1
|
Lubin R, Patel AA, Mackerodt J, Zhang Y, Gvili R, Mulder K, Dutertre CA, Jalali P, Glanville JR, Hazan I, Sridharan N, Rivkin G, Akarca A, Marafioti T, Gilroy DW, Kandel L, Mildner A, Wilensky A, Asquith B, Ginhoux F, Macallan D, Yona S. The lifespan and kinetics of human dendritic cell subsets and their precursors in health and inflammation. J Exp Med 2024; 221:e20220867. [PMID: 39417994 PMCID: PMC11488382 DOI: 10.1084/jem.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dendritic cells (DC) are specialized mononuclear phagocytes that link innate and adaptive immunity. They comprise two principal subsets: plasmacytoid DC (pDC) and conventional DC (cDC). Understanding the generation, differentiation, and migration of cDC is critical for immune homeostasis. Through human in vivo deuterium-glucose labeling, we observed the rapid appearance of AXL+ Siglec6+ DC (ASDC) in the bloodstream. ASDC circulate for ∼2.16 days, while cDC1 and DC2 circulate for ∼1.32 and ∼2.20 days, respectively, upon release from the bone marrow. Interestingly, DC3, a cDC subset that shares several similarities with monocytes, exhibits a labeling profile closely resembling that of DC2. In a human in vivo model of cutaneous inflammation, ASDC were recruited to the inflammatory site, displaying a distinctive effector signature. Taken together, these results quantify the ephemeral circulating lifespan of human cDC and propose functions of cDC and their precursors that are rapidly recruited to sites of inflammation.
Collapse
Affiliation(s)
- Ruth Lubin
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit A. Patel
- Division of Medicine, University College London, London, UK
| | - Jonas Mackerodt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Yan Zhang
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Rotem Gvili
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Idit Hazan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Nikhila Sridharan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gurion Rivkin
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | - Leonid Kandel
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Derek Macallan
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
- St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
2
|
Karyu H, Niki T, Sorimachi Y, Hata S, Shimabukuro-Demoto S, Hirabayashi T, Mukai K, Kasahara K, Takubo K, Goda N, Honke K, Taguchi T, Sorimachi H, Toyama-Sorimachi N. Collaboration between a cis-interacting natural killer cell receptor and membrane sphingolipid is critical for the phagocyte function. Front Immunol 2024; 15:1401294. [PMID: 38720899 PMCID: PMC11076679 DOI: 10.3389/fimmu.2024.1401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.
Collapse
Affiliation(s)
- Hitomi Karyu
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Takahiro Niki
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuriko Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shoji Hata
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kojiro Mukai
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Honke
- Department of Biochemistry and Kochi System Glycobiology Center, Kochi University Medical School, Kochi, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
3
|
Karigane D, Haraguchi M, Toyama-Sorimachi N, Nishimura EK, Takubo K. Mitf is required for T cell maturation by regulating dendritic cell homing to the thymus. Biochem Biophys Res Commun 2022; 596:29-35. [PMID: 35108651 DOI: 10.1016/j.bbrc.2022.01.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Thymic dendritic cells (DCs) promote immune tolerance by regulating negative selection of autoreactive T cells in the thymus. How DC homing to the thymus is transcriptionally regulated is still unclear. Microphthalmia-associated transcription factor (Mitf) is broadly expressed and plays essential roles in the hematopoietic system. Here, we used Mitf-mutated mice (Mitfvit/vit) and found enlargement of the thymus and expansion of CD4/CD8 double-positive T cells. Mitf was highly expressed in a subset of thymic DCs among the hematopoietic system. Genetic mutation or pharmacological inhibition of Mitf in DCs decreased the expression levels of Itga4, which are critical molecules for the homing of DCs to the thymus. Further, inhibition of Mitf decreased thymic DC number. These results suggest a pivotal role of Mitf in the maintenance of T cell differentiation by regulating the homing of DC subsets within the thymus.
Collapse
Affiliation(s)
- Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan.
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Division of Aging and Regeneration, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
The inhibitory NK receptor Ly49Q protects plasmacytoid dendritic cells from pyroptotic cell death. Mol Immunol 2021; 135:217-225. [PMID: 33932686 DOI: 10.1016/j.molimm.2021.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 01/07/2023]
Abstract
Ly49Q is an ITIM-bearing MHC class I receptor that is highly expressed in plasmacytoid dendritic cells (pDCs). Ly49Q is required for the TLR9-mediated IFN-I production in pDCs, although the mechanism is not fully understood. We here demonstrate that Ly49Q protects pDCs from pyroptotic cell death induced by CpG oligodeoxynucleotides (CpG). In the Ly49Q-deficient (Klra17-/-) mouse spleen, the number of ssDNA-positive pDCs increased significantly after CpG treatment, strongly suggesting that Klra17-/- pDCs were susceptible to CpG-induced cell death. In Klra17-/- bone-marrow-derived dendritic cells (BMDCs), CpG-induced cell death was accompanied by increased cathepsin B leakage from the vesicular compartments into the cytoplasm. Concurrently, IL-1β secretion increased in the CpG-treated Klra17-/- BMDCs, strongly suggesting that the CpG-induced cell death in these cells is pyroptotic in nature. Consistent with these observations, inhibiting cathepsin B or caspase 1 in CpG-stimulated Klra17-/- BMDCs reversed the increase in cell death. Pyroptotic cell death and IL-1β secretion were also observed in BMDCs derived from transgenic mice expressing an ITIM-less Ly49Q (Ly49Q-YF Tg). CpG also increased the IL-1β production and cell death in B2m-/- BMDCs. These results suggest that Ly49Q and MHC class I play important roles for protecting pyroptosis-like cell death of DCs by influencing lysosome state.
