1
|
Jiao W, Chen Y, Xie Z, Zhao L, Du S, Ma M, Liao M, Dai M. Revealing novel CD8 + T-cell epitopes from the H5N1 avian influenza virus in HBW/B1 haplotype ducks. Vet Res 2024; 55:169. [PMID: 39695865 DOI: 10.1186/s13567-024-01415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/18/2024] [Indexed: 12/20/2024] Open
Abstract
The duck CD8+ T-cell response effectively defends against H5N1 highly pathogenic avian influenza virus (HPAIV) infection, but the recognized peptide is rarely identified. Here, we found that the ratio of CD8+ T cells and the expression of IFN-γ and cytotoxicity-associated genes, including granzyme A/K, perforin and IL2, at 7 days post-infection in peripheral blood mononuclear cells (PBMCs) from B1 haplotype ducks significantly increased in the context of defending against H5N1 AIV infection in vivo. Moreover, similar results were observed in cultured and sorted H5N1 AIV-stimulated duck CD8+ T cells in vitro. Next, we selected 109 epitopes as candidate epitopes on the basis of the MHC-I restriction binding peptide prediction website database and further identified twelve CD8+ T-cell epitopes that significantly increased IFN-γ gene expression after stimulating B1 haplotype duck memory PBMCs. In particular, NP338-346, NP473-481, M2-10, PB1540-548 and PA80-88 were highly conserved in H5N1, H5N6, H5N8, H7N9, and H9N2 AIVs. These findings provide directions for the development of universal T-cell epitope vaccines for AIV in ducks.
Collapse
Affiliation(s)
- Wanlin Jiao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingyi Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zimin Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Li Zhao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shanyao Du
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mulin Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, 510642, China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Tang Z, Wang S, Du L, Hu D, Chen X, Zheng H, Ding H, Chen S, Zhang L, Zhang N. The impact of micropolymorphism in Anpl-UAA on structural stability and peptide presentation. Int J Biol Macromol 2024; 267:131665. [PMID: 38636758 DOI: 10.1016/j.ijbiomac.2024.131665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Micropolymorphism significantly shapes the peptide-binding characteristics of major histocompatibility complex class I (MHC-I) molecules, affecting the host's resistance to pathogens, which is particularly pronounced in avian species displaying the "minimal essential MHC" expression pattern. In this study, we compared two duck MHC-I alleles, Anpl-UAA*77 and Anpl-UAA*78, that exhibit markedly different peptide binding properties despite their high sequence homology. Through mutagenesis experiments and crystallographic analysis of complexes with the influenza virus-derived peptide AEAIIVAMV (AEV9), we identified a critical role for the residue at position 62 in regulating hydrogen-bonding interactions between the peptide backbone and the peptide-binding groove. This modulation affects the characteristics of the B pocket and the stability of the loop region between the 310 helix and the α1 helix, leading to significant changes in the structure and stability of the peptide-MHC-I complex (pMHC-I). Moreover, the proportion of different residues at position 62 among Anpl-UAAs may reflect the correlation between pAnpl-UAA stability and duck body temperature. This research not only advances our understanding of the Anpl-UAA structure but also deepens our insight into the impact of MHC-I micropolymorphism on peptide binding.
Collapse
Affiliation(s)
- Ziche Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Suqiu Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liubao Du
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dongmei Hu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoming Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanyin Zheng
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Ding
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shiwen Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan 250100, Shandong, China.
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China..
| |
Collapse
|
3
|
Hu J, Song L, Ning M, Niu X, Han M, Gao C, Feng X, Cai H, Li T, Li F, Li H, Gong D, Song W, Liu L, Pu J, Liu J, Smith J, Sun H, Huang Y. A new chromosome-scale duck genome shows a major histocompatibility complex with several expanded multigene families. BMC Biol 2024; 22:31. [PMID: 38317190 PMCID: PMC10845735 DOI: 10.1186/s12915-024-01817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A virus (IAV), harbors almost all subtypes of IAVs and resists to many IAVs which cause extreme virulence in chicken and human. However, the response of duck's adaptive immune system to IAV infection is poorly characterized due to lack of a detailed gene map of the major histocompatibility complex (MHC). RESULTS We herein reported a chromosome-scale Beijing duck assembly by integrating Nanopore, Bionano, and Hi-C data. This new reference genome SKLA1.0 covers 40 chromosomes, improves the contig N50 of the previous duck assembly with highest contiguity (ZJU1.0) of more than a 5.79-fold, surpasses the chicken and zebra finch references in sequence contiguity and contains a complete genomic map of the MHC. Our 3D MHC genomic map demonstrated that gene family arrangement in this region was primordial; however, families such as AnplMHCI, AnplMHCIIβ, AnplDMB, NKRL (NK cell receptor-like genes) and BTN underwent gene expansion events making this area complex. These gene families are distributed in two TADs and genes sharing the same TAD may work in a co-regulated model. CONCLUSIONS These observations supported the hypothesis that duck's adaptive immunity had been optimized with expanded and diversified key immune genes which might help duck to combat influenza virus. This work provided a high-quality Beijing duck genome for biological research and shed light on new strategies for AIV control.
Collapse
Affiliation(s)
- Jiaxiang Hu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xinyu Niu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengying Han
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Chuze Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xingwei Feng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Han Cai
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Te Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Fangtao Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
4
|
Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, Smith J, Yang YZ, Burt DW, Hincke M, Zhang ZD, Yuan MD, Kaufman J, Sun CJ, Li JY, Shao LW, Yang N, Hou ZC. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol 2023; 6:1233. [PMID: 38057566 PMCID: PMC10700341 DOI: 10.1038/s42003-023-05619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yu-Chen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, 100101, Beijing, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Zi-Ding Zhang
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Meng-Di Yuan
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cong-Jiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jun-Ying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Li-Wa Shao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Card DC, Van Camp AG, Santonastaso T, Jensen-Seaman MI, Anthony NM, Edwards SV. Structure and evolution of the squamate major histocompatibility complex as revealed by two Anolis lizard genomes. Front Genet 2022; 13:979746. [PMID: 36425073 PMCID: PMC9679377 DOI: 10.3389/fgene.2022.979746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole (Anolis carolinensis) and brown anole (A. sagrei), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2β gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1, many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC.
