1
|
Palianina D, Di Roberto RB, Castellanos-Rueda R, Schlatter F, Reddy ST, Khanna N. A method for polyclonal antigen-specific T cell-targeted genome editing (TarGET) for adoptive cell transfer applications. Mol Ther Methods Clin Dev 2023; 30:147-160. [PMID: 37448595 PMCID: PMC10336339 DOI: 10.1016/j.omtm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Adoptive cell therapy of donor-derived, antigen-specific T cells expressing native T cell receptors (TCRs) is a powerful strategy to fight viral infections in immunocompromised patients. Determining the fate of T cells following patient infusion hinges on the ability to track them in vivo. While this is possible by genetic labeling of parent cells, the applicability of this approach has been limited by the non-specificity of the edited T cells. Here, we devised a method for CRISPR-targeted genome integration of a barcoded gene into Epstein-Barr virus-antigen-stimulated T cells and demonstrated its use for exclusively identifying expanded virus-specific cell lineages. Our method facilitated the enrichment of antigen-specific T cells, which then mediated improved cytotoxicity against Epstein-Barr virus-transformed target cells. Single-cell and deep sequencing for lineage tracing revealed the expansion profile of specific T cell clones and their corresponding gene expression signature. This approach has the potential to enhance the traceability and the monitoring capabilities during immunotherapeutic T cell regimens.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
| | - Raphaël B. Di Roberto
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Fabrice Schlatter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
- Divsion of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, 4031 Basel, Switzerland
| |
Collapse
|
2
|
Tirado-Herranz A, Guasp P, Pastor-Moreno A, Area-Navarro M, Alvarez I. Analysis of the different subpeptidomes presented by the HLA class I molecules of the B7 supertype. Cell Immunol 2023; 387:104707. [PMID: 36933326 DOI: 10.1016/j.cellimm.2023.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
MHC-I molecules of the HLA-B7 supertype preferentially bind peptides with proline at position 2. HLA-B*51:01 and B*51:08 present two predominant subpeptidomes, one with Pro2 and hydrophobic residues at P1, and another with Ala2 and Asp enriched at position 1. Here, we present a meta-analysis of the peptidomes presented by molecules of the B7 supertype to investigate the presence of subpeptidomes across different allotypes. Several allotypes presented subpeptidomes differing in the presence of Pro or another residue at P2. The Ala2 subpeptidomes preferred Asp1 except in HLA-B*54:01, where ligands with Ala2 contained Glu1. Sequence alignment and the analysis of crystal structures allowed us to propose positions 45 and 67 of the MHC heavy chain as relevant for the presence of subpeptidomes. Deciphering the principles behind the presence of subpeptidomes could improve our understanding of antigen presentation in other MHC-I molecules. Running title: HLA-B7 supertype subpeptidomes.
Collapse
Affiliation(s)
- Adrián Tirado-Herranz
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alba Pastor-Moreno
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - María Area-Navarro
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
3
|
Morita D, Asa M, Sugita M. Engagement with the TCR induces plasticity in antigenic ligands bound to MHC class I and CD1 molecules. Int Immunol 2023; 35:7-17. [PMID: 36053252 DOI: 10.1093/intimm/dxac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Complementarity-determining regions (CDRs) of αβ T-cell receptors (TCRs) sense peptide-bound MHC (pMHC) complexes via chemical interactions, thereby mediating antigen specificity and MHC restriction. Flexible finger-like movement of CDR loops contributes to the establishment of optimal interactions with pMHCs. In contrast, peptide ligands captured in MHC molecules are considered more static because of the rigid hydrogen-bond network that stabilizes peptide ligands in the antigen-binding groove of MHC molecules. An array of crystal structures delineating pMHC complexes in TCR-docked and TCR-undocked forms is now available, which enables us to assess TCR engagement-induced conformational changes in peptide ligands. In this short review, we overview conformational changes in MHC class I-bound peptide ligands upon TCR docking, followed by those for CD1-bound glycolipid ligands. Finally, we analyze the co-crystal structure of the TCR:lipopeptide-bound MHC class I complex that we recently reported. We argue that TCR engagement-induced conformational changes markedly occur in lipopeptide ligands, which are essential for exposure of a primary T-cell epitope to TCRs. These conformational changes are affected by amino acid residues, such as glycine, that do not interact directly with TCRs. Thus, ligand recognition by specific TCRs involves not only T-cell epitopes but also non-epitopic amino acid residues. In light of their critical function, we propose to refer to these residues as non-epitopic residues affecting ligand plasticity and antigenicity (NR-PA).