Collapse
|
5
|
Uno K, Muso E, Ito-Ihara T, Endo T, Yasuda Y, Yagi K, Suzuki K. Impaired HVJ-stimulated Interferon producing capacity in MPO-ANCA-associated vasculitis with rapidly progressive glomerulonephritis lead to susceptibility to infection. Cytokine 2020; 136:155221. [PMID: 32828064 DOI: 10.1016/j.cyto.2020.155221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
ANCA-associated RPGN leads to renal failure through systemic vasculitis and diffuse crescentic glomerulonephritis. MPO-ANCA-RPGN patients are highly susceptible to infections. Our aim in this study was to uncover reasons why these patients were susceptible to infections. We analyzed various aspects of type I interferon system including HVJ-stimulated IFN-α producing capacity and plasmacytoid dendritic cell (pDC) number in whole blood in MPO-ANCA-RPGN patients. Compared with healthy subjects, MPO-ANCA-RPGN patients showed impaired HVJ-stimulated IFN-α producing capacity and lower pDC number with or without glucocorticoid treatment. Immuno-histological staining of MPO-ANCA-RPGN kidney samples revealed a few but apparent pDC in T cell infiltrating regions even in patients with low pDC number in their peripheral blood. Patients' low HVJ-stimulated IFN-α producing capacity and pDC numbers persisted even after patients underwent several years of treatment. Former infection was determined using patients' serum BPI, Lamp-2 and Calprotectin, since they are reflective of a history of infection. These markers were higher in MPO-ANCA-RPGN patients than in healthy subjects. These results indicate that impaired HVJ-stimulated IFN-α production as well as dysfunction of the IFN system might have resulted from a previous bout of infection and can be partially implicated in patients' long-term susceptibility and vulnerability to infection.
Collapse
Affiliation(s)
- Kazuko Uno
- Louis Pasteur Center for Medical Research, Division of Basic Research, 103-5, Tanaka-Monzen cho, Sakyoku, Kyoto 606-8225, Japan.
| | - Eri Muso
- Division of Nephrology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20, Ogimachi, Kitaku, Osaka 530-8480, Japan; Department of Food and Nutrition Faculty of Contemporary Home Economics, Kyoto Kacho University, 3-456 Rinkacho, Higashiyama-ku, Kyoto 605-0062, Japan.
| | - Toshiko Ito-Ihara
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, 456 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tomomi Endo
- Division of Nephrology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20, Ogimachi, Kitaku, Osaka 530-8480, Japan.
| | - Yuko Yasuda
- Louis Pasteur Center for Medical Research, Division of Basic Research, 103-5, Tanaka-Monzen cho, Sakyoku, Kyoto 606-8225, Japan.
| | - Katusmi Yagi
- Louis Pasteur Center for Medical Research, Division of Basic Research, 103-5, Tanaka-Monzen cho, Sakyoku, Kyoto 606-8225, Japan.
| | - Kazuo Suzuki
- Department of Immunobiology, Inflammation Program, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba-city, Chiba 260-8670, Japan; Asia International Institute of Infectious Disease Control, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
6
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
7
|
Jamali A, Harris DL, Blanco T, Lopez MJ, Hamrah P. Resident plasmacytoid dendritic cells patrol vessels in the naïve limbus and conjunctiva. Ocul Surf 2020; 18:277-285. [PMID: 32109562 PMCID: PMC7397780 DOI: 10.1016/j.jtos.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/15/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) constitute a unique population of bone marrow-derived cells that play a pivotal role in linking innate and adaptive immune responses. While peripheral tissues are typically devoid of pDCs during steady state, few tissues do host resident pDCs. In the current study, we aim to assess presence and distribution of pDCs in naïve murine limbus and bulbar conjunctiva. Immunofluorescence staining followed by confocal microscopy revealed that the naïve bulbar conjunctiva of wild-type mice hosts CD45+ CD11clow PDCA-1+ pDCs. Flow cytometry confirmed the presence of resident pDCs in the bulbar conjunctiva through multiple additional markers, and showed that they express maturation markers, the T cell co-inhibitory molecules PD-L1 and B7-H3, and minor to negligible levels of T cell co-stimulatory molecules CD40, CD86, and ICAM-1. Epi-fluorescent microscopy of DPE-GFP×RAG1-/- transgenic mice with GFP-tagged pDCs indicated lower density of pDCs in the bulbar conjunctiva compared to the limbus. Further, intravital multiphoton microscopy revealed that resident pDCs accompany the limbal vessels and patrol the intravascular space. In vitro multiphoton microscopy showed that pDCs are attracted to human umbilical vein endothelial cells and interact with them during tube formation. In conclusion, our study shows that the limbus and bulbar conjunctiva are endowed with resident pDCs during steady state, which express maturation and classic T cell co-inhibitory molecules, engulf limbal vessels, and patrol intravascular spaces.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Maria J Lopez
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Program in Immunology, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
8
|
Grajkowska LT, Ceribelli M, Lau CM, Warren ME, Tiniakou I, Nakandakari Higa S, Bunin A, Haecker H, Mirny LA, Staudt LM, Reizis B. Isoform-Specific Expression and Feedback Regulation of E Protein TCF4 Control Dendritic Cell Lineage Specification. Immunity 2017; 46:65-77. [PMID: 27986456 PMCID: PMC5243153 DOI: 10.1016/j.immuni.2016.11.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/22/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
The cell fate decision between interferon-producing plasmacytoid DC (pDC) and antigen-presenting classical DC (cDC) is controlled by the E protein transcription factor TCF4 (E2-2). We report that TCF4 comprises two transcriptional isoforms, both of which are required for optimal pDC development in vitro. The long Tcf4 isoform is expressed specifically in pDCs, and its deletion in mice impaired pDCs development and led to the expansion of non-canonical CD8+ cDCs. The expression of Tcf4 commenced in progenitors and was further upregulated in pDCs, correlating with stage-specific activity of multiple enhancer elements. A conserved enhancer downstream of Tcf4 was required for its upregulation during pDC differentiation, revealing a positive feedback loop. The expression of Tcf4 and the resulting pDC differentiation were selectively sensitive to the inhibition of enhancer-binding BET protein activity. Thus, lineage-specifying function of E proteins is facilitated by lineage-specific isoform expression and by BET-dependent feedback regulation through distal regulatory elements.