Collapse
Affiliation(s)
- Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Daren C. Card,
| | - Andrew G. Van Camp
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| | - Trenten Santonastaso
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | | | - Nicola M. Anthony
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Zhang L, Li Z, Tang Z, Han L, Wei X, Xie X, Ren S, Meng K, Liu Y, Xu M, Qi L, Chen H, Wu J, Zhang N. Efficient Identification of Tembusu Virus CTL Epitopes in Inbred HBW/B4 Ducks Using a Novel MHC Class I-Restricted Epitope Screening Scheme. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:145-156. [PMID: 35623661 DOI: 10.4049/jimmunol.2100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The identification of MHC class I-restricted CTL epitopes in certain species, particularly nonmammals, remains a challenge. In this study, we developed a four-step identification scheme and confirmed its efficiency by identifying the Anpl-UAA*76-restricted CTL epitopes of Tembusu virus (TMUV) in inbred haplotype ducks HBW/B4. First, the peptide binding motif of Anpl-UAA*76 was determined by random peptide library in de novo liquid chromatography-tandem mass spectrometry, a novel nonbiased, data-independent acquisition method that we previously established. Second, a total of 38 TMUV peptides matching the motif were screened from the viral proteome, among which 11 peptides were conserved across the different TMUV strains. Third, the conserved TMUV peptides were refolded in vitro with Anpl-UAA*76 and Anpl-β2-microglobulin to verify the results from the previous two steps. To clarify the structural basis of the obtained motif, we resolved the crystal structure of Anpl-UAA*76 with the TMUV NS3 peptide LRKRQLTVL and found that Asp34 is critical for the preferential binding of the B pocket to bind the second residue to arginine as an anchor residue. Fourth, the immunogenicity of the conserved TMUV peptides was tested in vivo using specific pathogen-free HBW/B4 ducks immunized with the attenuated TMUV vaccine. All 11 conserved TMUV epitopes could bind stably to Anpl-UAA*76 in vitro and stimulate the secretion of IFN-γ and lymphocyte proliferation, and three conserved and one nonconserved peptides were selected to evaluate the CTL responses in vivo by flow cytometry and their tetramers. We believe that this new scheme could improve the identification of MHC class I-restricted CTL epitopes, and our data provide a foundation for further study on duck anti-TMUV CTL immunity.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziche Tang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingxia Han
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaimeng Ren
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Kai Meng
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yueyue Liu
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Minli Xu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lihong Qi
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Chen
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China;
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China;
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Westerdahl H, Mellinger S, Sigeman H, Kutschera VE, Proux-Wéra E, Lundberg M, Weissensteiner M, Churcher A, Bunikis I, Hansson B, Wolf JBW, Strandh M. The genomic architecture of the passerine MHC region: high repeat content and contrasting evolutionary histories of single copy and tandemly duplicated MHC genes. Mol Ecol Resour 2022; 22:2379-2395. [PMID: 35348299 DOI: 10.1111/1755-0998.13614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
The Major Histocompatibility Complex (MHC) is of central importance to the immune system, and an optimal MHC diversity is believed to maximize pathogen elimination. Birds show substantial variation in MHC diversity, ranging from few genes in most bird orders to very many genes in passerines. Our understanding of the evolutionary trajectories of the MHC in passerines is hampered by lack of data on genomic organization. Therefore, we assemble and annotate the MHC genomic region of the great reed warbler (Acrocephalus arundinaceus), using long-read sequencing and optical mapping. The MHC region is large (>5.5Mb), characterized by structural changes compared to hitherto investigated bird orders and shows higher repeat content than the genome average. These features were supported by analyses in three additional passerines. MHC genes in passerines are found in two different chromosomal arrangements, either as single copy MHC genes located among non-MHC genes, or as tandemly duplicated tightly linked MHC genes. Some single copy MHC genes are old and putative orthologs among species. In contrast tandemly duplicated MHC genes are monophyletic within species and have evolved by simultaneous gene duplication of several MHC genes. Structural differences in the MHC genomic region among bird orders seem substantial compared to mammals and have possibly been fuelled by clade-specific immune system adaptations. Our study provides methodological guidance in characterizing complex genomic regions, constitutes a resource for MHC research in birds, and calls for a revision of the general belief that avian MHC has a conserved gene order and small size compared to mammals.
Collapse
Affiliation(s)
- Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Samantha Mellinger
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Hanna Sigeman
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | - Estelle Proux-Wéra
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | - Max Lundberg
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Matthias Weissensteiner
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Allison Churcher
- National Bioinformatics Infrastructure Sweden, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Science for Life Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, SE-752 37, Uppsala, Sweden
| | - Bengt Hansson
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| |
Collapse
|
8
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
9
|
He K, Liang CH, Zhu Y, Dunn P, Zhao A, Minias P. Reconstructing Macroevolutionary Patterns in Avian MHC Architecture With Genomic Data. Front Genet 2022; 13:823686. [PMID: 35251132 PMCID: PMC8893315 DOI: 10.3389/fgene.2022.823686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The Major Histocompatibility Complex (MHC) is a hyper-polymorphic genomic region, which forms a part of the vertebrate adaptive immune system and is crucial for intra- and extra-cellular pathogen recognition (MHC-I and MHC-IIA/B, respectively). Although recent advancements in high-throughput sequencing methods sparked research on the MHC in non-model species, the evolutionary history of MHC gene structure is still poorly understood in birds. Here, to explore macroevolutionary patterns in the avian MHC architecture, we retrieved contigs with antigen-presenting MHC and MHC-related genes from available genomes based on third-generation sequencing. We identified: 1) an ancestral avian MHC architecture with compact size and tight linkage between MHC-I, MHC-IIA/IIB and MHC-related genes; 2) three major patterns of MHC-IIA/IIB unit organization in different avian lineages; and 3) lineage-specific gene translocation events (e.g., separation of the antigen-processing TAP genes from the MHC-I region in passerines), and 4) the presence of a single MHC-IIA gene copy in most taxa, showing evidence of strong purifying selection (low dN/dS ratio and low number of positively selected sites). Our study reveals long-term macroevolutionary patterns in the avian MHC architecture and provides the first evidence of important transitions in the genomic arrangement of the MHC region over the last 100 million years of bird evolution.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- *Correspondence: Ke He, ; Piotr Minias,
| | - Chun-hong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Peter Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ayong Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Łódź, Poland
- *Correspondence: Ke He, ; Piotr Minias,
| |
Collapse
|
10
|
Qin S, Dunn PO, Yang Y, Liu H, He K. Polymorphism and varying selection within the MHC class I of four Anas species. Immunogenetics 2021; 73:395-404. [PMID: 34195858 DOI: 10.1007/s00251-021-01222-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Ducks (Anatidae) are often vectors for the spread of pathogens because of their long-distance migrations. These migrations also expose ducks to a wide variety of pathogens in their wintering and breeding grounds, and, as a consequence, we might expect strong selection on their immune genes. Here, we studied exons 2 and 3 of the MHC class I in four species of Anas ducks (A. platyrhynchos, A. poecilorhyncha, A. formosa, and A. querquedula) using Illumina-sequencing. Both exons 2 and 3 code for the peptide-binding region of class I molecules; however, most previous studies of birds have only focused on exon 3. Here, we found stronger positive selection on exon 2 than exon 3, as indicated by more species with dN/dS > 1 and higher Wu-Kabat values. There was little evidence that divergence time influenced polymorphism, the numbers of identical alleles (partial α1 or α2 regions) among four Anas, or selection, suggesting that these widespread species might share similar levels of selection from pathogens. The high similarity of allele numbers, positively selected sites (PSS), conserved motifs, and variable protein sites (VPS) supported the persistence of trans-species polymorphism in Anas for at least 10 million years. Our study revealed exon 2 as a relatively unexplored source of variation in avian MHC class I, which should be considered in future studies.
