1
|
Venken K, Decruy T, Sparwasser T, Elewaut D. Tregs protect against invariant NKT cell-mediated autoimmune colitis and hepatitis. Immunology 2024; 171:277-285. [PMID: 37984469 DOI: 10.1111/imm.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Immunomodulatory T cells play a pivotal role in protection against (auto)immune-mediated diseases that open perspectives for therapeutic modulation. However, how immune regulatory networks operate in vivo is less understood. To this end, we focused on FOXP3+CD4+CD25+ regulatory T cells (Tregs) and invariant natural killer T (iNKT) cells, two lymphocyte populations that independently regulate adaptive and innate immune responses. In vitro, a functional interplay between Tregs and iNKT cells has been described, but whether Tregs modulate the function and phenotype of iNKT cell subsets in vivo and whether this controls iNKT-mediated autoimmunity is unclear. Taking advantage of the conditional depletion of Tregs, we examined the in vivo interplay between iNKT and Treg cells in steady state and in preclinical models of liver and gut autoimmunity. Under non-inflamed conditions, Treg depletion enhanced glycolipid-mediated iNKT cell responses, with a general impact on Type 1, 2 and 17 iNKT subsets. Moreover, in vivo iNKT activation in the absence of Tregs suppressed the induction of iNKT anergy, consistent with a reduction in programmed cell death receptor 1 (PD-1) expression. Importantly, we unveiled a clear role for an in vivo Treg-iNKT crosstalk both in concanavalin A-induced acute hepatitis and oxazolone-induced colitis. Here, the absence of Tregs led to a markedly enhanced liver and gut pathology, which was not observed in iNKT-deficient mice. Taken together, these results provide evidence for a functional interplay between regulatory T cell subsets critical in controlling the onset of autoimmune disease.
Collapse
Affiliation(s)
- Koen Venken
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tine Decruy
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Pandey P, Kim SH, Subedi L, Mujahid K, Kim Y, Cho YC, Shim JH, Kim KT, Cho SS, Choi JU, Park JW. Oral lymphatic delivery of alpha-galactosylceramide and ovalbumin evokes anti-cancer immunization. J Control Release 2023; 356:507-524. [PMID: 36907564 DOI: 10.1016/j.jconrel.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
We developed an orally delivered nanoemulsion that induces cancer immunization. It consists of tumor antigen-loaded nano-vesicles carrying the potent invariant natural killer T-cell (iNKT) activator α-galactosylceramide (α-GalCer), to trigger cancer immunity by effectively activating both innate and adaptive immunity. It was validated that adding bile salts to the system boosted intestinal lymphatic transport as well as the oral bioavailability of ovalbumin (OVA) via the chylomicron pathway. To increase intestinal permeability further and amplify the antitumor responses, an ionic complex of cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DTP) with sodium deoxycholate (DA) (DDP) and α-GalCer were anchored onto the outer oil layer to form OVA-NE#3. As expected, OVA-NE#3 exhibited tremendously improved intestinal cell permeability as well as enhanced delivery to mesenteric lymph nodes (MLNs). Subsequent activation of dendritic cells and iNKTs, in MLNs were also observed. Tumor growth in OVA-expressing mice with melanoma was more strongly suppressed (by 71%) after oral administration of OVA-NE#3 than in untreated controls, confirming the strong immune response induced by the system. The serum levels of OVA-specific IgG1 and IgG2a were 3.52- and 6.14-fold higher than in controls. Treating OVA-NE#3 increased the numbers of tumor-infiltrating lymphocytes, including cytotoxic T-cell and M1-like macrophage. Antigen- and α-GalCer-associated enrichment of dendritic cells and iNKTs in tumor tissues also increased after OVA-NE#3 treatment. These observations indicate that our system induces both cellular and humoral immunity by targeting the oral lymphatic system. It may offer a promising oral anti-cancer vaccination strategy that involves the induction of systemic anti-cancer immunization.
Collapse
Affiliation(s)
- Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Khizra Mujahid
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young-Chang Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jeong Uk Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
4
|
Antitumor Immunity Exerted by Natural Killer and Natural Killer T Cells in the Liver. J Clin Med 2023; 12:jcm12030866. [PMID: 36769513 PMCID: PMC9917438 DOI: 10.3390/jcm12030866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The liver plays crucial roles in systemic immunity and greatly contributes to the systemic defense mechanism. Antitumor immunity in the liver is especially critical for the defense against systemic tumor cell dissemination. To achieve effective defense against metastatic tumor cells, liver immune cells with powerful cytotoxic activities construct a potent defense mechanism. In the liver, as compared with other organs, there is a significantly more intense percentage of innate immune lymphocytes, such as natural killer (NK) and NKT cells. These characteristic lymphocytes survey the portal blood transferred to the liver from the alimentary tract and eliminate malignant cells with their robust cytotoxic ability. Additionally, with their active cytokine-producing capacity, these innate lymphocytes initiate immunological sequences by adaptive immune cells. Therefore, they are crucial contributors to systemic antitumor immunity. These attractive immune cells help conduct a fundamental investigation of tumor immunity and act as a target of clinical measures for cancer therapies. This review discusses the mechanisms of these innate lymphocytes regarding recognition and cytotoxicity against tumor cells and the possibility of clinical applications for therapeutic measures.
Collapse
|
5
|
Watanabe A, Yamashita K, Fujita M, Arimoto A, Nishi M, Takamura S, Saito M, Yamada K, Agawa K, Mukoyama T, Ando M, Kanaji S, Matsuda T, Oshikiri T, Kakeji Y. Vaccine Based on Dendritic Cells Electroporated with an Exogenous Ovalbumin Protein and Pulsed with Invariant Natural Killer T Cell Ligands Effectively Induces Antigen-Specific Antitumor Immunity. Cancers (Basel) 2021; 14:cancers14010171. [PMID: 35008335 PMCID: PMC8750915 DOI: 10.3390/cancers14010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This study shows the potential of a novel dendritic cell vaccine therapy in antitumor immunity, in which bone marrow-derived dendritic cells are electroporated with an exogenous ovalbumin protein and simultaneously pulsed with α-galactosylceramide. This strategy enhances the induction of cytotoxic CD8+ T cells specific for tumor-associated antigens through the activation of invariant natural killer T cells, natural killer cells, and intrinsic dendritic cells. Moreover, this strategy sustains antigen-specific antitumor T cell responses over time. Abstract (1) Background: Cancer vaccines are administered to induce cytotoxic CD8+ T cells (CTLs) specific for tumor antigens. Invariant natural killer T (iNKT) cells, the specific T cells activated by α-galactosylceramide (α-GalCer), play important roles in this process as they are involved in both innate and adaptive immunity. We developed a new cancer vaccine strategy in which dendritic cells (DCs) were loaded with an exogenous ovalbumin (OVA) protein by electroporation (EP) and pulsed with α-GalCer. (2) Methods: We generated bone marrow-derived DCs from C57BL/6 mice, loaded full-length ovalbumin proteins to the DCs by EP, and pulsed them with α-GalCer (OVA-EP-galDCs). The OVA-EP-galDCs were intravenously administered to C57BL/6 mice as a vaccine. We then investigated subsequent immune responses, such as the induction of iNKT cells, NK cells, intrinsic DCs, and OVA-specific CD8+ T cells, including tissue-resident memory T (TRM) cells. (3) Results: The OVA-EP-galDC vaccine efficiently rejected subcutaneous tumors in a manner primarily dependent on CD8+ T cells. In addition to the OVA-specific CD8+ T cells both in early and late phases, we observed the induction of antigen-specific TRM cells in the skin. (4) Conclusions: The OVA-EP-galDC vaccine efficiently induced antigen-specific antitumor immunity, which was sustained over time, as shown by the TRM cells.
