1
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024; 21:e00442. [PMID: 39237437 PMCID: PMC11585894 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
2
|
Hawiger D. Emerging T cell immunoregulatory mechanisms in multiple sclerosis and Alzheimer's disease. Front Aging Neurosci 2024; 16:1350240. [PMID: 38435400 PMCID: PMC10904586 DOI: 10.3389/fnagi.2024.1350240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Multiple sclerosis (MS) and Alzheimer's disease (AD) are neuroinflammatory and neurodegenerative diseases with considerable socioeconomic impacts but without definitive treatments. AD and MS have multifactorial pathogenesis resulting in complex cognitive and neurologic symptoms and growing evidence also indicates key functions of specific immune cells. Whereas relevant processes dependent on T cells have been elucidated in both AD and MS, mechanisms that can control such immune responses still remain elusive. Here, a brief overview of select recent findings clarifying immunomodulatory mechanisms specifically induced by tolerogenic dendritic cells to limit the activation and functions of neurodegenerative T cells is presented. These insights could become a foundation for new cutting-edge research as well as therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Kim H, Perovanovic J, Shakya A, Shen Z, German CN, Ibarra A, Jafek JL, Lin NP, Evavold BD, Chou DHC, Jensen PE, He X, Tantin D. Targeting transcriptional coregulator OCA-B/Pou2af1 blocks activated autoreactive T cells in the pancreas and type 1 diabetes. J Exp Med 2021; 218:e20200533. [PMID: 33295943 PMCID: PMC7731945 DOI: 10.1084/jem.20200533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 11/04/2022] Open
Abstract
The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Crosses, Genetic
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Female
- Gene Deletion
- Germ Cells/metabolism
- Humans
- Inflammation Mediators/metabolism
- Lymph Nodes/metabolism
- Lymphocyte Activation
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Ovalbumin
- Pancreas/metabolism
- Pancreas/pathology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell/metabolism
- Spleen/pathology
- T-Lymphocytes/immunology
- Trans-Activators/deficiency
- Trans-Activators/metabolism
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrea Ibarra
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jillian L Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Nai-Pin Lin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Danny H-C Chou
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Peter E Jensen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
4
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
5
|
Byrum SD, Washam CL, Patterson JD, Vyas KK, Gilbert KM, Blossom SJ. Continuous Developmental and Early Life Trichloroethylene Exposure Promoted DNA Methylation Alterations in Polycomb Protein Binding Sites in Effector/Memory CD4 + T Cells. Front Immunol 2019; 10:2016. [PMID: 31555266 PMCID: PMC6724578 DOI: 10.3389/fimmu.2019.02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and drinking water pollutant associated with CD4+ T cell-mediated autoimmunity. In our mouse model, discontinuation of TCE exposure during adulthood after developmental exposure did not prevent immunotoxicity. To determine whether persistent effects were linked to epigenetic changes we conducted whole genome reduced representation bisulfite sequencing (RRBS) to evaluate methylation of CpG sites in autosomal chromosomes in activated effector/memory CD4+ T cells. Female MRL+/+ mice were exposed to vehicle control or TCE in the drinking water from gestation until ~37 weeks of age [postnatal day (PND) 259]. In a subset of mice, TCE exposure was discontinued at ~22 weeks of age (PND 154). At PND 259, RRBS assessment revealed more global methylation changes in the continuous exposure group vs. the discontinuous exposure group. A majority of the differentially methylated CpG regions (DMRs) across promoters, islands, and regulatory elements were hypermethylated (~90%). However, continuous developmental TCE exposure altered the methylation of 274 CpG sites in promoters and CpG islands. In contrast, only 4 CpG island regions were differentially methylated (hypermethylated) in the discontinuous group. Interestingly, 2 of these 4 sites were also hypermethylated in the continuous exposure group, and both of these island regions are associated with lysine 27 on histone H3 (H3K27) involved in polycomb complex-dependent transcriptional repression via H3K27 tri-methylation. CpG sites were overlapped with the Open Regulatory Annotation database. Unlike the discontinuous group, continuous TCE treatment resulted in 129 DMRs including 12 unique transcription factors and regulatory elements; 80% of which were enriched for one or more polycomb group (PcG) protein binding regions (i.e., SUZ12, EZH2, JARID2, and MTF2). Pathway analysis of the DMRs indicated that TCE primarily altered the methylation of genes associated with regulation of cellular metabolism and cell signaling. The results demonstrated that continuous developmental exposure to TCE differentially methylated binding sites of PcG proteins in effector/memory CD4+ cells. There were minimal yet potentially biologically significant effects that occurred when exposure was discontinued. These results point toward a novel mechanism by which chronic developmental TCE exposure may alter terminally differentiated CD4+ T cell function in adulthood.
Collapse
Affiliation(s)
- Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Patterson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sarah J Blossom
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
6
|
Kim H, Dickey L, Stone C, Jafek JL, Lane TE, Tantin D. T cell-selective deletion of Oct1 protects animals from autoimmune neuroinflammation while maintaining neurotropic pathogen response. J Neuroinflammation 2019; 16:133. [PMID: 31266507 PMCID: PMC6607600 DOI: 10.1186/s12974-019-1523-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Treatments for autoimmune diseases aim to dampen autoreactivity while preserving normal immune function. In CD4+ T cells, the transcription factor Oct1/Pou2f1 is a dispensable transcription factor for T cell development and response to primary infection, but promotes expression of target genes, including Il2 and Ifng, under conditions of antigen reencounter. As a result, they are more strongly expressed upon secondary stimulation. Such repeated antigen encounters occur in memory recall responses, in autoimmunity where self-antigen can be recognized multiple times, and in chronic infection where foreign antigen is persistent. Based on these previous findings, we hypothesized that Oct1 loss would protect animals from autoimmunity but maintain normal responses to pathogens in the CNS. OBJECTIVE We used a conditional mouse Oct1 (Pou2f1) allele and a CD4-Cre driver to determine the effect of T cell-specific Oct1 loss on autoimmune- and viral-induced neuroinflammation using an autoantigen-driven EAE model of autoimmunity and a JHMV model of viral infection. RESULTS Oct1 conditional deletion mitigated clinical scores and reduced infiltrating T cells and cytokine production in the EAE model. Consistently, Oct1-deficient CD4+ T cells stimulated in vitro showed increased expression of markers associated with T cell anergy, particularly in the absence of co-stimulatory signals. In contrast, anti-viral T cell effector functions are intact in the absence of Oct1, with no changes in neuroinflammation, infiltrating T cells or cytokine production. CONCLUSION Our findings uncover a significant difference between the effect of Oct1 loss on autoimmune and anti-pathogen responses, which potentially could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Laura Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Colleen Stone
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Jillian L. Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Thomas E. Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
7
|
The influence and impact of ageing and immunosenescence (ISC) on adaptive immunity during multiple sclerosis (MS) and the animal counterpart experimental autoimmune encephalomyelitis (EAE). Ageing Res Rev 2018; 41:64-81. [PMID: 29101043 DOI: 10.1016/j.arr.2017.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
The human ageing process encompasses mechanisms that effect a decline in homeostasis with increased susceptibility to disease and the development of chronic life-threatening illness. Increasing age affects the immune system which undergoes a progressive loss of efficiency, termed immunosenescence (ISC), to impact on quantitative and functional aspects of innate and adaptive immunity. The human demyelinating disease multiple sclerosis (MS) and the corresponding animal model experimental autoimmune encephalomyelitis (EAE) are strongly governed by immunological events that primarily involve the adaptive arm of the immune response. MS and EAE are frequently characterised by a chronic pathology and a protracted disease course which thereby creates the potential for exposure to the inherent, on-going effects and consequences of ISC. Collective evidence is presented to confirm the occurrence of established and unendorsed biological markers of ISC during the development of both diseases. Moreover, results are discussed from studies during the course of MS and EAE that reveal a premature upregulation of ISC-related biomarkers which indicates untimely alterations to the adaptive immune system. The effects of ISC and a prematurely aged immune system on autoimmune-associated neurodegenerative conditions such as MS and EAE are largely unknown but current evaluation of data justifies and encourages further investigation.