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minori Asa
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Lammoglia Cobo MF, Ritter J, Gary R, Seitz V, Mautner J, Aigner M, Völkl S, Schaffer S, Moi S, Seegebarth A, Bruns H, Rösler W, Amann K, Büttner-Herold M, Hennig S, Mackensen A, Hummel M, Moosmann A, Gerbitz A. Reconstitution of EBV-directed T cell immunity by adoptive transfer of peptide-stimulated T cells in a patient after allogeneic stem cell transplantation for AITL. PLoS Pathog 2022; 18:e1010206. [PMID: 35452490 PMCID: PMC9067708 DOI: 10.1371/journal.ppat.1010206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/04/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Reconstitution of the T cell repertoire after allogeneic stem cell transplantation is a long and often incomplete process. As a result, reactivation of Epstein-Barr virus (EBV) is a frequent complication that may be treated by adoptive transfer of donor-derived EBV-specific T cells. We generated donor-derived EBV-specific T cells by stimulation with peptides representing defined epitopes covering multiple HLA restrictions. T cells were adoptively transferred to a patient who had developed persisting high titers of EBV after allogeneic stem cell transplantation for angioimmunoblastic T-cell lymphoma (AITL). T cell receptor beta (TCRβ) deep sequencing showed that the T cell repertoire of the patient early after transplantation (day 60) was strongly reduced and only very low numbers of EBV-specific T cells were detectable. Manufacturing and in vitro expansion of donor-derived EBV-specific T cells resulted in enrichment of EBV epitope-specific, HLA-restricted T cells. Monitoring of T cell clonotypes at a molecular level after adoptive transfer revealed that the dominant TCR sequences from peptide-stimulated T cells persisted long-term and established an EBV-specific TCR clonotype repertoire in the host, with many of the EBV-specific TCRs present in the donor. This reconstituted repertoire was associated with immunological control of EBV and with lack of further AITL relapse. A characteristic feature of all herpesviruses is their persistence in the host’s body after primary infection. Hence, the host’s immune system is confronted with the problem to control these viruses life-long. When the immune system is severely compromised, for example after stem cell transplantation from a foreign (allogeneic) donor, these viruses can reappear, as they persist in the host’s body life-long after primary infection. Epstein-Barr virus (EBV) is a herpesvirus that can cause life-threatening complications after stem cell transplantation and only reinforcement of the host’s immune system can reestablish control over the virus. Here we show that ex vivo manufactured EBV-specific T cells can reestablish long-term control of EBV and that these cells persist in the host’s body over months. These results give us a better understanding of viral immune reconstitution post-transplant and of clinically-relevant T cell populations against EBV.
Collapse
Affiliation(s)
- María Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Ritter
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Regina Gary
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Volkhard Seitz
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- HS Diagnomics GmbH, Berlin, Germany
| | - Josef Mautner
- Department of Medicine III, LMU-Klinikum, Munich, Germany
- German Centre for Infection Research, Munich, Germany
| | - Michael Aigner
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stephanie Moi
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Anke Seegebarth
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Wolf Rösler
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University of Erlangen, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, University of Erlangen, Erlangen, Germany
| | | | - Andreas Mackensen
- Department of Internal Medicine 5 –Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Hummel
- Institute of Pathology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Moosmann
- Department of Medicine III, LMU-Klinikum, Munich, Germany
- German Centre for Infection Research, Munich, Germany
| | - Armin Gerbitz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Koning D, Quakkelaar ED, Schellens IMM, Spierings E, van Baarle D. Protective HLA Alleles Recruit Biased and Largely Similar Antigen-Specific T Cell Repertoires across Different Outcomes in HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:3-15. [PMID: 34880106 DOI: 10.4049/jimmunol.2001145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells play an important role in the control of untreated HIV infection. Several studies have suggested a decisive role of TCRs involved in anti-HIV immunity. HLA-B*27 and B*57 are often associated with a delayed HIV disease progression, but the exact correlates that provide superior immunity against HIV are not known. To investigate if the T cell repertoire underlies the protective effect in disease outcome in HLA-B*27 and B*57+ individuals, we analyzed Ag-specific TCR profiles from progressors (n = 13) and slow progressors (n = 11) expressing either B*27 or B*57. Our data showed no differences in TCR diversity between progressors and slow progressors. Both alleles recruit biased T cell repertoires (i.e., TCR populations skewed toward specific TRBV families or CDR3 regions). This bias was unrelated to disease progression and was remarkably profound for HLA-B*57, in which TRBV family usage and CDR3 sequences were shared to some extent even between epitopes. Conclusively, these data suggest that the T cell repertoires recruited by protective HLA alleles are highly similar between progressors and slow progressors in terms of TCR diversity, TCR usage, and cross-reactivity.