Collapse
Affiliation(s)
- Shidi Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Yang Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Agriculture and Forestry University, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China.
| |
Collapse
|
11
|
Liu Z, Xie X, Li Z, Zhang L, Zhang N. Complex assembly, crystallization and preliminary X-ray crystallographic analysis of duck MHC class I complexed with a TUMV viral peptide. Res Vet Sci 2020; 132:312-317. [PMID: 32721646 DOI: 10.1016/j.rvsc.2020.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The CTL immune response mediated by MHC I plays an important role in duck anti-TMUV infection. This study reports the expression, purification and crystallization of a complex of duck MHC class I molecules Anpl-UAA*SD, duck β2-microglobulin (Anpl-β2m) and the polypeptide LRKRQLTVL (LRK9) derived from Tembusu virus (TMUV) NS3. The crystal diffraction resolution is 1.50 Å and belongs to the P62 space group, and the unit cell parameters are a = 82.468, b = 82.468, c = 112.507. The Matthew's constant is calculated to be 2.32 Å3 Da -1, and an asymmetric unit contains a complex molecule with a solvent content of 47%. The research lays the foundation for the structure of immune molecules about duck anti-TMUV research.
Collapse
Affiliation(s)
- Zixin Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Not all birds have a single dominantly expressed MHC-I gene: Transcription suggests that siskins have many highly expressed MHC-I genes. Sci Rep 2019; 9:19506. [PMID: 31862923 PMCID: PMC6925233 DOI: 10.1038/s41598-019-55800-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
Passerine birds belong to the most species rich bird order and are found in a wide range of habitats. The extremely polymorphic adaptive immune system of passerines, identified through their major histocompatibility complex class I genes (MHC-I), may explain some of this extreme radiation. Recent work has shown that passerines have higher numbers of MHC-I gene copies than other birds, but little is currently known about expression and function of these gene copies. Non-passerine birds have a single highly expressed MHC-I gene copy, a pattern that seems unlikely in passerines. We used high-throughput sequencing to study MHC-I alleles in siskins (Spinus spinus) and determined gene expression, phylogenetic relationships and sequence divergence. We verified between six and 16 MHC-I alleles per individual and 97% of these were expressed. Strikingly, up to five alleles per individual had high expression. Out of 88 alleles 18 were putatively non-classical with low sequence divergence and expression, and found in a single phylogenetic cluster. The remaining 70 alleles were classical, with high sequence divergence and variable degrees of expression. Our results contradict the suggestion that birds only have a single dominantly expressed MHC-I gene by demonstrating several highly expressed MHC-I gene copies in a passerine.
Collapse
|
13
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
15
|
Minias P, Pikus E, Anderwald D. Allelic diversity and selection at the MHC class I and class II in a bottlenecked bird of prey, the White-tailed Eagle. BMC Evol Biol 2019; 19:2. [PMID: 30611206 PMCID: PMC6321662 DOI: 10.1186/s12862-018-1338-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Background Genes of the Major Histocompatibility Complex (MHC) are essential for adaptive immune response in vertebrates, as they encode receptors that recognize peptides derived from the processing of intracellular (MHC class I) and extracellular (MHC class II) pathogens. High MHC diversity in natural populations is primarily generated and maintained by pathogen-mediated diversifying and balancing selection. It is, however, debated whether selection at the MHC can counterbalance the effects of drift in bottlenecked populations. The aim of this study was to assess allelic diversity of MHC genes in a recently bottlenecked bird of prey, the White-tailed Eagle Haliaeetus albicilla, as well as to compare mechanisms that shaped the evolution of MHC class I and class II in this species. Results We showed that significant levels of MHC diversity were retained in the core Central European (Polish) population of White-tailed Eagles. Ten MHC class I and 17 MHC class II alleles were recovered in total and individual birds showed high average MHC diversity (3.80 and 6.48 MHC class I and class II alleles per individual, respectively). Distribution of alleles within individuals provided evidence for the presence of at least three class I and five class II loci the White-tailed Eagle, which suggests recent duplication events. MHC class II showed greater sequence polymorphism than MHC class I and there was much stronger signature of diversifying selection acting on MHC class II than class I. Phylogenetic analysis provided evidence for trans-species similarity of class II, but not class I, sequences, which is likely consistent with stronger balancing selection at MHC class II. Conclusions Relatively high MHC diversity retained in the White-tailed Eagles from northern Poland reinforces high conservation value of local eagle populations. At the same time, our study is the first to demonstrate contrasting patterns of allelic diversity and selection at MHC class I and class II in an accipitrid species, supporting the hypothesis that different mechanisms can shape evolutionary trajectories of MHC class I and class II genes. Electronic supplementary material The online version of this article (10.1186/s12862-018-1338-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Dariusz Anderwald
- Eagle Conservation Committee, Niepodległości 53/55, 10-044, Olsztyn, Poland
| |
Collapse
|
16
|
Zhang L, Lin D, Yu S, Bai J, Jiang W, Su W, Huang Y, Yang S, Wu J. Polymorphism of duck MHC class molecules. Immunogenetics 2018; 71:49-59. [PMID: 30187087 DOI: 10.1007/s00251-018-1076-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023]
Abstract
Major histocompatibility complex class I (MHC I) molecules are critically involved in defense against pathogens, and their high polymorphism is advantageous to a range of immune responses, especially in duck displaying biased expression of one MHC I gene. Here, we examined MHC I polymorphism in two duck (Anas platyrhynchos) breeds from China: Shaoxing (SX) and Jinding (JD). Twenty-seven unique UAA alleles identified from the MHC I genes of these breeds were analyzed concerning amino acid composition, homology, and phylogenetic relationships. Based on amino acid sequence homology, allelic groups of Anas platyrhynchos MHC I (Anpl-MHC I) were established and their distribution was analyzed. Then, highly variable sites (HVSs) in peptide-binding domains (PBD) were estimated and located in the three-dimensional structure of Anpl-MHC I. The UAA alleles identified showed high polymorphism, based on full-length sequence homology. By adding the alleles found here to known Anpl-MHC I genes from domestic ducks, they could be divided into 17 groups and four novel groups were revealed for SX and JD ducks. The UAA alleles of the two breeds were not divergent from the MHC I of other duck breeds, and HVSs were mostly located in the peptide-binding groove (PBG), suggesting that they might determine peptide-binding characteristics and subsequently influence peptide presentation and recognition. The results from the present study enrich Anpl-MHC I polymorphism data and clarify the distribution of alleles with different peptide-binding specificities, which might also accelerate effective vaccine development and help control various infections in ducks.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China.