Collapse
|
8
|
Kujur W, Gurram RK, Maurya SK, Nadeem S, Chodisetti SB, Khan N, Agrewala JN. Caerulomycin A suppresses the differentiation of naïve T cells and alleviates the symptoms of experimental autoimmune encephalomyelitis. Autoimmunity 2017; 50:317-328. [PMID: 28686480 DOI: 10.1080/08916934.2017.1332185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a highly detrimental autoimmune disease of the central nervous system. There is no cure for it but the treatment typically focuses on subsiding severity and recurrence of the disease. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS. It is characterized by frequent relapses due to the generation of memory T cells. Caerulomycin A (CaeA) is known to suppress the Th1 cells, Th2 cells, and Th17 cells. Interestingly, it enhances the generation of regulatory T cells (Tregs). Th1 cells and Th17 cells are known to aggravate EAE, whereas Tregs suppress the disease symptoms. Consequently, in the current study we evaluated the influence of CaeA on EAE. Intriguingly, we observed by whole body imaging that CaeA regressed the clinical symptoms of EAE. Further, there was reduction in the pool of Th1 cells, Th17 cells, and CD8 T cells. The mechanism involved in suppressing the EAE symptoms was due to the inhibition in the generation of effector and central memory T cells and induction of the expansion of Tregs. In essence, these findings implicate that CaeA may be considered as a potent future immunosuppressive drug.
Collapse
Affiliation(s)
- Weshely Kujur
- a Immunology Laboratory , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Rama Krishna Gurram
- a Immunology Laboratory , CSIR-Institute of Microbial Technology , Chandigarh , India.,b National Institute of Allergy and Infectious Diseases , Bethesda , MD , USA
| | - Sudeep K Maurya
- a Immunology Laboratory , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sajid Nadeem
- a Immunology Laboratory , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sathi Babu Chodisetti
- a Immunology Laboratory , CSIR-Institute of Microbial Technology , Chandigarh , India.,c Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Nargis Khan
- a Immunology Laboratory , CSIR-Institute of Microbial Technology , Chandigarh , India.,d Department of Medicine , McGill University , Montreal , QC , Canada
| | - Javed Naim Agrewala
- a Immunology Laboratory , CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
9
|
Gilbert KM, Blossom SJ, Reisfeld B, Erickson SW, Vyas K, Maher M, Broadfoot B, West K, Bai S, Cooney CA, Bhattacharyya S. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4 + T cells. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx013. [PMID: 29129997 PMCID: PMC5676456 DOI: 10.1093/eep/dvx013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0-15% methylation), and 25% were hypermethylated (85-100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells.
Collapse
Affiliation(s)
- Kathleen M. Gilbert
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Sarah J. Blossom
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Brad Reisfeld
- Colorado State University, Fort Collins, CO 80523, USA
| | - Stephen W. Erickson
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Kanan Vyas
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Mary Maher
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Brannon Broadfoot
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Kirk West
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Shasha Bai
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Craig A. Cooney
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Sudeepa Bhattacharyya
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
10
|
Smorodchenko A, Schneider S, Rupprecht A, Hilse K, Sasgary S, Zeitz U, Erben RG, Pohl EE. UCP2 up-regulation within the course of autoimmune encephalomyelitis correlates with T-lymphocyte activation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1002-1012. [PMID: 28130201 DOI: 10.1016/j.bbadis.2017.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/07/2017] [Accepted: 01/23/2017] [Indexed: 01/20/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disorder of the central nervous system (CNS) associated with severe neurological disability. Reactive oxygen species (ROS) and mitochondrial dysfunction play a pivotal role in the pathogenesis of this disease. Several members of the mitochondrial uncoupling protein subfamily (UCP2-UCP5) were suggested to regulate ROS by diminishing the mitochondrial membrane potential and constitute therefore a promising pharmacological target for MS. To evaluate the role of different uncoupling proteins in neuroinflammation, we have investigated their expression patterns in murine brain and spinal cord (SC) during different stages of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. At mRNA and protein levels we found that only UCP2 is up-regulated in the SC, but not in brain. The increase in UCP2 expression was antigen-independent, reached its maximum between 14 and 21days in both OVA and MOG immunized animals and correlated with an augmented number of CD3+ T-lymphocytes in SC parenchyma. The decrease in abundance of UCP4 was due to neuronal injury and was only detected in CNS of MOG-induced EAE animals. The results provide evidence that the involvement of mitochondrial UCP2 in CNS inflammation during EAE may be mainly explained by the invasion of activated T-lymphocytes. This conclusion coincides with our previous observation that UCP2 is up-regulated in activated and rapidly proliferating T-cells and participates in fast metabolic re-programming of cells during proliferation.
