1
|
Liu X, Wang S, Du X, Wang Y, Mo L, Li H, Qu Z, Wang X, Sun J, Li Y, Wang J. Identification of Disulfidptosis-Related Genes and Molecular Subgroups in Rheumatoid Arthritis for Diagnostic Model and Patient Stratification. J Inflamm Res 2025; 18:4157-4175. [PMID: 40125081 PMCID: PMC11930242 DOI: 10.2147/jir.s505746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Cell death contributes to the pathogenesis of rheumatoid arthritis (RA) through various pathways. Disulfidptosis is a recently discovered novel form of cell death characterized by the abnormal accumulation of intracellular disulfide bonds. It remains unclear for the association between RA and disulfidptosis. Methods A comprehensive analysis of three GEO datasets was presented in this study. First, the analysis involved the use of weighted gene co-expression network analysis (WGCNA) and differential analysis and were employed to identify the key module genes related to RA and disulfidptosis-related genes. The machine learning algorithms were used to identify the hub genes. Second, a diagnostic model was constructed for RA based on the hub genes. The nomogram and receiver operating characteristic (ROC) curves were utilized to evaluate the diagnostic value of the model. Third, two RA subtypes were identified based on hub genes by using consensus clustering analysis. Then, the disease activity scores, clinical markers, and immune cells were compared between the two RA subgroups. Finally, the differential expression of hub genes was validated between healthy controls and RA patients by qPCR. Results Four hub genes (KLHL2, POLK, CLEC4D, NXT2) were identified. The expression of the four hub genes was verified to be significantly higher in RA patients compared with healthy controls. The superior diagnostic value of the model was validated, which demonstrated that the model outperforms each hub gene individually. Two subtypes of RA were determined. Patients in cluster A exhibited relatively lower levels of DAS28-CRP, DAS28-ESR, CDAI, SDAI, RF, CRP, and MMP3. In contrast, patients in cluster B had significantly higher levels of the above markers. Conclusion Four hub genes were identified to provide unique insights into the role of disulfidptosis in RA. Additionally, a promising diagnosis model and patient stratification were established based on the hub genes to assess the risk of RA onset and RA disease activity.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Siyao Wang
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xinru Du
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yulu Wang
- Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Lingfei Mo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hanchao Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zechao Qu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaohao Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jian Sun
- Institute of Endemic Diseases, School of Public Health & Key Laboratory of Trace Elements and Endemic Diseases, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yuanyuan Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jing Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
2
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
3
|
Bleck D, Loacker-Schöch K, Classen T, Jose J, Schneider M, Pongratz G. Fibroblast-like synoviocytes preferentially induce terminal differentiation of IgD + memory B cells instead of naïve B cells. Immunology 2024; 173:520-535. [PMID: 39054787 DOI: 10.1111/imm.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease driven by highly active autoantibody-producing B cells. Activation of B cells is maintained within ectopic germinal centres found in affected joints. Fibroblast-like synoviocytes (FLS) present in inflamed joints support B-cell survival, activation, and differentiation. CD27+ memory B cells and naive B cells show very different responses to activation, particularly by CD40 ligand (CD40L). We show that FLS-dependent activation of human B cells is dependent on interleukin-6 (IL-6) and CD40L. FLS have been shown to activate both naive and memory B cells. Whether the activating potential of FLS is different for naive and memory B cells has not been investigated. Our results suggest that FLS-induced activation of B cells is dependent on IL-6 and CD40L. While FLS are able to induce plasma cell differentiation, isotype switching, and antibody production in memory B cells, the ability of FLS to activate naive B cells is significantly lower.
Collapse
Affiliation(s)
- Dennis Bleck
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Klara Loacker-Schöch
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tim Classen
- Clinic of Orthopedics/Orthopedic Rheumatology, St. Elisabeth-Hospital Meerbusch-Lank, Meerbusch, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Muenster, Germany
| | - Matthias Schneider
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Georg Pongratz
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Rheumatology, Barmherzige Brueder Hospital Regensburg, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Chen Z, Wang Z, Cui Y, Xie H, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, Ding F, Quan W, Zhang R, Wang Y, Yan X. Serum BAFF level is associated with the presence and severity of coronary artery disease and acute myocardial infarction. BMC Cardiovasc Disord 2024; 24:471. [PMID: 39227771 PMCID: PMC11370111 DOI: 10.1186/s12872-024-04146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between circulating levels of B cell activating factor (BAFF) and the presence and severity of coronary artery disease (CAD) and acute myocardial infarction (AMI) in humans, as its biological functions in this context remain unclear. METHODS Serum BAFF levels were measured in a cohort of 723 patients undergoing angiography, including 204 patients without CAD (control group), 220 patients with stable CAD (CAD group), and 299 patients with AMI (AMI group). Logistic regression analyses were used to assess the association between BAFF and CAD or AMI. RESULTS Significantly elevated levels of BAFF were observed in patients with CAD and AMI compared to the control group. Furthermore, BAFF levels exhibited a positive correlation with the SYNTAX score (r = 0.3002, P < 0.0001) and the GRACE score (r = 0.5684, P < 0.0001). Logistic regression analysis demonstrated that increased BAFF levels were an independent risk factor for CAD (adjusted OR 1.305, 95% CI 1.078-1.580) and AMI (adjusted OR 2.874, 95% CI 1.708-4.838) after adjusting for confounding variables. Additionally, elevated BAFF levels were significantly associated with a high GRACE score (GRACE score 155 to 319, adjusted OR 4.297, 95% CI 1.841-10.030). BAFF exhibited a sensitivity of 75.0% and specificity of 71.4% in differentiating CAD patients with a high SYNTAX score, and a sensitivity of 75.5% and specificity of 72.8% in identifying AMI patients with a high GRACE score. CONCLUSION Circulating BAFF levels serve as a valuable diagnostic marker for CAD and AMI. Elevated BAFF levels are associated with the presence and severity of these conditions, suggesting its potential as a clinically relevant biomarker in cardiovascular disease.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Weiwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Yueying Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
5
|
Zeng L, Yang K, Wu Y, Yu G, Yan Y, Hao M, Song T, Li Y, Chen J, Sun L. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases. J Autoimmun 2024; 148:103291. [PMID: 39146891 DOI: 10.1016/j.jaut.2024.103291] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BLyS and APRIL have the capability to bind to B cells within the body, allowing these cells to evade elimination when they should naturally be removed. While BLyS primarily plays a role in B cell development and maturation, APRIL is linked to B cell activation and the secretion of antibodies. Thus, in theory, inhibiting BLyS or APRIL could diminish the population of aberrant B cells that contribute to SLE and reduce disease activity in patients. Telitacicept functions by binding to and neutralizing the activities of both BLyS and APRIL, thus hindering the maturation and survival of plasma cells and fully developed B cells. The design of telitacicept is distinctive; it is not a monoclonal antibody but a TACI-Fc fusion protein generated through recombinant DNA technology. This fusion involves merging gene segments of the TACI protein, which can target BLyS/APRIL simultaneously, with the Fc gene segment of the human IgG protein. The TACI-Fc fusion protein exhibits the combined characteristics of both proteins. Currently utilized for autoimmune disease treatment, telitacicept is undergoing clinical investigations globally to assess its efficacy in managing various autoimmune conditions. This review consolidates information on the mechanistic actions, dosing regimens, pharmacokinetics, efficacy, and safety profile of telitacicept-a dual-targeted biological agent. It integrates findings from prior experiments and pharmacokinetic analyses in the treatment of RA and SLE, striving to offer a comprehensive overview of telitacicept's research advancements.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Tian Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Li
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Hunan, China
| | - Junpeng Chen
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Kaur C, Mishra Y, Kumar R, Singh G, Singh S, Mishra V, Tambuwala MM. Pathophysiology, diagnosis, and herbal medicine-based therapeutic implication of rheumatoid arthritis: an overview. Inflammopharmacology 2024; 32:1705-1720. [PMID: 38528307 PMCID: PMC11136810 DOI: 10.1007/s10787-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/10/2024] [Indexed: 03/27/2024]
Abstract
Rheumatoid arthritis (RA) stands as an autoimmune disorder characterized by chronic joint inflammation, resulting in profound physiological alterations within the body. Affecting approximately 0.4-1.3% of the global population, this condition poses significant challenges as current therapeutic approaches primarily offer symptomatic relief, with the prospect of complete recovery remaining elusive. This review delves into the contemporary advancements in understanding the pathophysiology, diagnosis, and the therapeutic potential of herbal medicine in managing RA. Notably, early diagnosis during the initial stages emerges as the pivotal determinant for successful recovery post-treatment. Utilizing tools such as Magnetic Resonance Imaging (MRI), anti-citrullinated peptide antibody markers, and radiography proves crucial in pinpointing the diagnosis of RA with precision. Unveiling the intricate pathophysiological mechanisms of RA has paved the way for innovative therapeutic interventions, incorporating plant extracts and isolated phytoconstituents. In the realm of pharmacological therapy for RA, specific disease-modifying antirheumatic drugs have showcased commendable efficacy. However, this conventional approach is not without its drawbacks, as it is often associated with various side effects. The integration of methodological strategies, encompassing both pharmacological and plant-based herbal therapies, presents a promising avenue for achieving substantive recovery. This integrated approach not only addresses the symptoms but also strives to tackle the underlying causes of RA, fostering a more comprehensive and sustainable path towards healing.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukhraj Singh
- Department of Food Civil Supply and Consumer Affairs, Amritsar, 143001, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, England, UK.