| | - Dongmei Lin
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Sen Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Junping Bai
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Wanchun Jiang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Wenzheng Su
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Yanyan Huang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Shaohua Yang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No. 8, Sangyuan Road, Jinan, Shandong, China.
| |
Collapse
|
17
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
18
|
Kaufman J. Generalists and Specialists: A New View of How MHC Class I Molecules Fight Infectious Pathogens. Trends Immunol 2018; 39:367-379. [PMID: 29396014 PMCID: PMC5929564 DOI: 10.1016/j.it.2018.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
Abstract
In comparison with the major histocompatibility complexes (MHCs) of typical mammals, the chicken MHC is simple and compact with a single dominantly expressed class I molecule that can determine the immune response. In addition to providing useful information for the poultry industry and allowing insights into the evolution of the adaptive immune system, the simplicity of the chicken MHC has allowed the discovery of phenomena that are more difficult to discern in the more complicated mammalian systems. This review discusses the new concept that poorly expressed promiscuous class I alleles act as generalists to protect against a wide variety of infectious pathogens, while highly expressed fastidious class I alleles can act as specialists to protect against new and dangerous pathogens. A broad overview of classical MHC I expression and bound peptides reveals an inverse correlation between repertoire breadth and cell-surface expression in some chicken and human alleles. Several chicken class I alleles with wide peptide-binding repertoires (promiscuity) are associated with resistance to a variety of common diseases. Conversely, a narrow peptide-binding repertoire (fastidiousness) in some human HLA-B alleles is associated with resistance to HIV progression. Cell-surface expression of some classical class I alleles depends on the regulation of translocation to the cell surface rather than of transcription or translation. MHC translocation is influenced by peptide translocation in chickens and by tapasin interaction in humans.
Collapse
Affiliation(s)
- Jim Kaufman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK; University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB2 0ES, UK.
| |
Collapse
|
19
|
Arnaiz-Villena A, Ruiz-del-Valle V, Muñiz E, Palacio-Gruber J, Campos C, Gómez-Casado E, Villa JMM, Serrano-Vela I. Major Histocompatibility Complex Allele Persistence in Eurasia and America in the Genus Carduelis (Spinus) During Million Years. THE OPEN ORNITHOLOGY JOURNAL 2017; 10:92-104. [DOI: 10.2174/1874453201710010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 10/10/2023]
Abstract
Introduction:GenusCarduelis(Fringillidaefamily) includes goldfinches, siskins, redpolls, greenfinches and crossbills. Many of the species classified within this genus and other related genera have been grouped by using molecular systematics and the mitochondrial cytochrome b (mt cyt b) gene. According to this, the Eurasian siskin (C. spinus)is the only one extant direct ancestor of several North American finches; North American / South American radiations may have been originated by Eurasian siskin (or extinct relative). In the present work, we aim to perform a study of transpecies and transcontinental analyses of MHC (Major Histocompatibility Complex) Class I alleles in several genusCarduelis/Spinusspecies in order to draw evolutionary conclusions in several wild bird species belonging to the genusCarduelis / Spinus.Materials and Methods:Blood was taken from worldwide wild bird species. Passerine phylogeny was done after analysing mtDNA with Maximun Likelihood and Bayesian dendrograms. Major histocompatibility complex alleles were obtained by standard DNA cloning and sequencing.Results:We found two matches between MHC-I DNA alleles from different South American siskins at DNA level. Also, it was observed that the Eurasian siskin shares a protein with pine siskin and another with three South American siskins. Eight South American siskins species also share the same MHC protein. In addition, studied songbirds MHC class I intron 2 is longer than that ofGallus gallus.Conclusion:We have drawn the following conclusions: 1) We present the first direct evidence that “Minimal Essential MHC” does not exist for birds; one of its main definition characters,i.e.: small intron size does not hold for songbirds. 2) We also report that MHC genes transpecies evolution exist in birds by showing also for the first time that worldwide bird species keep the same MHC protein and DNA alleles. 3) New evidences on MHC alleles conservation from EurasianCarduelis spinus(most ancient) to South American siskins (most recent) during million years support that Eurasian siskin is the parental species for American GenusCarduelis (Spinus)species. It is uncertain whether Eurasian siskin (or extant relative) had initially an Holoartic distribution, including America.
Collapse
|
20
|
Abstract
To enrich gene polymorphism ofDuMHCI and provide data for further studies on disease resistance, 14DuMHCI genes from Weishan Ma duck and Cherry Valley duck were cloned, and their characterization were investigated. The overall conservation of the 14 alleles could be observed within the sequences, and relative conservation were also displayed in the peptide-binding domain and CD8 interaction sites. Based on full-length amino acid homology, MHC class I from different duck lines could be divided into 13 gene groups and three novel gene groups existed.Moreover, 14 key variable residues corresponding to gene groups division were exhibited on the homology modelling constructed based on the resolved protein structure of DuMHC I. This study explicit the characteristics of DuMHC I in the two duck lines and could contribute to design effective diagnostics and vaccines for the species against various infections.
Collapse
|
21
|
Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. J Virol 2017; 91:JVI.02511-16. [PMID: 28490583 PMCID: PMC5487541 DOI: 10.1128/jvi.02511-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl-UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I.
Collapse
|
22
|
Drews A, Strandh M, Råberg L, Westerdahl H. Expression and phylogenetic analyses reveal paralogous lineages of putatively classical and non-classical MHC-I genes in three sparrow species (Passer). BMC Evol Biol 2017. [PMID: 28651571 PMCID: PMC5485651 DOI: 10.1186/s12862-017-0970-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. RESULTS The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. CONCLUSIONS Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non-classical MHC-I genes, and that the evolutionary origin of these genes predate the split of the three investigated sparrow species 7 million years ago. Because only the classical MHC-I genes are involved in antigen presentation, the function of different MHC-I genes should be considered in future ecological and evolutionary studies of MHC-I in sparrows and other songbirds.