Collapse
Affiliation(s)
- Dan Koning
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Esther D Quakkelaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Ingrid M M Schellens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Debbie van Baarle
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and .,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
6
|
Abstract
Grouping TCRs on the similarity of CDR3 sequences could effectively cluster them by specificity. Three versions of the GLIPH algorithm are described briefly here, with instructions to use GLIPH algorithms to cluster TCRs by specificity.
Collapse
Affiliation(s)
- Chunlin Wang
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
| | - Huang Huang
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Porritt RA, Paschold L, Rivas MN, Cheng MH, Yonker LM, Chandnani H, Lopez M, Simnica D, Schultheiß C, Santiskulvong C, Van Eyk J, McCormick JK, Fasano A, Bahar I, Binder M, Arditi M. HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. J Clin Invest 2021; 131:146614. [PMID: 33705359 PMCID: PMC8121516 DOI: 10.1172/jci146614] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory syndrome associated with SARS-CoV-2 infection, shares clinical features with toxic shock syndrome, which is triggered by bacterial superantigens. Superantigen specificity for different Vβ chains results in Vβ skewing, whereby T cells with specific Vβ chains and diverse antigen specificity are overrepresented in the T cell receptor (TCR) repertoire. Here, we characterized the TCR repertoire of MIS-C patients and found a profound expansion of TCRβ variable gene 11-2 (TRBV11-2), with up to 24% of clonal T cell space occupied by TRBV11-2 T cells, which correlated with MIS-C severity and serum cytokine levels. Analysis of TRBJ gene usage and complementarity-determining region 3 (CDR3) length distribution of MIS-C expanded TRBV11-2 clones revealed extensive junctional diversity. Patients with TRBV11-2 expansion shared HLA class I alleles A02, B35, and C04, indicating what we believe is a novel mechanism for CDR3-independent T cell expansion. In silico modeling indicated that polyacidic residues in the Vβ chain encoded by TRBV11-2 (Vβ21.3) strongly interact with the superantigen-like motif of SARS-CoV-2 spike glycoprotein, suggesting that unprocessed SARS-CoV-2 spike may directly mediate TRBV11-2 expansion. Overall, our data indicate that a CDR3-independent interaction between SARS-CoV-2 spike and TCR leads to T cell expansion and possibly activation, which may account for the clinical presentation of MIS-C.
Collapse
Affiliation(s)
- Rebecca A. Porritt
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Magali Noval Rivas
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lael M. Yonker
- Mucosal Immunology and Biology Research Center and Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harsha Chandnani
- Department of Pediatrics, Loma Linda University Hospital, Loma Linda, California, USA
| | - Merrick Lopez
- Department of Pediatrics, Loma Linda University Hospital, Loma Linda, California, USA
| | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Jennifer Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center and Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Moshe Arditi
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
8
|
Lanfermeijer J, Borghans JAM, Baarle D. How age and infection history shape the antigen-specific CD8 + T-cell repertoire: Implications for vaccination strategies in older adults. Aging Cell 2020; 19:e13262. [PMID: 33078890 PMCID: PMC7681067 DOI: 10.1111/acel.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults often show signs of impaired CD8+ T‐cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T‐cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long‐term maintenance of the antigen‐specific T‐cell repertoire. Here, we review the literature on the maintenance of antigen‐experienced CD8+ T‐cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T‐cell repertoire, and the effects of age, infection history, and T‐cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - Debbie Baarle
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
- Virology & Immunology Research Department of Medical Microbiology and Infection prevention University Medical Center Groningen the Netherlands
| |
Collapse
|
9
|
Straub RH. The memory of the fatty acid system. Prog Lipid Res 2020; 79:101049. [PMID: 32589906 DOI: 10.1016/j.plipres.2020.101049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Mental memory system has sensory memory, short-term memory, working memory, and long-term memory. Working memory "keeps things in mind in parallel" when performing complex tasks. Similar aspects can be found for immunological memory. However, there exists another one, the memory of the fatty acid system. This article shows sensory memory of the fatty acid system, which is the perception apparatus of small intestine enterocytes (CD36, SR-B1, FATP4, FABP1, FABP2) and hepatocytes. In these cells, the fatty acid short-term memory is located, consisting of a cytoplasmic lipid droplet cycle. Similar like a working memory in the brain, the short-term memory of enterocytes and hepatocytes use parallel processing and recourse to long-term fatty acid memory. The fatty acid long-term memory is far away from these primary points of uptake. It is located in the adipocyte and in cellular membranes. The process of building a fatty acid memory is described with constructs like sensing environmental material, encoding, consolidation, long-term storage, retrieval, re-encoding, re-consolidation, and renewed long-term storage. The article illustrates the dynamics of building a fatty acid memory, the information content of fatty acids including the code, the roles of fatty acids in the body, and a new understanding of the expression "you are what you eat". The memory of the fatty acid system, plays a decisive role in integrating environmental signals over time (diet and microbiome).