Collapse
Affiliation(s)
- Lucja T Grajkowska
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Colleen M Lau
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Margaret E Warren
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Graduate Program in Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ioanna Tiniakou
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Anna Bunin
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hans Haecker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leonid A Mirny
- Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Ly49 knockdown in mice results in aberrant uterine crypt formation and impaired blastocyst implantation. Placenta 2016; 39:147-50. [DOI: 10.1016/j.placenta.2016.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 11/20/2022]
|
10
|
CD244 is expressed on dendritic cells and regulates their functions. Immunol Cell Biol 2015; 93:581-90. [PMID: 25643613 DOI: 10.1038/icb.2014.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 12/05/2014] [Accepted: 12/24/2014] [Indexed: 12/28/2022]
Abstract
Signaling lymphocytic activation molecule (SLAM) receptors have an important role in the development of immune responses because of their roles, for exampe, in NK cell cytotoxicity and cytokine production by NK, T cells and myeloid cells. The SLAM receptor CD244 (2B4, SLAMf4) is expressed on a variety of immune cell types but most of its functions have been examined on NK and T cells. In the present study, we investigated expression and function of CD244 in murine subsets of dendritic cells (DCs). We report that all subsets of murine DCs examined expressed CD244, although the expression levels of CD244 varied between subsets. Splenic and resident mesenteric lymph node (MLN) DCs from CD244(-/-) mice expressed lower levels of CD86 and MHC class II compared with wild-type mice. Upon Toll-like receptor (TLR) stimulation, no differences in surface expression of these molecules were observed between DCs from CD244(-/-) and wild-type mice. However, splenic DCs from CD244(-/-) mice upon stimulation with TLR binding ligands lipopolysaccharide (LPS) and CpG produced significantly higher levels of pro-inflammatory cytokines. In addition, DCs from CD244(-/-) mice elicited increased NK cell activation in vitro. These data add CD244 to a growing list of immuno-modulatory receptors found on DCs.
Collapse
|
11
|
Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014; 14:571-8. [PMID: 25033907 DOI: 10.1038/nri3712] [Citation(s) in RCA: 1324] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) has historically been categorized into monocytes, dendritic cells and macrophages on the basis of functional and phenotypical characteristics. However, considering that these characteristics are often overlapping, the distinction between and classification of these cell types has been challenging. In this Opinion article, we propose a unified nomenclature for the MPS. We suggest that these cells can be classified primarily by their ontogeny and secondarily by their location, function and phenotype. We believe that this system permits a more robust classification during both steady-state and inflammatory conditions, with the benefit of spanning different tissues and across species.
Collapse
|
12
|
Rahim MMA, Tu MM, Mahmoud AB, Wight A, Abou-Samra E, Lima PDA, Makrigiannis AP. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014; 5:145. [PMID: 24765094 PMCID: PMC3980100 DOI: 10.3389/fimmu.2014.00145] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 11/13/2022] Open
Abstract
The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada ; College of Applied Medical Sciences, Taibah University , Madinah Munawwarah , Kingdom of Saudi Arabia
| | - Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Elias Abou-Samra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Patricia D A Lima
- Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
13
|
Yamada T, Nanashima N, Akita M, Shimizu T, Miura T, Yamana D, Sawano T, Sakurai T, Tsuchida S. Lectin-like receptor Ly49s3 on dendritic cells contributes to the differentiation of regulatory T cells in the rat thymus. THE JOURNAL OF IMMUNOLOGY 2013; 191:3799-809. [PMID: 23997226 DOI: 10.4049/jimmunol.1203511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally occurring regulatory T cells (nTregs), important for immune regulation and the maintenance of self-tolerance, develop in the thymus. The Hirosaki hairless rat (HHR), derived from the Sprague-Dawley rat (SDR), was shown to have decreased peripheral lymphocyte number, small thymus, and leukocyte infiltration in its dermis. In the HHR thymus, the medulla was underdeveloped and nTreg number was decreased. Array comparative genome hybridization revealed the deletion of an NK cell lectin-like receptor gene, Ly49s3, detecting MHC class I molecules on target cells, in the chromosome 4q42 region in HHRs. The gene was expressed in thymic conventional dendritic cells (cDCs) in SDRs, but not in HHRs. When CD4-single-positive or CD4(+)CD8(-)CD25(-) thymocytes were cultured with thymic cDCs, the expression of nTreg marker genes was lower when these cells were from HHRs than from SDRs, suggesting that HHR cDCs are deficient in the ability to induce and maintain nTreg differentiation. Expression of the genes was recovered when Ly49s3 was expressed on HHR thymic cDCs. Expression levels of MHC class II genes, presumably from cDCs, were parallel to those of nTreg marker genes in mixed-cell cultures. However, in the presence of an anti-MHC class I Ab, blocking interaction between Ly49s3 and MHC class I molecules, the expression of the former genes was upregulated, whereas the latter was downregulated. These results suggest that Ly49s3 contributes to nTreg regulation along with MHC class II molecules, whose effects alone are insufficient, and loss of Ly49s3 from thymic cDCs is the reason for the nTreg deficiency in HHRs.