Collapse
Affiliation(s)
- Anna Drews
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Maria Strandh
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Lars Råberg
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Helena Westerdahl
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| |
Collapse
|
23
|
Pardal S, Drews A, Alves JA, Ramos JA, Westerdahl H. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit. Immunogenetics 2017; 69:463-478. [PMID: 28534224 PMCID: PMC5486808 DOI: 10.1007/s00251-017-0993-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.
Collapse
Affiliation(s)
- Sara Pardal
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Anna Drews
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden.
| | - José A Alves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,South Iceland Research Centre, University of Iceland, Fjolheimer, IS-800, Selfoss, Iceland
| | - Jaime A Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Helena Westerdahl
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden
| |
Collapse
|
24
|
A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Sci Rep 2017; 7:41426. [PMID: 28134319 PMCID: PMC5278385 DOI: 10.1038/srep41426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Recently, many immune-related genes have been extensively studied in ducks, but relatively little is known about their TCR genes. Here, we determined the germline and expressed repertoire of TCR genes in White Peking duck. The genomic organization of the duck TCRα/δ, TCRγ and unconventional TCRδ2 loci are highly conserved with their counterparts in mammals or chickens. By contrast, the duck TCRβ locus is organized in an unusual pattern, (Vβ)n-Dβ-(Jβ)2-Cβ1-(Jβ)4-Cβ2, which differs from the tandem-aligned clusters in mammals or the translocon organization in some teleosts. Excluding the first exon encoding the immunoglobulin domain, the subsequent exons of the two Cβ show significant diversity in nucleotide sequence and exon structure. Based on the nucleotide sequence identity, 49 Vα, 30 Vδ, 13 Vβ and 15 Vγ unique gene segments are classified into 3 Vα, 5 Vδ, 4 Vβ and 6 Vγ subgroups, respectively. Phylogenetic analyses revealed that most duck V subgroups, excluding Vβ1, Vγ5 and Vγ6, have closely related orthologues in chicken. The coding joints of all cDNA clones demonstrate conserved mechanisms that are used to increase junctional diversity. Collectively, these data provide insight into the evolution of TCRs in vertebrates and improve our understanding of the avian immune system.
Collapse
|
25
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
26
|
Fleming-Canepa X, Jensen SM, Mesa CM, Diaz-Satizabal L, Roth AJ, Parks-Dely JA, Moon DA, Wong JP, Evseev D, Gossen DA, Tetrault DG, Magor KE. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. THE JOURNAL OF IMMUNOLOGY 2016; 197:783-94. [PMID: 27342841 DOI: 10.4049/jimmunol.1502450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shawna M Jensen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Christine M Mesa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Alexa J Roth
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Julie A Parks-Dely
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Debra A Moon
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Janet P Wong
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danyel Evseev
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Desolie A Gossen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - David G Tetrault
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Katharine E Magor
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
27
|
O'Connor EA, Strandh M, Hasselquist D, Nilsson JÅ, Westerdahl H. The evolution of highly variable immunity genes across a passerine bird radiation. Mol Ecol 2016; 25:977-89. [DOI: 10.1111/mec.13530] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Affiliation(s)
- E. A. O'Connor
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - M. Strandh
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - D. Hasselquist
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - J.-Å. Nilsson
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| | - H. Westerdahl
- Molecular Ecology and Evolution Lab; Lund University; Ecology building 223 62 Lund Sweden
| |
Collapse
|
28
|
Zeng QQ, Zhong GH, He K, Sun DD, Wan QH. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus). Int J Immunogenet 2015; 43:8-17. [PMID: 26700854 DOI: 10.1111/iji.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/29/2022]
Abstract
Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci.
Collapse
Affiliation(s)
- Q-Q Zeng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - G-H Zhong
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - K He
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - D-D Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Q-H Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Gillingham MAF, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol 2015; 29:438-54. [DOI: 10.1111/jeb.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. A. F. Gillingham
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
- Centre de Recherche de la Tour du Valat; Arles France
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Institute of Evolutionary Ecology and Conservation Genomics; University of Ulm; Ulm Germany
| | - A. Courtiol
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - M. Teixeira
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - M. Galan
- UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); INRA EFPA; Montferrier-sur-Lez Cedex France
| | - A. Bechet
- Centre de Recherche de la Tour du Valat; Arles France
| | - F. Cezilly
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| |
Collapse
|
30
|
Lyons AC, Hoostal MJ, Bouzat JL. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution. Genetica 2015; 143:521-34. [PMID: 26071093 DOI: 10.1007/s10709-015-9850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/06/2015] [Indexed: 11/29/2022]
Abstract
The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.
Collapse
Affiliation(s)
- Amanda C Lyons
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | |
Collapse
|
31
|
Chen LC, Lan H, Sun L, Deng YL, Tang KY, Wan QH. Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure. Sci Rep 2015; 5:7963. [PMID: 25608659 PMCID: PMC4302302 DOI: 10.1038/srep07963] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023] Open
Abstract
The major histocompatibility complex (MHC) plays an important role in immune response. Avian MHCs are not well characterized, only reporting highly compact Galliformes MHCs and extensively fragmented zebra finch MHC. We report the first genomic structure of an endangered Pelecaniformes (crested ibis) MHC containing 54 genes in three regions spanning ~500 kb. In contrast to the loose BG (26 loci within 265 kb) and Class I (11 within 150) genomic structures, the Core Region is condensed (17 within 85). Furthermore, this Region exhibits a COL11A2 gene, followed by four tandem MHC class II αβ dyads retaining two suites of anciently duplicated “αβ” lineages. Thus, the crested ibis MHC structure is entirely different from the known avian MHC architectures but similar to that of mammalian MHCs, suggesting that the fundamental structure of ancestral avian class II MHCs should be “COL11A2-IIαβ1-IIαβ2.” The gene structures, residue characteristics, and expression levels of the five class I genes reveal inter-locus functional divergence. However, phylogenetic analysis indicates that these five genes generate a well-supported intra-species clade, showing evidence for recent duplications. Our analyses suggest dramatic structural variation among avian MHC lineages, help elucidate avian MHC evolution, and provide a foundation for future conservation studies.