| |
Collapse
|
8
|
Rana J, Herzog RW, Muñoz-Melero M, Yamada K, Kumar SR, Lam AK, Markusic DM, Duan D, Terhorst C, Byrne BJ, Corti M, Biswas M. B cell focused transient immune suppression protocol for efficient AAV readministration to the liver. Mol Ther Methods Clin Dev 2024; 32:101216. [PMID: 38440160 PMCID: PMC10911854 DOI: 10.1016/j.omtm.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
Adeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Kentaro Yamada
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Sandeep R.P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - David M. Markusic
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Parolini C. The Role of Marine n-3 Polyunsaturated Fatty Acids in Inflammatory-Based Disease: The Case of Rheumatoid Arthritis. Mar Drugs 2023; 22:17. [PMID: 38248642 PMCID: PMC10817514 DOI: 10.3390/md22010017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a conserved process that involves the activation of immune and non-immune cells aimed at protecting the host from bacteria, viruses, toxins and injury. However, unresolved inflammation and the permanent release of pro-inflammatory mediators are responsible for the promotion of a condition called "low-grade systemic chronic inflammation", which is characterized by tissue and organ damage, metabolic changes and an increased susceptibility to non-communicable diseases. Several studies have demonstrated that different dietary components may influence modifiable risk factors for diverse chronic human pathologies. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are well-recognized anti-inflammatory and immunomodulatory agents that are able to influence many aspects of the inflammatory process. The aim of this article is to review the recent literature that relates to the modulation of human disease, such as rheumatoid arthritis, by n-3 PUFAs.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
10
|
Wang Z, Wang Y, Cui Y, Chen Z, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, Ding F, Quan W, Zhang R, Hu J, Yan X. Association of Serum BAFF Levels with Cardiovascular Events in ST-Segment Elevation Myocardial Infarction. J Clin Med 2023; 12:jcm12041692. [PMID: 36836225 PMCID: PMC9964977 DOI: 10.3390/jcm12041692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVES The B cell activating factor (BAFF) is a B cell survival factor involved in atherosclerosis and ischemia-reperfusion (IR) injury. This study sought to investigate whether BAFF is a potential predictor of poor outcomes in patients with ST-segment elevation myocardial infarction (STEMI). METHODS We prospectively enrolled 299 patients with STEMI, and serum levels of BAFF were measured. All subjects were followed for three years. The primary endpoint was major adverse cardiovascular events (MACEs), including cardiovascular death, nonfatal reinfarction, hospitalization for heart failure (HF), and stroke. Multivariable Cox proportional hazards models were constructed to analyze the predictive value of BAFF for MACEs. RESULTS In multivariate analysis, BAFF was independently associated with risk of MACEs (adjusted HR 1.525, 95% CI 1.085-2.145; p = 0.015) and cardiovascular death (adjusted hazard ratio [HR] 3.632, 95% confidence interval [CI] 1.132-11.650, p = 0.030) after adjustment for traditional risk factors. Kaplan-Meier survival curves demonstrated that patients with BAFF levels above the cut-off value (1.46 ng/mL) were more likely to have MACEs (log-rank p < 0.0001) and cardiovascular death (log-rank p < 0.0001). In subgroup analysis, the impact of high BAFF on MACEs development was stronger in patients without dyslipidemia. Furthermore, the C-statistic and Integrated Discrimination Improvement (IDI) values for MACEs were improved with BAFF as an independent risk factor or when combined with cardiac troponin I. CONCLUSIONS This study suggests that higher BAFF levels in the acute phase are an independent predictor of the incidence of MACEs in patients with STEMI.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueying Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| | - Jian Hu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| |
Collapse
|
11
|
Giovannini D, Belbezier A, Baillet A, Bouillet L, Kawano M, Dumestre-Perard C, Clavarino G, Noble J, Pers JO, Sturm N, Huard B. Heterogeneity of antibody-secreting cells infiltrating autoimmune tissues. Front Immunol 2023; 14:1111366. [PMID: 36895558 PMCID: PMC9989216 DOI: 10.3389/fimmu.2023.1111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
The humoral response is frequently dysfunctioning in autoimmunity with a frequent rise in total serum immunoglobulins, among which are found autoantibodies that may be pathogenic by themselves and/or propagate the inflammatory reaction. The infiltration of autoimmune tissues by antibody-secreting cells (ASCs) constitutes another dysfunction. The known high dependency of ASCs on the microenvironment to survive combined to the high diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even within a single clinical autoimmune entity are devoid of infiltration. The latter means that either the tissue is not permissive or ASCs fail to adapt. The origin of infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the secondary lymphoid organ draining the autoimmune tissue, and home at the inflammation site under the guidance of specific chemokines. Alternatively, ASCs may be generated locally, when ectopic germinal centers are formed in the autoimmune tissue. Alloimmune tissues with the example of kidney transplantation will also be discussed own to their high similarity with autoimmune tissues. It should also be noted that antibody production is not the only function of ASCs, since cells with regulatory functions have also been described. This article will review all the phenotypic variations indicative of tissue adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues. The aim is to potentially define tissue-specific molecular targets in ASCs to improve the specificity of future autoimmune treatments.
Collapse
Affiliation(s)
- Diane Giovannini
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Aude Belbezier
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Athan Baillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Rheumatology, Grenoble University Hospital, Grenoble, France
| | - Laurence Bouillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | | | | | - Johan Noble
- Department of Nephrology, Grenoble University Hospital, Grenoble, France
| | - Jacques-Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies, Brest University, INSERM, UMR1227, Brest, France.,Odontology Unit, Brest University Hospital, Brest, France
| | - Nathalie Sturm
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Bertrand Huard
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| |
Collapse
|
12
|
Jeon Y, Lim JY, Im KI, Kim N, Cho SG. BAFF blockade attenuates acute graft-versus-host disease directly via the dual regulation of T- and B-cell homeostasis. Front Immunol 2022; 13:995149. [PMID: 36561743 PMCID: PMC9763883 DOI: 10.3389/fimmu.2022.995149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction B-cell-activating factor (BAFF) is associated with donor-specific antibodies and chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the effects of BAFF on T-cell physiological function have not been fully elucidated in acute GVHD. Methods We examined the effects of belimumab, a monoclonal antibody targeting BAFF, for the treatment of acute GVHD. We examined the effects of T cells and B cells separately when inducing GVHD in mouse model. Results Therapeutic functional manipulation of endogenous BAFF can improve acute GVHD during the early post-transplant period. In this study, BAFF was shown to increase the proportions of CD4+IL-17+, CD4+IL-6+ Th17, and CD4+IFN-γ+ Th1 cells and to reduce the proportion of regulatory T (Treg) cells. Furthermore, the belimumab therapy group showed increased B220+IgD+IgM+ mature B cells but decreased B220+IgD-IgM- memory B cells, B220+Fas+GL-7+ germinal center formation, and B220+IgD-CD138+ plasma cells. These results indicate that BAFF can alleviate acute GVHD by simultaneously regulating T and B cells. Interestingly, the BAFF level was higher in patients with acute GVHD after HSCT compared with patients receiving chemotherapy. Conclusion This study suggests that BAFF blockade might modulate CD4 +T-cell-induced acute GVHD early after allo-HSCT and the possibility of simultaneously controlling chronic GVHD, which may appear later after allo-HSCT.