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany.
| |
Collapse
|
10
|
Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, Kamada T, Nishimura N, Okonogi N, Ozasa K, Rübe CE, Sadakane A, Sakata R, Shimada Y, Yoshida K, Bouffler S. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:185-209. [PMID: 32146555 DOI: 10.1007/s00411-020-00837-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.
Collapse
Affiliation(s)
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany
| | - A Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| | - M Bourguignon
- Department of Biophysics and Nuclear Medicine, University of Paris Saclay (UVSQ), Verseilles, France
| | - A Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - T Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - M Imaizumi
- Department of Nagasaki Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - T Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - T Kamada
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Okonogi
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - C E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - A Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Y Shimada
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Aomori, Japan
| | - K Yoshida
- Immunology Laboratory, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - S Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilto, Didcot, UK
| |
Collapse
|
11
|
Mohammadi-Milasi F, Mahnam K, Shakhsi-Niaei M. In silico study of the association of the HLA-A*31:01 allele (human leucocyte antigen allele 31:01) with neuroantigenic epitopes of PLP (proteolipid protein), MBP (myelin basic protein) and MOG proteins (myelin oligodendrocyte glycoprotein) for studying the multiple sclerosis disease pathogenesis. J Biomol Struct Dyn 2020; 39:2526-2542. [PMID: 32242486 DOI: 10.1080/07391102.2020.1751291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The main pathologic hallmark of multiple sclerosis is a demyelinating plaque that contains a prominent immunologic response dominated by T cells of the immune system. PLP (proteolipid protein), MPB (myelin basic protein), and Myelin oligodendrocyte glycoprotein (MOG) proteins are important autoantigens for the demyelinating of CNS in multiple sclerosis. There is good evidence indicating that T CD8+ cells and MHC class I molecules play an important role in this disease. The HLA-A*31:01 allele of MHC class I is a member of HLA-A3 superfamily and there is no clear report concerning the relationship of this allele with MS. Feeling this gap, we studied the possible association of the HLA-A*31:01 with MS by prediction of neuroantigenic epitopes of human MBP, PLP, and MOG proteins of myelin sheath using in silico methods. PLP did not show any neuroantigenic epitope, but the two epitopes of MBP and seven epitopes of MOG for HLA-A*31:01 were determined via bioinformatics servers. In silico study of the nine epitope showed that MOG195-204 (LIICYNWLHR) peptide of the membrane-associated/cytoplasmic part of human MOG has suitable binding affinity to the HLA-A*31:01 allele as a potential neuroantigenic epitope. Further investigations of this peptide revealed that the binding of C-terminal residue of this peptide has a more significant effect on binding to this allele than the N-terminal part of the peptide. Altogether, this combination of "LIICYNWLHR/A*31:01 allele "may play an important role in MS pathogenesis and this complex is suggested for further studies such as T cell receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Karim Mahnam
- Departments of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, I.R. Iran
| | - Mostafa Shakhsi-Niaei
- Nanotechnology Research Center, Shahrekord University, Shahrekord, I.R. Iran.,Departments of Genetics, Faculty of Basic Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
12
|
van de Sandt CE, Clemens EB, Grant EJ, Rowntree LC, Sant S, Halim H, Crowe J, Cheng AC, Kotsimbos TC, Richards M, Miller A, Tong SYC, Rossjohn J, Nguyen THO, Gras S, Chen W, Kedzierska K. Challenging immunodominance of influenza-specific CD8 + T cell responses restricted by the risk-associated HLA-A*68:01 allomorph. Nat Commun 2019; 10:5579. [PMID: 31811120 PMCID: PMC6898063 DOI: 10.1038/s41467-019-13346-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Although influenza viruses lead to severe illness in high-risk populations, host genetic factors associated with severe disease are largely unknown. As the HLA-A*68:01 allele can be linked to severe pandemic 2009-H1N1 disease, we investigate a potential impairment of HLA-A*68:01-restricted CD8+ T cells to mount robust responses. We elucidate the HLA-A*68:01+CD8+ T cell response directed toward an extended influenza-derived nucleoprotein (NP) peptide and show that only ~35% individuals have immunodominant A68/NP145+CD8+ T cell responses. Dissecting A68/NP145+CD8+ T cells in low vs. medium/high responders reveals that high responding donors have A68/NP145+CD8+ memory T cells with clonally expanded TCRαβs, while low-responders display A68/NP145+CD8+ T cells with predominantly naïve phenotypes and non-expanded TCRαβs. Single-cell index sorting and TCRαβ analyses link expansion of A68/NP145+CD8+ T cells to their memory potential. Our study demonstrates the immunodominance potential of influenza-specific CD8+ T cells presented by a risk HLA-A*68:01 molecule and advocates for priming CD8+ T cell compartments in HLA-A*68:01-expressing individuals for establishment of pre-existing protective memory T cell pools.