Collapse
Affiliation(s)
- Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria; Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Germany.
| | - Stephanie Schneider
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Karoline Hilse
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Soleman Sasgary
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
11
|
Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, Brylla E, Issekutz T, Cabañas C, Nelson PJ, Ziemssen T, Rohde V, Bechmann I, Lodygin D, Odoardi F, Flügel A. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 2016; 530:349-53. [PMID: 26863192 DOI: 10.1038/nature16939] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022]
Abstract
In multiple sclerosis, brain-reactive T cells invade the central nervous system (CNS) and induce a self-destructive inflammatory process. T-cell infiltrates are not only found within the parenchyma and the meninges, but also in the cerebrospinal fluid (CSF) that bathes the entire CNS tissue. How the T cells reach the CSF, their functionality, and whether they traffic between the CSF and other CNS compartments remains hypothetical. Here we show that effector T cells enter the CSF from the leptomeninges during Lewis rat experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. While moving through the three-dimensional leptomeningeal network of collagen fibres in a random Brownian walk, T cells were flushed from the surface by the flow of the CSF. The detached cells displayed significantly lower activation levels compared to T cells from the leptomeninges and CNS parenchyma. However, they did not represent a specialized non-pathogenic cellular sub-fraction, as their gene expression profile strongly resembled that of tissue-derived T cells and they fully retained their encephalitogenic potential. T-cell detachment from the leptomeninges was counteracted by integrins VLA-4 and LFA-1 binding to their respective ligands produced by resident macrophages. Chemokine signalling via CCR5/CXCR3 and antigenic stimulation of T cells in contact with the leptomeningeal macrophages enforced their adhesiveness. T cells floating in the CSF were able to reattach to the leptomeninges through steps reminiscent of vascular adhesion in CNS blood vessels, and invade the parenchyma. The molecular/cellular conditions for T-cell reattachment were the same as the requirements for detachment from the leptomeningeal milieu. Our data indicate that the leptomeninges represent a checkpoint at which activated T cells are licensed to enter the CNS parenchyma and non-activated T cells are preferentially released into the CSF, from where they can reach areas of antigen availability and tissue damage.
Collapse
Affiliation(s)
- Christian Schläger
- Institute of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Henrike Körner
- Institute of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Martin Krueger
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Stefano Vidoli
- Department of Structural and Geotechnical Engineering, University of Rome La Sapienza, 00185 Rome, Italy
| | - Michael Haberl
- Institute of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Dorothee Mielke
- Department Neurosurgery, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Elke Brylla
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Thomas Issekutz
- Division of Immunology, Department of Pediatrics Dalhousie University, Halifax B3H 4R2, Canada
| | - Carlos Cabañas
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, 28049 Madrid, Spain
| | - Peter J Nelson
- Medical Clinic and Policlinic IV, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Tjalf Ziemssen
- Department of Neurology, University Hospital, 01307 Dresden, Germany
| | - Veit Rohde
- Department Neurosurgery, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Dmitri Lodygin
- Institute of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Francesca Odoardi
- Institute of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Alexander Flügel
- Institute of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073 Göttingen, Germany.,Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Bischof J, Müller S, Borufka L, Asghari F, Möller S, Holzhüter SA, Nizze H, Ibrahim SM, Jaster R. Quantitative Trait Locus Analysis Implicates CD4⁺/CD44high Memory T Cells in the Pathogenesis of Murine Autoimmune Pancreatitis. PLoS One 2015; 10:e0136298. [PMID: 26325540 PMCID: PMC4556487 DOI: 10.1371/journal.pone.0136298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/02/2015] [Indexed: 12/24/2022] Open
Abstract
The mouse strain MRL/MpJ is prone to spontaneously develop autoimmune pancreatitis (AIP). To elucidate the genetic control towards the development of the phenotype and to characterize contributions of immunocompetent cell types, MRL/MpJ mice were interbred with three additional strains (BXD2/TYJ, NZM2410/J, CAST/EIJ) for four generations in an advanced intercross line. Cellular phenotypes were determined by flow cytometric quantification of splenic leukocytes and complemented by the histopathological evaluation of pancreatic lesions. An Illumina SNP array was used for genotyping. QTL analyses were performed with the R implementation of HAPPY. Out of 41 leukocyte subpopulations (B cells, T cells and dendritic cells), only three were significantly associated with AIP: While CD4+/CD44high memory T cells and CD4+/CD69+ T helper (Th) cells correlated positively with the disease, the cytotoxic T cell phenotype CD8+/CD44low showed a negative correlation. A QTL for AIP on chromosome 2 overlapped with QTLs for CD4+/CD44high and CD8+/CD44high memory T cells, FoxP3+/CD4+ and FoxP3+/CD8+ regulatory T cells (Tregs), and CD8+/CD69+ cytotoxic T cells. On chromosome 6, overlapping QTLs for AIP and CD4+/IL17+ Th17 cells and again FoxP3+/CD8+ Tregs were observed. In conclusion, CD4+/CD44high memory T cells are the only leukocyte subtype that could be linked to AIP both by correlation studies and from observed overlapping QTL. The potential role of this cell type in the pathogenesis of AIP warrants further investigations.
Collapse
Affiliation(s)
- Julia Bischof
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Sarah Müller
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Luise Borufka
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Farahnaz Asghari
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Steffen Möller
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Stephanie-Anna Holzhüter
- Institute of Pathology, Rostock University Medical Center, Strempelstr. 14, 18057 Rostock, Germany
| | - Horst Nizze
- Institute of Pathology, Rostock University Medical Center, Strempelstr. 14, 18057 Rostock, Germany
| | - Saleh M. Ibrahim
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, E.-Heydemann-Str. 6, 18057 Rostock, Germany
- * E-mail:
| |
Collapse
|
13
|
Assis L, Straliotto M, Engel D, Hort M, Dutra R, de Bem A. β-Caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience 2014; 279:220-31. [DOI: 10.1016/j.neuroscience.2014.08.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
14
|
Abstract
Immunological memory is a hallmark of adaptive immunity, a defense mechanism endowed to vertebrates during evolution. However, an autoimmune pathogenic role of memory lymphocytes is also emerging with accumulating evidence, despite reasonable skepticism on their existence in a chronic setting of autoimmune damage. It is conceivable that autoimmune memory would be particularly harmful since memory cells would constantly "remember" and attack the body's healthy tissues. It is even more detrimental given the resistance of memory T cells to immunomodulatory therapies. In this review, we focus on self-antigen-reactive CD(+) effector memory T (TEM) cells, surveying the evidence for the role of the T(EM) compartment in autoimmune pathogenesis. We will also discuss the role of T(EM) cells in chronic and acute infectious disease settings and how they compare to their counterparts in autoimmune diseases. With their long-lasting potency, the autoimmune T(EM) cells could also play a critical role in anti-tumor immunity, which may be largely based on their reactivity to self-antigens. Therefore, although autoimmune T(EM) cells are "bad" due to their role in relentless perpetration of tissue damage in autoimmune disease settings, they are unlikely a by-product of industrial development along the modern surge of autoimmune disease prevalence. Rather, they may be a product of evolution for their "good" in clearing damaged host cells in chronic infections and malignant cells in cancer settings.