Collapse
Affiliation(s)
- Youngwoo Jeon
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Yeon Lim
- Department of Biomedical Laboratory Science, Inje University, Kimhae, South Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok-Goo Cho
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Seok-Goo Cho,
| |
Collapse
|
13
|
Liu J, Huang Y, Zeng J, Chen C, Li P, Ning Q, Guan X, Li L. SLAMF8 promotes the proliferation and migration of synovial fibroblasts by regulating the ERK/MMPs signalling pathway. Autoimmunity 2022; 55:294-300. [PMID: 35506438 DOI: 10.1080/08916934.2022.2070742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rheumatoid arthritis is troublesome to treat effectively and often requires concomitant long-term treatment. Meanwhile, synovial fibroblasts could induce inflammation response and lead to joint erosion, finally causing progressive joint destruction, disability, and increased mortality. This study focussed on the role of SLAM family member 8 (SLAMF8) in mediating cell function from rheumatoid arthritis synovial fibroblasts stimulated with TNF-α. Cell Counting Kit-8 (CCK-8) and colony-forming unit assay were used to evaluate cell proliferation. SLAMF8 expression was analysed by reverse transcription-quantitative PCR (RT-qPCR) and western blot. Annexin V-FITC/PI double staining was used to measure the apoptosis rate. The cell migration and invasion in TNF-α-stimulated MH7A (human rheumatoid arthritis synovial cell line) and HFLS-RA cells (human fibroblast-like synoviocytes: rheumatoid arthritis) were tested via wound healing assay and transwell migration assay. In the present study, after TNF-α treatments, the SLAMF8 mRNA and protein expression in both MH7A and HFLS-RA cell lines have a time-dependent increase. The attenuation of SLAMF8 ameliorated TNF-α-induced proliferation, invasion and migration in MH7A and HFLS-RA cells. Simultaneously, when SLAMF8 was silenced, the expression of p-ERK, MMP-1, and MMP-13 was suppressed significantly. In summary, these results indicated that the knockdown of the SLAMF8 significantly attenuated TNF-α-induced proinflammatory responses in MH7A and HFLS-RA cells. Therefore, SLAMF8 exhibits therapeutic potential for the management of inflammation in rheumatoid arthritis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Huang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Jiashun Zeng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Changming Chen
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Peiting Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiaoyi Ning
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Xianyue Guan
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Long Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Damianidou O, Theotokis P, Grigoriadis N, Petratos S. Novel contributors to B cell activation during inflammatory CNS demyelination; An oNGOing process. Int J Med Sci 2022; 19:164-174. [PMID: 34975310 PMCID: PMC8692119 DOI: 10.7150/ijms.66350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/11/2021] [Indexed: 11/05/2022] Open
Abstract
Over the past two decades, the development of targeted immunotherapeutics for relapsing-remitting multiple sclerosis has been successfully orchestrated through the efficacious modulation of neuroinflammatory outcomes demonstrated in the experimental autoimmune encephalomyelitis (EAE) model. In this model, the focus of developing immunomodulatory therapeutics has been demonstrated through their effectiveness in modifying the pro-inflammatory Th1 and Th17-dependent neuropathological outcomes of demyelination, oligodendrocytopathy and axonal dystrophy. However, recent successful preclinical and clinical trials have advocated for the significance of B cell-dependent immunopathogenic responses and has led to the development of novel biologicals that target specific B cell phenotypes. In this context, a new molecule, B-cell activating factor (BAFF), has emerged as a positive regulator of B cell survival and differentiation functioning through various signaling pathways and potentiating the activity of various receptor complexes through pleiotropic means. One possible cognate receptor for BAFF includes the Nogo receptor (NgR) and its homologs, previously established as potent inhibitors of axonal regeneration during central nervous system (CNS) injury and disease. In this review we provide current evidence for BAFF-dependent signaling through the NgR multimeric complex, elucidating their association within the CNS compartment and underlying the importance of these potential pathogenic molecular regulators as possible therapeutic targets to limit relapse rates and potentially MS progression.
Collapse
Affiliation(s)
- Olympia Damianidou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Paschalis Theotokis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
15
|
OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:4535-4546. [DOI: 10.1093/rheumatology/keac124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/28/2022] [Indexed: 11/13/2022] Open
|
16
|
Role of B-Cell Activating Factor (BAFF) in Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 12:diagnostics12010045. [PMID: 35054212 PMCID: PMC8774757 DOI: 10.3390/diagnostics12010045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
As early commencement of inflammatory bowel disease (IBD) treatment has been shown to substantially improve outcomes, it is of utmost importance to make a timely diagnosis of this disease. Despite undisputed sensitivity of fecal calprotectin, the most widely accepted IBD biomarker, in discriminating between irritable bowel syndrome (IBS) and IBD, as well as recognized role in monitoring disease activity and response to therapy, perhaps the biggest setback of calprotectin use in IBD is lack of specificity. Therefore, an additional biomarker in IBD is warranted. B-cell activating factor (BAFF), a member of the tumor necrosis factor (TNF) superfamily, recently emerged as a viable candidate for this role. So far, overproduction of BAFF has been observed in various autoimmune diseases, most notably in systemic lupus erythematosus, where BAFF-inhibitor belimumab was approved for treatment. As BAFF levels were also shown to correlate with indices of IBD, in this review we aimed to summarize the current evidence with respect to the role of BAFF in diagnosis and assessing the activity of IBD, as well as putative therapeutic implications that may arise from exploring of this relation.
Collapse
|
17
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H, Lu L. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev 2021; 64:57-70. [DOI: 10.1016/j.cytogfr.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
18
|
Ceccarelli F, Natalucci F, Olivieri G, Perricone C, Pirone C, Spinelli FR, Alessandri C, Conti F. Erosive arthritis in systemic lupus erythematosus: not only Rhupus. Lupus 2021; 30:2029-2041. [PMID: 34666547 DOI: 10.1177/09612033211051637] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE)-related arthritis has been traditionally defined as non-erosive and is therefore considered a minor manifestation requiring a mild treatment. However, the concept of non-erosive arthritis in SLE has been challenged with the advent of sensitive imaging techniques, such as high-resolution ultrasound with power Doppler or magnetic resonance. The application of these new imaging tools has demonstrated that up to 40% of SLE patients with joint involvement can develop erosive damage. Thus, this more aggressive phenotype can be identified not only in patients overlapping with rheumatoid arthritis (RA). This issue has been considered for the first time in the classification criteria proposed by Systemic Lupus International Collaborating Clinics in 2012, in which the old definition of "non-erosive arthritis" was replaced with either synovitis or tenderness in two or more joints with morning stiffness, suggesting the possible presence of an erosive phenotype. Accordingly, the 2019 EULAR/ACR's SLE recommendations advise treatment with immunosuppressant or biological drugs for patients with RA-like moderate arthritis. As a result, several studies have investigated the presence of biomarkers associated with SLE erosive damage. A relevant role seems to be played by the autoantibodies directed against post-translational modified proteins: above all, a significant association has been observed with antibodies directed against citrullinated and carbamylated proteins. Conversely, the rheumatoid factor was not associated with this more aggressive SLE-related arthritis. Nonetheless, some pro-inflammatory factors have been associated with erosive damage in SLE patients. These results suggest new pathogenic mechanisms underlining erosive arthritis, only partially shared with RA. Hence, in the present narrative review, we summarized available data about erosive arthritis in SLE patients, in the light of its impact on therapeutic decisions.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 9311Sapienza Università di Roma, Roma, Italy
| | - Francesco Natalucci
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 9311Sapienza Università di Roma, Roma, Italy
| | - Giulio Olivieri
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 9311Sapienza Università di Roma, Roma, Italy
| | - Carlo Perricone
- Rheumatology Unit, Department of Medicine, 9309University of Perugia, Perugia, Italy
| | - Carmelo Pirone
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 9311Sapienza Università di Roma, Roma, Italy
| | - Francesca Romana Spinelli
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 9311Sapienza Università di Roma, Roma, Italy
| | - Cristiano Alessandri
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 9311Sapienza Università di Roma, Roma, Italy
| | - Fabrizio Conti
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 9311Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
19
|
Importance of lymphocyte-stromal cell interactions in autoimmune and inflammatory rheumatic diseases. Nat Rev Rheumatol 2021; 17:550-564. [PMID: 34345021 DOI: 10.1038/s41584-021-00665-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Interactions between lymphocytes and stromal cells have an important role in immune cell development and responses. During inflammation, stromal cells contribute to inflammation, from induction to chronicity or resolution, through direct cell interactions and through the secretion of pro-inflammatory and anti-inflammatory mediators. Stromal cells are imprinted with tissue-specific phenotypes and contribute to site-specific lymphocyte recruitment. During chronic inflammation, the modified pro-inflammatory microenvironment leads to changes in the stromal cells, which acquire a pathogenic phenotype. At the site of inflammation, infiltrating B cells and T cells interact with stromal cells. These interactions induce a plasma cell-like phenotype in B cells and T cells, associated with secretion of immunoglobulins and inflammatory cytokines, respectively. B cells and T cells also influence the stromal cells, inducing cell proliferation, molecular changes and cytokine production. This positive feedback loop contributes to disease chronicity. This Review describes the importance of these cell interactions in chronic inflammation, with a focus on human disease, using three selected autoimmune and inflammatory diseases: rheumatoid arthritis, psoriatic arthritis (and psoriasis) and systemic lupus erythematosus. Understanding the importance and disease specificity of these interactions could provide new therapeutic options.