Collapse
Affiliation(s)
- C E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX, Amsterdam, Netherlands
| | - E B Clemens
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - E J Grant
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Infection and Immunity Program, Monash University, Clayton, VIC, 3800, Australia
| | - L C Rowntree
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - S Sant
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - H Halim
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - J Crowe
- Deepdene Surgery, Deepdene, VIC, 3103, Australia
| | - A C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.,Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, 3004, Australia
| | - T C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, 3004, Australia.,Department of Medicine, Monash University, Central Clinical School, The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - M Richards
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3050, Australia
| | - A Miller
- Indigenous Research Network, Griffith University, Brisbane, QLD, 4222, Australia.,Office of Indigenous Engagement, CQUniversity, Townsvillle, QLD, Australia
| | - S Y C Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3050, Australia.,Menzies School of Health Research, Charles Darwin University, Darwin, NT, 0811, Australia
| | - J Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - T H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - S Gras
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - W Chen
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - K Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
13
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
14
|
Huth A, Liang X, Krebs S, Blum H, Moosmann A. Antigen-Specific TCR Signatures of Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:979-990. [PMID: 30587531 DOI: 10.4049/jimmunol.1801401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
CMV is a prevalent human pathogen. The virus cannot be eliminated from the body, but is kept in check by CMV-specific T cells. Patients with an insufficient T cell response, such as transplant recipients, are at high risk of developing CMV disease. However, the CMV-specific T cell repertoire is complex, and it is not yet clear which T cells protect best against virus reactivation and disease. In this study, we present a highly resolved characterization of CMV-specific human CD8+ T cells based on enrichment by specific peptide stimulation and mRNA sequencing of their TCR β-chains (TCRβ). Our analysis included recently identified T cell epitopes restricted through HLA-C, whose presentation is resistant to viral immunomodulation, and well-studied HLA-B-restricted epitopes. In eight healthy virus carriers, we identified a total of 1052 CMV-specific TCRβ sequences. HLA-C-restricted, CMV-specific TCRβ clonotypes dominated the ex vivo T cell response and contributed the highest-frequency clonotype of the entire repertoire in two of eight donors. We analyzed sharing and similarity of CMV-specific TCRβ sequences and identified 63 public or related sequences belonging to 17 public TCRβ families. In our cohort, and in an independent cohort of 352 donors, the cumulative frequency of these public TCRβ family members was a highly discriminatory indicator of carrying both CMV infection and the relevant HLA type. Based on these findings, we propose CMV-specific TCRβ signatures as a biomarker for an antiviral T cell response to identify patients in need of treatment and to guide future development of immunotherapy.
Collapse
Affiliation(s)
- Alina Huth
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany.,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| | - Xiaoling Liang
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Andreas Moosmann
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany; .,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| |
Collapse
|
15
|
Abstract
Human leukocyte antigen (HLA)-I molecules generally bind short peptides (8–10 amino acids), although extended HLA-I restricted peptides (>10 amino acids) can be presented to T cells. However, the function of such extended HLA-I epitopes in tumour immunity, and how they would be recognised by T-cell receptors (TCR) remains unclear. Here we show that the structures of two distinct TCRs (TRAV4+TRAJ21+-TRBV28+TRBJ2-3+ and TRAV4+TRAJ8+-TRBV9+TRBJ2-1+), originating from a polyclonal T-cell repertoire, bind to HLA-B*07:02, presenting a 13-amino-acid-long tumour-associated peptide, NY-ESO-160–72. Comparison of the structures reveals that the two TCRs differentially binds NY-ESO-160–72–HLA-B*07:02 complex, and induces differing extent of conformational change of the NY-ESO-160–72 epitope. Accordingly, polyclonal TCR usage towards an extended HLA-I restricted tumour epitope translates to differing TCR recognition modes, whereby extensive flexibility at the TCR–pHLA-I interface engenders recognition. Human leukocyte antigen (HLA) presents peptides to activate T cells, but many aspects in the T cell receptor (TCR)/HLA interaction remain unclear. Here the authors show, via structural data, that two TCRs differentially recognize the same tumour peptide/HLA complex and induce contrasting conformation changes of the peptide.