Collapse
|
15
|
Chhabra S, Chang SC, Nguyen HM, Huq R, Tanner MR, Londono LM, Estrada R, Dhawan V, Chauhan S, Upadhyay SK, Gindin M, Hotez PJ, Valenzuela JG, Mohanty B, Swarbrick JD, Wulff H, Iadonato SP, Gutman GA, Beeton C, Pennington MW, Norton RS, Chandy KG. Kv1.3 channel-blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB J 2014; 28:3952-64. [PMID: 24891519 DOI: 10.1096/fj.14-251967] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022]
Abstract
The voltage-gated potassium (Kv) 1.3 channel is widely regarded as a therapeutic target for immunomodulation in autoimmune diseases. ShK-186, a selective inhibitor of Kv1.3 channels, ameliorates autoimmune diseases in rodent models, and human phase 1 trials of this agent in healthy volunteers have been completed. In this study, we identified and characterized a large family of Stichodactyla helianthus toxin (ShK)-related peptides in parasitic worms. Based on phylogenetic analysis, 2 worm peptides were selected for study: AcK1, a 51-residue peptide expressed in the anterior secretory glands of the dog-infecting hookworm Ancylostoma caninum and the human-infecting hookworm Ancylostoma ceylanicum, and BmK1, the C-terminal domain of a metalloprotease from the filarial worm Brugia malayi. These peptides in solution adopt helical structures closely resembling that of ShK. At doses in the nanomolar-micromolar range, they block native Kv1.3 in human T cells and cloned Kv1.3 stably expressed in L929 mouse fibroblasts. They preferentially suppress the proliferation of rat CCR7(-) effector memory T cells without affecting naive and central memory subsets and inhibit the delayed-type hypersensitivity (DTH) response caused by skin-homing effector memory T cells in rats. Further, they suppress IFNγ production by human T lymphocytes. ShK-related peptides in parasitic worms may contribute to the potential beneficial effects of probiotic parasitic worm therapy in human autoimmune diseases.
Collapse
Affiliation(s)
- Sandeep Chhabra
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shih Chieh Chang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hai M Nguyen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA; Department of Pharmacology, University of California, Davis, California, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Graduate Program in Molecular Physiology and Biophysics, and
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, and
| | | | | | - Vikas Dhawan
- Peptides International, Louisville, Kentucky, USA
| | | | - Sanjeev K Upadhyay
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Mariel Gindin
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington D.C., USA; and Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - James D Swarbrick
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California, USA
| | | | - George A Gutman
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | | | | | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia;
| | - K George Chandy
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
16
|
Pohl M, Kawakami N, Kitic M, Bauer J, Martins R, Fischer MT, Machado-Santos J, Mader S, Ellwart JW, Misu T, Fujihara K, Wekerle H, Reindl M, Lassmann H, Bradl M. T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol Commun 2013; 1:85. [PMID: 24367907 PMCID: PMC3879999 DOI: 10.1186/2051-5960-1-85] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 12/19/2022] Open
Abstract
Background Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS), which is characterized by the presence of pathogenic serum autoantibodies against aquaporin 4 (AQP4) in the vast majority of patients. The contribution of T cells to the formation of astrocyte destructive lesions is currently unclear. However, active human NMO lesions contain CD4+ T-lymphocytes expressing the activation marker Ox40, and the expression is more profound compared to that seen in MS lesions of comparable activity. Therefore, we analyzed the role of T-cell activation within the CNS in the initiation of NMO lesions in an experimental model of co-transfer of different encephalitogenic T-cells and human AQP4 antibody containing NMO immunoglobulin (NMO IgG). We further studied the expression of the T-cell activation marker Ox40 in NMO and multiple sclerosis lesions in different stages of activity. Results All encephalitogenic T-cell lines used in our experiments induced brain inflammation with a comparable extent of blood brain barrier damage, allowing human NMO IgG to penetrate into the brain and spinal cord tissue. However, astrocyte destructive NMO lesions were only seen with T-cells, which showed signs of activation in the lesions. T-cell activation was reflected by the expression of the activation marker Ox40 and pronounced production of γ-IFN, which was able to increase the production of complement proteins and of the Fc gamma III receptor (Fcgr3) and decreased production of complement inhibitory protein Factor H in microglia. Conclusions Our data indicate that local activation of T-cells provide an inflammatory environment in the CNS, which allows AQP4 auto-antibodies to induce astrocyte destructive NMO-like lesions.
Collapse
|
17
|
Kozela E, Juknat A, Kaushansky N, Rimmerman N, Ben-Nun A, Vogel Z. Cannabinoids decrease the th17 inflammatory autoimmune phenotype. J Neuroimmune Pharmacol 2013; 8:1265-76. [PMID: 23892791 DOI: 10.1007/s11481-013-9493-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
Cannabinoids, the Cannabis constituents, are known to possess anti-inflammatory properties but the mechanisms involved are not understood. Here we show that the main psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), and the main nonpsychoactive cannabinoid, cannabidiol (CBD), markedly reduce the Th17 phenotype which is known to be increased in inflammatory autoimmune pathologies such as Multiple Sclerosis. We found that reactivation by MOG35-55 of MOG35-55-specific encephalitogenic T cells (cells that induce Experimental Autoimmune Encephalitis when injected to mice) in the presence of spleen derived antigen presenting cells led to a large increase in IL-17 production and secretion. In addition, we found that the cannabinoids CBD and THC dose-dependently (at 0.1-5 μM) suppressed the production and secretion of this cytokine. Moreover, the mRNA and protein of IL-6, a key factor in Th17 induction, were also decreased. Pretreatment with CBD also resulted in increased levels of the anti-inflammatory cytokine IL-10. Interestingly, CBD and THC did not affect the levels of TNFα and IFNγ. The downregulation of IL-17 secretion by these cannabinoids does not seem to involve the CB1, CB2, PPARγ, 5-HT1A or TRPV1 receptors. In conclusion, the results show a unique cannabinoid modulation of the autoimmune cytokine milieu combining suppression of the pathogenic IL-17 and IL-6 cytokines along with boosting the expression of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | | | | | | | | | | |
Collapse
|
18
|
Kawakami N, Bartholomäus I, Pesic M, Mues M. An autoimmunity odyssey: how autoreactive T cells infiltrate into the CNS. Immunol Rev 2012; 248:140-55. [PMID: 22725959 DOI: 10.1111/j.1600-065x.2012.01133.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), a human autoimmune disease. To explore how EAE and ultimately MS is induced, autoantigen-specific T cells were established, were labeled with fluorescent protein by retroviral gene transfer, and were tracked in vivo after adoptive transfer. Intravital imaging with two-photon microscopy was used to record the entire entry process of autoreactive T cells into the CNS: a small number of T cells first appear in the CNS leptomeninges before onset of EAE, and crawl on the intraluminal surface of blood vessels, which is integrin α4 and αL dependent. After extravasation, the T cells continue into the perivascular space, meeting local antigen-presenting cells (APCs), which present endogenous antigens. This interaction activates the T cells and guides them to penetrate the CNS parenchyma. As the local APCs in the CNS are not saturated with endogenous antigens, exogenous antigens stimulate the autoreactive T cells more strongly and, as a result, exacerbate the clinical outcome. Currently, we are attempting to visualize T-cell activation in vivo in both rat T-cell-mediated EAE and mouse spontaneous EAE models.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, München, Germany.