Collapse
Affiliation(s)
- Toshiyuki Yamada
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rahim MMA, Tai LH, Troke AD, Mahmoud AB, Abou-Samra E, Roy JG, Mottashed A, Ault N, Corbeil C, Goulet ML, Zein HS, Hamilton-Valensky M, Krystal G, Kerr WG, Toyama-Sorimachi N, Makrigiannis AP. Ly49Q positively regulates type I IFN production by plasmacytoid dendritic cells in an immunoreceptor tyrosine-based inhibitory motif-dependent manner. THE JOURNAL OF IMMUNOLOGY 2013; 190:3994-4004. [PMID: 23479228 DOI: 10.4049/jimmunol.1200873] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Plasmacytoid dendritic cells (pDC) are the major producers of type I IFN during the initial immune response to viral infection. Ly49Q, a C-type lectin-like receptor specific for MHC-I, possesses a cytoplasmic ITIM and is highly expressed on murine pDC. Using Ly49Q-deficient mice, we show that, regardless of strain background, this receptor is required for maximum IFN-α production by pDC. Furthermore, Ly49Q expression on pDC, but not myeloid dendritic cells, is necessary for optimal IL-12 secretion, MHC-II expression, activation of CD4(+) T cell proliferation, and nuclear translocation of the master IFN-α regulator IFN regulatory factor 7 in response to TLR9 agonists. In contrast, the absence of Ly49Q did not affect plasmacytoid dendritic cell-triggering receptor expressed on myeloid cells expression or pDC viability. Genetic complementation revealed that IFN-α production by pDC is dependent on an intact tyrosine residue in the Ly49Q cytoplasmic ITIM. However, pharmacological inhibitors and phosphatase-deficient mice indicate that Src homology 2 domain-containing phosphatase 1 (SHP)-1, SHP-2, and SHIP phosphatase activity is dispensable for this function. Finally, we observed that Ly49Q itself is downregulated on pDC in response to CpG exposure in an ITIM-independent manner. In conclusion, Ly49Q enhances TLR9-mediated signaling events, leading to IFN regulatory factor 7 nuclear translocation and expression of IFN-I genes in an ITIM-dependent manner that can proceed without the involvement of SHP-1, SHP-2, and SHIP.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Plasmacytoid dendritic cells (pDCs), originating from hematopoietic progenitor cells in the BM, are a unique dendritic cell subset that can produce large amounts of type I IFNs by signaling through the nucleic acid-sensing TLR7 and TLR9 (TLR7/9). The molecular mechanisms for pDC function and development remain largely unknown. In the present study, we focused on an Ets family transcription factor, Spi-B, that is highly expressed in pDCs. Spi-B could transactivate the type I IFN promoters in synergy with IFN regulatory factor 7 (IRF-7), which is an essential transcription factor for TLR7/9-induced type I IFN production in pDCs. Spi-B-deficient pDCs and mice showed defects in TLR7/9-induced type I IFN production. Furthermore, in Spi-B-deficient mice, BM pDCs were decreased and showed attenuated expression of a set of pDC-specific genes whereas peripheral pDCs were increased; this uneven distribution was likely because of defective retainment of mature nondividing pDCs in the BM. The expression pattern of cell-surface molecules in Spi-B-deficient mice indicated the involvement of Spi-B in pDC development. The developmental defects of pDCs in Spi-B-deficient mice were more prominent in the BM than in the peripheral lymphoid organs and were intrinsic to pDCs. We conclude that Spi-B plays critical roles in pDC function and development.
Collapse
|
16
|
Abstract
Myeloid cells are key drivers of physiological responses to pathogen invasion or tissue damage. Members of the C-type lectin receptor (CLR) family stand out among the specialized receptors utilized by myeloid cells to orchestrate these responses. CLR ligands include carbohydrate, protein, and lipid components of both pathogens and self, which variably trigger endocytic, phagocytic, proinflammatory, or anti-inflammatory reactions. These varied outcomes rely on a versatile system for CLR signaling that includes tyrosine-based motifs that recruit kinases, phosphatases, or endocytic adaptors as well as nontyrosine-based signals that modulate the activation of other pathways or couple to the uptake machinery. Here, we review the signaling properties of myeloid CLRs and how they impact the role of myeloid cells in innate and adaptive immunity.
Collapse
Affiliation(s)
- David Sancho
- Department of Vascular Biology and Inflammation, CNIC, Centro Nacional de Investigaciones Cardiovasculares, E-28029, Madrid, Spain.
| | | |
Collapse
|
17
|
Kool M, Geurtsvankessel C, Muskens F, Madeira FB, van Nimwegen M, Kuipers H, Thielemans K, Hoogsteden HC, Hammad H, Lambrecht BN. Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs. J Leukoc Biol 2011; 90:1177-90. [PMID: 21934071 DOI: 10.1189/jlb.0610342] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Subsets of antigen-presenting cDCs have a differential capacity to present exogenous and endogenous protein antigens to CD4(+) and/or CD8(+) T lymphocytes, depending on expression of antigen-uptake receptors, processing machinery, and microbial instruction. pDCs are also capable of antigen presentation, but the conditions under which they do this have not been systematically addressed. Highly purified cDCs and pDCs were exposed to exogenous, soluble OVA peptide or whole protein. Alternatively, they were made to express cytoplasmic or endosomal OVA by retroviral transduction or by infection with influenza virus containing OVA epitopes. Like cDCs, pDCs expressed the MHC I processing machinery and could present endogenous or cross-present exogenous OVA to CD8(+) T cells, provided they had been stimulated by CpG motif TLR9 ligands or by influenza. Unlike cDCs, the cross-priming activity of pDCs was enhanced, not decreased, by simultaneous TLR stimulation. Processing and presentation of exogenous OVA to CD4(+) T cells required TLR9 ligation prior to antigen encounter and addition of OVA-specific Igs. These stimuli up-regulated critical MHC II processing machinery and enhanced routing to acidic endosomal organelles in a FcγRII-dependent manner. Endogenous antigen was not presented to CD4(+) T cells when expressed in the cytoplasm of pDCs by retrovirus or contained in influenza, unless an Ii-chain-derived endosomal routing signal was present. Thus, timing of TLR ligation and facilitated antigen uptake dictate the potential of pDCs to present endogenous or exogenous antigen by influencing endosomal traffic and antigen-processing machinery.
