlach JC, Cooper DKC, Gridelli B. Transplantation of hepatocytes from genetically engineered pigs into baboons. Xenotransplantation 2017; 24. [PMID: 28130881 DOI: 10.1111/xen.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/23/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. METHODS Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by the measurement of anti-non-Gal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. RESULTS Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low-500-1000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. DISCUSSION AND CONCLUSIONS As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Eva Schmelzer
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagjit Singh
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Lagasse
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jörg C Gerlach
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| |
Collapse
|
16
|
Stites E, Le Quintrec M, Thurman JM. The Complement System and Antibody-Mediated Transplant Rejection. THE JOURNAL OF IMMUNOLOGY 2016; 195:5525-31. [PMID: 26637661 DOI: 10.4049/jimmunol.1501686] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complement activation is an important cause of tissue injury in patients with Ab-mediated rejection (AMR) of transplanted organs. Complement activation triggers a strong inflammatory response, and it also generates tissue-bound and soluble fragments that are clinically useful markers of inflammation. The detection of complement proteins deposited within transplanted tissues has become an indispensible biomarker of AMR, and several assays have recently been developed to measure complement activation by Abs reactive to specific donor HLA expressed within the transplant. Complement inhibitors have entered clinical use and have shown efficacy for the treatment of AMR. New methods of detecting complement activation within transplanted organs will improve our ability to diagnose and monitor AMR, and they will also help guide the use of complement inhibitory drugs.
Collapse
Affiliation(s)
- Erik Stites
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Moglie Le Quintrec
- Department of Nephrology and Renal Transplantation, Lapeyronie Hospital, 34295 Montpellier Cedex 5, France
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
17
|
Meier RPH, Navarro-Alvarez N, Morel P, Schuurman HJ, Strom S, Bühler LH. Current status of hepatocyte xenotransplantation. Int J Surg 2015; 23:273-279. [PMID: 26361861 DOI: 10.1016/j.ijsu.2015.08.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
The treatment of acute liver failure, a condition with high mortality, comprises optimal clinical care, and in severe cases liver transplantation. However, there are limitations in availability of organ donors. Hepatocyte transplantation is a promising alternative that could fill the medical need, in particular as the bridge to liver transplantation. Encapsulated porcine hepatocytes represent an unlimited source that could function as a bioreactor requiring minimal immunosuppression. Besides patients with acute liver failure, patients with alcoholic hepatitis who are unresponsive to a short course of corticosteroids are a target for hepatocyte transplantation. In this review we present an overview of the innate immune barriers in hepatocyte xenotransplantation, including the role of complement and natural antibodies; the role of phagocytic cells and ligands like CD47 in the regulation of phagocytic cells; and the role of Natural Killer cells. We present also some illustrations of physiological species incompatibilities in hepatocyte xenotransplantation, such as incompatibilities in the coagulation system. An overview of the methodology for cell microencapsulation is presented, followed by proof-of-concept studies in rodent and nonhuman primate models of fulminant liver failure: these studies document the efficacy of microencapsulated porcine hepatocytes which warrants progress towards clinical application. Lastly, we present an outline of a provisional clinical trial, that upon completion of preclinical work could start within the upcoming 2-3 years.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland.
| | - Nalu Navarro-Alvarez
- Center for Transplantation Sciences (CTS), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Henk-Jan Schuurman
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stephen Strom
- Cell Transplantation and Regenerative Medicine, Department of Laboratory Medicine, Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leo H Bühler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
18
|
Zhou H, Liu H, Ezzelarab M, Schmelzer E, Wang Y, Gerlach J, Gridelli B, Cooper DKC. Experimental hepatocyte xenotransplantation--a comprehensive review of the literature. Xenotransplantation 2015; 22:239-48. [PMID: 25950141 PMCID: PMC4519403 DOI: 10.1111/xen.12170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Hepatocyte transplantation (Tx) is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for Tx. Hepatocytes from other species, for example, the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenoTx. The literature search identified 51 reports of in vivo cross-species Tx of hepatocytes in a variety of experimental models. Most studies investigated the Tx of human (n = 23) or pig (n = 19) hepatocytes. No studies explored hepatocytes from genetically engineered pigs. The spleen was the most common site of Tx (n = 23), followed by the liver (through the portal vein [n = 6]) and peritoneal cavity (n = 19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. The data provided by this literature search strengthen the hypothesis that xenoTx of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically engineered pig livers may address some of the immunological problems of xenoTx.