Collapse
Affiliation(s)
- Li-Cheng Chen
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hong Lan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yan-Li Deng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ke-Yi Tang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
32
|
Knafler GJ, Fidler A, Jamieson IG, Robertson BC. Evidence for multiple MHC class II β loci in New Zealand's critically endangered kakapo, Strigops habroptilus. Immunogenetics 2013; 66:115-21. [PMID: 24352694 DOI: 10.1007/s00251-013-0750-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/26/2013] [Indexed: 01/25/2023]
Abstract
Immunologically important genes of the major histocompatibility complex (MHC) have been characterized in a number of avian species with the general finding of considerable variation in size and structural organization among organisms. A range of nonpasserines which represent early-diverging Neoave lineages have been described as having only one MHC class II β locus potentially leading to the conclusion that this is the ancestral condition. Here, we examine the monotypic, early-diverging, critically endangered kakapo, Strigops habroptilus, for allelic variation at MHC class II β exon 2, as part of species' recovery efforts. We found two to four confirmed sequence variants per individual indicating the presence of more than one MHC class II β locus. Given the kakapo's basal evolutionary status, evidence for multiple MHC class II β loci seems to counter the proposed mono-locus history of modern birds. However, MHC gene duplication, maintenance, and loss among and within bird species may confound avian relationships making it difficult to elucidate the ancestral state. This study adds essential data for disentangling the course of MHC structural evolution in birds.
Collapse
Affiliation(s)
- Gabrielle J Knafler
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
33
|
Magor KE, Miranzo Navarro D, Barber MRW, Petkau K, Fleming-Canepa X, Blyth GAD, Blaine AH. Defense genes missing from the flight division. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:377-88. [PMID: 23624185 PMCID: PMC7172724 DOI: 10.1016/j.dci.2013.04.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 05/12/2023]
Abstract
Birds have a smaller repertoire of immune genes than mammals. In our efforts to study antiviral responses to influenza in avian hosts, we have noted key genes that appear to be missing. As a result, we speculate that birds have impaired detection of viruses and intracellular pathogens. Birds are missing TLR8, a detector for single-stranded RNA. Chickens also lack RIG-I, the intracellular detector for single-stranded viral RNA. Riplet, an activator for RIG-I, is also missing in chickens. IRF3, the nuclear activator of interferon-beta in the RIG-I pathway is missing in birds. Downstream of interferon (IFN) signaling, some of the antiviral effectors are missing, including ISG15, and ISG54 and ISG56 (IFITs). Birds have only three antibody isotypes and IgD is missing. Ducks, but not chickens, make an unusual truncated IgY antibody that is missing the Fc fragment. Chickens have an expanded family of LILR leukocyte receptor genes, called CHIR genes, with hundreds of members, including several that encode IgY Fc receptors. Intriguingly, LILR homologues appear to be missing in ducks, including these IgY Fc receptors. The truncated IgY in ducks, and the duplicated IgY receptor genes in chickens may both have resulted from selective pressure by a pathogen on IgY FcR interactions. Birds have a minimal MHC, and the TAP transport and presentation of peptides on MHC class I is constrained, limiting function. Perhaps removing some constraint, ducks appear to lack tapasin, a chaperone involved in loading peptides on MHC class I. Finally, the absence of lymphotoxin-alpha and beta may account for the observed lack of lymph nodes in birds. As illustrated by these examples, the picture that emerges is some impairment of immune response to viruses in birds, either a cause or consequence of the host-pathogen arms race and long evolutionary relationship of birds and RNA viruses.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013; 21:544-55. [PMID: 23770275 PMCID: PMC7126491 DOI: 10.1016/j.tim.2013.05.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 12/22/2022]
Abstract
As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species.
Collapse
|
35
|
Buehler DM, Verkuil YI, Tavares ES, Baker AJ. Characterization of MHC class I in a long-distance migrant shorebird suggests multiple transcribed genes and intergenic recombination. Immunogenetics 2012; 65:211-25. [PMID: 23239370 DOI: 10.1007/s00251-012-0669-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic gene families encoding proteins crucial to the vertebrate acquired immune system. Classical MHC class I (MHCI) genes code for molecules expressed on the surfaces of most nucleated cells and are associated with defense against intracellular pathogens, such as viruses. These genes have been studied in a few wild bird species, but have not been studied in long-distance migrating shorebirds. Red Knots Calidris canutus are medium-sized, monogamous sandpipers with migratory routes that span the globe. Understanding how such long-distance migrants protect themselves from disease has gained new relevance since the emergence of avian-borne diseases, including intracellular pathogens recognized by MHCI molecules, such as avian influenza. In this study, we characterized MHCI genes in knots and found 36 alleles in eight individuals and evidence for six putatively functional and expressed MHCI genes in a single bird. We also found evidence for recombination and for positive selection at putative peptide binding sites in exons 2 and 3. These results suggest surprisingly high MHC diversity in knots, given their demographic history. This may be a result of selection from diverse pathogens encountered by shorebirds throughout their annual migrations.
Collapse
MESH Headings
- Amino Acid Sequence
- Animal Migration
- Animals
- Charadriiformes/genetics
- Charadriiformes/immunology
- DNA, Complementary/genetics
- DNA, Intergenic/genetics
- Ecosystem
- Exons/genetics
- Genes, MHC Class I
- Genetic Variation
- Introns/genetics
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- Polymorphism, Genetic
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Recombination, Genetic
- Selection, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Deborah M Buehler
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
36
|
|
37
|
Wang B, Ekblom R, Strand TM, Portela-Bens S, Höglund J. Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC. BMC Genomics 2012; 13:553. [PMID: 23066932 PMCID: PMC3500228 DOI: 10.1186/1471-2164-13-553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The MHC, which is regarded as the most polymorphic region in the genomes of jawed vertebrates, plays a central role in the immune system by encoding various proteins involved in the immune response. The chicken MHC-B genomic region has a highly streamlined gene content compared to mammalian MHCs. Its core region includes genes encoding Class I and Class IIB molecules but is only ~92Kb in length. Sequences of other galliform MHCs show varying degrees of similarity as that of chicken. The black grouse (Tetrao tetrix) is a wild galliform bird species which is an important model in conservation genetics and ecology. We sequenced the black grouse core MHC-B region and combined this with available data from related species (chicken, turkey, gold pheasant and quail) to perform a comparative genomics study of the galliform MHC. This kind of analysis has previously been severely hampered by the lack of genomic information on avian MHC regions, and the galliformes is still the only bird lineage where such a comparison is possible. RESULTS In this study, we present the complete genomic sequence of the MHC-B locus of black grouse, which is 88,390 bp long and contains 19 genes. It shows the same simplicity as, and almost perfect synteny with, the corresponding genomic region of chicken. We also use 454-transcriptome sequencing to verify expression in 17 of the black grouse MHC-B genes. Multiple sequence inversions of the TAPBP gene and TAP1-TAP2 gene block identify the recombination breakpoints near the BF and BLB genes. Some of the genes in the galliform MHC-B region also seem to have been affected by selective forces, as inferred from deviating phylogenetic signals and elevated rates of non-synonymous nucleotide substitutions. CONCLUSIONS We conclude that there is large synteny between the MHC-B region of the black grouse and that of other galliform birds, but that some duplications and rearrangements have occurred within this lineage. The MHC-B sequence reported here will provide a valuable resource for future studies on the evolution of the avian MHC genes and on links between immunogenetics and ecology of black grouse.