Collapse
|
20
|
B Cell Adhesion to Fibroblast-Like Synoviocytes Is Up-Regulated by Tumor Necrosis Factor-Alpha via Expression of Human Vascular Cell Adhesion Molecule-1 Mediated by B Cell-Activating Factor. Int J Mol Sci 2021; 22:ijms22137166. [PMID: 34281218 PMCID: PMC8267633 DOI: 10.3390/ijms22137166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a key role in the pathogenesis of rheumatoid arthritis (RA) by producing inflammatory cytokines and interacting with various immune cells, which contribute to cartilage destruction. RA-FLSs activated by tumor necrosis factor alpha (TNF-α), exacerbate joint damage by triggering the expression of various inflammatory molecules, including human vascular cell adhesion molecule-1 (hVCAM1) and B cell-activating factor (hBAFF), with a role in maturation and maintenance of B cells. Here, we investigated whether B cell interaction with FLSs could be associated with hVCAM1 expression by TNF-α through hBAFF, using WiL2-NS B cells and MH7A synovial cells. TNF-α enhanced the expression of hVCAM1 and hBAFF. B cell adhesion to FLSs was increased by treatment with TNF-α or hBAFF protein. hVCAM expression was up-regulated by transcriptional activation of the hVCAM1 promoter(−1549 to −54) in MH7A cells treated with hBAFF protein or overexpressed with hBAFF gene. In contrast, hVCAM1 expression was down-regulated by treatment with hBAFF-siRNA. JNK was activated by TNF-α treatment. Then, hVCAM1 expression and B cell adhesion to FLSs were reduced by the treatment with JNK inhibitor SP600125. Transcriptional activity of hVCAM1 by the stimulation with TNF-α was inhibited by the deletion of −1549 to −229 from the hVCAM1 promoter. hVCAM1 expression and B cell adhesion to FLSs were reduced by treatment with hVCAM1-siRNA. Taken together, these results suggest that B cell adhesion to FLSs is associated with TNF-α-induced up-regulation of hVCAM1 expression via hBAFF expression. Thus, the pathological progression of RA may be associated with hVCAM1-mediated interaction of synovial cells with B lymphocytes.
Collapse
|
21
|
Marsh LJ, Kemble S, Reis Nisa P, Singh R, Croft AP. Fibroblast pathology in inflammatory joint disease. Immunol Rev 2021; 302:163-183. [PMID: 34096076 DOI: 10.1111/imr.12986] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis is an immune-mediated inflammatory disease in which fibroblasts contribute to both joint damage and inflammation. Fibroblasts are a major cell constituent of the lining of the joint cavity called the synovial membrane. Under resting conditions, fibroblasts have an important role in maintaining joint homeostasis, producing extracellular matrix and joint lubricants. In contrast, during joint inflammation, fibroblasts contribute to disease pathology by producing pathogenic levels of inflammatory mediators that drive the recruitment and retention of inflammatory cells within the joint. Recent advances in single-cell profiling techniques have transformed our ability to examine fibroblast biology, leading to the identification of specific fibroblast subsets, defining a previously underappreciated heterogeneity of disease-associated fibroblast populations. These studies are challenging the previously held dogma that fibroblasts are homogeneous and are providing unique insights into their role in inflammatory joint pathology. In this review, we discuss the recent advances in our understanding of how fibroblast heterogeneity contributes to joint pathology in rheumatoid arthritis. Finally, we address how these insights could lead to the development of novel therapies that directly target selective populations of fibroblasts in the future.
Collapse
Affiliation(s)
- Lucy-Jayne Marsh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Patricia Reis Nisa
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Ruchir Singh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Adam P Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Li M, Mao JC, Zhu YZ. Hydrogen Sulfide: a Novel Immunoinflammatory Regulator in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:161-179. [PMID: 34302692 DOI: 10.1007/978-981-16-0991-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous, gaseous, signaling transmitter, has been shown to have vasodilative, anti-oxidative, anti-inflammatory, and cytoprotective activities. Increasing evidence also indicates that H2S can suppress the production of inflammatory mediators by immune cells, for example, T cells and macrophages. Inflammation is closely related to an immune response in several diseases such as rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), and cancer. Considering these biological effects of H2S, a potential role in the treatment of immune-related RA is being exploited. In the present review, we will provide an overview of the therapeutic potential of H2S in RA treatment.
Collapse
Affiliation(s)
- M Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Jian-Chun Mao
- Department of Rheumatology, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. .,School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. .,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Möckel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmun Rev 2020; 20:102736. [PMID: 33333233 DOI: 10.1016/j.autrev.2020.102736] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
The B cell activating factor (BAFF), or B lymphocyte stimulator (BLyS), is a B cell survival factor which supports autoreactive B cells and prevents their deletion. BAFF expression is closely linked with autoimmunity and is enhanced by genetic alterations and viral infections. Furthermore, BAFF seems to be involved in adipogenesis, atherosclerosis, neuro-inflammatory processes and ischemia reperfusion (I/R) injury. BAFF is commonly overexpressed in Systemic Lupus Erythematosus (SLE) and strongly involved in the pathogenesis of the disease. The relationship between BAFF levels, disease activity and damage accrual in SLE is controversial, but growing evidence is emerging on its role in renal involvement. Belimumab, a biologic BAFF inhibitor, has been the first biologic agent licensed for SLE therapy so far. As Rituximab (RTX) has been shown to increase BAFF levels following B cell depletion, the combination therapy of RTX plus belimumab (being evaluated in two RCT) seems to be a valuable option for several clinical scenarios. In this review we will highlight the growing body of evidence of immune and non-immune related BAFF expression in experimental and clinical settings.
Collapse
Affiliation(s)
- Tamara Möckel
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Fabio Basta
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine I, Division of Nephrology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| |
Collapse
|
24
|
Lee J, Yoon SS, Thuy PX, Moon EY. Synovial Cell Migration is Associated with B Cell Activating Factor Expression Increased by TNFα or Decreased by KR33426. Biomol Ther (Seoul) 2020; 28:405-413. [PMID: 32753567 PMCID: PMC7457168 DOI: 10.4062/biomolther.2020.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblast-like synoviocytes (FLS) play a crucial role in initiating rheumatoid arthritis. B-cell activating factor (BAFF) plays a role in FLS survival as well as in B cell maturation and maintenance. Here, we investigated whether tumor necrosis factor (TNF)-α-induced BAFF expression controls FLS migration and whether BAFF expression in FLS could be regulated by KR33426 which is the inhibitor of BAFF binding to BAFF receptors (BAFF-R) by using MH7A synovial cells transfected with the SV40 T antigen. More TNF-α-treated cells migrated compared to the control. TNF-α increased BAFF expression in FLS, significantly. FLS migration was inhibited by the transfection with BAFF-siRNA. KR33426 also inhibited BAFF expression increased by TNF-α treatment in FLS as judged by western blotting, PCR, and transcriptional activity assay. Kinases including JNK, p38 and Erk were activated by TNF-α treatment. While JNK and p38 were inhibited by KR33426 treatment, no changes in Erk were observed. Transcription factors including p65, c-Fos, CREB and SP1 were enhanced by TNF-α treatment. Among them, c-Fos was inhibited by KR33426 treatment. Small interference(si)-RNA of c-fos decreased BAFF transcriptional activity. FLS migration induced by TNF-α was inhibited by the transfection with BAFF-siRNA. KR33426 increased Twist, Snail, Cadherin-11 and N-Cadherin. In contrast, KR33426 decreased E-cadherin and TNF-α-enhanced CCL2. Taken together, our results demonstrate that synovial cell migration via CCL2 expression could be regulated by BAFF expression which is decreased by KR33426 and c-Fos-siRNA. It suggests for the first time that the role of BAFF-siRNA on FLS migration might be matched in the effect of KR33426 on BAFF expression.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Sung Sik Yoon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Pham Xuan Thuy
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
25
|
Du X, Chen Y, Zhang Q, Lin J, Yu Y, Pan Z, Sun H, Yuan C, Yu D, Wu H, Zhang X, Dai J, Zhu S, Zhou Y, Ouyang H. Ezh2 Ameliorates Osteoarthritis by Activating TNFSF13B. J Bone Miner Res 2020; 35:956-965. [PMID: 31910305 DOI: 10.1002/jbmr.3952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation is highly correlated with osteoarthritis (OA) development, whereas its role and detailed mechanisms remain elusive. In this study, we explored the expression of EZH2, an H3K27me3 transferase, in human OA cartilages and its roles in regulating OA pathogenesis. Here, we found EZH2 was highly expressed in both mice and human OA cartilage samples by using histological analysis and RNA sequencing (RNA-Seq). The medial meniscectomy (MMx) OA model results indicated the conditional knockout of Ezh2 deteriorated OA pathological conditions. Furthermore, we showed the positive role of Ezh2 in cartilage wound healing and inhibition of hypertrophy through activating TNFSF13B, a member of the tumor necrosis factor superfamily. Further, we also indicated that the effect of TNFSF13B, increased by Ezh2, might boost the healing of chondrocytes through increasing the phosphorylation of Akt. Taken together, our results uncovered an EZH2-positive subpopulation existed in OA patients, and that EZH2-TNFSF13B signaling was responsible for regulating chondrocyte healing and hypertrophy. Thus, EZH2 might act as a new potential target for OA diagnosis and treatment. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaotian Du
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yishan Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeke Yu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongyou Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhui Yuan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Yu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Dai