Collapse
|
16
|
Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8 + T cell response. Nat Immunol 2017; 18:1228-1237. [PMID: 28945243 DOI: 10.1038/ni.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8+ T cell populations specific for variants of the nonstructural protein epitope NS3133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3133-DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2+ TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2+ TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.
Collapse
|
17
|
Josephs TM, Grant EJ, Gras S. Molecular challenges imposed by MHC-I restricted long epitopes on T cell immunity. Biol Chem 2017; 398:1027-1036. [PMID: 28141543 DOI: 10.1515/hsz-2016-0305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
It has widely been accepted that major histocompatibility complex class I molecules (MHC-I) are limited to binding small peptides of 8-10 residues in length. However, this consensus has recently been challenged with the identification of longer peptides (≥11 residues) that can also elicit cytotoxic CD8+ T cell responses. Indeed, a growing number of studies demonstrate that these non-canonical epitopes are important targets for the immune system. As long epitopes represent up to 10% of the peptide repertoire bound to MHC-I molecules, here we review their impact on antigen presentation by MHC-I, TCR recognition, and T cell immunity.
Collapse
|
18
|
Ayres CM, Corcelli SA, Baker BM. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings. Front Immunol 2017; 8:935. [PMID: 28824655 PMCID: PMC5545744 DOI: 10.3389/fimmu.2017.00935] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 01/28/2023] Open
Abstract
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
19
|
Mastrodemou S, Stalika E, Vardi A, Gemenetzi K, Spanoudakis M, Karypidou M, Mavroudi I, Hadzidimitriou A, Stavropoulos-Giokas C, Papadaki HA, Stamatopoulos K. Cytotoxic T cells in chronic idiopathic neutropenia express restricted antigen receptors. Leuk Lymphoma 2017; 58:2926-2933. [DOI: 10.1080/10428194.2017.1324154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Semeli Mastrodemou
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | - Evangelia Stalika
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Anna Vardi
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Katerina Gemenetzi
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Michalis Spanoudakis
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | - Maria Karypidou
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Irene Mavroudi
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | | | | | - Helen A. Papadaki
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Yoshida K, Cologne JB, Cordova K, Misumi M, Yamaoka M, Kyoizumi S, Hayashi T, Robins H, Kusunoki Y. Aging-related changes in human T-cell repertoire over 20years delineated by deep sequencing of peripheral T-cell receptors. Exp Gerontol 2017; 96:29-37. [PMID: 28535950 DOI: 10.1016/j.exger.2017.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 01/21/2023]
Abstract
Recent deep sequencing studies on T-cell receptor (TCR) repertoire have provided robust data to characterize diversity of T-cell immune responsiveness to a wide variety of peptide antigens, including viral and tumor antigens. The human TCR repertoire declines with age, but this decline has not been fully investigated longitudinally in individuals. Using a deep sequencing approach, we analyzed TCRβ repertoires longitudinally over approximately 20years, with ages ranging from 23 to 50years at the start (23 to 65years overall), in peripheral-blood CD4 and CD8 T-cell populations that were collected and cryopreserved 3 times at intervals of approximately 10years from each of 6 healthy adults (3 men and 3 women). Sequence data at the hypervariable complementarity determining region 3 (CDR3) in the TCRB gene locus were evaluated by applying a random-coefficient statistical regression model. Two outcomes were analyzed: total number of distinct TCRB CDR3 sequences as a TCR diversity metric, and clonality of the T-cell populations. TCR repertoire diversity decreased (p<0.001) and frequencies of clonal populations increased (p=0.003) with age in CD8 T cells, whereas CD4 T cells retained fairly diverse TCR repertoires along with relatively low clonality. We also found that approximately 10-30% and 30-80% of read sequences in CD4 and CD8 T cells, respectively, overlapped at different ages within each individual, indicating long-term stable maintenance of T-cell clonal composition. Moreover, many of the most frequent TCRB CDR3 sequences (i.e., top T-cell clones) persisted over 20years, and some of them expanded and exerted a dominating influence on clonality of peripheral T-cell populations. It is thus possible that persistence or expansion of top T-cell clones is a driver of T-cell immunity aging, and therefore represents a potential interventional target.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| | - John B Cologne
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kismet Cordova
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Mika Yamaoka
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Harlan Robins
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
21
|
Comprehensive assessment of peripheral blood TCRβ repertoire in infectious mononucleosis and chronic active EBV infection patients. Ann Hematol 2017; 96:665-680. [PMID: 28091735 DOI: 10.1007/s00277-016-2911-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Epstein-Barr virus (EBV) primary infection is usually asymptomatic, but it sometimes progresses to infectious mononucleosis (IM). Occasionally, some people develop chronic active EBV infection (CAEBV) with underlying immunodeficiency, which belongs to a continuous spectrum of EBV-associated lymphoproliferative disorders (EBV+ LPD) with heterogeneous clinical presentations and high mortality. It has been well established that T cell-mediated immune response plays a critical role in the disease evolution of EBV infection. Recently, high-throughput sequencing of the hypervariable complementarity-determining region 3 (CDR3) segments of the T cell receptor (T cell receptor β (TCRβ)) has emerged as a sensitive approach to assess the T cell repertoire. In this study, we fully characterized the diversity of peripheral blood TCRβ repertoire in IM (n = 6) and CAEBV patients (n = 5) and EBV-seropositive controls (n = 5). Compared with the healthy EBV-seropositive controls, both IM and CAEBV patients demonstrate a significant decrease in peripheral blood TCRβ repertoire diversity, basically, including narrowed repertoire breadth, highly expanded clones, and skewed CDR3 length distribution. However, there is no significant difference between IM and CAEBV patients. Furthermore, we observed some disease-related preferences in TRBV/TRBJ usage and combinations, as well as lots of T cell clones shared by different groups (unique or overlapped) involved in public T cell responses, which provide more detailed insights into the divergent disease evolution.