Collapse
Affiliation(s)
- Huidong Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, ShanXi, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Jörg Gerlach
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Platt JL, Wrenshall LE, Johnson GB, Cascalho M. Heparan Sulfate Proteoglycan Metabolism and the Fate of Grafted Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:123-40. [PMID: 26306447 DOI: 10.1007/978-3-319-18603-0_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue and organ transplants between genetically distinct individuals are always or nearly always rejected. The universality and speed of transplant rejection distinguishes this immune response from all others. Although this distinction is incompletely understood, some efforts to shed light on transplant rejection have revealed broader insights, including a relationship between activation of complement in grafted tissues, the metabolism of heparan sulfate proteoglycan and the nature of immune and inflammatory responses that ensue. Complement activation on cell surfaces, especially on endothelial cell surfaces, causes the shedding heparan sulfate, an acidic saccharide, from the cell surface and neighboring extracellular matrix. Solubilized in this way, heparan sulfate can activate leukocytes via toll like receptor-4, triggering inflammatory responses and activating dendritic cells, which migrate to regional lymphoid organs where they spark and to some extent govern cellular immune responses. In this way local ischemia, tissue injury and infection, exert systemic impact on immunity. Whether or in what circumstances this series of events explains the distinct characteristics of the immune response to transplants is still unclear but the events offer insight into the inception of immunity under the sub-optimal conditions accompanying infection and mechanisms by which infection and tissue injury engender systemic inflammation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Transplantation Biology, Department of Surgery, University of Michigan, A520B Medical Sciences Research Building I, 1150W. Medical Center Drive, Ann Arbor, MI, 48109-5656, USA,
| | | | | | | |
Collapse
|
20
|
Zhang J, Zha W, Wang F, Jiang T, Xu S, Yu J, Zhou C, Shen T, Wu C, Zhu Q. Complement Activation and Liver Impairment in Trichloroethylene-Sensitized BALB/c Mice. Int J Toxicol 2013; 32:431-41. [DOI: 10.1177/1091581813511337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription–polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.
Collapse
Affiliation(s)
- Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Wansheng Zha
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Feng Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Tao Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Shuhai Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Junfeng Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chengfan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Tong Shen
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qixing Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
21
|
Iwasaki K, Miwa Y, Haneda M, Kuzuya T, Ogawa H, Onishi A, Kobayashi T. AMP-activated protein kinase as a promoting factor, but complement and thrombin as limiting factors for acquisition of cytoprotection: implications for induction of accommodation. Transpl Int 2013; 26:1138-48. [PMID: 24047401 DOI: 10.1111/tri.12186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/08/2013] [Accepted: 08/19/2013] [Indexed: 01/11/2023]
Abstract
Accommodation has been termed as a condition without graft rejection even in the presence of antidonor antibody. We previously reported an in vitro accommodation model, which demonstrated that preincubation of A/B antigen-expressing endothelial cells with anti-A/B antibody resulted in ERK inactivation followed by resistance to complement-mediated cytotoxicity through the induction of complement regulatory genes. However, under the in vivo condition, the effects of complement and coagulation system cannot be ignored. The purpose of this study is to find effective ways to navigate accommodation by exploring the relevant signal transduction. Preincubation with a low level of complement or thrombin failed to induce resistance to complement-mediated cytotoxicity. AMP-activated protein kinase (AMPK) activators such as resveratrol, AICAR and metformin protected endothelial cells against complement-mediated cytotoxicity through the increase in CD55, CD59, haem oxygenase-1 (HO-1) and ferritin heavy chain (ferritin H) genes, all of which were attenuated by AMPKα knock-down. Resveratrol counteracted the inhibitory effect of pretreated complement and thrombin on acquisition of resistance to complement-mediated cytotoxicity through AMPKα. AMPK regulation in endothelial cells could become the potential strategy to induce accommodation in clinical pro-inflammation and pro-coagulation.
Collapse
Affiliation(s)
- Kenta Iwasaki
- Department of Transplant Immunology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Multiorgan failure (MOF) represents the leading cause of death in patients with sepsis and systemic inflammatory response syndrome (SIRS) following severe trauma. The underlying immune response is highly complex and involves activation of the complement system as a crucial entity of innate immunity. Uncontrolled activation of the complement system during sepsis and SIRS with in excessive generation of complement activation products contributes to an ensuing dysfunction of various organ systems. In the present review, mechanisms of the inflammatory response in the development of MOF in sepsis and SIRS with particular focus on the complement system are discussed.