Collapse
Affiliation(s)
- Akihiro Watanabe
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
- Correspondence:
| | - Mitsugu Fujita
- Center for Medical Education and Clinical Training, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osaka 589-0014, Japan;
| | - Akira Arimoto
- Division of Gastrointestinal Surgery, Saiseikai Suita Hospital, Kawazono-cho, Suita 564-0013, Japan;
| | - Masayasu Nishi
- Division of Gastrointestinal Surgery, Konan Medical Center, Kamokogahara, Higashinada, Kobe 658-0064, Japan;
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ono-higashi, Osakasayama 589-0014, Japan;
| | - Masafumi Saito
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Kota Yamada
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Kyosuke Agawa
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Tomosuke Mukoyama
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Masayuki Ando
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Shingo Kanaji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Takeru Matsuda
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Taro Oshikiri
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; (A.W.); (K.Y.); (K.A.); (T.M.); (M.A.); (S.K.); (T.M.); (T.O.); (Y.K.)
| |
Collapse
|
6
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
7
|
Nakamura M, Meguri Y, Ikegawa S, Kondo T, Sumii Y, Fukumi T, Iwamoto M, Sando Y, Sugiura H, Asada N, Ennishi D, Tomida S, Fukuda-Kawaguchi E, Ishii Y, Maeda Y, Matsuoka KI. Reduced dose of PTCy followed by adjuvant α-galactosylceramide enhances GVL effect without sacrificing GVHD suppression. Sci Rep 2021; 11:13125. [PMID: 34162921 PMCID: PMC8222309 DOI: 10.1038/s41598-021-92526-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Posttransplantation cyclophosphamide (PTCy) has become a popular option for haploidentical hematopoietic stem cell transplantation (HSCT). However, personalized methods to adjust immune intensity after PTCy for each patient’s condition have not been well studied. Here, we investigated the effects of reducing the dose of PTCy followed by α-galactosylceramide (α-GC), a ligand of iNKT cells, on the reciprocal balance between graft-versus-host disease (GVHD) and the graft-versus-leukemia (GVL) effect. In a murine haploidentical HSCT model, insufficient GVHD prevention after reduced-dose PTCy was efficiently compensated for by multiple administrations of α-GC. The ligand treatment maintained the enhanced GVL effect after reduced-dose PTCy. Phenotypic analyses revealed that donor-derived B cells presented the ligand and induced preferential skewing to the NKT2 phenotype rather than the NKT1 phenotype, which was followed by the early recovery of all T cell subsets, especially CD4+Foxp3+ regulatory T cells. These studies indicate that α-GC administration soon after reduced-dose PTCy restores GVHD-preventing activity and maintains the GVL effect, which is enhanced by reducing the dose of PTCy. Our results provide important information for the development of a novel strategy to optimize PTCy-based transplantation, particularly in patients with a potential relapse risk.
Collapse
Affiliation(s)
- Makoto Nakamura
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Meguri
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuntaro Ikegawa
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takumi Kondo
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuichi Sumii
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Fukumi
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Miki Iwamoto
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhisa Sando
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Sugiura
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan.,Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Emi Fukuda-Kawaguchi
- REGiMMUNE Corporation, Tokyo, Japan.,Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Ishii
- REGiMMUNE Corporation, Tokyo, Japan.,Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan. .,Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan.
| |
Collapse
|
8
|
Leadbetter EA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev 2021; 299:93-107. [PMID: 33438287 DOI: 10.1111/imr.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.
Collapse
Affiliation(s)
- Elizabeth A Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Spatial distribution of IL4 controls iNKT cell-DC crosstalk in tumors. Cell Mol Immunol 2019; 17:496-506. [PMID: 31160756 PMCID: PMC7192838 DOI: 10.1038/s41423-019-0243-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The spatiotemporal distribution of cytokines orchestrates immune responses in vivo, yet the underlying mechanisms remain to be explored. We showed here that the spatial distribution of interleukin-4 (IL4) in invariant natural killer T (iNKT) cells regulated crosstalk between iNKT cells and dendritic cells (DCs) and controlled iNKT cell-mediated T-helper type 1 (Th1) responses. The persistent polarization of IL4 induced by strong lipid antigens, that is, α-galactosylceramide (αGC), caused IL4 accumulation at the immunological synapse (IS), which promoted the activation of the IL4R-STAT6 (signal transducer and activator of transcription 6) pathway and production of IL12 in DCs, which enhanced interferon-γ (IFNγ) production in iNKT cells. Conversely, the nonpolarized secretion of IL4 induced by Th2 lipid antigens with a short or unsaturated chain was incapable of enhancing this iNKT cell-DC crosstalk and thus shifted the immune response to a Th2-type response. The nonpolarized secretion of IL4 in response to Th2 lipid antigens was caused by the degradation of Cdc42 in iNKT cells. Moreover, reduced Cdc42 expression was observed in tumor-infiltrating iNKT cells, which impaired IL4 polarization and disturbed iNKT cell-DC crosstalk in tumors.
Collapse
|
10
|
Sartorius R, D'Apice L, Barba P, Cipria D, Grauso L, Cutignano A, De Berardinis P. Vectorized Delivery of Alpha-GalactosylCeramide and Tumor Antigen on Filamentous Bacteriophage fd Induces Protective Immunity by Enhancing Tumor-Specific T Cell Response. Front Immunol 2018; 9:1496. [PMID: 30002659 PMCID: PMC6031736 DOI: 10.3389/fimmu.2018.01496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023] Open
Abstract
We have exploited the properties of filamentous bacteriophage fd to deliver immunologically active lipids together with antigenic peptides. Filamentous bacteriophages resemble for size, capability to be permeable to blood vessels, and high density antigen expression, a nature-made nanoparticle. In addition, their major coat protein pVIII, which is arranged to form a tubular shield surrounding the phage genome, has a high content of hydrophobic residues promoting lipid association. We conjugated bacteriophages to alpha-GalactosylCeramide (α-GalCer), a lipid antigen-stimulating invariant natural killer T (iNKT) cells and capable of inducing their anti-tumoral activities. We found that bacteriophage fd/α-GalCer conjugates could repeatedly stimulate iNKT cells in vitro and in vivo, without inducing iNKT anergy. Moreover, co-delivery of α-GalCer and a MHC class I restricted tumor-associated antigenic determinant to antigen-presenting cells via bacteriophages strongly boosted adaptive CD8+ T cell response and efficiently delayed tumor progression. Co-delivery of a tumor antigen and iNKT-stimulatory lipid on the surface of filamentous bacteriophages is a novel approach to potentiate adaptive anti-cancer immune responses, overcoming the current limitations in the use of free α-GalCer and may represent an attractive alternative to existing delivery methods, opening the path to a potential translational usage of this safe, inexpensive, and versatile tool.
Collapse
Affiliation(s)
| | | | - Pasquale Barba
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Naples, Italy
| | | | - Laura Grauso
- Institute of Biomolecular Chemistry (ICB), CNR, Pozzuoli, Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry (ICB), CNR, Pozzuoli, Italy
| | | |
Collapse
|
11
|
Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective. Front Immunol 2017; 8:1858. [PMID: 29312339 PMCID: PMC5743650 DOI: 10.3389/fimmu.2017.01858] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Keller CW, Freigang S, Lünemann JD. Reciprocal Crosstalk between Dendritic Cells and Natural Killer T Cells: Mechanisms and Therapeutic Potential. Front Immunol 2017; 8:570. [PMID: 28596767 PMCID: PMC5442181 DOI: 10.3389/fimmu.2017.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer T cells carrying a highly conserved, semi-invariant T cell receptor (TCR) [invariant natural killer T (iNKT) cells] are a subset of unconventional T lymphocytes that recognize glycolipids presented by CD1d molecules. Although CD1d is expressed on a variety of hematopoietic and non-hematopoietic cells, dendritic cells (DCs) are key presenters of glycolipid antigen in vivo. When stimulated through their TCR, iNKT cells rapidly secrete copious amounts of cytokines and induce maturation of DCs, thereby facilitating coordinated stimulation of innate and adaptive immune responses. The bidirectional crosstalk between DCs and iNKT cells determines the functional outcome of iNKT cell-targeted responses and iNKT cell agonists are used and currently being evaluated as adjuvants to enhance the efficacy of antitumor immunotherapy. This review illustrates mechanistic underpinnings of reciprocal DCs and iNKT cell interactions and discusses how those can be harnessed for cancer therapy.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Stefan Freigang
- Institute of Pathology, Laboratory of Immunopathology, University of Bern, Bern, Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Kumar A, Bezbradica JS, Stanic AK, Joyce S. Characterization and Functional Analysis of Mouse Semi-invariant Natural T Cells. ACTA ACUST UNITED AC 2017; 117:14.13.1-14.13.55. [PMID: 28369682 DOI: 10.1002/cpim.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Semi-invariant natural killer T (iNKT) cells are CD1d-restricted innate-like lymphocytes that recognize lipid agonists. Activated iNKT cells have immunoregulatory properties. Human and mouse iNKT cell functions elicited by different glycolipid agonists are highly conserved, making the mouse an excellent animal model for understanding iNKT cell biology in vivo. This unit describes basic methods for the characterization and quantification (see Basic Protocol 1) and functional analysis of mouse iNKT cells in vivo or in vitro. This unit also contains protocols that describe enrichment and purification of iNKT cells, generation of CD1d tetramer, and lipid antigen loading onto cell-bound and soluble CD1d for activation of NKT cell hybridomas. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Sebastian Joyce
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
14
|
Beristain-Covarrubias N, Canche-Pool EB, Ramirez-Velazquez C, Barragan-Galvez JC, Gomez-Diaz RA, Ortiz-Navarrete V. Class I-Restricted T Cell-Associated Molecule Is a Marker for IFN-γ-Producing iNKT Cells in Healthy Subjects and Patients with Type 1 Diabetes. J Interferon Cytokine Res 2016; 37:39-49. [PMID: 27835062 DOI: 10.1089/jir.2016.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Class I-restricted T cell-associated molecule (CRTAM) is an activation marker expressed on the cell surface of activated invariant natural killer T (iNKT) cells, CD8+ T cells, and a small subset of CD4+ T cells. CRTAM has also been associated with a proinflammatory profile in murine CD4+ T cells. However, CRTAM has not been thoroughly explored in human cells. This work focused on evaluating CRTAM expression in human iNKT lymphocytes after activation with α-galactosylceramide, its widely used specific glycolipid antigen. We also analyzed the involvement of costimulatory molecules in CRTAM expression and whether CRTAM expression is associated with a specific effector cytokine profile. We found that the signal produced by invariant T cell receptor (iTCR) engagement with α-galactosylceramide is sufficient to trigger CRTAM expression on human iNKT cells after 18 h of stimulation. Moreover, we observed a clear association between CRTAM expression and IFN-γ production in iNKT cells from healthy subjects and patients with type 1 diabetes. However, blocking the engagement of costimulatory molecules, such as CD40, CD80, and CD86, did not modify CRTAM expression. These results indicate that CRTAM may also play a role in triggering the production of IFN-γ in human iNKT cells and that CRTAM could be used as a marker to identify these inflammatory cells.