Collapse
|
22
|
Cole DK, van den Berg HA, Lloyd A, Crowther MD, Beck K, Ekeruche-Makinde J, Miles JJ, Bulek AM, Dolton G, Schauenburg AJ, Wall A, Fuller A, Clement M, Laugel B, Rizkallah PJ, Wooldridge L, Sewell AK. Structural Mechanism Underpinning Cross-reactivity of a CD8+ T-cell Clone That Recognizes a Peptide Derived from Human Telomerase Reverse Transcriptase. J Biol Chem 2016; 292:802-813. [PMID: 27903649 PMCID: PMC5247654 DOI: 10.1074/jbc.m116.741603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/18/2016] [Indexed: 01/20/2023] Open
Abstract
T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8+ T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection.
Collapse
Affiliation(s)
- David K Cole
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom,
| | - Hugo A van den Berg
- the Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Angharad Lloyd
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Michael D Crowther
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Konrad Beck
- the Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - Julia Ekeruche-Makinde
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - John J Miles
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom.,the Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.,James Cook University, Cairns, Queensland 4870, Australia, and
| | - Anna M Bulek
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Garry Dolton
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Andrea J Schauenburg
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Aaron Wall
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Anna Fuller
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Mathew Clement
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Bruno Laugel
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Pierre J Rizkallah
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Linda Wooldridge
- the Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Andrew K Sewell
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom,
| |
Collapse
|
23
|
Vardi A, Agathangelidis A, Stalika E, Karypidou M, Siorenta A, Anagnostopoulos A, Rosenquist R, Hadzidimitriou A, Ghia P, Sutton LA, Stamatopoulos K. Antigen Selection Shapes the T-cell Repertoire in Chronic Lymphocytic Leukemia. Clin Cancer Res 2015; 22:167-74. [PMID: 26338994 DOI: 10.1158/1078-0432.ccr-14-3017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 08/20/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The role of antigen(s) in shaping the T-cell repertoire in chronic lymphocytic leukemia, although relevant for understanding malignant cell interactions with cognate T cells, is largely unexplored. EXPERIMENTAL DESIGN Here we profiled the T-cell receptor β chain gene repertoire in 58 chronic lymphocytic leukemia patients, focusing on cases assigned to well-characterized subsets with stereotyped clonotypic B-cell receptor immunoglobulins, therefore those cases most evidently selected by antigen (subsets #1, #2, and #4). RESULTS Remarkable repertoire skewing and oligoclonality were observed, and differences between subsets were noted regarding both T-cell receptor β chain gene usage and the extent of clonality, with subset #2 being the least oligoclonal. Longitudinal analysis of subset #4 cases revealed that although the repertoire may fluctuate over time, certain clonotypes persist, thus alluding to persistent antigenic stimulation. Shared ("stereotyped") clonotypes were found between different patients, reflecting selection by common antigenic elements. Cross-comparison of our dataset with public databases showed that some T-cell clonotypes may have expanded secondary to common viral infections; however, the majority of clonotypes proved to be disease-specific. CONCLUSIONS Overall, the T-cell receptor β chain repertoire in chronic lymphocytic leukemia is likely shaped by antigen selection and the implicated antigenic elements may concern epitopes that also select the malignant B-cell progenitors or, more intriguingly, chronic lymphocytic leukemia-derived epitopes.