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shouan Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biochemistry and Molecular Biology, Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
26
|
Giordano D, Kuley R, Draves KE, Roe K, Holder U, Giltiay NV, Clark EA. BAFF Produced by Neutrophils and Dendritic Cells Is Regulated Differently and Has Distinct Roles in Antibody Responses and Protective Immunity against West Nile Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1508-1520. [PMID: 32034064 PMCID: PMC7357242 DOI: 10.4049/jimmunol.1901120] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
B cell activating factor (BAFF) is essential for B cells to develop and respond to Ags. Dysregulation of BAFF contributes to the development of some autoimmune diseases and malignancies. Little is known about when, where, and how BAFF is produced in vivo and about which BAFF-producing cells contribute to B cell responses. To better understand BAFF functions, we created BAFF reporter (BAFF-RFP) mice and Baff floxed (Bafffl/fl ) mice. Splenic and bone marrow neutrophils (Nphs) from BAFF-RFP mice expressed the highest constitutive levels of BAFF; other myeloid subsets, including conventional dendritic cells (cDCs) and monocyte (MO) subsets, expressed lower levels. Treatment of BAFF-RFP mice with polyinosinic:polycytidylic acid increased BAFF expression in splenic Ly6Chi inflammatory MOs, CD11bhi activated NK subset, and in bone marrow myeloid precursors. Postinfection with West Nile virus (WNV), BAFF increased in CD8- cDCs and Nphs, and BAFF+ CD11bhi NK cells expanded in draining lymph nodes. The cell- and tissue-specific increases in BAFF expression were dependent on type I IFN signaling. MAVS also was required or contributed to BAFF expression in dendritic cell and MO subsets, respectively. Mice with deletion of Baff in either cDCs or Nphs had reduced Ab responses after NP-Ficoll immunization; thus, BAFF produced by both cDCs and Nphs contributes to T cell-independent Ab responses. Conversely, mice with a cDC Baff deficiency had increased mortality after WNV infection and decreased WNV-specific IgG and neutralizing Ab responses. BAFF produced by Nphs and cDCs is regulated differently and has key roles in Ab responses and protective immunity.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Runa Kuley
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Ursula Holder
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109; and
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
27
|
Positive and negative cooperativity of TNF and Interferon-γ in regulating synovial fibroblast function and B cell survival in fibroblast/B cell co-cultures. Sci Rep 2020; 10:780. [PMID: 31964950 PMCID: PMC6972945 DOI: 10.1038/s41598-020-57772-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Synovial fibroblasts (SF) were reported to produce B cell activating factor (BAFF) in response to stimulation with interferon-γ (IFN-γ) or tumor necrosis factor (TNF). However, the influence of these pro-inflammatory cytokines on other receptors/ligands of the TNF superfamily or associated cytokine receptors in SF has not been investigated yet. Here we show the differential regulation of BAFF (CD257), Fn14 (CD266), TACI (CD267), BAFF-R (CD268), BCMA (CD269), CD40 ligand (CD40L, CD154), IFN-γR (CD119), Leptin receptor (ObR, CD295), VCAM-1 (CD106) and membrane TGF-β in isolated SF and the impact of IFN-γ/TNF co-incubation on proliferation, IL-6 and IL-8 production. In addition, the impact of differentially stimulated SF on B cell survival in co-cultures was assessed. Surface cytokines and cytokine receptors were detected by flow cytometry. Soluble cytokine receptors and cytokines were quantified by ELISA. Proliferation was assessed by cell titer blue. Murine B cell survival in fibroblast/ B cell co-cultures was determined by annexin V/propidium iodide staining and flow cytometry. IFN-γ together with TNF synergistically and significantly increased the cell surface levels of BAFF, Fn14, TACI, BAFF-R, BCMA, CD40L, ObR and IFN-γR in rheumatoid arthritis SF after 72 h incubation. Soluble BAFF was only induced by IFN-γ and inhibited by TNF. Addition of TWEAK had no influence on proliferation or IL-8 production but decreased TNF-induced IL-6 production, whereas APRIL, BAFF and leptin did not modulate TNF or TNF/IFN-γ-induced proliferation or cytokine production. Proliferation was increased by TNF and further enhanced by the addition of IFN-γ. In co-culture experiments, SF stimulated with TNF/IFN but not TNF or IFN-γ alone increased shedding of VCAM-1 and expression of membrane TGFβ, which was associated with reduced survival of murine B cells. IFN-γ and TNF regulate the expression of TNF family member cytokines and associated receptors. Ligation of IFN-γR and Fn14 under pro-inflammatory conditions modulated IL-6/IL-8 production and proliferation. In B cell/SF co-cultures, the combination of TNF/IFN reduced B cell survival possibly via enhanced VCAM-1 shedding and/or increased TGF-β production. IFN-γ is necessary for the observed effects on B cell survival and SF cytokine production and emphasizes its anti-inflammatory role in rheumatoid arthritis.
Collapse
|
28
|
Bonelli M, Dalwigk K, Platzer A, Olmos Calvo I, Hayer S, Niederreiter B, Holinka J, Sevelda F, Pap T, Steiner G, Superti-Furga G, Smolen JS, Kiener HP, Karonitsch T. IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes : JAKinibs suppress the interferon response in RA-FLSs. Exp Mol Med 2019; 51:1-11. [PMID: 31285419 PMCID: PMC6802656 DOI: 10.1038/s12276-019-0267-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent synovial inflammation. The major drivers of synovial inflammation are cytokines and chemokines. Among these molecules, TNF activates fibroblast-like synoviocytes (FLSs), which leads to the production of inflammatory mediators. Here, we show that TNF regulates the expression of the transcription factor interferon regulatory factor 1 (IRF1) in human FLSs as well as in a TNF transgenic arthritis mouse model. Transcriptomic analyses of IRF1-deficient, TNF-stimulated FLSs define the interferon (IFN) pathway as a major target of IRF1. IRF1 expression is associated with the expression of IFNβ, which leads to the activation of the JAK-STAT pathway. Blocking the JAK-STAT pathway with the Janus kinase inhibitor (JAKinib) baricitinib or tofacitinib reduces the expression of IFN-regulated genes (IRGs) in TNF-activated FLSs. Therefore, we conclude that TNF induces a distinct inflammatory cascade, in which IRGs are key elements, in FLSs. The IFN-signature might be a promising biomarker for the efficient and personalized use of new treatment strategies for RA, such as JAKinibs.
Collapse
Affiliation(s)
- Michael Bonelli
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Karolina Dalwigk
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexander Platzer
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Isabel Olmos Calvo
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Silvia Hayer
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Johannes Holinka
- Department of Orthopaedics, Medical University of Vienna, 1090, Vienna, Austria
| | - Florian Sevelda
- Department of Orthopaedics, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, 48149, Muenster, Germany
| | - Günter Steiner
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Karonitsch
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
29
|
Zheng W, Pan H, Wei L, Gao F, Lin X. Dulaglutide mitigates inflammatory response in fibroblast-like synoviocytes. Int Immunopharmacol 2019; 74:105649. [PMID: 31185450 DOI: 10.1016/j.intimp.2019.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis is a common autoimmune disease primarily characterized by chronic inflammation, the formation of an invasive pannus, and destruction of the joints. In the present study, we employed real-time PCR and western blot analysis to investigate the role of dulaglutide in human fibroblast-like synoviocytes (FLS). The results of our study show that dulaglutide exerted a powerful protective effect by rescuing mitochondrial membrane potential, inhibiting the production of NOX-4, and abrogating TNF-α-induced downregulation of the antioxidant GSH. Our findings demonstrate that dulaglutide significantly ameliorated the expression of proinflammatory cytokines and chemokines including IL-1β, IL-6, MCP-1, and HMGB-1. Matrix metalloproteinases mediate cartilage destruction, thereby aiding in pannus formation. Our findings indicate that dulaglutide treatment significantly downregulated the expression of MMP-3 and MMP-13, two crucial degradative enzymes. Importantly, the results of our study demonstrate that the beneficial effects of dulaglutide are mediated through the JNK/NF-κB signaling pathway, which has been suggested as a potential treatment target against RA. Taken together, the results of this study show that dulaglutide may exert significant protective effects against the progression of RA induced by TNF-α.
Collapse
Affiliation(s)
- Weizhuo Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haile Pan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wei
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Gao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaozong Lin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
30
|
Chlorogenic Acid Inhibits BAFF Expression in Collagen-Induced Arthritis and Human Synoviocyte MH7A Cells by Modulating the Activation of the NF- κB Signaling Pathway. J Immunol Res 2019; 2019:8042097. [PMID: 31240234 PMCID: PMC6556285 DOI: 10.1155/2019/8042097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022] Open
Abstract
B cell activating factor (BAFF), a member of the tumor necrosis factor (TNF) family, plays a critical role in the pathogenesis and progression of rheumatoid arthritis (RA). Chlorogenic acid (CGA) is a phenolic compound and exerts antiarthritic activities in arthritis. However, it is not clear whether the anti-inflammatory property of CGA is associated with the regulation of BAFF expression. In this study, we found that treatment of the collagen-induced arthritis (CIA) mice with CGA significantly attenuated arthritis progression and markedly inhibited BAFF production in serum as well as the production of serum TNF-α. Furthermore, CGA inhibits TNF-α-induced BAFF expression in a dose-dependent manner and apoptosis in MH7A cells. Mechanistically, we found the DNA-binding site for the transcription factor NF-κB in the BAFF promoter region is required for this regulation. Moreover, CGA reduces the DNA-binding activity of NF-κB to the BAFF promoter region and suppresses BAFF expression through the NF-κB pathway in TNF-α-stimulated MH7A cells. These results suggest that CGA may serve as a novel therapeutic agent for the treatment of RA by targeting BAFF.