| | | | | | | |
Collapse
|
19
|
T cells become licensed in the lung to enter the central nervous system. Nature 2012; 488:675-9. [PMID: 22914092 DOI: 10.1038/nature11337] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
The blood–brain barrier (BBB) and the environment of the central nervous system (CNS) guard the nervous tissue from peripheral immune cells. In the autoimmune disease multiple sclerosis, myelin-reactive T-cell blasts are thought to transgress the BBB and create a pro-inflammatory environment in the CNS, thereby making possible a second autoimmune attack that starts from the leptomeningeal vessels and progresses into the parenchyma. Using a Lewis rat model of experimental autoimmune encephalomyelitis, we show here that contrary to the expectations of this concept, T-cell blasts do not efficiently enter the CNS and are not required to prepare the BBB for immune-cell recruitment. Instead, intravenously transferred T-cell blasts gain the capacity to enter the CNS after residing transiently within the lung tissues. Inside the lung tissues, they move along and within the airways to bronchus-associated lymphoid tissues and lung-draining mediastinal lymph nodes before they enter the blood circulation from where they reach the CNS. Effector T cells transferred directly into the airways showed a similar migratory pattern and retained their full pathogenicity. On their way the T cells fundamentally reprogrammed their gene-expression profile, characterized by downregulation of their activation program and upregulation of cellular locomotion molecules together with chemokine and adhesion receptors. The adhesion receptors include ninjurin 1, which participates in T-cell intravascular crawling on cerebral blood vessels. We detected that the lung constitutes a niche not only for activated T cells but also for resting myelin-reactive memory T cells. After local stimulation in the lung, these cells strongly proliferate and, after assuming migratory properties, enter the CNS and induce paralytic disease. The lung could therefore contribute to the activation of potentially autoaggressive T cells and their transition to a migratory mode as a prerequisite to entering their target tissues and inducing autoimmune disease.
Collapse
|
20
|
Dutra RC, Leite DFP, Bento AF, Manjavachi MN, Patrício ES, Figueiredo CP, Pesquero JB, Calixto JB. The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS One 2011; 6:e27875. [PMID: 22132157 PMCID: PMC3222659 DOI: 10.1371/journal.pone.0027875] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background Multiple sclerosis (MS) is a demyelinating and neuroinflammatory disease of the human central nervous system (CNS). The expression of kinins is increased in MS patients, but the underlying mechanisms by which the kinin receptor regulates MS development have not been elucidated. Methodology/Principal Findings Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice by immunization with MOG35–55 peptide emulsified in complete Freund's adjuvant and injected with pertussis toxin on day 0 and day 2. Here, we report that blockade of the B1R in the induction phase of EAE markedly suppressed its progression by interfering with the onset of the immune response. Furthermore, B1R antagonist suppressed the production/expression of antigen-specific TH1 and TH17 cytokines and transcription factors, both in the periphery and in the CNS. In the chronic phase of EAE, the blockade of B1R consistently impaired the clinical progression of EAE. Conversely, administration of the B1R agonist in the acute phase of EAE suppressed disease progression and inhibited the increase in permeability of the blood-brain barrier (BBB) and any further CNS inflammation. Of note, blockade of the B2R only showed a moderate impact on all of the studied parameters of EAE progression. Conclusions/Significance Our results strongly suggest that kinin receptors, mainly the B1R subtype, play a dual role in EAE progression depending on the phase of treatment through the lymphocytes and glial cell-dependent pathways.
Collapse
MESH Headings
- Animals
- Bradykinin Receptor Antagonists
- CD4-Positive T-Lymphocytes/immunology
- Chronic Disease
- Cytokines/biosynthesis
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Deletion
- Humans
- Inflammation/complications
- Inflammation/pathology
- Inflammation/prevention & control
- Lymphoid Tissue/immunology
- Lymphoid Tissue/pathology
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Myelin Sheath/metabolism
- Receptors, Bradykinin/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Th1 Cells/immunology
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Rafael C. Dutra
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniela F. P. Leite
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Allisson F. Bento
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marianne N. Manjavachi
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eliziane S. Patrício
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia P. Figueiredo
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - João B. Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João B. Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail:
| |
Collapse
|
21
|
Pugliese A, Reijonen HK, Nepom J, Burke GW. Recurrence of autoimmunity in pancreas transplant patients: research update. ACTA ACUST UNITED AC 2011; 1:229-238. [PMID: 21927622 DOI: 10.2217/dmt.10.21] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is an autoimmune disorder leading to loss of pancreatic β-cells and insulin secretion, followed by insulin dependence. Islet and whole pancreas transplantation restore insulin secretion. Pancreas transplantation is often performed together with a kidney transplant in patients with end-stage renal disease. With improved immunosuppression, immunological failures of whole pancreas grafts have become less frequent and are usually categorized as chronic rejection. However, growing evidence indicates that chronic islet autoimmunity may eventually lead to recurrent diabetes, despite immunosuppression to prevent rejection. Thus, islet autoimmunity should be included in the diagnostic work-up of graft failure and ideally should be routinely assessed pretransplant and on follow-up in Type 1 diabetes recipients of pancreas and islet cell transplants. There is a need to develop new treatment regimens that can control autoimmunity, as this may not be effectively suppressed by conventional immunosuppression.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
22
|
Cordiglieri C, Odoardi F, Zhang B, Nebel M, Kawakami N, Klinkert WEF, Lodygin D, Lühder F, Breunig E, Schild D, Ulaganathan VK, Dornmair K, Dammermann W, Potter BVL, Guse AH, Flügel A. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system. ACTA ACUST UNITED AC 2010; 133:1930-43. [PMID: 20519328 PMCID: PMC2892943 DOI: 10.1093/brain/awq135] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate/calcium signalling pathway is essential for the recruitment and the activation of autoaggressive effector T cells within their target organ. Interference with this signalling pathway suppresses the formation of autoimmune inflammatory lesions and thus might qualify as a novel strategy for the treatment of T cell mediated autoimmune diseases.