Collapse
Affiliation(s)
- Mirjam Kool
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inhibitory C-type lectin receptors in myeloid cells. Immunol Lett 2010; 136:1-12. [PMID: 20934454 PMCID: PMC3061320 DOI: 10.1016/j.imlet.2010.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors encoded by the natural killer gene complex play critical roles in enabling NK cell discrimination between self and non-self. In recent years, additional genes at this locus have been identified with patterns of expression that extend to cells of the myeloid lineage where many of the encoded inhibitory receptors have equally important functions as regulators of immune homeostasis. In the present review we highlight the roles of some of these receptors including recent insights gained with regard to the identification of exogenous and endogenous ligands, mechanisms of cellular inhibition and activation, regulated expression within different cellular and immune contexts, as well as functions that include the regulation of bone homeostasis and involvement in autoimmunity.
Collapse
|
19
|
Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 2010; 234:142-62. [PMID: 20193017 PMCID: PMC3507434 DOI: 10.1111/j.0105-2896.2009.00881.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are bone marrow-derived cells that secrete large amounts of type I interferon (IFN) in response to viruses. Type I IFNs are pleiotropic cytokines with antiviral activity that also enhance innate and adaptive immune responses. Viruses trigger activation of pDCs and type I IFN responses mainly through the Toll-like receptor pathway. However, a variety of activating and inhibitory pDC receptors fine tune the amplitude of type I IFN responses. Chronic activation and secretion of type I IFN in the absence of infection can promote autoimmune diseases. Furthermore, while activated pDCs promote immunity and autoimmunity, resting or alternatively activated pDCs may be tolerogenic. The various roles of pDCs have been extensively studied in vitro and in vivo with depleting antibodies. However, depleting antibodies cross-react with other cell types that are critical for eliciting protective immunity, potentially yielding ambiguous phenotypes. Here we discuss new approaches to assess pDC functions in vivo and provide preliminary data on their potential roles during viral infections. Such approaches would also prove useful in the more specific evaluation of how pDCs mediate tolerance and autoimmunity. Finally, we discuss the emergent role of pDCs and one of their receptors, tetherin, in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
20
|
Hayashi M, Nakashima T, Kodama T, Makrigiannis AP, Toyama-Sorimachi N, Takayanagi H. Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation. Biochem Biophys Res Commun 2010; 393:432-8. [PMID: 20153723 DOI: 10.1016/j.bbrc.2010.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 11/19/2022]
Abstract
Osteoclasts, multinucleated cells that resorb bone, play a key role in bone remodeling. Although immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling is critical for osteoclast differentiation, the significance of immunoreceptor tyrosine-based inhibitory motif (ITIM) has not been well understood. Here we report the function of Ly49Q, an Ly49 family member possessing an ITIM motif, in osteoclastogenesis. Ly49Q is selectively induced by receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) stimulation in bone marrow-derived monocyte/macrophage precursor cells (BMMs) among the Ly49 family of NK receptors. The knockdown of Ly49Q resulted in a significant reduction in the RANKL-induced formation of tartrate-resistance acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a decreased expression of osteoclast-specific genes such as Nfatc1, Tm7sf4, Oscar, Ctsk, and Acp5. Osteoclastogenesis was also significantly impaired in Ly49Q-deficient cells in vitro. The inhibitory effect of Ly49Q-deficiency may be explained by the finding that Ly49Q competed for the association of Src-homology domain-2 phosphatase-1 (SHP-1) with paired immunoglobulin-like receptor-B (PIR-B), an ITIM-bearing receptor which negatively regulates osteoclast differentiation. Unexpectedly, Ly49Q deficiency did not lead to impaired osteoclast formation in vivo, suggesting the existence of a compensatory mechanism. This study provides an example in which an ITIM-bearing receptor functions as a positive regulator of osteoclast differentiation.
Collapse
Affiliation(s)
- Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Sasawatari S, Yoshizaki M, Taya C, Tazawa A, Furuyama-Tanaka K, Yonekawa H, Dohi T, Makrigiannis AP, Sasazuki T, Inaba K, Toyama-Sorimachi N. The Ly49Q Receptor Plays a Crucial Role in Neutrophil Polarization and Migration by Regulating Raft Trafficking. Immunity 2010; 32:200-13. [DOI: 10.1016/j.immuni.2010.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 11/11/2009] [Accepted: 01/22/2010] [Indexed: 01/01/2023]
|
22
|
Vremec D. The isolation of mouse dendritic cells from lymphoid tissues and the identification of dendritic cell subtypes by multiparameter flow cytometry. Methods Mol Biol 2010; 595:205-229. [PMID: 19941115 DOI: 10.1007/978-1-60761-421-0_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dendritic cells (DCs) are powerful initiators of the adaptive immune system and their manipulation is seen as a viable approach in the treatment of many human ailments. Our isolation method purifies DCs from mouse lymphoid organs by efficiently removing them from the tissue using collagenase, selecting the light density fraction of cells and then negatively selecting for DCs using a combination of monoclonal antibodies directed against non-DC lineage cells together with anti-rat immunoglobulin-coated magnetic beads. Remaining contaminating cells can be depleted using a combination of specific biotinylated antibodies and anti-biotin-coated magnetic beads, in the case of natural killer (NK) cells, or by FACS gating, during sorting or analysis, in the case of autofluorescent macrophages. The heterogeneous DCs can then be separated into various functionally different populations via immunofluorescent labelling and cell sorting. The study of mouse DC populations may enable us to align them to their human counterparts and subsequently to DC populations produced in vitro.