Collapse
|
23
|
Platt JL. The science of innate alloimmunity Innate Alloimmunity by W. G. Land. Ankara, Turkey: Haberal Eğitim Vakfi, 2009. Clin Transplant 2012. [DOI: 10.1111/j.1399-0012.2012.01692.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Whitington PF, Pan X, Kelly S, Melin-Aldana H, Malladi P. Gestational alloimmune liver disease in cases of fetal death. J Pediatr 2011; 159:612-6. [PMID: 21592512 DOI: 10.1016/j.jpeds.2011.03.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/21/2011] [Accepted: 03/22/2011] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To determine whether alloimmune liver disease can be identified as a cause of fetal death. STUDY DESIGN This is a retrospective examination of the autopsy tissue of 6 stillborn fetuses and 2 extreme preterm infants (gestational age, 20 to 34 weeks) drawn from families referred for suspected neonatal hemochromatosis. Thirteen appropriate nondisease controls and 8 cases of neonatal acute liver failure with known etiology were also examined. Liver sections were immunostained using anti-human C5b-9 complex. RESULTS All of the study cases had died with no preceding evidence of fetal distress. Histopathology showed findings of acute liver injury, including global hepatocyte necrosis with minimal reticulum collapse and no fibrosis. Hepatocytes in cases stained strongly positively for C5b-9 complex, suggesting premortem lgG complement-mediated liver injury. Hepatocytes in acute liver failure case controls did not demonstrate a similar mechanism of liver injury. CONCLUSIONS Alloimmune liver disease is sometimes associated with fetal death.
Collapse
Affiliation(s)
- Peter F Whitington
- Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
25
|
Cohen JI, Chen X, Nagy LE. Redox signaling and the innate immune system in alcoholic liver disease. Antioxid Redox Signal 2011; 15:523-34. [PMID: 21126203 PMCID: PMC3118704 DOI: 10.1089/ars.2010.3746] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of alcoholic liver disease (ALD) is a complex process involving both parenchymal and nonparenchymal cells resident in the liver. Although the mechanisms for ALD are not completely understood, it is clear that increased oxidative stress, and activation of the innate immune system are essential elements in the pathophysiology of ALD. Oxidative stress from ethanol exposure results from increased generation of reactive oxygen species and decreased hepatocellular antioxidant activity, including changes in the thioredoxin/peroxiredoxin family of proteins. Both cellular and circulating components of the innate immune system are activated by exposure to ethanol. For example, ethanol exposure enhances toll-like receptor-4 (TLR-4)-dependent cytokine expression by Kupffer cells, likely due, at least in part, to dysregulation of redox signaling. Similarly, complement activation in response to ethanol leads to increased production of the anaphylatoxins, C3a and C5a, and activation C3a receptor and C5a receptor. Complement activation thus contributes to increased inflammatory cytokine production and can influence redox signaling. Here we will review recent progress in understanding the interactions between oxidative stress and innate immunity in ALD. These data illustrate that ethanol-induced oxidative stress and activation of the innate immune system interact dynamically during ethanol exposure, exacerbating ethanol-induced liver injury.
Collapse
Affiliation(s)
- Jessica I Cohen
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
26
|
Bonavita AG, Quaresma K, Cotta-de-Almeida V, Pinto MA, Saraiva RM, Alves LA. Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation 2010; 17:181-7. [PMID: 20636538 DOI: 10.1111/j.1399-3089.2010.00588.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The treatment of acute and chronic liver failure is still a challenge despite modern therapeutic innovations. While liver transplantation can restore liver function and improve patient survival, donor shortages limit this treatment to a small number of patients. Cellular xenotransplantation has emerged as an alternative for treating liver failure. Xenohepatocytes could be readily available in sufficient quantities to treat patients in critical condition and thereby reduce the donor shortage. The use of isolated encapsulated or non-encapsulated cells can reduce the immunorejection response. Several studies using animal models of acute or chronic liver failure have demonstrated improved survival and recovery of liver function after xenotransplantation of adult hepatocytes. Porcine liver cells are a potential source of xenohepatocytes due to similarities with human physiology and the great number of hepatocytes that can be obtained. The recent development of less immunogenic transgenic pigs, new immunosuppressive drugs, and cellular encapsulation systems represents important advances in the field of cellular xenotransplantation. In this study, we review the work carried out in animal models that deals with the advantages and limitations of hepatocyte xenotransplantation, and we propose new studies needed in this field.