Collapse
Affiliation(s)
- Chiara Cordiglieri
- Department of Neuroimmunology, Max-Planck-Institute for Neurobiology, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Santi L, Annunziata P, Sessa E, Bramanti P. Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neurol Sci 2009; 287:17-26. [DOI: 10.1016/j.jns.2009.08.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/24/2009] [Accepted: 08/27/2009] [Indexed: 01/31/2023]
|
24
|
Volovitz I, Mor F, Machlenkin A, Machlenkin A, Goldberger O, Marmor Y, Eisenbach L, Cohen IR, Cohen I. T-cell seeding: neonatal transfer of anti-myelin basic protein T-cell lines renders Fischer rats susceptible later in life to the active induction of experimental autoimmune encephalitis. Immunology 2009; 128:92-102. [PMID: 19689739 DOI: 10.1111/j.1365-2567.2009.03074.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fischer strain rats resist active induction of experimental autoimmune encephalomyelitis (EAE) following immunization with guinea-pig myelin basic protein (MBP) in complete Freund's adjuvant (CFA). Nevertheless, we now report that an encephalitogenic CD4(+) anti-MBP T-cell line could be developed from actively immunized Fischer rats. Adoptive transfer of the activated line mediated acute EAE in adult Fischer rats, but not in 1-day-old rats. Moreover, we found that both resting and activated anti-MBP T cells injected 1 day post-natally rendered these rats susceptible later in life to the active induction of EAE by immunization with MBP/CFA. The actively induced EAE manifested the accelerated onset of a secondary, memory-type response. Resting anti-MBP T cells injected even up to 2 weeks post-natally produced no clinical signs but seeded 50-100% of the recipients for an active encephalitogenic immune response to MBP. An earlier T-cell injection (1-2 days) produced a higher incidence and stronger response. The transferred resting T cells entered the neonatal spleen and thymus and proliferated there but did not change the total anti-MBP precursor number in adults. Splenocytes harvested from rats that were injected neonatally but not exposed to MBP in vivo proliferated strongly and produced significant amounts of interferon-gamma to MBP in vitro. Similar results were observed in rats injected with resting T-cell lines reactive to ovalbumin, suggesting that the neonatal injection of resting T cells specific for a self or for a foreign antigen can seed the immune system with the potential for an enhanced effector response to that antigen later in life.
Collapse
Affiliation(s)
- Ilan Volovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bartholomäus I, Kawakami N, Odoardi F, Schläger C, Miljkovic D, Ellwart JW, Klinkert WEF, Flügel-Koch C, Issekutz TB, Wekerle H, Flügel A. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009; 462:94-8. [PMID: 19829296 DOI: 10.1038/nature08478] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/01/2009] [Indexed: 01/18/2023]
Abstract
The tissues of the central nervous system are effectively shielded from the blood circulation by specialized vessels that are impermeable not only to cells, but also to most macromolecules circulating in the blood. Despite this seemingly absolute seclusion, central nervous system tissues are subject to immune surveillance and are vulnerable to autoimmune attacks. Using intravital two-photon imaging in a Lewis rat model of experimental autoimmune encephalomyelitis, here we present in real-time the interactive processes between effector T cells and cerebral structures from their first arrival to manifest autoimmune disease. We observed that incoming effector T cells successively scanned three planes. The T cells got arrested to leptomeningeal vessels and immediately monitored the luminal surface, crawling preferentially against the blood flow. After diapedesis, the cells continued their scan on the abluminal vascular surface and the underlying leptomeningeal (pial) membrane. There, the T cells encountered phagocytes that effectively present antigens, foreign as well as myelin proteins. These contacts stimulated the effector T cells to produce pro-inflammatory mediators, and provided a trigger to tissue invasion and the formation of inflammatory infiltrations.
Collapse
|
26
|
Teijaro JR, Njau MN, Verhoeven D, Chandran S, Nadler SG, Hasday J, Farber DL. Costimulation modulation uncouples protection from immunopathology in memory T cell responses to influenza virus. THE JOURNAL OF IMMUNOLOGY 2009; 182:6834-43. [PMID: 19454679 DOI: 10.4049/jimmunol.0803860] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rapid effector functions and tissue heterogeneity of memory T cells facilitate protective immunity, but they can also promote immunopathology in antiviral immunity, autoimmunity, and transplantation. Modulation of memory T cells is a promising but not yet achieved strategy for inhibiting these deleterious effects. Using an influenza infection model, we demonstrate that memory CD4 T cell-driven secondary responses to influenza challenge result in improved viral clearance yet do not prevent the morbidity associated with viral infection, and they exacerbate cellular recruitment into the lung, compared with primary responses. Inhibiting CD28 costimulation with the approved immunomodulator CTLA4Ig suppressed primary responses in naive mice infected with influenza, but was remarkably curative for memory CD4 T cell-mediated secondary responses to influenza, with reduced immunopathology and enhanced recovery. We demonstrate that CTLA4Ig differentially affects lymphoid and nonlymphoid responses to influenza challenge, inhibiting proliferation and egress of lymphoid naive and memory T cells, while leaving lung-resident memory CD4 T cell responses intact. Our findings reveal the dual nature of memory T cell-mediated secondary responses and suggest costimulation modulation as a novel strategy to optimize antiviral immunity by limiting the memory T cell response to its protective capacities.
Collapse
Affiliation(s)
- John R Teijaro
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
De Santi L, Cantalupo L, Tassi M, Raspadori D, Cioni C, Annunziata P. Higher expression of BDNF receptor gp145trkB is associated with lower apoptosis intensity in T cell lines in multiple sclerosis. J Neurol Sci 2008; 277:65-70. [PMID: 18992902 DOI: 10.1016/j.jns.2008.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/18/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
Conflicting data exist on expression of gp145trkB, the high affinity receptor for brain-derived neurotrophic factor (BDNF), on peripheral blood immunocompetent cells in multiple sclerosis (MS). We analyzed expression of gp145trkB by western blotting and flow cytometry in myelin basic protein (MBP)- and ovalbumin (OVA)-T cell lines prepared from 12 patients with relapsing-remitting MS and 12 normal healthy subjects (NHS) and correlated it with activation-induced apoptosis. We found a higher percentage of gp145trkB-expressing MBP-T cells in MS patients than in NHS (p=0.011). gp145trkB was mainly expressed by CD8(+) T cells to a higher extent in MS patients than in NHS (p=0.04). MBP-T cell lines from MS patients showed significantly lower apoptosis intensity than those from NHS (p=0.011). We found also a significant negative correlation between gp145trkB expression and apoptosis intensity in MS patients only (p=0.02). OVA-T cell lines showed a gp145trkB expression similar to that of MBP-T cell lines, with a higher expression in MS patients than NHS, and similar correlations with apoptosis intensity in MS. These findings suggest that gp145trkB is mainly expressed on T cell lines from MS patients and that the BDNF/gp145trkB axis is involved in the regulation of peripheral T cell apoptosis in MS.