Collapse
|
31
|
Carrillo-Ballesteros FJ, Oregon-Romero E, Franco-Topete RA, Govea-Camacho LH, Cruz A, Muñoz-Valle JF, Bustos-Rodríguez FJ, Pereira-Suárez AL, Palafox-Sánchez CA. B-cell activating factor receptor expression is associated with germinal center B-cell maintenance. Exp Ther Med 2019; 17:2053-2060. [PMID: 30783477 PMCID: PMC6364250 DOI: 10.3892/etm.2019.7172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/23/2018] [Indexed: 12/30/2022] Open
Abstract
B-cell activating factor (BAFF) is a major cytokine that regulates B-cell survival, maturation and differentiation through its binding with its receptors: BAFF receptor (BAFF-R), transmembrane activator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA). These receptors have been demonstrated to be involved in tertiary lymphoid structure formation; however, their role in germinal centers (GCs) has remained elusive. The aim of the present study was to determine the expression profiles of BAFF and its receptors in secondary lymphoid tissues. Tonsils resected due to chronic tonsillitis were used as lymphoid tissues. To confirm the presence of GCs identified based on their typical structure, CD21 antibody staining was employed. The expression of BAFF, BAFF-R, TACI and BCMA was assessed by immunohistochemistry. BAFF was highly expressed in all regions of the follicle, but the highest BAFF expression was detected in the mantle zone (MZ). A high expression of BAFF-R was observed on lymphocytes in the MZ in comparison with the other regions (~80%; P<0.05), which was co-localizated with BAFF (r=0.646; P<0.001), in the MZ. TACI and BCMA exhibited similar expression among the different zones of the GCs, and co-localization with BAFF was observed inside the follicle, mainly in the dark zone. The present results indicate that BAFF is implicated in the maintenance of GCs. BAFF-R overexpression in the MZ, co-localizated with BAFF, suggests that these proteins constitute the principal pathway for the maintenance of the naïve B-cell population. Furthermore, TACI and BCMA have a role in the GC, where processes of B-cell selection, proliferation and differentiation into immunoglobulin-secreting plasma cells occur.
Collapse
Affiliation(s)
- Francisco Josué Carrillo-Ballesteros
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Edith Oregon-Romero
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Ramon Antonio Franco-Topete
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Luis Humberto Govea-Camacho
- Department of Otorhinolaryngology, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco 44340, México
| | - Alvaro Cruz
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - José Francisco Muñoz-Valle
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Felipe Jesús Bustos-Rodríguez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Ana Laura Pereira-Suárez
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Claudia Azucena Palafox-Sánchez
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| |
Collapse
|
32
|
Karonitsch T, Kandasamy RK, Kartnig F, Herdy B, Dalwigk K, Niederreiter B, Holinka J, Sevelda F, Windhager R, Bilban M, Weichhart T, Säemann M, Pap T, Steiner G, Smolen JS, Kiener HP, Superti-Furga G. mTOR Senses Environmental Cues to Shape the Fibroblast-like Synoviocyte Response to Inflammation. Cell Rep 2018; 23:2157-2167. [PMID: 29768212 PMCID: PMC5972226 DOI: 10.1016/j.celrep.2018.04.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/02/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that metabolic master regulators, including mTOR, regulate adaptive and innate immune responses. Resident mesenchymal tissue components are increasingly recognized as key effector cells in inflammation. Whether mTOR also controls the inflammatory response in fibroblasts is insufficiently studied. Here, we show that TNF signaling co-opts the mTOR pathway to shift synovial fibroblast (FLS) inflammation toward an IFN response. mTOR pathway activation is associated with decreased NF-κB-mediated gene expression (e.g., PTGS2, IL-6, and IL-8) but increased STAT1-dependent gene expression (e.g., CXCL11 and TNFSF13B). We further demonstrate how metabolic inputs, such as amino acids, impinge on TNF-mTORC1 signaling to differentially regulate pro-inflammatory signaling circuits. Our results define a critical role for mTOR in the regulation of the pro-inflammatory response in FLSs and unfold its pathogenic involvement in TNF-driven diseases, such as rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Thomas Karonitsch
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| | - Richard K Kandasamy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Barbara Herdy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Karolina Dalwigk
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Holinka
- Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Sevelda
- Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Reinhard Windhager
- Department of Orthopaedics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Säemann
- Department of Medicine VI, Wilhelminenspital, 1160 Vienna, Austria; Sigmund Freud Private University, Medical School, 1020 Vienna, Austria
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, 48149 Muenster, Germany
| | - Günter Steiner
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
33
|
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:201-211. [DOI: 10.1080/08923973.2018.1437625] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Arya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Abstract
Stromal cells like synovial fibroblasts gained great interest over the years, since it has become clear that they strongly influence their environment and neighbouring cells. The current review describes the role of synovial fibroblasts as cells of the innate immune system and expands on their involvement in inflammation and cartilage destruction in rheumatoid arthritis (RA). Furthermore, epigenetic changes in RA synovial fibroblasts and studies that focused on the identification of different subsets of synovial fibroblasts are discussed.
Collapse
Affiliation(s)
- Caroline Ospelt
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Alam J, Jantan I, Bukhari SNA. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother 2017; 92:615-633. [PMID: 28582758 DOI: 10.1016/j.biopha.2017.05.055] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 01/13/2023] Open
Abstract
An autoimmune disease is defined as a clinical syndrome resulted from an instigation of both T cell and B cell or individually, in the absence of any present infection or any sort of distinguishable cause. Clonal deletion of auto reactive cells remains the central canon of immunology for decades, keeping the role of T cell and B cell aside, which are actually the guards to recognize the entry of foreign body. According to NIH, 23.5 million Americans are all together affected by these diseases. They are rare, but with the exception of RA. Rheumatoid arthritis is chronic and systemic autoimmune response to the multiple joints with unknown ethology, progressive disability, systemic complications, early death and high socioeconomic costs. Its ancient disease with an old history found in North American tribes since 1500 BCE, but its etiology is yet to be explored. Current conventional and biological therapies used for RA are not fulfilling the need of the patients but give only partial responses. There is a lack of consistent and liable biomarkers of prognosis therapeutic response, and toxicity. Rheumatoid arthritis is characterized by hyperplasic synovium, production of cytokines, chemokines, autoantibodies like rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA), osteoclastogensis, angiogenesis and systemic consequences like cardiovascular, pulmonary, psychological, and skeletal disorders. Cytokines, a diverse group of polypeptides, play critical role in the pathogenesis of RA. Their involvement in autoimmune diseases is a rapidly growing area of biological and clinical research. Among the proinflammatory cytokines, IL-1α/β and TNF-α trigger the intracellular molecular signalling pathway responsible for the pathogenesis of RA that leads to the activation of mesenchymal cell, recruitment of innate and adaptive immune system cells, activation of synoviocytes which in term activates various mediators including tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) and interleukin-8 (IL-8), resulting in inflamed synovium, increase angiogenesis and decrease lymphangiogensis. Their current pharmacotherapy should focus on their three phases of progression i.e. prearthritis phase, transition phase and clinical phase. In this way we will be able to find a way to keep the balance between the pro and anti-inflammatory cytokines that is believe to be the dogma of pathogenesis of RA. For this we need to explore new agents, whether from synthetic or natural source to find the answers for unresolved etiology of autoimmune diseases and to provide a quality of life to the patients suffering from these diseases specifically RA.
Collapse
Affiliation(s)
- Javaid Alam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Tang F, Chen X, Mao Y, Wan S, Ai S, Yang H, Liu G, Zou Y, Lin M, Dan L. Orbital fibroblasts of Graves' orbitopathy stimulated with proinflammatory cytokines promote B cell survival by secreting BAFF. Mol Cell Endocrinol 2017; 446:1-11. [PMID: 28087387 DOI: 10.1016/j.mce.2017.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
The success of rituximab for the treatment of active Graves' orbitopathy (GO) suggests that B cells play a critical role in intraorbital inflammation. B cell activating factor (BAFF) and its homolog a proliferation-inducing ligand (APRIL) are critical for B cell survival. However, the contribution of BAFF/APRIL to GO remains unclear. We sought to determine the role of BAFF/APRIL in the orbits of GO, and found that BAFF was markedly upregulated, while APRIL was not. Additionally, cultured GO orbital fibroblasts (GO-OFs)2 expressing BAFF were induced to produce a large amount of BAFF. In contrast, a weak APRIL expression was detected in the OFs, and they exhibited a slight response to stimulation. Notably, pretreated GO-OFs promoted B cell survival, and this effect was significantly inhibited by a BAFF-R neutralizing antibody. This study indicates that OFs from GO can express BAFF and mediate the intraorbital survival of B cells via BAFF mechanism.