Collapse
Affiliation(s)
| | - Elsy B Canche-Pool
- 2 Laboratory of Zoonoses, Dr. Hideyo Noguchi Center for Regional Investigations, Autonomous University of Yucatan , Merida, Mexico
| | - Carlos Ramirez-Velazquez
- 3 Department of Allergy, Dr. Fernando Quiroz Gutierrez General Hospital , ISSSTE, Mexico City, Mexico
| | - Juan Carlos Barragan-Galvez
- 1 Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV) , Mexico City, Mexico
| | - Rita A Gomez-Diaz
- 4 Research Unit on Clinical Epidemiology (UMAE), Specialty Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- 1 Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV) , Mexico City, Mexico
| |
Collapse
|
15
|
iNKT and memory B-cell alterations in HHV-8 multicentric Castleman disease. Blood 2016; 129:855-865. [PMID: 28060720 DOI: 10.1182/blood-2016-06-719716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
Human herpesvirus 8 (HHV-8) is the causative agent of Kaposi sarcoma (KS) and multicentric Castleman disease (MCD), a life-threatening, virally induced B-cell lymphoproliferative disorder. HHV-8 is a B-lymphotropic γ-herpesvirus closely related to the Epstein-Barr virus (EBV). Invariant natural killer T (iNKT) cells are innate-like T cells that play a role in antiviral immunity, specifically in controlling viral replication in EBV-infected B cells. Decline of iNKT cells is associated with age or HIV infection, both situations associated with HHV-8-related diseases. We analyzed iNKT cells in both blood (n = 26) and spleen (n = 9) samples from 32 patients with HHV-8 MCD and compared them with patients with KS (n = 24) and healthy donors (n = 29). We determined that both circulating and splenic iNKT cell frequencies were markedly decreased in patients with HHV-8 MCD and were undetectable in 6 of them. Moreover, iNKT cells from patients with HHV-8 MCD displayed a proliferative defect after stimulation with α-galactosylceramide. These iNKT cell alterations were associated with an imbalance in B-cell subsets, including a significant decrease in memory B cells, particularly of marginal zone (MZ) B cells. Coculture experiments revealed that the decrease in iNKT cells contributed to the alterations in the B-cell subset distribution. These observations contribute to a better understanding of the complex interactions between HHV-8 and immune cells that cause HHV-8-related MCD.
Collapse
|
16
|
Exogenous Activation of Invariant Natural Killer T Cells by α-Galactosylceramide Reduces Pneumococcal Outgrowth and Dissemination Postinfluenza. mBio 2016; 7:mBio.01440-16. [PMID: 27803187 PMCID: PMC5090038 DOI: 10.1128/mbio.01440-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus infection can predispose to potentially devastating secondary bacterial infections. Invariant natural killer T (iNKT) cells are unconventional, lipid-reactive T lymphocytes that exert potent immunostimulatory functions. Using a mouse model of postinfluenza invasive secondary pneumococcal infection, we sought to establish whether α-galactosylceramide (α-GalCer [a potent iNKT cell agonist that is currently in clinical development]) could limit bacterial superinfection. Our results highlighted the presence of a critical time window during which α-GalCer treatment can trigger iNKT cell activation and influence resistance to postinfluenza secondary pneumococcal infection. Intranasal treatment with α-GalCer during the acute phase (on day 7) of influenza virus H3N2 and H1N1 infection failed to activate (gamma interferon [IFN-γ] and interleukin-17A [IL-17A]) iNKT cells; this effect was associated with a strongly reduced number of conventional CD103+ dendritic cells in the respiratory tract. In contrast, α-GalCer treatment during the early phase (on day 4) or during the resolution phase (day 14) of influenza was associated with lower pneumococcal outgrowth and dissemination. Less intense viral-bacterial pneumonia and a lower morbidity rate were observed in superinfected mice treated with both α-GalCer (day 14) and the corticosteroid dexamethasone. Our results open the way to alternative (nonantiviral/nonantibiotic) iNKT-cell-based approaches for limiting postinfluenza secondary bacterial infections. IMPORTANCE Despite the application of vaccination programs and antiviral drugs, influenza A virus (IAV) infection is responsible for widespread morbidity and mortality (500,000 deaths/year). Influenza infections can also result in sporadic pandemics that can be devastating: the 1918 pandemic led to the death of 50 million people. Severe bacterial infections are commonly associated with influenza and are significant contributors to the excess morbidity and mortality of influenza. Today's treatments of secondary bacterial (pneumococcal) infections are still not effective enough, and antibiotic resistance is a major issue. Hence, there is an urgent need for novel therapies. In the present study, we set out to evaluate the efficacy of α-galactosylceramide (α-GalCer)-a potent agonist of invariant NKT cells that is currently in clinical development-in a mouse model of postinfluenza, highly invasive pneumococcal pneumonia. Our data indicate that treatment with α-GalCer reduces susceptibility to superinfections and, when combined with the corticosteroid dexamethasone, reduces viral-bacterial pneumonia.
Collapse
|
17
|
Laganà AS, Triolo O, Salmeri FM, Granese R, Palmara VI, Ban Frangež H, Vrtčnik Bokal E, Sofo V. Natural Killer T cell subsets in eutopic and ectopic endometrium: a fresh look to a busy corner. Arch Gynecol Obstet 2016; 293:941-9. [DOI: 10.1007/s00404-015-4004-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022]
|
18
|
Wingender G, Birkholz AM, Sag D, Farber E, Chitale S, Howell AR, Kronenberg M. Selective Conditions Are Required for the Induction of Invariant NKT Cell Hyporesponsiveness by Antigenic Stimulation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3838-48. [PMID: 26355152 DOI: 10.4049/jimmunol.1500203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022]
Abstract
Activation of invariant (i)NKT cells with the model Ag α-galactosylceramide induces rapid production of multiple cytokines, impacting a wide variety of different immune reactions. In contrast, following secondary activation with α-galactosylceramide, the behavior of iNKT cells is altered for months, with the production of most cytokines being strongly reduced. The requirements for the induction of this hyporesponsive state, however, remain poorly defined. In this study, we show that Th1-biasing iNKT cell Ags could induce iNKT cell hyporesponsiveness, as long as a minimum antigenic affinity was reached. In contrast, the Th2-biasing Ag OCH did not induce a hyporesponsive state, nor did cytokine-driven iNKT cell activation by LPS or infections. Furthermore, although dendritic cells and B cells have been reported to be essential for iNKT cell stimulation, neither dendritic cells nor B cells were required to induce iNKT cell hyporesponsiveness. Therefore, our data indicate that whereas some bone marrow-derived cells could induce iNKT cell hyporesponsiveness, selective conditions, dependent on the structure and potency of the Ag, were required to induce hyporesponsiveness.