Collapse
Affiliation(s)
- David Vremec
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| |
Collapse
|
23
|
Dobromylskyj MJ, Connelley T, Hammond JA, Ellis SA. Cattle Ly49 is polymorphic. Immunogenetics 2009; 61:789-95. [DOI: 10.1007/s00251-009-0406-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/23/2009] [Indexed: 11/29/2022]
|
24
|
Toma-Hirano M, Namiki S, Shibata Y, Ishida K, Arase H, Miyatake S, Arai KI, Kamogawa-Schifter Y. Ly49Q ligand expressed by activated B cells induces plasmacytoid DC maturation. Eur J Immunol 2009; 39:1344-52. [PMID: 19350550 DOI: 10.1002/eji.200838363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ly49Q, a type II C-type lectin expressed on mouse plasmacytoid DC (pDC), contains a single carbohydrate recognition domain in its extracellular region and an ITIM in its cytoplasmic domain. We have identified the MHC class I molecule H-2K(b) as a Ly49Q ligand, confirming prior reports. Although H-2K(b) is expressed on essentially all hematopoietic cells, we found that only CpG-stimulated B cells were able to activate Ly49Q. This discovery correlated with our finding that although H-2K(b) forms clusters on CpG-activated B cells, it is diffusely expressed on resting B cells. Furthermore, CpG-stimulated, but not resting, B cells up-regulated co-stimulatory molecules on pDC. This finding was confirmed by the fact that binding by anti-Ly49Q mAb to Ly49Q led to pDC maturation in vitro. Our results suggest that clustered H-2K(b) on activated B cells act as ligands for Ly49Q and induce pDC maturation in vitro.
Collapse
Affiliation(s)
- Makiko Toma-Hirano
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Spatiotemporal regulation of intracellular trafficking of Toll-like receptor 9 by an inhibitory receptor, Ly49Q. Blood 2009; 114:1518-27. [PMID: 19528537 DOI: 10.1182/blood-2008-12-192344] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptor (TLR) 9 recognizes unmethylated microorganismal cytosine guanine dinucleotide (CpG) DNA and elicits innate immune responses. However, the regulatory mechanisms of the TLR signaling remain elusive. We recently reported that Ly49Q, an immunoreceptor tyrosine-based inhibitory motif-bearing inhibitory receptor belonging to the natural killer receptor family, is crucial for TLR9-mediated type I interferon production by plasmacytoid dendritic cells. Ly49Q is expressed in plasmacytoid dendritic cells, macrophages, and neutrophils, but not natural killer cells. In this study, we showed that Ly49Q regulates TLR9 signaling by affecting endosome/lysosome behavior. Ly49Q colocalized with CpG in endosome/lysosome compartments. Cells lacking Ly49Q showed a disturbed redistribution of TLR9 and CpG. In particular, CpG-induced tubular endolysosomal extension was impaired in the absence of Ly49Q. Consistent with these findings, cells lacking Ly49Q showed impaired cytokine production in response to CpG-oligodeoxynucleotide. Our data highlight a novel mechanism by which TLR9 signaling is controlled through the spatiotemporal regulation of membrane trafficking by the immunoreceptor tyrosine-based inhibitory motif-bearing receptor Ly49Q.
Collapse
|
26
|
Tai LH, Goulet ML, Belanger S, Toyama-Sorimachi N, Fodil-Cornu N, Vidal SM, Troke AD, McVicar DW, Makrigiannis AP. Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC. ACTA ACUST UNITED AC 2008; 205:3187-99. [PMID: 19075287 PMCID: PMC2605222 DOI: 10.1084/jem.20080718] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo.
Collapse
Affiliation(s)
- Lee-Hwa Tai
- Laboratory of Molecular Immunology, Clinical Research Institute of Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brown MG, Scalzo AA. NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 2008; 20:361-8. [PMID: 18640056 DOI: 10.1016/j.smim.2008.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 06/06/2008] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells play important roles in innate defense against infectious agents particularly viruses and also tumors. They mediate their effects through direct cytolysis, release of cytokines and regulation of subsequent adaptive immune responses. NK cells are equipped with sophisticated arrays of inhibitory and activation receptors that regulate their function. In this review we illustrate some of the major evolutionary relationships between NK cell receptors among different animal species and what some of the major mechanisms are that give rise to this diversity in receptor families, including the potential roles of pathogens such as viruses in driving receptor evolution.
Collapse
Affiliation(s)
- Michael G Brown
- Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | | |
Collapse
|
28
|
Carlyle JR, Mesci A, Fine JH, Chen P, Bélanger S, Tai LH, Makrigiannis AP. Evolution of the Ly49 and Nkrp1 recognition systems. Semin Immunol 2008; 20:321-30. [PMID: 18595730 DOI: 10.1016/j.smim.2008.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
The Ly49 and Nkrp1 loci encode structurally and functionally related cell surface proteins that positively or negatively regulate natural killer (NK) cell-mediated cytotoxicity and cytokine production. Yet despite their clear relatedness and genetic linkage within the NK gene complex (NKC), these two multi-gene families have adopted dissimilar evolutionary strategies. The Ly49 genes are extremely polymorphic and evolutionarily dynamic, with distinct gene numbers, remarkable allelic diversity, and varying MHC-I-ligand specificities and affinities among different murine haplotypes. In contrast, the Nkrp1 genes have opted for overall conservation of genomic organization, sequences, and ligand specificities, with only limited and focused allelic polymorphism. Possible selection pressures driving such varied evolution of the two gene families may include disequilibrium from ligand co-inheritance, pathogen immunoevasin strategies, flexibility in host counter-evolution mechanisms, and the prevalence and dynamics of inherent repetitive elements.
Collapse
Affiliation(s)
- James R Carlyle
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, 2075 Bayview Avenue (S-236), Toronto, ON M4N 3M5, Canada.
| | | | | | | | | | | | | |
Collapse
|
29
|
Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008; 86:439-52. [DOI: 10.1038/icb.2008.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shalin H Naik
- Immunology Divison, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
30
|
Blasius AL, Barchet W, Cella M, Colonna M. Development and function of murine B220+CD11c+NK1.1+ cells identify them as a subset of NK cells. ACTA ACUST UNITED AC 2007; 204:2561-8. [PMID: 17923504 PMCID: PMC2118497 DOI: 10.1084/jem.20070991] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lymphoid organs contain a B220+CD11c+NK1.1+ cell population that was recently characterized as a novel dendritic cell (DC) subset that functionally overlaps with natural killer (NK) cells and plasmacytoid DCs (PDCs). Using Siglec-H and NK1.1 markers, we unambiguously dissected B220+CD11c+ cells and found that PDCs are the only professional interferon (IFN)-α–producing cells within this heterogeneous population. In contrast, B220+CD11c+NK1.1+ cells are a discrete NK cell subset capable of producing higher levels of IFN-γ than conventional NK cells. Unlike DCs, only a minute fraction of B220+CD11c+NK1.1+ cells in the spleen expressed major histocompatibility complex class II ex vivo or after stimulation with CpG. Consistent with being a NK cell subset, B220+CD11c+NK1.1+ cells depended primarily on interleukin 15 and common cytokine receptor γ chain signaling for their development. In terms of function, expression of distinctive cell surface receptors, and location in lymphoid organs, NK1.1+B220+CD11c+ appear to be the murine equivalent of human CD56bright NK cells.