Collapse
Affiliation(s)
- Fen Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Yuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Shangtao Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Siming Ai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Guangming Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Yusha Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China
| | - Miaoli Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China.
| | - Liang Dan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, People's Republic of China.
| |
Collapse
|
37
|
Lee JW, Lee J, Um SH, Moon EY. Synovial cell death is regulated by TNF-α-induced expression of B-cell activating factor through an ERK-dependent increase in hypoxia-inducible factor-1α. Cell Death Dis 2017; 8:e2727. [PMID: 28383556 PMCID: PMC5477592 DOI: 10.1038/cddis.2017.26] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
B-cell activating factor (BAFF) has a role in the maturation and maintenance of B cells and is associated with rheumatoid arthritis (RA). Here, we investigated whether tumor necrosis factor (TNF)-α-induced BAFF expression controls the survival of fibroblast-like synoviocytes (FLS) and whether their survival can be regulated by TNF-α-mediated upregulation of hypoxia-inducible factor (HIF)-1α using MH7A synovial cells transfected with the SV40 T antigen. More TNF-α-treated cells died compared with the control. Survival was increased by incubation with Z-VAD but inhibited after transfection with BAFF-siRNA. Both BAFF and HIF-1α expression were enhanced when MH7A cells were treated with TNF-α. TNF-α-induced BAFF expression decreased in response to HIF-1α-siRNA, whereas it increased under hypoxia or by overexpressing HIF-1α. The HIF-1α binding site on the BAFF promoter (−693 to −688 bp) was confirmed by chromatin immunoprecipitation assay to detect the −750 to −501 bp and −800 to −601 bp regions. The BAFF promoter increased in response to TNF-α treatment or overexpression of HIF-1α. However, TNF-α-induced BAFF expression and promoter activity decreased after treatment with the ERK inhibitor PD98059. Cell death was enhanced by PD98059 but was inhibited by overexpression of HIF-1α. Taken together, our results demonstrate that BAFF expression to control synovial cell survival was regulated by HIF-1α binding to the BAFF promoter, and suggest for the first time that HIF-1α might be involved in the production of inflammatory cytokines to regulate the physiological function of rheumatic FLS.
Collapse
Affiliation(s)
- Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Jiyoung Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyunggi-do 16419, Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
38
|
Uzzan M, Colombel JF, Cerutti A, Treton X, Mehandru S. B Cell-Activating Factor (BAFF)-Targeted B Cell Therapies in Inflammatory Bowel Diseases. Dig Dis Sci 2016; 61:3407-3424. [PMID: 27655102 DOI: 10.1007/s10620-016-4317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel diseases (IBD) involve dysregulated immune responses to gut antigens in genetically predisposed individuals. While a better elucidation of IBD pathophysiology has considerably increased the number of treatment options, the need for more effective therapeutic strategies remains a pressing priority. Defects of both non-hematopoietic (epithelial and stromal) and hematopoietic (lymphoid and myeloid) cells have been described in patients with IBD. Within the lymphoid system, alterations of the T cell compartment are viewed as essential in the pathogenesis of IBD. However, growing evidence points to the additional perturbations of the B cell compartment. Indeed, the intestinal lamina propria from IBD patients shows an increased presence of antibody-secreting plasma cells, which correlates with enhanced pro-inflammatory immunoglobulin G production and changes in the quality of non-inflammatory IgA responses. These B cell abnormalities are compounded by the emergence of systemic antibody responses to various autologous and microbial antigens, which predates the clinical diagnosis of IBD and identifies patients with complicated disease. It is presently unclear whether such antibody responses play a pathogenetic role, as B cell depletion with the CD20-targeting monoclonal antibody rituximab did not ameliorate ulcerative colitis in a clinical trial. However, it must be noted that unresponsiveness to rituximab is also observed also in some patients with autoimmune disorders usually responsive to B cell-depleting therapies. In this review, we discussed mechanistic aspects of B cell-based therapies and their potential role in IBD with a special interest on BAFF and BAFF-targeting therapies buoyed by the success of anti-BAFF treatments in rheumatologic disorders.
Collapse
Affiliation(s)
- Mathieu Uzzan
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Departments of Medicine and Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xavier Treton
- Department of Gastroenterology, Beaujon Hospital, APHP, Denis Diderot University, Paris, France
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
39
|
Jia X, Wei F, Sun X, Chang Y, Xu S, Yang X, Wang C, Wei W. CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:194-201. [PMID: 27196292 DOI: 10.1016/j.jep.2016.05.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/22/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Total glucosides of paeony (TGP) is the first anti-inflammatory immune regulatory drug approved for the treatment of rheumatoid arthritis in China. A novel compound, paeoniflorin-6'-O-benzene sulfonate (code CP-25), comes from the structural modification of paeoniflorin (Pae), which is the effective active ingredient of TGP. The aim of the present study is to investigate the effect of CP-25 on adjuvant arthritis (AA) fibroblast-like synoviocytes (FLS) co-cultured with BAFF-activated CD4(+) T cells and the expression of BAFF-R in CD4(+) T cells. METHODS The mRNA expression of BAFF and its receptors was assessed by qPCR. The expression of BAFF receptors in CD4(+) T cells was analyzed by flow cytometry. The effect of CP-25 on AA rats was evaluated by their joint histopathology. The cell culture growth of thymocytes and FLS was detected by cell counting kit (CCK-8). The concentrations of IL-1β, TNF-α, and IL-6 were measured by Enzyme-linked immunosorbent assay (ELISA). RESULTS The mRNA expression levels of BAFF and BAFF-R were enhanced in the mesenteric lymph nodes of AA rats, TACI expression was reduced, and BCMA had no change. The expression of BAFF-R in CD4(+) T cells was also enhanced. CP-25 alleviated the joint histopathology and decreased the expression of BAFF-R in CD4(+) T cells from AA rats in vivo. In vitro, CP-25 inhibited the abnormal cell culture growth of BAFF-stimulated thymocytes and FLS. In the co-culture system, IL-1β, IL-6 and TNF-α production was enhanced by FLS co-cultured with BAFF-activated CD4(+) T cells. Moreover, BAFF-stimulated CD4(+) T cells promoted the cell culture growth of FLS. The addition of CP-25 decreased the expression of BAFF-R in CD4(+) T cells and inhibited the cell culture growth and cytokine secretion ability of FLS co-cultured with BAFF-activated CD4(+) T cells. CONCLUSION The present study indicates that CP-25 may repress the cell culture growth and cytokine secretion ability of FLS, and its inhibitory effects might be associated with its ability to inhibit the expression of BAFF-R in CD4(+) T cells in a co-culture. These observations might provide a scientific basis for the development of new drugs for the treatment of autoimmune diseases by CP-25.
Collapse
Affiliation(s)
- Xiaoyi Jia
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Fang Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Xiaojing Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Shu Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
40
|
Huang TL, Wu CC, Yu J, Sumi S, Yang KC. l-Lysine regulates tumor necrosis factor-alpha and matrix metalloproteinase-3 expression in human osteoarthritic chondrocytes. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Yang KC, Wu CC, Chen WY, Sumi S, Huang TL. l-Glutathione enhances antioxidant capacity of hyaluronic acid and modulates expression of pro-inflammatory cytokines in human fibroblast-like synoviocytes. J Biomed Mater Res A 2016; 104:2071-9. [DOI: 10.1002/jbm.a.35729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kai-Chiang Yang
- School of Dental Technology; College of Oral Medicine, Taipei Medical University; Taipei 11031 Taiwan
- Department of Organ Reconstruction; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei 10002 Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City 23702 Taiwan
| | - Wei-Yu Chen
- Department of Materials Science and Engineering; University of Sheffield; Sheffield S10 2TN United Kingdom
| | - Shoichiro Sumi
- Department of Organ Reconstruction; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Teng-Le Huang
- Department of Sports Medicine; College of Health Care, China Medical University; Taichung 40402 Taiwan
- Department of Orthopedics; An-Nan Hospital, China Medical University; Tainan 70965 Taiwan
| |
Collapse
|
42
|
Zampeli E, Vlachoyiannopoulos PG, Tzioufas AG. Treatment of rheumatoid arthritis: Unraveling the conundrum. J Autoimmun 2015; 65:1-18. [PMID: 26515757 DOI: 10.1016/j.jaut.2015.10.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous disease with a complex and yet not fully understood pathophysiology, where numerous different cell-types contribute to a destructive process of the joints. This complexity results into a considerable interpatient variability in clinical course and severity, which may additionally involve genetics and/or environmental factors. After three decades of focused efforts scientists have now achieved to apply in clinical practice, for patients with RA, the "treat to target" approach with initiation of aggressive therapy soon after diagnosis and escalation of the therapy in pursuit of clinical remission. In addition to the conventional synthetic disease modifying anti-rheumatic drugs, biologics have greatly improved the management of RA, demonstrating efficacy and safety in alleviating symptoms, inhibiting bone erosion, and preventing loss of function. Nonetheless, despite the plethora of therapeutic options and their combinations, unmet therapeutic needs in RA remain, as current therapies sometimes fail or produce only partial responses and/or develop unwanted side-effects. Unfortunately the mechanisms of 'nonresponse' remain unknown and most probable lie in the unrevealed heterogeneity of the RA pathophysiology. In this review, through the effort of unraveling the complex pathophysiological pathways, we will depict drugs used throughout the years for the treatment of RA, the current and future biological therapies and their molecular or cellular targets and finally will suggest therapeutic algorithms for RA management. With multiple biologic options, there is still a need for strong predictive biomarkers to determine which drug is most likely to be effective, safe, and durable in a given individual. The fact that available biologics are not effective in all patients attests to the heterogeneity of RA, yet over the long term, as research and treatment become more aggressive, efficacy, toxicity, and costs must be balanced within the therapeutic equation to enhance the quality of life in patients with RA.