Collapse
Affiliation(s)
- Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey;
| | - Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, 35340 Balcova/Izmir, Turkey; Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Elisa Farber
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Sampada Chitale
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
19
|
Hill TM, Gilchuk P, Cicek BB, Osina MA, Boyd KL, Durrant DM, Metzger DW, Khanna KM, Joyce S. Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease. PLoS Pathog 2015; 11:e1004975. [PMID: 26068662 PMCID: PMC4465904 DOI: 10.1371/journal.ppat.1004975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022] Open
Abstract
The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia—because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice. NKT cells are innate-like lymphocytes with a demonstrated role in a wide range of diseases. Often cited for their ability to rapidly produce a variety of cytokines upon activation, they have long been appreciated for their ability to “jump-start” the immune system and to shape the quality of both the innate and adaptive response. This understanding of their function has been deduced from in vitro experiments or through the in vivo administration of highly potent, chemically synthesized lipid ligands, which may not necessarily reflect a physiologically relevant response as observed in a natural infection. Using a mouse model of pulmonary tularemia, we report that intranasal infection with the live vaccine strain of F. tularensis rapidly activates NKT cells and promotes systemic inflammation, increased tissue damage, and a dysregulated immune response resulting in increased morbidity and mortality in infected mice. Our data highlight the detrimental effects of NKT cell activation and identify a potential new target for therapies against pulmonary tularemia.
Collapse
Affiliation(s)
- Timothy M. Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Basak B. Cicek
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Maria A. Osina
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kelli L. Boyd
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Douglas M. Durrant
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sebastian Joyce
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the interface between the innate and adaptive immune systems, and are important mediators of immune responses and tumor surveillance. iNKT cells recognize lipid antigens in a CD1d-dependent manner; their subsequent activation results in a rapid and specific downstream response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to modify the immune microenvironment influences the ability of the host to control tumor growth, making them an important population to be harnessed in the clinic for the development of anticancer therapeutics. Indeed, the identification of strong iNKT-cell agonists, such as α-galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids that have shown potential in vaccination and treatment against cancers. In this Masters of Immunology article, we discuss these latest findings and summarize the major discoveries in iNKT-cell biology, which have enabled the design of potent strategies for immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Rosanna M McEwen-Smith
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom.
| |
Collapse
|
21
|
Gebremeskel S, Clattenburg DR, Slauenwhite D, Lobert L, Johnston B. Natural killer T cell activation overcomes immunosuppression to enhance clearance of postsurgical breast cancer metastasis in mice. Oncoimmunology 2015; 4:e995562. [PMID: 25949924 DOI: 10.1080/2162402x.2014.995562] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Metastatic lesions are responsible for over 90% of breast cancer associated deaths. Therefore, strategies that target metastasis are of particular interest. This study examined the efficacy of natural killer T (NKT) cell activation as a post-surgical immunotherapy in a mouse model of metastatic breast cancer. Following surgical resection of orthotopic 4T1 mammary carcinoma tumors, BALB/c mice were treated with NKT cell activating glycolipid antigens (α-GalCer, α-C-GalCer or OCH) or α-GalCer-loaded dendritic cells (DCs). Low doses of glycolipids transiently reduced metastasis but did not increase survival. A high dose of α-GalCer enhanced overall survival, but was associated with increased toxicity and mortality at early time points. Treatment with α-GalCer-loaded DCs limited tumor metastasis, prolonged survival, and provided curative outcomes in ∼45% of mice. However, survival was not increased further by additional DC treatments or co-transfer of expanded NKT cells. NKT cell activation via glycolipid-loaded DCs decreased the frequency and immunosuppressive activity of myeloid derived suppressor cells (MDSCs) in tumor-resected mice. In vitro, NKT cells were resistant to the immunosuppressive effects of MDSCs and were able to reverse the inhibitory effects of MDSCs on T cell proliferation. NKT cell activation enhanced antitumor immunity in tumor-resected mice, increasing 4T1-specific cytotoxic responses and IFNγ production from natural killer (NK) cells and CD8+ T cells. Consistent with increased tumor immunity, mice surviving to day 150 were resistant to a second tumor challenge. This work provides a clear rationale for manipulating NKT cells to target metastatic disease.
Collapse
Key Words
- dendritic cells
- metastatic breast cancer
- myeloid derived suppressor cells
- natural killer T cells
- tumor immunotherapy
- α-GalCer, α-galacotosylceramide; ALT, alanine aminotransferase; DC, dendritic cell; FBS, fetal bovine serum; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFNγ, interferon-γ; IL, interleukin; i.p., intraperitoneal; i.v., intravenous; MDSC, myeloid derived suppressor cell; NK cell, natural killer cell; NKT cell, natural killer T cell; RPMI-1640, Roswell Park Memorial Institute medium-1640; TCR, T cell receptor; Th, T helper.
Collapse
Affiliation(s)
- Simon Gebremeskel
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| | - Daniel R Clattenburg
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| | - Drew Slauenwhite
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada
| | - Lynnea Lobert
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Department of Pediatrics; Dalhousie University ; Halifax, Nova Scotia, Canada ; Department of Pathology; Dalhousie University ; Halifax, Nova Scotia, Canada ; Beatrice Hunter Cancer Research Institute ; Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Ni C, Wu P, Wu X, Zhang T, Liu Y, Wang Z, Zhang S, Qiu F, Huang J. Thymosin alpha1 enhanced cytotoxicity of iNKT cells against colon cancer via upregulating CD1d expression. Cancer Lett 2015; 356:579-88. [DOI: 10.1016/j.canlet.2014.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 01/24/2023]
|
23
|
Macho-Fernandez E, Cruz LJ, Ghinnagow R, Fontaine J, Bialecki E, Frisch B, Trottein F, Faveeuw C. Targeted delivery of α-galactosylceramide to CD8α+ dendritic cells optimizes type I NKT cell-based antitumor responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:961-9. [PMID: 24913977 DOI: 10.4049/jimmunol.1303029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunotherapy aiming at enhancing innate and acquired host immunity is a promising approach for cancer treatment. The invariant NKT (iNKT) cell ligand α-galactosylceramide (α-GalCer) holds great promise in cancer therapy, although several concerns limit its use in clinics, including the uncontrolled response it promotes when delivered in a nonvectorized form. Therefore, development of delivery systems to in vivo target immune cells might be a valuable option to optimize iNKT cell-based antitumor responses. Using dendritic cell (DC)-depleted mice, DC transfer experiments, and in vivo active cell targeting, we show that presentation of α-GalCer by DCs not only triggers optimal primary iNKT cell stimulation, but also maintains secondary iNKT cell activation after challenge. Furthermore, targeted delivery of α-GalCer to CD8α(+) DCs, by means of anti-DEC205 decorated nanoparticles, enhances iNKT cell-based transactivation of NK cells, DCs, and γδ T cells. We report that codelivery of α-GalCer and protein Ag to CD8α(+) DCs triggers optimal Ag-specific Ab and cytotoxic CD8(+) T cell responses. Finally, we show that targeting nanoparticles containing α-GalCer and Ag to CD8α(+) DCs promotes potent antitumor responses, both in prophylactic and in therapeutic settings. Our data may have important implications in tumor immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Luis Javier Cruz
- Department of Endocrinology, Leiden University Medical Center, 2333 Leiden, The Netherlands; and
| | - Reem Ghinnagow
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Josette Fontaine
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Emilie Bialecki
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Benoit Frisch
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Université de Strasbourg, F-67401 Illkirch Cedex, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France;
| | - Christelle Faveeuw
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Université Lille Nord de France, F-59000 Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8204, F-59021 Lille, France; INSERM, U1019, F-59019 Lille, France; Institut Fédératif de Recherche 142, F-59019 Lille, France
| |
Collapse
|
24
|
Stanic AK, Kim M, Styer AK, Rueda BR. Dendritic cells attenuate the early establishment of endometriosis-like lesions in a murine model. Reprod Sci 2014; 21:1228-36. [PMID: 24594835 DOI: 10.1177/1933719114525267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Complex interplay of innate and adaptive immune cells has been implicated in the establishment, maintenance, and progression of endometriosis. Defining the identity, activation state, and functional role of immune cells during lesion establishment will provide invaluable insight into the underlying mechanisms of disease. This study utilized a transgenic mouse model with conditional dendritic cell (DC) depletion (diphtheria toxin-treated B6.FVB-Itgax-hDTR-EGFP(tg)) and multiparametric flow cytometry to examine immune cell composition and activation state and to assess the functional role of DCs in endometriosis-like lesions. T cells and DCs were increased in lesions compared to native uteri and control splenocytes and demonstrated an activated phenotype (P < .05). Lesions in DC-depleted hosts demonstrated greater size (P < .001) and reduced expression of T-cell activation marker CD69 compared to controls (P < .05). Collectively, these results suggest that activated DCs within lesions activate T cells and result in the impairment of early lesion establishment.