Collapse
Affiliation(s)
- Lorenzo De Santi
- Department of Neurological and Behavioural Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Blood-borne soluble protein antigen intensifies T cell activation in autoimmune CNS lesions and exacerbates clinical disease. Proc Natl Acad Sci U S A 2007; 104:18625-30. [PMID: 18000062 DOI: 10.1073/pnas.0705033104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explored the effect of i.v. soluble antigen on autoaggressive, myelin basic protein-specific effector T cells within their target organ during acute experimental autoimmune encephalomyelitis (EAE). Intravital two-photon imaging revealed that i.v. autoantigen reached the CNS and was taken up and processed by antigen-presenting cells within 30 min after injection. The exogenous autoantigen dramatically changed the motility and function of autoreactive effector T cells within the EAE lesions: T cells that had been cruising through the tissue slowed down and became tethered to local antigen-presenting cells within 1 h. One hour later, the effector T cells massively produced proinflammatory cytokines and up-regulated membranous activation markers. This strong activation of the T cells boosted CNS inflammation and aggravated clinical disease. Postactivated effector and resting memory T cells specific for a non-CNS antigen (ovalbumin) were recruited to EAE lesions and moved there without contacting antigen-presenting cells. These cells were similarly arrested and activated after i.v. infusion of ovalbumin, and they also exacerbated clinical disease. Our data are relevant for autoantigen-based therapies of autoimmune disorders. Further, the study indicates how brain unrelated antigens (microbial components) leaking into the chronically inflamed CNS through the bloodstream might trigger relapses in multiple sclerosis.
Collapse
|
29
|
Tsunoda I, Libbey JE, Fujinami RS. Sequential polymicrobial infections lead to CNS inflammatory disease: possible involvement of bystander activation in heterologous immunity. J Neuroimmunol 2007; 188:22-33. [PMID: 17604850 PMCID: PMC1987327 DOI: 10.1016/j.jneuroim.2007.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 02/05/2023]
Abstract
VV(PLP) is a recombinant vaccinia virus (VV) encoding myelin proteolipid protein (PLP) that has been used to investigate molecular mimicry and autoimmunity. Since virus infections can cause bystander activation, mice were first infected with VV(PLP), and later challenged with wild-type VV, lymphocytic choriomeningitis virus (LCMV), or murine cytomegalovirus (MCMV). Among the VV(PLP)-primed mice, only MCMV challenge induced significant Ki-67(+), CD3(+)T cell infiltration into the central nervous system (CNS) with a mild PLP antibody response. While MCMV alone caused no CNS disease, control VV-infected mice followed with MCMV developed mild CNS inflammation. Thus, heterologous virus infections can induce CNS pathology.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Neurology, University of Utah School of Medicine, 3R330 SOM, Salt Lake City, Utah 84132-2305, United States
| | | | | |
Collapse
|
30
|
Boucher A, Desforges M, Duquette P, Talbot PJ. Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients. Clin Immunol 2007; 123:258-67. [PMID: 17448727 PMCID: PMC7106099 DOI: 10.1016/j.clim.2007.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 01/25/2007] [Accepted: 02/07/2007] [Indexed: 12/22/2022]
Abstract
Autoimmune reactions associated with MS involve genetic and environmental factors. Because murine coronaviruses induce an MS-like disease, the human coronaviruses (HCoV) are attractive candidates as environmental factors involved in a demyelinating pathology. We previously reported the isolation of HCoV-229E/myelin basic protein (MBP) cross-reactive T-cell lines (TCL) in MS patients. To investigate antigenic cross-reactivity at the molecular level, 155 long-term T-cell clones (TCC) were derived from 32 MS patients by in vitro selection with MBP, proteolipid protein (PLP) or HCoV (strains 229E and OC43). Overall, 114 TCC were virus-specific, 31 were specific for myelin Ag and 10 other were HCoV/myelin cross-reactive. Twenty-eight virus-specific TCC and 7 myelin-specific TCC were obtained from six healthy donors. RACE RT-PCR amplification of the Vbeta chains of five of ten the cross-reactive TCC confirmed clonality and sequencing identified the CDR3 region associated with cross-reactivity. Our findings have promising implications in the investigation of the role of molecular mimicry between coronaviruses and myelin in MS as a mechanism related to disease initiation or relapses.
Collapse
Affiliation(s)
- Annie Boucher
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval (Québec), Canada H7V 1B7
| | - Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval (Québec), Canada H7V 1B7
| | - Pierre Duquette
- MS Clinic, Hôpital Notre-Dame, Montréal, Québec, Canada H2L 4K8
| | - Pierre J. Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval (Québec), Canada H7V 1B7
- Corresponding author. Fax: +1 450 686 5566.
| |
Collapse
|
31
|
Odoardi F, Kawakami N, Li Z, Cordiglieri C, Streyl K, Nosov M, Klinkert WEF, Ellwart JW, Bauer J, Lassmann H, Wekerle H, Flügel A. Instant effect of soluble antigen on effector T cells in peripheral immune organs during immunotherapy of autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2007; 104:920-5. [PMID: 17213317 PMCID: PMC1783415 DOI: 10.1073/pnas.0608383104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
i.v. infusion of native autoantigen or its altered peptide variants is an important therapeutic option for the treatment of autoimmune diseases, because it selectively targets the disease-inducing T cells. To learn more about the mechanisms and kinetics of this approach, we visualized the crucial initial effects of i.v. infusion of peptides or intact protein on GFP-tagged autoaggressive CD4(+) effector T cells using live-video and two-photon in situ imaging of spleens in living animals. We found that the time interval between i.v. injection of intact protein to first changes in T cell behavior was extremely short; within 10 min after protein application, the motility of the T cells changed drastically. They slowed down and became tethered to local sessile stromal cells. A part of the cells aggregated to form clusters. Within the following 20 min, IFN-gamma mRNA was massively (>100-fold) up-regulated; surface IL-2 receptor and OX-40 (CD 134) increased 1.5 h later. These processes depleted autoimmune T cells in the blood circulation, trapping the cells in the peripheral lymphoid organs and thus preventing them from invading the CNS. This specific blockage almost completely abrogated CNS inflammation and clinical disease. These findings highlight the speed and efficiency of antigen recognition in vivo and add to our understanding of T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Francesca Odoardi
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Naoto Kawakami
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Zhaoxia Li
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Chiara Cordiglieri
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Kristina Streyl
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Mikhail Nosov
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | - Joachim W. Ellwart
- Institute for Molecular Immunology, Gesellschaft für Strahlenforschung–National Research Center for Environment and Health, Marchioninistrasse 25, 81377 Munich, Germany; and
| | - Jan Bauer
- Center of Brain Research, Immunopathology, University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Hans Lassmann
- Center of Brain Research, Immunopathology, University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Hartmut Wekerle
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexander Flügel
- *Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Ndejembi MP, Tang AL, Farber DL. Reshaping the past: Strategies for modulating T-cell memory immune responses. Clin Immunol 2006; 122:1-12. [PMID: 16916619 DOI: 10.1016/j.clim.2006.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 02/08/2023]
Abstract
Memory T cells are generated following an initial encounter with antigen, persist over the lifetime of an individual, and mediate rapid and robust functional responses upon antigenic recall. While immune memory is generally associated with protective immune response to pathogens, memory T cells can be generated to diverse types of antigens including autoantigens and alloantigens through homologous or crossreactive priming and comprise the majority of circulating T cells during adulthood. Memory T cells can therefore play critical roles in propagating and perpetuating autoimmune disease and in mediating allograft rejection, although the precise pathways for regulation of memory immune responses remain largely undefined. Moreover, evaluating and designing strategies to modulate memory T-cell responses are challenging given the remarkable heterogeneity of memory T cells, with different subsets predominating in lymphoid versus non-lymphoid tissue sites. In this review, we discuss what is presently known regarding the effect of current immunomodulation strategies on the memory T-cell compartment and potential strategies for controlling immunological recall.