Collapse
Affiliation(s)
- Evangelia Zampeli
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece
| | | | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece.
| |
Collapse
|
43
|
Morais SA, Vilas-Boas A, Isenberg DA. B-cell survival factors in autoimmune rheumatic disorders. Ther Adv Musculoskelet Dis 2015; 7:122-51. [PMID: 26288664 PMCID: PMC4530383 DOI: 10.1177/1759720x15586782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autoimmune rheumatic disorders have complex etiopathogenetic mechanisms in which B cells play a central role. The importance of factors stimulating B cells, notably the B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) axis is now recognized. BAFF and APRIL are cytokines essential for B-cell proliferation and survival from the immature stages to the development of plasma cells. Their levels are increased in some subsets of patients with autoimmune disorders. Several recent biologic drugs have been developed to block this axis, namely belimumab [already licensed for systemic lupus erythematosus (SLE) treatment], tabalumab, atacicept and blisibimod. Many clinical trials to evaluate the safety and efficacy of these drugs in several autoimmune disorders are ongoing, or have been completed recently. This review updates the information on the use of biologic agents blocking BAFF/APRIL for patients with SLE, rheumatoid arthritis, Sjögren's syndrome and myositis.
Collapse
Affiliation(s)
- Sandra A Morais
- Internal Medicine Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Andreia Vilas-Boas
- Internal Medicine Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - David A Isenberg
- Centre for Rheumatology, University College London, Room 424, 4th Floor Rayne Building, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
44
|
Efficacy and Safety of Tabalumab, an Anti–B-Cell–Activating Factor Monoclonal Antibody, in a Heterogeneous Rheumatoid Arthritis Population. J Clin Rheumatol 2015. [DOI: 10.1097/rhu.0000000000000276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease that is marked by a systemic inflammatory reaction and joint erosions. Elevated levels of B cell activating factor (BAFF) have been detected in the serum and synovial fluid of RA patients. Moreover, the levels of BAFF increase in cases of autoimmune disease and are correlated with the level of disease activity. As an innate cytokine mediator, BAFF affects the immune response of the synovial microenvironment. In this review, we consider recent observations of BAFF and its receptors in RA progression, as well as the effects of BAFF on the cell-cell interactions network. We also summarize the clinical development of BAFF antagonists for the treatment of RA.
Collapse
|
46
|
Paulissen SM, van Hamburg JP, Dankers W, Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine 2015; 74:43-53. [DOI: 10.1016/j.cyto.2015.02.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
|
47
|
Osta B, Roux JP, Lavocat F, Pierre M, Ndongo-Thiam N, Boivin G, Miossec P. Differential Effects of IL-17A and TNF-α on Osteoblastic Differentiation of Isolated Synoviocytes and on Bone Explants from Arthritis Patients. Front Immunol 2015; 6:151. [PMID: 25904914 PMCID: PMC4387961 DOI: 10.3389/fimmu.2015.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/21/2015] [Indexed: 11/24/2022] Open
Abstract
Objective TNF-α and IL-17A act on fibroblast-like synoviocytes (FLS) and contribute to cytokine production, inflammation, and tissue destruction in rheumatoid arthritis (RA). The aim of this study was to compare their effects on osteogenic differentiation of isolated FLS and on whole bone explants from RA and osteoarthritis (OA) patients. Methods Fibroblast-like synoviocytes and bone explants were cultured in the presence or absence of TNF-α and/or IL-17A. Mineralization of extracellular matrix of FLS was measured by alizarin red and alkaline phosphatase activity (ALP). mRNA expression was analyzed by qRT-PCR for Wnt5a, BMP2, and RUNX2, key genes associated with osteogenesis. IL-6 and IL-8 levels were measured by enzyme-linked immunosorbent assays. Bone explant structure was quantified by histomorphometry. Results In isolated OA and RA FLS, the combination of TNF-α and IL-17A induced matrix mineralization, increased ALP activity and expression of the osteogenesis-associated genes Wnt5a, BMP2, and Runx2, indicating an osteogenic differentiation. Wnt5a levels increased with TNF-α alone and in combination with IL-17A. BMP2 expression decreased with IL-17A and TNF-α after 12 h with OA FLS and 24 h with RA FLS. Runx2 expression decreased only with combination of TNF-α and IL-17A in OA FLS and with cytokines alone and combined in RA FLS. IL-6 and IL-8 production increased with IL-17A and/or TNF-α in both FLS and bone samples, especially from RA. Treatment of bone explants with cytokine combination increased ALP in OA but not RA samples. A decrease in bone volume was seen with cytokine combination, especially with RA explants. Conclusion Differences were observed for the effects of IL-17A and TNF-α on osteogenic differentiation. In isolated FLS, increased osteoblastogenesis was observed, contrasting with the inhibitory effect in whole bone, specifically in RA. The net effect of IL-17A and TNF-α appears to depend on the disease state and the presence of other cells.
Collapse
Affiliation(s)
- Bilal Osta
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Jean-Paul Roux
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Marlène Pierre
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Ndieme Ndongo-Thiam
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Georges Boivin
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| |
Collapse
|
48
|
APRIL promotes proliferation, secretion and invasion of fibroblast-like synoviocyte from rats with adjuvant induced arthritis. Mol Immunol 2015; 64:90-8. [DOI: 10.1016/j.molimm.2014.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/03/2014] [Indexed: 01/06/2023]
|
49
|
Khawar B, Abbasi MH, Sheikh N. A panoramic spectrum of complex interplay between the immune system and IL-32 during pathogenesis of various systemic infections and inflammation. Eur J Med Res 2015; 20:7. [PMID: 25626592 PMCID: PMC4322809 DOI: 10.1186/s40001-015-0083-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022] Open
Abstract
Cytokines have always been of great interest due to their vast potential and participation in the progression and pathogenesis of various ailments. Interleukin-32 (IL-32) is a recently identified cytokine, whose gene is located on human chromosome 16 p13.3, with eight exons and six splice variants (IL-32α to IL-32ζ). IL-32α, the most abundant form, is secreted by different types of cells including T cells, natural killer (NK) cells, monocytes, endothelial cells and epithelial cells. It acts as a preferential mediator and effector of abnormal immune responses to multiple inflammatory and auto immune diseases including rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), inflammatory bowel disease (IBD), etc. It was found to stimulate the induction of various chemokines, pro-inflammatory cytokines including IL-1β, IL-6, IL-8, TNF-α and macrophage inflammatory protein-2 (MIP-2). Hence, IL-32 mediates the crucial interplay among immune system and body cells during pathogenesis of various insults. The aim of the present effort is to summarize the role, mechanism of pathogenesis and potential therapeutic applications of IL-32 in different systemic infections and diseased conditions.
Collapse
Affiliation(s)
- Babar Khawar
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| | - Muddasir Hassan Abbasi
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan. .,Department of Zoology, Governments. College of Science, Wahdat Road, Lahore, Pakistan.
| | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| |
Collapse
|
50
|
MiR-30a-3p negatively regulates BAFF synthesis in systemic sclerosis and rheumatoid arthritis fibroblasts. PLoS One 2014; 9:e111266. [PMID: 25360821 PMCID: PMC4216016 DOI: 10.1371/journal.pone.0111266] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/21/2014] [Indexed: 12/22/2022] Open
Abstract
We evaluated micro (mi) RNA-mediated regulation of BAFF expression in fibroblasts using two concomitant models: (i) synovial fibroblasts (FLS) isolated from healthy controls (N) or Rheumatoid Arthritis (RA) patients; (ii) human dermal fibroblasts (HDF) isolated from healthy controls (N) or Systemic Sclerosis (SSc) patients. Using RT-qPCR and ELISA, we first showed that SScHDF synthesized and released BAFF in response to Poly(I:C) or IFN-γ treatment, as previously observed in RAFLS, whereas NHDF released BAFF preferentially in response to IFN-γ. Next, we demonstrated that miR-30a-3p expression was down regulated in RAFLS and SScHDF stimulated with Poly(I:C) or IFN-γ. Moreover, we demonstrated that transfecting miR-30a-3p mimic in Poly(I:C)- and IFN-γ-activated RAFLS and SScHDF showed a strong decrease on BAFF synthesis and release and thus B cells survival in our model. Interestingly, FLS and HDF isolated from healthy subjects express higher levels of miR-30a-3p and lower levels of BAFF than RAFLS and SScHDF. Transfection of miR-30a-3p antisense in Poly(I:C)- and IFN-γ-activated NFLS and NHDF upregulated BAFF secretion, confirming that this microRNA is a basal repressors of BAFF expression in cells from healthy donors. Our data suggest a critical role of miR-30a-3p in the regulation of BAFF expression, which could have a major impact in the regulation of the autoimmune responses occurring in RA and SSc.
Collapse
|