Collapse
Affiliation(s)
- Aleksandar K Stanic
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Minji Kim
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron K Styer
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Bo R Rueda
- Vincent Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Hirai T, Ishii Y, Ikemiyagi M, Fukuda E, Omoto K, Namiki M, Taniguchi M, Tanabe K. A novel approach inducing transplant tolerance by activated invariant natural killer T cells with costimulatory blockade. Am J Transplant 2014; 14:554-67. [PMID: 24502294 DOI: 10.1111/ajt.12606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 01/25/2023]
Abstract
Invariant natural killer T (iNKT) cells are one of the innate lymphocytes that regulate immunity, although it is still elusive how iNKT cells should be manipulated for transplant tolerance. Here, we describe the potential of a novel approach using a ligand for iNKT cells and suboptimal dosage of antibody for CD40-CD40 ligand (L) blockade as a powerful method for mixed chimerism establishment after allogenic bone marrow transplantation in sublethally irradiated fully allo recipients. Mixed-chimera mice accepted subsequent cardiac allografts in a donor-specific manner. High amounts of type 2 helper T cytokines were detected right after iNKT cell activation, while subsequent interferon-gamma production by NK cells was effectively inhibited by CD40/CD40L blockade. Tolerogenic components, such as CD11c(low) mPDCA1(+) plasmacytoid dendritic cells and activated regulatory T cells (Tregs) expressing CD103, KLRG-1 and PD-1, were subsequently augmented. Those activating Tregs seem to be required for the establishment of chimerism because depletion of the Tregs 1 day before allogenic cell transfer resulted in a chimerism brake. These results collectively suggest that our new protocol makes it possible to induce donor-specific tolerance by enhancement of the innate ability for immune tolerance in place of the conventional immunosuppression.
Collapse
Affiliation(s)
- T Hirai
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan; Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
27
|
Van Kaer L. Role of invariant natural killer T cells in immune regulation and as potential therapeutic targets in autoimmune disease. Expert Rev Clin Immunol 2014; 2:745-57. [DOI: 10.1586/1744666x.2.5.745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Arora P, Baena A, Yu KOA, Saini NK, Kharkwal SS, Goldberg MF, Kunnath-Velayudhan S, Carreño LJ, Venkataswamy MM, Kim J, Lazar-Molnar E, Lauvau G, Chang YT, Liu Z, Bittman R, Al-Shamkhani A, Cox LR, Jervis PJ, Veerapen N, Besra GS, Porcelli SA. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity 2014; 40:105-16. [PMID: 24412610 PMCID: PMC3895174 DOI: 10.1016/j.immuni.2013.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/16/2013] [Indexed: 11/28/2022]
Abstract
Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. Complexes of antigenic glycolipids bound to CD1d have been visualized in situ A single DC subset predominates in presentation of a variety of glycolipids Antigen presentation to iNKT cells rapidly alters accessory molecules on APCs Reciprocal induction of CD70 and PD-L2 controls cytokine bias of iNKT cell responses
Collapse
Affiliation(s)
- Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética GICIG, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No.52-21, Medellin 05001000, Colombia
| | - Karl O A Yu
- Pediatric Infectious Diseases, Comer Children's Hospital, University of Chicago, Chicago, IL 60637, USA
| | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shalu S Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leandro J Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | | | - John Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eszter Lazar-Molnar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young-tae Chang
- Department of Chemistry and Medicinal Chemistry Programme, National University of Singapore, and Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A(∗)STAR), Biopolis 117543, Singapore
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, NY 11367, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, NY 11367, USA
| | - Aymen Al-Shamkhani
- Faculty of Medicine, Cancer Sciences Academic Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
Rakhshandehroo M, Kalkhoven E, Boes M. Invariant natural killer T cells in adipose tissue: novel regulators of immune-mediated metabolic disease. Cell Mol Life Sci 2013; 70:4711-27. [PMID: 23835837 PMCID: PMC11113180 DOI: 10.1007/s00018-013-1414-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Adipose tissue (AT) represents a microenvironment where intersection takes place between immune processes and metabolic pathways. A variety of immune cells have been characterized in AT over the past decades, with the most recent addition of invariant natural killer T (iNKT) cells. As members of the T cell family, iNKT cells represent a subset that exhibits both innate and adaptive characteristics and directs ensuing immune responses. In disease conditions, iNKT cells have established roles that include disorders in the autoimmune spectrum in malignancies and infectious diseases. Recent work supports a role for iNKT cells in the maintenance of AT homeostasis through both immune and metabolic pathways. The deficiency of iNKT cells can result in AT metabolic disruptions and insulin resistance. In this review, we summarize recent work on iNKT cells in immune regulation, with an emphasis on AT-resident iNKT cells, and identify the potential mechanisms by which adipocytes can mediate iNKT cell activity.
Collapse
Affiliation(s)
- M. Rakhshandehroo
- Section Metabolic Diseases, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Kalkhoven
- Section Metabolic Diseases, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. Boes
- Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
30
|
Shin JH, Park SH. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction. Immune Netw 2013; 13:218-21. [PMID: 24198748 PMCID: PMC3817304 DOI: 10.4110/in.2013.13.5.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/26/2013] [Accepted: 10/07/2013] [Indexed: 12/01/2022] Open
Abstract
CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.
Collapse
Affiliation(s)
- Jung Hoon Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | |
Collapse
|
31
|
Aspeslagh S, Nemčovič M, Pauwels N, Venken K, Wang J, Calenbergh SV, Zajonc DM, Elewaut D. Enhanced TCR footprint by a novel glycolipid increases NKT-dependent tumor protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2916-25. [PMID: 23960235 PMCID: PMC3817951 DOI: 10.4049/jimmunol.1203134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells, a unique type of regulatory T cells, respond to structurally diverse glycolipids presented by CD1d. Although it was previously thought that recognition of glycolipids such as α-galactosylceramide (α-GalCer) by the NKT cell TCR (NKTCR) obeys a key-lock principle, it is now clear this interaction is much more flexible. In this article, we report the structure-function analysis of a series of novel 6''-OH analogs of α-GalCer with more potent antitumor characteristics. Surprisingly, one of the novel carbamate analogs, α-GalCer-6''-(pyridin-4-yl)carbamate, formed novel interactions with the NKTCR. This interaction was associated with an extremely high level of Th1 polarization and superior antitumor responses. These data highlight the in vivo relevance of adding aromatic moieties to the 6''-OH position of the sugar and additionally show that judiciously chosen linkers are a promising strategy to generate strong Th1-polarizing glycolipids through increased binding either to CD1d or to NKTCR.
Collapse
Affiliation(s)
- Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marek Nemčovič
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Nora Pauwels
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J Control Release 2013; 171:216-24. [PMID: 23860186 DOI: 10.1016/j.jconrel.2013.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/30/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022]
Abstract
Alpha-galactosylceramide (αGC), a lipid antigen present on CD1d molecules, is predicted to have clinical applications as a new class of adjuvant, because αGC strongly activates natural killer T (NKT) cells which produce large amounts of IFN-γ. Here, we incorporated αGC into stearylated octaarginine-modified liposomes (R8-Lip), our original delivery system developed for vaccines, and investigated the effect of nanoparticulation. Unexpectedly, the systemic administered R8-Lip incorporating αGC (αGC/R8-Lip) failed to improve the immune responses mediated by αGC compared with soluble αGC in vivo, although αGC/R8-Lip drastically enhanced αGC presentation on CD1d in antigen presenting cells in vitro. Thus, we optimized the αGC/R8-Lip in vivo to overcome this inverse correlation. In optimization in vivo, we found that size control of liposome and R8-modification were critical for enhancing the production of IFN-γ. The optimization led to the accumulation of αGC/R8-Lip in the spleen and a positive therapeutic effect against highly malignant B16 melanoma cells. The optimized αGC/R8-Lip also enhanced αGC presentation on CD1d in antigen presenting cells and resulted in an expansion in the population of NKT cells. Herein, we show that R8-Lip is a potent delivery system, and size control and R8-modification in liposomal construction are promising techniques for achieving systemic αGC therapy.
Collapse
|
33
|
Zeng SG, Ghnewa YG, O'Reilly VP, Lyons VG, Atzberger A, Hogan AE, Exley MA, Doherty DG. Human invariant NKT cell subsets differentially promote differentiation, antibody production, and T cell stimulation by B cells in vitro. THE JOURNAL OF IMMUNOLOGY 2013; 191:1666-76. [PMID: 23851681 DOI: 10.4049/jimmunol.1202223] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and CD4(-)CD8α(-) double-negative (DN) iNKT cells with autologous peripheral B cells in vitro. All iNKT cell subsets induced IgM, IgA, and IgG release by B cells without needing the iNKT cell agonist ligand α-galactosylceramide. Additionally, CD4(+) iNKT cells induced expansions of cells with phenotypes of regulatory B cells. When cocultured with α-galactosylceramide-pulsed B cells, CD4(+) and DN iNKT cells secreted Th1 and Th2 cytokines but at 10-1000-fold lower levels than when cultured with dendritic cells. CD4(+) iNKT cells reciprocally induced IL-4 and IL-10 production by B cells. DN iNKT cells expressed the cytotoxic degranulation marker CD107a upon exposure to B cells. Remarkably, whereas iNKT cell subsets could induce CD40 and CD86 expression by B cells, iNKT cell-matured B cells were unable to drive proliferation of autologous and alloreactive conventional T cells, as seen with B cells cultured in the absence of iNKT cells. Therefore, human CD4(+), CD8α(+), and DN iNKT cells can differentially promote and regulate the induction of Ab and T cell responses by B cells.