Collapse
Affiliation(s)
- André Gustavo Bonavita
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Accommodation, an acquired resistance of an organ to immune-mediated damage, has been recognized as an outcome of renal transplantation for more than 20 years. Accommodation was originally identified in blood group-incompatible kidney transplants that survived and functioned normally in recipients with high titers of antiblood group antibodies directed against antigens in the grafts. The most compelling questions today include how often and by which mechanisms accommodation occurs, and what might be the biological implications of accommodation. This communication summarizes recent advances in addressing these questions. RECENT FINDINGS Because its diagnosis has depended on identification of antidonor antibodies in serum, the prevalence of accommodation has been considered low. Recent research in animal models and clinical subjects may challenge that view. This research also suggests that sublethal graft injury of various types induces accommodation and that accommodation may be a dynamic condition, eventuating into tolerance on the one hand and chronic graft injury on the other. SUMMARY Burgeoning lines of investigation into accommodation now portray a condition of greater prevalence than once thought, exposing pathways that may contribute to the understanding of a range of responses to transplantation.
Collapse
|
28
|
van Poll D, Nahmias Y, Soto-Gutierrez A, Ghasemi M, Yagi H, Kobayashi N, Yarmush ML, Hertl M. Human immune reactivity against liver sinusoidal endothelial cells from GalTα(1,3)GalT-deficient pigs. Cell Transplant 2010; 19:783-9. [PMID: 20573304 DOI: 10.3727/096368910x508898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Elimination of galactose-α(1,3)galactose (Gal) expression in pig organs has been previously shown to prevent hyperacute xenograft rejection. However, naturally present antibodies to non-Gal epitopes activate endothelial cells, leading to acute humoral xenograft rejection. Still, it is unknown whether xenogeneic pig liver sinusoidal endothelial cells (LSECs) from α(1,3)galactosyltransferase (GalT)-deficient pigs are damaged by antibody and complement-mediated mechanisms. The present study examined the xeno-antibody response of LSECs from GalT-deficient and wild pigs. Isolated LSEC from wild-type and GalT pigs were expose to human and baboon sera; IgM and IgG binding was analyzed by flow cytometry. Complement activation (C3a and CH50) was quantified in vitro from serum-exposed LSEC cultures using Enzyme-Linked ImmunoSorbent assay (ELISA). Levels of complement-activated cytotoxicity (CAC) were also determined by a fluorescent Live-Dead Assay and by the quantification of LDH release. IgM binding to GalT knockout (KO) LSECs was significantly lower (80% human and 87% baboon) compare to wild-type pig LSEC. IgG binding was low in all groups. Moreover, complement activation (C3a and CH50) levels released following exposure to human or baboon sera were importantly reduced (42% human and 52% baboon), CAC in GalT KO LSECs was reduced by 60% in human serum and by 72% in baboon serum when compared to wild-type LSECs, and LDH release levels were reduced by 37% and 57%, respectively. LSECs from GalT KO pigs exhibit a significant protection to humoral-induced cell damage compared to LSECs from wild pigs when exposed to human serum. Although insufficient to inhibit xenogeneic reactivity completely, transgenic GalT KO expression on pig livers might contribute to a successful application of clinical xenotransplantation in combination with other protective strategies.
Collapse
Affiliation(s)
- Daan van Poll
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Center for Engineering in Medicine, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pan X, Kelly S, Melin-Aldana H, Malladi P, Whitington PF. Novel mechanism of fetal hepatocyte injury in congenital alloimmune hepatitis involves the terminal complement cascade. Hepatology 2010; 51:2061-8. [PMID: 20512994 DOI: 10.1002/hep.23581] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Evidence suggests that most neonatal hemochromatosis (NH) is the phenotypic expression of gestational alloimmune fetal liver injury. Gestational alloimmune diseases are induced by the placental passage of specific reactive immunoglobulin G and often involve the activation of fetal complement by the classical pathway leading to the formation of membrane attack complex (MAC) as the effector of cell injury. We examined liver specimens from cases of NH, from cases of non-NH liver disease, and from infants without liver disease to determine if they would provide evidence that MAC is involved in hepatocyte injury. Sections were immunostained with anti-human C5b-9 complex, the terminal complement cascade (TCC) neoantigen formed in the assembly of MAC. Fetal liver injury in NH cases is associated with a severe loss of hepatocytes. In all NH cases examined, most remaining hepatocytes showed intense staining for TCC neoantigen, whereas hepatocytes in non-NH liver disease cases showed variable light staining. The percentage of hepatocytes containing TCC neoantigen in NH was much greater than that in non-NH liver disease, and there was no overlap between the groups. Findings in both groups suggest that hepatocytes have mechanisms to protect against MAC, including a biliary pathway for its excretion. CONCLUSION The finding that all cases of proven NH contained TCC neoantigen far in excess of cases of other neonatal liver diseases suggests that a single process, namely congenital alloimmune hepatitis, is the principal cause of NH. MAC-mediated alloimmune injury in congenital alloimmune hepatitis is a novel mechanism of liver injury that results from an interplay of maternal adaptive immunity and fetal innate immunity.