Collapse
Affiliation(s)
- Amanda L Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
31
|
Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Oki T, Shibata F, Kumagai H, Nakajima H, Maeda-Yamamoto M, Hauchins JP, Tybulewicz VLJ, Takai T, Kitamura T. Functional Analysis of Activating Receptor LMIR4 as a Counterpart of Inhibitory Receptor LMIR3. J Biol Chem 2007; 282:17997-18008. [PMID: 17438331 DOI: 10.1074/jbc.m701100200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leukocyte mono-Ig-like receptor (LMIR) belongs to a new family of paired immunoreceptors. In this study, we analyzed activating receptor LMIR4/CLM-5 as a counterpart of inhibitory receptor LMIR3/CLM-1. LMIR4 is expressed in myeloid cells, including granulocytes, macrophages, and mast cells, whereas LMIR3 is more broadly expressed. The association of LMIR4 with Fc receptor-gamma among immunoreceptor tyrosine-based activation motif-bearing molecules was indispensable for LMIR4-mediated functions of bone marrow-derived mast cells, but dispensable for its surface expression. Cross-linking of LMIR4 led to Lyn- and Syk-dependent activation of bone marrow-derived mast cells, resulting in cytokine production and degranulation, whereas that of LMIR3 did not. The triggering of LMIR4 and TLR4 synergistically caused robust cytokine production in accordance with enhanced activation of ERK, whereas the co-ligation of LMIR4 and LMIR3 dramatically abrogated cytokine production. Notably, intraperitoneal administration of lipopolysaccharide strikingly up-regulated LMIR3 and down-regulated LMIR4, whereas that of granulocyte colony-stimulating factor up-regulated both LMIR3 and LMIR4 in granulocytes. Cross-linking of LMIR4 in bone marrow granulocytes also resulted in their activation, which was enhanced by lipopolysaccharide. Collectively, these results suggest that the innate immune system is at least in part regulated by the qualitative and quantitative balance of the paired receptors LMIR3 and LMIR4.
Collapse
Affiliation(s)
- Kumi Izawa
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshinori Yamanishi
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takayuki Matsuoka
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fumi Shibata
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hidetoshi Kumagai
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideaki Nakajima
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mari Maeda-Yamamoto
- National Institute of Vegetable and Tea Science, National Agriculture Research Organization, 2769 Kanaya, Shizuoka 428-8501, Japan
| | | | - Victor L J Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
32
|
Tai LH, Goulet ML, Belanger S, Troke AD, St-Laurent AG, Mesci A, Toyama-Sorimachi N, Carlyle JR, Makrigiannis AP. Recognition of H-2Kb by Ly49Q suggests a role for class Ia MHC regulation of plasmacytoid dendritic cell function. Mol Immunol 2007; 44:2638-46. [PMID: 17240452 DOI: 10.1016/j.molimm.2006.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 12/30/2022]
Abstract
Ly49Q is a member of the polymorphic Ly49 family of NK cell receptors that displays both a high degree of conservation and a unique expression pattern restricted to myeloid lineage cells, including plasmacytoid dendritic cells (pDC). The function and ligand specificity of Ly49Q are unknown. Here, we use reporter cell analysis to demonstrate that a high-affinity ligand for Ly49Q is present on H-2(b), but not H-2(d), H-2(k), H-2(q), or H-2(a)-derived tumor cells and normal cells ex vivo. The ligand is peptide-dependent and MHC Ia-like, as revealed by its functional absence on cells deficient in TAP-1, beta(2)m, or H-2K(b)D(b) expression. Furthermore, Ly49Q is specific for H-2K(b), as the receptor binds peptide-loaded H-2K(b) but not H-2D(b) complexes, and Ly49Q recognition can be blocked using anti-K(b) but not anti-D(b) mAb. Greater soluble H-2K(b) binding to ligand-deficient pDC also suggests cis interactions of Ly49Q and H-2K(b). These results demonstrate that Ly49Q efficiently binds H-2K(b) ligand, and suggest that pDC function, like that of NK cells, is regulated by classical MHC Ia molecules. MHC recognition capability by pDC has important implications for the role of this cell type during innate immune responses.
Collapse
Affiliation(s)
- Lee-Hwa Tai
- Institut de Recherches Cliniques de Montréal (IRCM), Laboratory of Molecular Immunology, Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Scarpellino L, Oeschger F, Guillaume P, Coudert JD, Lévy F, Leclercq G, Held W. Interactions of Ly49 family receptors with MHC class I ligands in trans and cis. THE JOURNAL OF IMMUNOLOGY 2007; 178:1277-84. [PMID: 17237373 DOI: 10.4049/jimmunol.178.3.1277] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.