Collapse
Affiliation(s)
- Shijuan Grace Zeng
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proc Natl Acad Sci U S A 2013; 110:7826-31. [PMID: 23610394 DOI: 10.1073/pnas.1219888110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells induce a protective immune response triggered by foreign glycolipid antigens bound to CD1d on antigen-presenting cells (APCs). A limitation of using glycolipid antigens to stimulate immune responses in human patients has been the inability to target them to the most effective APCs. Recent studies have implicated phagocytic CD169(+) macrophages as major APCs in lymph nodes for priming iNKT cells in mice immunized with glycolipid antigen in particulate form. CD169 is known as sialoadhesin (Sn), a macrophage-specific adhesion and endocytic receptor of the siglec family that recognizes sialic acid containing glycans as ligands. We have recently developed liposomes decorated with glycan ligands for CD169/Sn suitable for targeted delivery to macrophages via CD169/Sn-mediated endocytosis. Here we show that targeted delivery of a lipid antigen to CD169(+) macrophages in vivo results in robust iNKT cell activation in liver and spleen using nanogram amounts of antigen. Activation of iNKT cells is abrogated in Cd169(-/-) mice and is macrophage-dependent, demonstrating that targeting CD169(+) macrophages is sufficient for systemic activation of iNKT cells. When pulsed with targeted liposomes, human monocyte-derived dendritic cells expressing CD169/Sn activated human iNKT cells, demonstrating the conservation of the CD169/Sn endocytic pathway capable of presenting lipid antigens to iNKT cells.
Collapse
|
35
|
Napolitano A, Pittoni P, Beaudoin L, Lehuen A, Voehringer D, MacDonald HR, Dellabona P, Casorati G. Functional education of invariant NKT cells by dendritic cell tuning of SHP-1. THE JOURNAL OF IMMUNOLOGY 2013; 190:3299-308. [PMID: 23427253 DOI: 10.4049/jimmunol.1203466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Invariant NKT (iNKT) cells play key roles in host defense by recognizing lipid Ags presented by CD1d. iNKT cells are activated by bacterial-derived lipids and are also strongly autoreactive toward self-lipids. iNKT cell responsiveness must be regulated to maintain effective host defense while preventing uncontrolled stimulation and potential autoimmunity. CD1d-expressing thymocytes support iNKT cell development, but thymocyte-restricted expression of CD1d gives rise to Ag hyperresponsive iNKT cells. We hypothesized that iNKT cells require functional education by CD1d(+) cells other than thymocytes to set their correct responsiveness. In mice that expressed CD1d only on thymocytes, hyperresponsive iNKT cells in the periphery expressed significantly reduced levels of tyrosine phosphatase SHP-1, a negative regulator of TCR signaling. Accordingly, heterozygous SHP-1 mutant mice displaying reduced SHP-1 expression developed a comparable population of Ag hyperresponsive iNKT cells. Restoring nonthymocyte CD1d expression in transgenic mice normalized SHP-1 expression and iNKT cell reactivity. Radiation chimeras revealed that CD1d(+) dendritic cells supported iNKT cell upregulation of SHP-1 and decreased responsiveness after thymic emigration. Hence, dendritic cells functionally educate iNKT cells by tuning SHP-1 expression to limit reactivity.
Collapse
Affiliation(s)
- Anna Napolitano
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13:101-17. [PMID: 23334244 DOI: 10.1038/nri3369] [Citation(s) in RCA: 639] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invariant natural killer T (iNKT) cells exist in a 'poised effector' state, which enables them to rapidly produce cytokines following activation. Using a nearly monospecific T cell receptor, they recognize self and foreign lipid antigens presented by CD1d in a conserved manner, but their activation can catalyse a spectrum of polarized immune responses. In this Review, we discuss recent advances in our understanding of the innate-like mechanisms underlying iNKT cell activation and describe how lipid antigens, the inflammatory milieu and interactions with other immune cell subsets regulate the functions of iNKT cells in health and disease.
Collapse
Affiliation(s)
- Patrick J Brennan
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
37
|
Ji Y, Sun S, Xia S, Yang L, Li X, Qi L. Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin-4. J Biol Chem 2012; 287:24378-86. [PMID: 22645141 DOI: 10.1074/jbc.m112.371807] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation in adipose tissue plays an important role in the pathogenesis of obesity-associated complications. However, the detailed cellular events underlying the inflammatory changes at the onset of obesity have not been characterized. Here we show that an acute HFD challenge is unexpectedly associated with elevated alternative (M2) macrophage polarization in adipose tissue mediated by Natural Killer T (NKT) cells. Upon 4d HFD feeding, NKT cells are activated, promote M2 macrophage polarization and induce arginase 1 expression via interleukin (IL)-4 in adipose tissue, not in the liver. In NKT-deficient CD1d(-/-) mice, M2 macrophage polarization in adipose tissue is reduced while systemic glucose homeostasis and insulin tolerance are impaired upon 4d HFD challenge. Thus, our study demonstrate, for the first time to our knowledge, that acute HFD feeding is associated with remarkably pronounced and dynamic immune responses in adipose tissue, and adipose-resident NKT cells may link acute HFD feeding with inflammation.
Collapse
Affiliation(s)
- Yewei Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
38
|
Bosma A, Abdel-Gadir A, Isenberg DA, Jury EC, Mauri C. Lipid-antigen presentation by CD1d(+) B cells is essential for the maintenance of invariant natural killer T cells. Immunity 2012; 36:477-90. [PMID: 22406267 PMCID: PMC3391684 DOI: 10.1016/j.immuni.2012.02.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/15/2011] [Accepted: 02/16/2012] [Indexed: 02/08/2023]
Abstract
B cells perform many immunological functions, including presenting lipid antigen to CD1d-restricted invariant natural killer T (iNKT) cells, known to contribute to maintaining tolerance in autoimmunity. Patients with systemic lupus erythematous (SLE) display dysregulated B cell responses and reduced peripheral iNKT cell frequencies. The significance of these defects and how they relate to SLE pathogenesis remain elusive. We report that B cells are essential for iNKT cell expansion and activation in healthy donors but fail to exert a similar effect in SLE patients. Defective B cell-mediated stimulation of iNKT cells in SLE patients was associated with altered CD1d recycling, a defect recapitulated in B cells from healthy donors after stimulation with interferon-α (IFN-α) and anti-immunoglobulin (Ig). iNKT cell number and function were restored in SLE patients responding to anti-CD20 treatment upon normalization of CD1d expression exclusively in repopulated immature B cells. We propose that healthy B cells are pivotal for iNKT cell homeostasis.
Collapse
Affiliation(s)
- Anneleen Bosma
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| | | | | | | | | |
Collapse
|
39
|
Bai L, Constantinides MG, Thomas SY, Reboulet R, Meng F, Koentgen F, Teyton L, Savage PB, Bendelac A. Distinct APCs explain the cytokine bias of α-galactosylceramide variants in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 188:3053-61. [PMID: 22393151 DOI: 10.4049/jimmunol.1102414] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
α-Galactosylceramide represents a new class of vaccine adjuvants and immunomodulators that stimulate NKT cells to secrete Th1 and Th2 cytokines. Synthetic variants with short or unsaturated acyl chains exhibit a striking Th2 bias in vivo but no evidence of defect in TCR signaling or stimulation of NKT cells in vitro. Using cd1d1(fl/fl) mice, we demonstrated that distinct APC types explained the cytokine bias in vivo. Whereas NKT stimulation by α-Galactosylceramide required CD1d expression by dendritic cells (DCs), presentation of the Th2 variants was promiscuous and unaffected by DC-specific ablation of CD1d. This DC-independent stimulation failed to activate the feedback loop between DC IL-12 and NK cell IFN-γ, explaining the Th2 bias. Conversely, forced presentation of the Th2 variants by DC induced high IL-12. Thus, lipid structural variations that do not alter TCR recognition can activate distinct Th1 or Th2 cellular networks by changing APC targeting in vivo.