Collapse
Affiliation(s)
- Biao Wang
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Robert Ekblom
- Evolutionary Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Tanja M Strand
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
- Swedish Institute for Communicable Disease Control, Department of Preparedness, Nobels väg, , 18, Solna, SE-171 82, Sweden
| | - Silvia Portela-Bens
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Jacob Höglund
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| |
Collapse
|
38
|
Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Cell Mol Life Sci 2012; 69:3317-27. [PMID: 22638925 PMCID: PMC3437018 DOI: 10.1007/s00018-012-1005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD0, which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD0 recruits tapasin in a 1:1 stoichiometry. Although the TMD0s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD0s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.
Collapse
|
39
|
Vanderven HA, Petkau K, Ryan-Jean KEE, Aldridge JR, Webster RG, Magor KE. Avian influenza rapidly induces antiviral genes in duck lung and intestine. Mol Immunol 2012; 51:316-24. [PMID: 22534314 DOI: 10.1016/j.molimm.2012.03.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 12/28/2022]
Abstract
Ducks are the natural reservoir of influenza A and survive infection by most strains. To characterize the duck immune response to influenza, we sought to identify innate immune genes expressed early in an infection. We used suppressive subtractive hybridization (SSH) to construct 3 libraries enriched in differentially expressed genes from lung RNA of a duck infected with highly pathogenic avian influenza virus A/Vietnam/1203/04 (H5N1), or lung and intestine RNA of a duck infected with low pathogenic avian influenza A/mallard/BC/500/05 (H5N2) compared to a mock-infected duck. Sequencing of 1687 clones identified a transcription profile enriched in genes involved in antiviral defense and other cellular processes. Major histocompatibility complex class I (MHC I), interferon induced protein with tricopeptide repeats 5 (IFIT5), and 2'-5' oligoadenylate synthetase-like gene (OASL) were increased more than 1000-fold in relative transcript abundance in duck lung at 1dpi with highly pathogenic VN1203. These genes were induced much less in lung or intestine following infection with low pathogenic BC500. The expression of these genes following infection suggests that ducks initiate an immediate and robust response to a potentially lethal influenza strain, and a minimal response to a low pathogenic strain.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Kraus RHS, Zeddeman A, van Hooft P, Sartakov D, Soloviev SA, Ydenberg RC, Prins HHT. Evolution and connectivity in the world-wide migration system of the mallard: inferences from mitochondrial DNA. BMC Genet 2011; 12:99. [PMID: 22093799 PMCID: PMC3258206 DOI: 10.1186/1471-2156-12-99] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022] Open
Abstract
Background Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere. Results Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (FST = 0.51). Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA) at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold) since then and little migration (not statistically different from zero). Conclusions Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing hypotheses and conclude that a complex mix of historical, recent and anthropogenic factors shaped the current mallard populations. We refute population classification based on flyways proposed by ornithologists and managers, because they seem to have little biological meaning. Our results have implications for wetland management and conservation, with special regard to the release of farmed mallards for hunting, as well as for the possible transmission of Avian Influenza by mallards due to migration.
Collapse
Affiliation(s)
- Robert H S Kraus
- Resource Ecology Group, Wageningen University, 6700 AA, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Li C, Chen L, Sun Y, Liang H, Yi K, Sun Y, Ma Y, Li X, Wu W, Zhou X. Molecular cloning, polymorphism and tissue distribution of the MHC class IIB gene in the Chinese goose (Anser cygnoides). Br Poult Sci 2011; 52:318-27. [PMID: 21732877 DOI: 10.1080/00071668.2011.581270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The goose major histocompatibility complex (MHC) class IIB cDNA (Ancy-MHCII) was cloned by homology cloning and rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR), and the genomic structure and tissue expression were investigated. 2. Three different 5'-RACE sequences (Ancy-MHC II5'-1, Ancy-MHC II5'-2, Ancy-MHC II5'-3), one 3'-RACE sequence (Ancy-MHC II-3') and two different full length Ancy-MHC IIB cDNA sequences (Ancy-CD01, Ancy-CD02), which came from different alleles at one locus or different loci, were determined. 3. The genomic organisation is composed of 6 exons and 5 introns, with a longer intron region than that of the chicken. The alleles encode 259 and 260 amino acids in the mature protein. 4. The number of non-synonymous substitutions (dN) in the peptide-binding region of exon 2 from 8 alleles was higher than that of the synonymous substitutions (dS). 5. Tissue-specific expression of Ancy-MHC II mRNA was detected in an adult goose using RT-PCR. These results showed that Ancy-MHC II mRNA was expressed in the lung, spleen, liver, intestine, heart, kidney, pancreas, brain, skin and muscle. This is consistent with the expression of MHC class IIB in various tissues from the chicken. 6. Sequences from goose, snipe and duck clustered together when compared with known MHC class IIB sequences from the other species, significantly differing from mammals and aquatic species, indicating a pattern consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Science and Veterinary Medicine and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, 5333 Xi'an Avenue, Changchun, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ren L, Yang Z, Wang T, Sun Y, Guo Y, Zhang Z, Fei J, Bao Y, Qin T, Wang J, Huang Y, Hu X, Zhao Y, Li N. Characterization of the MHC class II α-chain gene in ducks. Immunogenetics 2011; 63:667-78. [PMID: 21660591 DOI: 10.1007/s00251-011-0545-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 06/01/2011] [Indexed: 02/04/2023]
Abstract
In humans, classical MHC class II molecules include DQ, DR, and DP, which are similar in structure but consist of distinct α- and β-chains. The genes encoding these molecules are all located in the MHC class II gene region. In non-mammalian vertebrates such as chickens, only a single class II α-chain gene corresponding to the human DRA has been identified. Here, we report a characterization of the duck MHC class II α-chain (Anpl-DRA) encoding gene, which contains four exons encoding a typical signal peptide, a peptide-binding α1 domain, an immunoglobulin-like α2 domain, and Tm/Cyt, respectively. This gene is present in the duck genome as a single copy and is highly expressed in the spleen. Sequencing of cDNA and genomic DNA of the Anpl-DRA of different duck individuals/strains revealed low levels of genetic polymorphism, especially in the same strain, although most duck individuals have two different alleles. Otherwise, we found that the duck gene is located next to class II β genes, which is the same as in humans but different from the situation in chickens.