Collapse
Affiliation(s)
- Xiaomin Pan
- Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
30
|
Black SM, Schott ME, Batdorf BH, Benson BA, Rutherford MS, Levay-Young BK, Dalmasso AP. IL-4 induces protection of vascular endothelial cells against killing by complement and melittin through lipid biosynthesis. Eur J Immunol 2010; 40:803-12. [PMID: 20017192 DOI: 10.1002/eji.200939488] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have shown previously that cytokines IL-4 and IL-13 induce protection in porcine vascular endothelial cells (EC) against killing by the membrane attack complex (MAC) of human complement. This protection is intrinsic, not due to changes in complement regulatory proteins, and requires activation of Akt and sterol receptor element binding protein-1 (SREBP-1), which regulates fatty acid and phospholipid synthesis. Here we report that, compared to EC incubated in medium, IL-4-treated EC had a profound reduction in complement-mediated ATP loss and in killing assessed by vital dye uptake, but only a slight reduction in permeability disruption measured by calcein release. While controls exposed to complement lost mitochondrial membrane potential and subsequently died, protected EC maintained mitochondrial morphology and membrane potential, and remained alive. SREBP-1 and fatty acid synthase activation were required for protection and fatty acid and phospholipid synthesis, including cardiolipin, were increased after IL-4 stimulation, without increase in cholesterol content or cell proliferation. IL-4 also induced protection of EC from killing by the channel forming protein melittin, similar to protection observed for the MAC. We conclude that IL-4 induced activation of Akt/SREBP-1/lipid biosynthesis in EC, resulting in protection against MAC and melittin, in association with mitochondrial protection.
Collapse
Affiliation(s)
- Sylvester M Black
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
For the past 40 years, T cells have been considered the primary threat to the survival of allografts. However, antibodies can induce severe vascular disease of organ transplants, and this disease, particularly "antibody-mediated" rejection, has become a major clinical challenge. Not only do antibodies cause rejection, the rejection caused by antibodies resists treatment by conventional drug regimens. On the other hand, antibodies can induce a condition in which grafts seemingly resist antibody-mediated injury, which is accommodation. In this communication, we discuss the role of antibodies in the diagnosis and pathogenesis of rejection and accommodation, and suggest what we considered the major gaps in knowledge and directions research into this subject might productively take.
Collapse
Affiliation(s)
| | - Jeffrey L. Platt
- Departments of Surgery and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW We review recent insights into the mechanisms and prevalence of accommodation. Accommodation refers to an acquired resistance of an organ graft to humoral injury and rejection. RECENT FINDINGS Accommodation has been postulated to reflect changes in antibodies, control of complement and/or acquired resistance to injury by antibodies, complement or other factors. We discuss the importance of these mechanisms, highlighting new conclusions. SUMMARY Accommodation may be a common, perhaps the most common, outcome of organ transplantation and, in some systems, a predictable outcome of organ xenotransplantation. Further understanding of how accommodation is induced and by what mechanisms it is manifest and maintained could have a profound impact on transplantation in general and perhaps on other fields.