Collapse
Affiliation(s)
- Li Bai
- Committee on Immunology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chung Y, Lee YH, Zhang Y, Martin-Orozco N, Yamazaki T, Zhou D, Kang CY, Hwu P, Kwak LW, Dong C. T cells and T cell tumors efficiently generate antigen-specific cytotoxic T cell immunity when modified with an NKT ligand. Oncoimmunology 2012; 1:141-151. [PMID: 22720235 PMCID: PMC3376985 DOI: 10.4161/onci.1.2.18479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Various Invariant NKT (iNKT) cell ligands have been shown as potent adjuvants in boosting T cell reactivates to antigens on professional APC. Non-professional APC, such as T cells, also co-expressing MHC class I and CD1d, have been unattractive cell vaccine carriers due to their poor immunogenicity. Here, we report that T cells as well as T cell lymphoma can efficiently generate antigen-specific cytotoxic T lymphocytes (CTL) responses in mice in vivo, when formulated to present iNKT ligand α-galactosylceramide (αGC) on their surface CD1d. Vaccination with αGC-pulsed EG-7 T-cell lymphoma induced tumor-specific CTL response and suppressed the growth of EG-7 in a CD8 T cell-dependent manner. Injection of αGC-loaded CD4 T cells in mice efficiently activated iNKT cells in vivo. While T cells loaded with a class I-restricted peptide induced proliferation but not effector differentiation of antigen-specific CD8 T cells, injection of T cells co-pulsed with αGC strongly induced IFNγ and Granzyme B expression in T cells and complete lysis of target cells in vivo. Presentation of αGC and peptide on the same cells was required for optimal CTL response and vaccinating T cells appeared to directly stimulate both iNKT and cytotoxic CD8 T cells. Of note, the generation of this cytotoxic T cell response was independent of IL-4, IFNγ, IL-12, IL-21 and costimulation. Our data indicate that iNKT cell can license a non-professional APC to directly trigger antigen-specific cytotoxic T cell responses, which provides an alternative cellular vaccine strategy against tumors.
Collapse
Affiliation(s)
- Yeonseok Chung
- Department of Immunology; Center for Cancer Immunology Research; University of Texas MD Anderson Cancer Center; Houston, TX USA ; Institute of Molecular Medicine; University of Texas Medical School; Houston, TX USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Joshi SK, Lang GA, Devera TS, Johnson AM, Kovats S, Lang ML. Differential contribution of dendritic cell CD1d to NKT cell-enhanced humoral immunity and CD8+ T cell activation. J Leukoc Biol 2012; 91:783-90. [PMID: 22331103 DOI: 10.1189/jlb.1111559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CD1d-restricted type I NKT cells provide help for specific antibody production. B cells, which have captured and presented a T-dependent, antigen-derived peptide on MHC class II and CD1d-binding glycolipid α-GC on CD1d, respectively, activate Th and NKT cells to elicit B cell help. However, the role of the DC CD1d in humoral immunity remains unknown. We therefore constructed mixed bone marrow chimeras containing CD1d-expressing, DTR-transgenic DCs and CD1d(+) or CD1d(-) nontransgenic DCs. Following DT-mediated DC ablation and immunization, we observed that the primary and secondary antibody responses were equivalent in the presence of CD1d(+) and CD1d(-) DCs. In contrast, a total ablation of DCs delayed the primary antibody response. Further experiments revealed that depletion of CD1d(+) DCs blocked in vivo expansion of antigen-specific cytotoxic (CD8(+)) T lymphocytes. These results provide a clear demonstration that although CD1d expression on DCs is essential for NKT-enhanced CD8(+) T cell expansion, it is dispensable for specific antibody production.
Collapse
Affiliation(s)
- Sunil K Joshi
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Kerzerho J, Yu ED, Barra CM, Alari-Pahissa E, Alari-Pahisa E, Girardi E, Harrak Y, Lauzurica P, Llebaria A, Zajonc DM, Akbari O, Castaño AR. Structural and functional characterization of a novel nonglycosidic type I NKT agonist with immunomodulatory properties. THE JOURNAL OF IMMUNOLOGY 2012; 188:2254-65. [PMID: 22301545 DOI: 10.4049/jimmunol.1103049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of type I NKT (iNKT) cells by CD1d-presented agonists is a potent immunotherapeutic tool. α-Galactosylceramide (α-GalCer) is the prototypic agonist, but its excessive potency with simultaneous production of both pro- and anti-inflammatory cytokines hampers its potential therapeutic use. In search for novel agonists, we have analyzed the structure and function of HS44, a synthetic aminocyclitolic ceramide analog designed to avoid unrestrained iNKT cell activation. HS44 is a weaker agonist compared with α-GalCer in vitro, although in vivo it induces robust IFN-γ production, and highly reduced but still functional Th2 response. The characteristic cytokine storm produced upon α-GalCer activation was not induced. Consequently, HS44 induced a very efficient iNKT cell-dependent antitumoral response in B16 animal model. In addition, intranasal administration showed the capacity to induce lung inflammation and airway hyperreactivity, a cardinal asthma feature. Thus, HS44 is able to elicit functional Th1 or Th2 responses. Structural studies show that HS44 binds to CD1d with the same conformation as α-GalCer. The TCR binds to HS44 similarly as α-GalCer, but forms less contacts, thus explaining its weaker TCR affinity and, consequently, its weaker recognition by iNKT cells. The ability of this compound to activate an efficient, but not massive, tailored functional immune response makes it an attractive reagent for immune manipulation.
Collapse
Affiliation(s)
- Jerome Kerzerho
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Macho Fernandez E, Chang J, Fontaine J, Bialecki E, Rodriguez F, Werkmeister E, Krieger V, Ehret C, Heurtault B, Fournel S, Frisch B, Betbeder D, Faveeuw C, Trottein F. Activation of invariant Natural Killer T lymphocytes in response to the α-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles. Int J Pharm 2012; 423:45-54. [DOI: 10.1016/j.ijpharm.2011.04.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/06/2011] [Accepted: 04/28/2011] [Indexed: 11/29/2022]
|
44
|
Kanamori M, Tasumi Y, Iyoda T, Ushida M, Inaba K. Sulfatide inhibits α-galactosylceramide presentation by dendritic cells. Int Immunol 2012; 24:129-36. [PMID: 22247226 DOI: 10.1093/intimm/dxr108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sulfatide-reactive type II NKT cells, the so-called non-invariant NKT (non-iNKT) cells, have been shown to counteract invariant NKT (iNKT) cell activity. However, the effects of sulfatide on activation of iNKT cells by α-galactocylceramide (αGC) in the context of CD1d have not been studied in detail. Therefore, we studied the blocking effect of sulfatide on αGC-induced iNKT cell activation by dendritic cells (DCs). Even in the absence of non-iNKT cells, sulfatide inhibited αGC-mediated iNKT cell activation by reducing αGC/CD1d complex formations in a dose-dependent manner. This was also confirmed in a cell-free setting using immobilized CD1d-Ig. Moreover, simultaneous injection of αGC with sulfatide decreased αGC/CD1d complex formations on DCs, accompanied by the reduced CD40L-up-regulation and IFN-γ production by iNKT cells and IL-12p70 production by DCs. However, sulfatide by itself did not interfere with the presentation of MHC class II-mediated antigen presentation to specific T cells. These results demonstrate that sulfatide competes with αGC to be loaded onto CD1d along the endocytic pathway in DCs, thereby inhibiting the iNKT cell response.
Collapse
Affiliation(s)
- Mitsuhiro Kanamori
- Laboratory of Immunobiology, Department of Animal Development and Physiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
45
|
Bialecki E, Macho Fernandez E, Ivanov S, Paget C, Fontaine J, Rodriguez F, Lebeau L, Ehret C, Frisch B, Trottein F, Faveeuw C. Spleen-resident CD4+ and CD4- CD8α- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One 2011; 6:e26919. [PMID: 22066016 PMCID: PMC3204990 DOI: 10.1371/journal.pone.0026919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/06/2011] [Indexed: 12/03/2022] Open
Abstract
One important function of conventional dendritic cells (cDC) is their high capacity to capture, process and present Ag to T lymphocytes. Mouse splenic cDC subtypes, including CD8α+ and CD8α− cDC, are not identical in their Ag presenting and T cell priming functions. Surprisingly, few studies have reported functional differences between CD4− and CD4+ CD8α− cDC subsets. We show that, when loaded in vitro with OVA peptide or whole protein, and in steady-state conditions, splenic CD4− and CD4+ cDC are equivalent in their capacity to prime and direct CD4+ and CD8+ T cell differentiation. In contrast, in response to α-galactosylceramide (α-GalCer), CD4− and CD4+ cDC differentially activate invariant Natural Killer T (iNKT) cells, a population of lipid-reactive non-conventional T lymphocytes. Both cDC subsets equally take up α-GalCer in vitro and in vivo to stimulate the iNKT hybridoma DN32.D3, the activation of which depends solely on TCR triggering. On the other hand, and relative to their CD4+ counterparts, CD4− cDC more efficiently stimulate primary iNKT cells, a phenomenon likely due to differential production of co-factors (including IL-12) by cDC. Our data reveal a novel functional difference between splenic CD4+ and CD4− cDC subsets that may be important in immune responses.