Collapse
Affiliation(s)
- Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liang Q, Wei L, Wang X, He H. MHC class I loci of the Bar-Headed goose (Anser indicus). Genet Mol Biol 2011; 33:573-7. [PMID: 21637434 PMCID: PMC3036124 DOI: 10.1590/s1415-47572010000300031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 03/17/2010] [Indexed: 11/22/2022] Open
Abstract
MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade.
Collapse
Affiliation(s)
- Qinglong Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, National Research Center For Wildlife-Borne Diseases, Chinese Academy of Sciences, Beijing China
| | | | | | | |
Collapse
|
44
|
Bollmer JL, Hull JM, Ernest HB, Sarasola JH, Parker PG. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic. BMC Evol Biol 2011; 11:143. [PMID: 21612651 PMCID: PMC3118149 DOI: 10.1186/1471-2148-11-143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). RESULTS We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. CONCLUSIONS The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago.
Collapse
Affiliation(s)
- Jennifer L Bollmer
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - Joshua M Hull
- Wildlife and Ecology Unit, Veterinary Genetics Laboratory, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Holly B Ernest
- Wildlife and Ecology Unit, Veterinary Genetics Laboratory, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - José H Sarasola
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Avda. Américo Vespucio, 41092 Sevilla, Spain
| | - Patricia G Parker
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
45
|
Juola FA, Dearborn DC. Sequence-based evidence for major histocompatibility complex-disassortative mating in a colonial seabird. Proc Biol Sci 2011; 279:153-62. [PMID: 21613297 DOI: 10.1098/rspb.2011.0562] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.
Collapse
Affiliation(s)
- Frans A Juola
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Dr, Coral Gables, FL 33146, USA.
| | | |
Collapse
|
46
|
Strandh M, Lannefors M, Bonadonna F, Westerdahl H. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes). Immunogenetics 2011; 63:653-66. [PMID: 21607694 DOI: 10.1007/s00251-011-0534-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 05/09/2011] [Indexed: 12/24/2022]
Abstract
The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.
Collapse
Affiliation(s)
- Maria Strandh
- Behavioral Ecology Group, CEFE-CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
47
|
Cloutier A, Mills JA, Baker AJ. Characterization and locus-specific typing of MHC class I genes in the red-billed gull (Larus scopulinus) provides evidence for major, minor, and nonclassical loci. Immunogenetics 2011; 63:377-94. [PMID: 21327606 DOI: 10.1007/s00251-011-0516-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/28/2011] [Indexed: 12/23/2022]
Abstract
A major challenge facing studies of major histocompatibility complex (MHC) evolution in birds is the difficulty in genotyping alleles at individual loci, and the consequent inability to investigate sequence variation and selection pressures for each gene. In this study, four MHC class I loci were isolated from the red-billed gull (Larus scopulinus), representing both the first characterized MHCI genes within Charadriiformes (shorebirds, gulls, and allies) and the first full-length MHCI sequences described outside Galloanserae (gamebirds + waterfowl). Complete multilocus genotypes were obtained for 470 individuals using a combination of reference-strand conformation analysis and direct sequencing of gene-specific amplification products, and variation of peptide-binding region (PBR) exons was surveyed for all loci. Each gene is transcribed and has conserved sequence features characteristic of antigen-presenting MHCI molecules. However, higher allelic variation, a more even allele frequency distribution, and evidence of positive selection acting on a larger number of PBR residues suggest that only one locus (Lasc-UAA) functions as a major classical MHCI gene. Lasc-UBA, with more limited variation and PBR motifs that encompass a subset of Lasc-UAA diversity, was assigned a putative minor classical function, whereas the divergent and largely invariant binding-groove motifs of Lasc-UCA and -UDA are suggestive of nonclassical loci with specialized ligand-binding roles.
Collapse
Affiliation(s)
- Alison Cloutier
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
48
|
A locus-wide approach to assessing variation in the avian MHC: the B-locus of the wild turkey. Heredity (Edinb) 2010; 107:40-9. [PMID: 21179065 DOI: 10.1038/hdy.2010.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Studies of major histocompatibility complex (MHC) diversity in non-model vertebrates typically focus on structure and sequence variation in the antigen-presenting loci: the highly variable and polymorphic class I and class IIB genes. Although these studies provide estimates of the number of genes and alleles/locus, they often overlook variation in functionally related and co-inherited genes important in the immune response. This study utilizes the sequence of the MHC B-locus derived from a commercial turkey to investigate MHC variation in wild birds. Sequences were obtained for nine interspersed MHC amplicons (non-class I/II) from each of 40 birds representing 3 subspecies of wild turkey (Meleagris gallopavo). Analysis of aligned sequences identified 238 single-nucleotide variants approximately one-third of which had minor allele frequencies >0.2 in the sampled birds. PHASE analysis identified 70 prospective MHC haplotypes in the wild turkeys, whereas a combined analysis with commercial birds identified almost 100 haplotypes in the species. Denaturing gradient gel electrophoresis (DGGE) of the class IIB loci was used to test the efficacy of single-nucleotide polymorphism (SNP) haplotyping to capture locus-wide variation. Diversity in SNP haplotypes and haplotype sharing among individuals was directly reflected in the DGGE patterns. Utilization of a reference haplotype to sequence interspersed regions of the MHC has significant advantages over other methods of surveying diversity while identifying high-frequency SNPs for genotyping. SNP haplotyping provides a means to identify both divergent haplotypes and homozygous individuals for assessment of immunological variation in wild and domestic populations.
Collapse
|
49
|
Chen W, Jia Z, Zhang T, Zhang N, Lin C, Gao F, Wang L, Li X, Jiang Y, Li X, Gao GF, Xia C. MHC Class I Presentation and Regulation by IFN in Bony Fish Determined by Molecular Analysis of the Class I Locus in Grass Carp. THE JOURNAL OF IMMUNOLOGY 2010; 185:2209-21. [DOI: 10.4049/jimmunol.1000347] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Shukla SK, Kumar V, Ahmed SU, Mathew J, Sharma D. Structural Homology in BF2 Gene Between Red Jungle Fowl and Different Poultry Species. JOURNAL OF APPLIED ANIMAL RESEARCH 2010. [DOI: 10.1080/09712119.2010.9707112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|