Collapse
Affiliation(s)
- Léonardo Scarpellino
- Ludwig Institute for Cancer Research, Lausanne Branch; University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. THE JOURNAL OF IMMUNOLOGY 2006; 177:3260-5. [PMID: 16920966 DOI: 10.4049/jimmunol.177.5.3260] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I IFN-producing cells (IPC) are sentinels of viral infections. Identification and functional characterization of these cells have been difficult because of their small numbers in blood and tissues and their complex cell surface phenotype. To overcome this problem in mice, mAbs recognizing IPC-specific cell surface molecules have been generated. In this study, we report the identification of new Abs specific for mouse IPC, which recognize the bone marrow stromal cell Ag 2 (BST2). Interestingly, previously reported IPC-specific Abs 120G8 and plasmacytoid dendritic cell Ag-1 also recognize BST2. BST2 is predominantly specific for mouse IPC in naive mice, but is up-regulated on most cell types following stimulation with type I IFNs and IFN-gamma. The activation-induced promiscuous expression of BST2 described in this study has important implications for the use of anti-BST2 Abs in identification and depletion of IPC. Finally, we show that BST2 resides within an intracellular compartment corresponding to the Golgi apparatus, and may be involved in trafficking secreted cytokines in IPC.
Collapse
Affiliation(s)
- Amanda L Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
35
|
Allman D, Dalod M, Asselin-Paturel C, Delale T, Robbins SH, Trinchieri G, Biron CA, Kastner P, Chan S. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 2006; 108:4025-34. [PMID: 16912230 PMCID: PMC1895449 DOI: 10.1182/blood-2006-03-007757] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized DCs that produce high levels of type I IFN upon viral infection. Despite their key immunoregulatory role, little is known about pDC ontogeny or how developmental events regulate their function. We show that mice expressing low levels of the transcription factor Ikaros (Ik(L/L)) lack peripheral pDCs, but not other DC subsets. Loss of pDCs is associated with an inability to produce type I IFN after challenge with Toll-like receptor-7 and -9 ligands, or murine cytomegalovirus (MCMV) infection. In contrast, conventional DCs are present in normal numbers and exhibit normal responses in vivo after challenge with MCMV or inactivated toxoplasma antigen. Interestingly, Ik(L/L) bone marrow (BM) cells contain a pDC population that appears blocked at the Ly-49Q- stage of differentiation and fails to terminally differentiate in response to Flt-3L, a cytokine required for pDC differentiation. This differentiation block is strictly dependent on a cell-intrinsic requirement for Ikaros in pDC-committed precursors. Global gene expression profiling of Ik(L/L) BM pDCs reveals an up-regulation of genes not normally expressed, or expressed at low levels, in WT pDCs. These studies suggest that Ikaros controls pDC differentiation by silencing a large array of genes.
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Blasius AL, Colonna M. Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H. Trends Immunol 2006; 27:255-60. [PMID: 16679063 DOI: 10.1016/j.it.2006.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 03/24/2006] [Accepted: 04/21/2006] [Indexed: 11/23/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) detect viruses through toll-like receptor (TLR)7 and TLR9 and respond by secreting type I interferons (IFNs). Because TLR7 and TLR9 are present in endosomes, a mechanism is required to capture and deliver viruses to TLRs. A member of the sialic acid binding Ig-like lectin (Siglec) family, Siglec-H, has recently been identified as a specific surface marker for pDCs in mice. Siglec-H is endocytosed and can mediate the uptake of antigens for processing and presentation. Thus, Siglec-H might have a role in the capture of viruses or other pathogens for their delivery to intracellular TLRs. Paradoxically, Siglec-H also transmits intracellular signals through the associated adaptor DAP12, which reduces pDC responses to TLR ligands. In this review, we discuss models to explain the potential outcomes of Siglec-H engagement in the pDC secretion of type I IFN.
Collapse
Affiliation(s)
- Amanda L Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
37
|
Abstract
Host defence against pathogens requires the recognition of conserved microbial molecules, or 'pathogen-associated molecular patterns' (PAMPs), by their receptors termed 'pattern recognition receptors' (PRRs), represented most notably by toll-like receptors (TLRs) and C-type lectins. The 'non-classical' C-type lectins (these that lack the residues involved in calcium binding, required for carbohydrate binding) are traditionally thought of as being restricted to natural killer (NK) or T cells, playing important roles in immune surveillance. In recent years, however, a growing number of these receptors have been identified on myeloid cells, both of human and mouse origin. In contrast to their NK counterparts that primarily control cellular activation through recognition of major histocompatibility antigen (MHC) class I and related molecules, the myeloid-expressed receptors appear to have a far more diverse range of functions and ligands, including those of exogenous origin. Some of C-type lectin-like molecules possess activating/inhibitory signalling motifs that trigger downstream signalling events, suggesting the role for these receptors as positive/negative regulators of granulocyte and monocyte functions. With the exception of a few myeloid NK-like lectins, the natural ligands for most of these receptors remain unidentified, making it difficult to define their functions in normal physiological, inflammatory or pathological conditions. Importantly, in some cases, these novel C-type lectin-like lectins, encoded by genes from the same gene cluster, can act as receptor/ligand pairs, additionally contributing to the regulation of myeloid cell functions or their interaction with other (like NK) cell types. However, the relevance and importance of such interactions still needs to be assessed. Although few of the myeloid-expressed C-type lectins have been characterized in detail, we review here each of these receptors and highlight their prospective roles in innate and adaptive immunity.
Collapse
Affiliation(s)
- Elwira Pyz
- The Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | | | | | | |
Collapse
|
38
|
Abstract
Plasmacytoid predendritic cells (pDC) are a haematopoietic cell population with a characteristic plasma cell-like morphology found in many tissues of the mouse, including blood, thymus, bone marrow, liver, and the T-cell areas of lymphoid organs. Recent studies of pDC have revealed them to be crucial mediators linking the innate and adaptive arms of the immune system. In this review, rather than focus on pDC function, we focus on recent evidence regarding pDC development. We examine the requirements for pDC development from several perspectives, including organ localization, cytokine requirements, development from myeloid- and lymphoid-restricted bone marrow precursors, expression of lineage-restricted markers, transcription factor dependence, and markers that separate pDC into distinct subsets.
Collapse
Affiliation(s)
- Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research and the Cooperative Research Centre for Vaccine Technology, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|