Collapse
Affiliation(s)
- Emilie Bialecki
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Elodie Macho Fernandez
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Stoyan Ivanov
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christophe Paget
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Josette Fontaine
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Fabien Rodriguez
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Luc Lebeau
- Laboratoire de Conception et Application des Molécules Bioactives, Faculté de Pharmacie, CNRS, UMR 7199/Université de Strasbourg, Illkirch, France
| | - Christophe Ehret
- Laboratoire de Conception et Application des Molécules Bioactives, Faculté de Pharmacie, CNRS, UMR 7199/Université de Strasbourg, Illkirch, France
| | - Benoit Frisch
- Laboratoire de Conception et Application des Molécules Bioactives, Faculté de Pharmacie, CNRS, UMR 7199/Université de Strasbourg, Illkirch, France
| | - François Trottein
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christelle Faveeuw
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
- * E-mail:
| |
Collapse
|
46
|
Choi DH, Kim KS, Yang SH, Chung DH, Song B, Sprent J, Cho JH, Sung YC. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses. Cancer Res 2011; 71:7442-51. [PMID: 22028323 DOI: 10.1158/0008-5472.can-11-1459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DC) present α-galactosylceramide (αGalCer) to invariant T-cell receptor-expressing natural killer T cells (iNKT) activating these cells to secrete a variety of cytokines, which in turn results in DC maturation and activation of other cell types, including NK cells, B cells, and conventional T cells. In this study, we showed that αGalCer-pulsing of antigen-activated CD8 T cells before adoptive transfer to tumor-bearing mice caused a marked increase in donor T-cell proliferation, precursor frequency, and cytotoxic lymphocyte activity. This effect was interleukin (IL)-2 dependent and involved both natural killer T cells (NKT) and DCs, as mice lacking IL-2, NKTs, and DCs lacked any enhanced response to adoptively transferred αGalCer-loaded CD8 T cells. iNKT activation was mediated by transfer of αGalCer from the cell membrane of the donor CD8 T cells onto the αGalCer receptor CD1d which is present on host DCs. αGalCer transfer was increased by prior activation of the donor CD8 T cells and required AP-2-mediated endocytosis by host DCs. In addition, host iNKT cell activation led to strong IL-2 synthesis, thereby increasing expansion and differentiation of donor CD8 T cells. Transfer of these cells led to improved therapeutic efficacy against established solid tumors in mice. Thus, our findings illustrate how αGalCer loading of CD8 T cells after antigen activation in vitro may leverage the therapeutic potential of adoptive T-cell therapies.
Collapse
Affiliation(s)
- Dong Hoon Choi
- Division of Molecular and Life Science, Pohang University of Science & Technology, Pohang, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Joyce S, Girardi E, Zajonc DM. NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. THE JOURNAL OF IMMUNOLOGY 2011; 187:1081-9. [PMID: 21772035 DOI: 10.4049/jimmunol.1001910] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells that express the semi-invariant TCR are innate-like lymphocytes whose functions are regulated by self and foreign glycolipid ligands presented by the Ag-presenting, MHC class I-like molecule CD1d. Activation of NKT cells in vivo results in rapid release of copious amounts of effector cytokines and chemokines with which they regulate innate and adaptive immune responses to pathogens, certain types of cancers, and self-antigens. The nature of CD1d-restricted ligands, the manner in which they are recognized, and the unique effector functions of NKT cells suggest an immunoregulatory role for this T cell subset. Their ability to respond fast and our ability to steer NKT cell cytokine response to altered lipid ligands make them an important target for vaccine design and immunotherapies against autoimmune diseases. This review summarizes our current understanding of CD1d-restricted ligand recognition by NKT cells and how these innate-like lymphocytes regulate inflammation.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
48
|
Zietara N, Łyszkiewicz M, Krueger A, Weiss S. ICOS-dependent stimulation of NKT cells by marginal zone B cells. Eur J Immunol 2011; 41:3125-34. [PMID: 21809338 DOI: 10.1002/eji.201041092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 07/12/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells express high levels of CD1d molecules. In accordance, MZ B cells, like splenic conventional DCs (cDCs), efficiently trigger NKT-cell proliferation. Importantly, MZ B cells exclusively induced production of IL-4 and IL-13 by such cells whereas cDCs induced robust production of mainly IFN-γ. NKT-cell proliferation, IL-4 and IL-13 production induced by MZ B cells were dependent on ICOS/ICOS ligand interaction while IFN-γ and IL-17 induction by cDCs required glucocorticoid-induced TNF receptor/glucocorticoid-induced TNF receptor ligand interplay. Our data illustrate that both MZ B cells and cDCs act as efficient APCs for NKT cells and might differentially influence the quality of the subsequent immune response.
Collapse
Affiliation(s)
- Natalia Zietara
- Department of Molecular Biotechnology, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
49
|
Courtney AN, Thapa P, Singh S, Wishahy AM, Zhou D, Sastry J. Intranasal but not intravenous delivery of the adjuvant α-galactosylceramide permits repeated stimulation of natural killer T cells in the lung. Eur J Immunol 2011; 41:3312-22. [PMID: 21818755 DOI: 10.1002/eji.201041359] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/15/2011] [Accepted: 07/29/2011] [Indexed: 11/07/2022]
Abstract
Efficient induction of antigen-specific immunity is achieved by delivering multiple doses of vaccine formulated with appropriate adjuvants that can harness the benefits of innate immune mediators. The synthetic glycolipid α-galactosylceramide (α-GalCer) is a potent activator of NKT cells, a major innate immune mediator cell type effective in inducing maturation of DCs for efficient presentation of co-administered antigens. However, systemic administration of α-GalCer results in NKT cell anergy in which the cells are unresponsive to subsequent doses of α-GalCer. We show here that α-GalCer delivered as an adjuvant by the intranasal route, as opposed to the intravenous route, enables repeated activation of NKT cells and DCs, resulting in efficient induction of cellular immune responses to co-administered antigens. We show evidence that after intranasal delivery,α-GalCer is selectively presented by DCs for the activation of NKT cells, not B cells. Furthermore, higher levels of PD-1 expression, a potential marker for functional exhaustion of the NKT cells when α-GalCer is delivered by the intravenous route, are not observed after intranasal delivery. These results support a mucosal route of delivery for the utility of α-GalCer as an adjuvant for vaccines, which often requires repeated dosing to achieve durable protective immunity.
Collapse
Affiliation(s)
- Amy N Courtney
- University of Texas M.D. Anderson Cancer Center, Department of Immunology, Houston, Texas 77054, USA
| | | | | | | | | | | |
Collapse
|
50
|
Iyoda T, Ushida M, Kimura Y, Minamino K, Hayuka A, Yokohata S, Ehara H, Inaba K. Invariant NKT cell anergy is induced by a strong TCR-mediated signal plus co-stimulation. Int Immunol 2011; 22:905-13. [PMID: 21118907 DOI: 10.1093/intimm/dxq444] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vα14 TCR expressing invariant NK T (iNKT) cells recognize α-galactosylceramide (αGC)/CD1d complex and produce large amounts of various cytokines before the onset of the adaptive immunity. After stimulation with a high dose (2-5 μg) of αGC in vivo, iNKT cells in the spleen and liver become anergic in terms of the proliferation and cytokine production to subsequent stimulation. In this study, we monitor how iNKT anergy is induced. Anergized iNKT cells dramatically reduced the expression of IL-2Rα, and exogenous IL-2 restored the ability to proliferate and produce IL-4 but not to produce IFN-γ. Anergized iNKT cells expressed high levels of programmed death-1 (PD-1). However, iNKT cells in PD-1-deficient mice became anergic as a result of αGC injection, as do normal mice. Furthermore, anti-PD-1 blocking mAb was unable to restore their responsiveness. When iNKT cells were stimulated with immobilized anti-CD3 in the presence or absence of anti-CD28, they produced cytokines in a dose-dependent manner. Unlike in naive CD4 T cells, the strong TCR-mediated signaling with co-stimulation renders them anergic to any subsequent stimulation with αGC and spleen dendritic cells (DCs). Moreover, iNKT cells also became anergic after stimulation with phorbol-12-myristate-13-acetate + ionophore. Finally, the injection of αGC-pulsed DCs was more potent in inducing anergy than B cells. These results indicate that strong TCR-mediated activation with co-stimulation provides signals that induce the anergic state in iNKT cells.
Collapse
Affiliation(s)
- Tomonori Iyoda
- Laboratory of Immunobiology, Department of Animal Development and Physiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|