Collapse
Affiliation(s)
- Modesta P Ndejembi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
33
|
Berghmans N, Dillen C, Heremans H. Exogenous IL-12 suppresses experimental autoimmune encephalomyelitis (EAE) by tuning IL-10 and IL-5 levels in an IFN-γ-dependent way. J Neuroimmunol 2006; 176:63-75. [PMID: 16764944 DOI: 10.1016/j.jneuroim.2006.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 12/14/2022]
Abstract
Endogenous IL-12 is considered to be required for the generation and function of pathogenic Th1 effector cells in experimental autoimmune encephalomyelitis (EAE). We show here that IL-12 administration together with the immunization suppressed actively induced CREAE in SJL/J and in Biozzi/ABH mice and even subsequent spontaneous relapse incidence and severity in Biozzi ABH mice. IL-12 given during remission of primary disease inhibited re-induced relapses in SJL/J, but not spontaneous relapses in Biozzi mice. The protective effect of IL-12 is time- and dose-dependent. Protection is accompanied by subsequent increased production of IL-10 and IL-5 by lymph node and spleen cells and an inhibition of cell proliferation. Mice depleted of IFN-gamma by administration of neutralizing antibodies were poorly protected by exogenous IL-12, indicating that the inhibitory effect of IL-12 is partially IFN-gamma dependent.
Collapse
Affiliation(s)
- Nele Berghmans
- Laboratory of Immunobiology, Rega Institute, University of Leuven Medical School, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
34
|
Combe CL, Moretto MM, Schwartzman JD, Gigley JP, Bzik DJ, Khan IA. Lack of IL-15 results in the suboptimal priming of CD4+ T cell response against an intracellular parasite. Proc Natl Acad Sci U S A 2006; 103:6635-40. [PMID: 16614074 PMCID: PMC1458934 DOI: 10.1073/pnas.0506180103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFN-gamma-producing CD4+ T cells, although important for protection against acute Toxoplasma gondii infection, can cause gut pathology, which may prove to be detrimental for host survival. Here we show that mice lacking IL-15 gene develop a down-regulated IFN-gamma-producing CD4+ T cell response against the parasite, which leads to a reduction in gut necrosis and increased level of survival against infection. Moreover, transfer of immune CD4+ T cells from WT to IL-15-/- mice reversed inhibition of gut pathology and caused mortality equivalent to levels of parental WT mice. Down-regulated CD4+ T cell response in the absence of IL-15, manifested as reduced antigen-specific proliferation, was due to defective priming of the T cell subset by dendritic cells (DCs) of these animals. When stimulated with antigen-pulsed DCs from WT mice, CD4+ T cells from IL-15-/- mice were primed optimally, and robust proliferation of these cells was observed. A defect in the DCs of knockout mice was further confirmed by their reduced ability to produce IL-12 upon stimulation with Toxoplasma lysate antigen. Addition of exogenous IL-15 to DC cultures from knockout mice led to increased IL-12 production by these cells and restored their ability to prime an optimal parasite-specific CD4+ T cell response. To our knowledge, this is the first demonstration of the role of IL-15 in the development of CD4+ T cell immunity against an intracellular pathogen. Furthermore, based on these observations, targeting of IL-15 should have a beneficial effect on individuals suffering from CD4+ T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Crescent L. Combe
- *Department of Microbiology, Parasitology, and Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Magali M. Moretto
- *Department of Microbiology, Parasitology, and Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | | | | | - David J. Bzik
- Microbiology, Dartmouth Medical School, Lebanon, NH 03755
| | - Imtiaz A. Khan
- *Department of Microbiology, Parasitology, and Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
- To whom correspondence should be addressed at:
Department of Microbiology, Immunology, and Parasitology, 1901 Perdido Street, New Orleans, LA 70112. E-mail:
| |
Collapse
|
35
|
Kipnis J, Cardon M, Strous RD, Schwartz M. Loss of autoimmune T cells correlates with brain diseases: possible implications for schizophrenia? Trends Mol Med 2006; 12:107-12. [PMID: 16469540 DOI: 10.1016/j.molmed.2006.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 01/16/2006] [Accepted: 01/25/2006] [Indexed: 11/28/2022]
Abstract
T-cell-mediated autoimmunity participates in physiological defense, maintenance and repair of the adult brain. However, unless such autoimmune responses to insults are rigorously controlled, they might lead to an autoimmune disease or other immune-related defects, where destructive activity outweighs the beneficial effect. Here, we discuss these apparently contradictory effects of autoimmunity in schizophrenic patients, whose typical immune aberrations have prompted recent speculation about an autoimmune-related etiology. We found that, although schizophrenic patients have active immune systems, they often lack autoimmune clones specifically reactive to a major myelin protein, myelin basic protein (MBP). This, in conjunction with our discovery in rodents that T cells that recognize brain-resident proteins are needed for normal cognitive functioning, led us to propose an immune-based neurodevelopmental hypothesis, in which autoimmune-T-cell deficiency is suggested to cause onset or progression of schizophrenia.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | | | |
Collapse
|
36
|
Abstract
Many CNS diseases of primarily noninflammatory origin, such as chronic neurodegenerative diseases, stroke and trauma, display inflammatory features. Conversely, damage to nerve cells and axons has emerged as a clinically important parameter of autoimmune neuroinflammatory conditions such as multiple sclerosis. Experimental data are conflicting as to whether neuroinflammatory reactions should be regarded as detrimental, or as an apt response serving to minimize nervous tissue damage. Despite this, modulation of inflammation is one of the most dynamic areas in the search for new therapeutic targets for a spectrum of CNS diseases. Recent developments in the field have unravelled an intricate regulation of neuroinflammation and disclosed several avenues that, with further exploration, may result in new ways of treating common and disabling CNS diseases.
Collapse
Affiliation(s)
- Fredrik Piehl
- Karolinska Institute, Neuroimmunology Unit, Department of Clinical Neuroscience, CMM L08:04, S171 76 Stockholm, Sweden
| |
Collapse
|