Collapse
Affiliation(s)
- Raymond J Lynch
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
33
|
Pritchard MT, McMullen MR, Edward Medof M, Stavitsky A, Nagy LE. Role of Complement in Ethanol-Induced Liver Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-78952-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Tang AH, Platt JL. Accommodation of grafts: implications for health and disease. Hum Immunol 2007; 68:645-51. [PMID: 17678718 PMCID: PMC2703470 DOI: 10.1016/j.humimm.2007.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 01/01/2023]
Abstract
Accommodation refers to the acquired resistance of a graft to immune-mediated injury. It is typically observed after antibodies that would cause rejection of a graft are removed from a recipient and then later return. In addition to being induced in this manner, accommodation can occur spontaneously, without depleting antibodies. Indeed, we postulate spontaneous accommodation may be the most common outcome of clinical organ transplantation. The paper reviews the current understanding of accommodation, emphasizing recent advances and important questions. Among the recent advances are the discoveries of potentially broader relevance of accommodation for biology and immunology and pathways by which accommodation may be achieved. To investigate these pathways and to understand how accommodation begins and how it evolves, clinical organ transplants might offer a useful and incisive model.
Collapse
Affiliation(s)
- Amy H. Tang
- Transplantation Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jeffrey L. Platt
- Transplantation Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Nagata H, Nishitai R, Shirota C, Zhang JL, Koch CA, Cai J, Awwad M, Schuurman HJ, Christians U, Abe M, Baranowska-Kortylewicz J, Platt JL, Fox IJ. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology 2007; 132:321-9. [PMID: 17241882 DOI: 10.1053/j.gastro.2006.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 09/14/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Management of patients with liver failure can be a significant medical challenge, and transplantation of the liver is the only definitive therapy. Whole liver allotransplantation is limited by a shortage of human donors and the risks of the surgery in those most ill. Transplants consisting of xenogeneic hepatocytes might overcome these problems, and work in rodents indicates that such transplants can correct some metabolic deficiencies and can prevent the complications and mortality associated with hepatic failure. As a prelude to clinical application, we tested the feasibility of hepatocyte xenotransplantation in nonhuman primates. METHODS One to 2 billion hepatocytes from outbred swine were transplanted into the spleens of cynomolgus monkeys using conventional immunosuppression to control rejection. Duration of graft function was determined based on assay for porcine albumin. RESULTS Following a single infusion, xenogeneic hepatocytes functioned for more than 80 days and, following re-transplantation, for more than 253 days. Engraftment in the spleen was confirmed 40 days after transplantation by asialoglycoprotein receptor-directed nuclear scanning. The humoral immune response to the transplanted porcine cells had no discernible impact on the survival of the grafts. CONCLUSIONS Xenotransplantation of hepatocytes should be explored as a readily available, minimally invasive form of therapy for hepatic failure.
Collapse
Affiliation(s)
- Hideo Nagata
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Black SM, Grehan JF, Rivard AL, Benson BA, Wahner AE, Koch AE, Levay-Young BK, Dalmasso AP. Porcine Endothelial Cells and Iliac Arteries Transduced with AdenoIL-4 Are Intrinsically Protected, through Akt Activation, against Immediate Injury Caused by Human Complement. THE JOURNAL OF IMMUNOLOGY 2006; 177:7355-63. [PMID: 17082655 DOI: 10.4049/jimmunol.177.10.7355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial cells (ECs) can be injured in a variety of pathologic processes that involve activated complement. We reported previously that porcine ECs incubated with exogenous IL-4 or IL-13 are protected from cytotoxicity by human complement and also from apoptosis by TNF-alpha. The resistance to complement consists of an intrinsic mechanism that is lost a few days after cytokine removal. In our current study, we investigated whether transfer of the IL-4 gene into porcine ECs in vitro and into porcine vascular tissues in vivo would induce efficient and durable protection from human complement. We found that ECs transduced with adenoIL-4 or adenoIL-13 exhibited continuous production of the cytokine and prolonged protection from complement-mediated killing. IL-4 also protected ECs from activation: ECs incubated with IL-4 did not develop cell retraction and intercellular gaps upon stimulation with sublytic complement. The endothelium and subendothelium of pig iliac arteries that were transduced with the IL-4 gene were effectively protected from complement-dependent immediate injury after perfusion with human blood. However, after similar perfusion, the endothelium was immediately lost from arteries that were transduced with a control adenovirus. The protection was not due to up-regulation of the complement regulators decay accelerating factor, membrane cofactor protein, and CD59, or to reduced complement activation, but required the participation of Akt. Although our studies model protection in pig-to-primate xenotransplantation, our findings of IL-4 induction of Akt-mediated protection may be more broadly applicable to EC injury as manifested in ischemia-reperfusion, allotransplantation, and various vascular diseases.
Collapse
Affiliation(s)
- Sylvester M Black
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|