Collapse
Affiliation(s)
- Anna Vardi
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Andreas Agathangelidis
- Division of Molecular Oncology and Department of Onco-Hematology, Istituto Scientifico San Raffaele e Fondazione Centro San Raffaele, Milan, Italy
| | - Evangelia Stalika
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Maria Karypidou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece. Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Alexandra Siorenta
- Immunology and National Tissue Typing Center, General Hospital of Athens "G. Gennimatas," Athens, Greece
| | | | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anastasia Hadzidimitriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Division of Molecular Oncology and Department of Onco-Hematology, Istituto Scientifico San Raffaele e Fondazione Centro San Raffaele, Milan, Italy
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece. Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Zanker D, Quinn K, Waithman J, Lata R, Murphy R, La Gruta NL, Chen W. T cells recognizing a 11mer influenza peptide complexed to H-2D(b) show promiscuity for peptide length. Immunol Cell Biol 2015; 93:500-7. [PMID: 25559620 DOI: 10.1038/icb.2014.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
T-cell repertoire is selected according to self peptide-MHC (major histocompatibility complex) complexes in the thymus. Although most peripheral T cells recognize specific pathogen-derived peptides complexed to self-MHC exclusively, some possess cross-reactivity to other self or foreign peptides presented by self-MHC molecules; a phenomenon often termed T-cell receptor (TCR) promiscuity or degeneracy. TCR promiscuity has been attributed to various autoimmune conditions. On the other hand, it is considered a mechanism for a relatively limited TCR repertoire to deal with a potentially much larger antigenic peptide repertoire. Such property has also been utilized to bypass self-tolerance for cancer vaccine development. Although many studies explored such degeneracy for peptide of the same length, few studies reported such properties for peptides of different length. In this study, we finely characterized the CD8(+) T-cell response specific for a 11mer peptide derived from influenza A viral polymerase basic protein 2. The short-term T-cell line, despite possessing highly biased TCR, was able to react with multiple peptides of different length sharing the same core sequence. Out data clearly showed the importance of detailed and quantitative assessments for such T-cell specificity. Our data also emphasize the importance of biochemical demonstration of the naturally presented minimal peptide.
Collapse
Affiliation(s)
- Damien Zanker
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Kylie Quinn
- Department of Microbiology and Immunology, Melbourne University, Parkville, Victoria, Australia
| | - Jason Waithman
- Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - Roleen Lata
- Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Roger Murphy
- Ludwig Institute for Cancer Research, Austin Health, Melbourne, Victoria, Australia
| | - Nicole Louise La Gruta
- Department of Microbiology and Immunology, Melbourne University, Parkville, Victoria, Australia
| | - Weisan Chen
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
25
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
26
|
Soluble HLA technology as a strategy to evaluate the impact of HLA mismatches. J Immunol Res 2014; 2014:246171. [PMID: 25254222 PMCID: PMC4165401 DOI: 10.1155/2014/246171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/15/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022] Open
Abstract
HLA class I incompatibilities still remain one of the main barriers for unrelated bone marrow transplantation (BMT); hence the molecular understanding of how to mismatch patients and donors and still have successful clinical outcomes will guide towards the future of unrelated BMT. One way to estimate the magnitude of polymorphisms within the PBR is to determine which peptides can be selected by individual HLA alleles and subsequently presented for recognition by T cells. The features (structure, length, and sequence) of different peptides each confer an individual pHLA landscape and thus directly shape the individual immune response. The elution and sequencing of peptides by mass spectrometric analysis enable determining the bona fide repertoire of presented peptides for a given allele. This is an effective and simple way to compare the functions of allelic variants and make a first assessment of their degree of permissivity. We describe the methodology used for peptide sequencing and the limitations of peptide prediction tools compared to experimental methods. We highlight the altered peptide features that are observed between allelic variants and the need to discover the altered peptide repertoire in situations of "artificial" graft versus host disease (GvHD) that occur in HLA-specific hypersensitive immune responses to drugs.
Collapse
|
27
|
Yanaka S, Ueno T, Shi Y, Qi J, Gao GF, Tsumoto K, Sugase K. Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex. J Biol Chem 2014; 289:24680-90. [PMID: 25028510 DOI: 10.1074/jbc.m114.566174] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In immune-mediated control of pathogens, human leukocyte antigen (HLA) class I presents various antigenic peptides to CD8(+) T-cells. Long-lived peptide presentation is important for efficient antigen-specific T-cell activation. Presentation time depends on the peptide sequence and the stability of the peptide-HLA complex (pHLA). However, the determinant of peptide-dependent pHLA stability remains elusive. Here, to reveal the pHLA stabilization mechanism, we examined the crystal structures of an HLA class I allomorph in complex with HIV-derived peptides and evaluated site-specific conformational fluctuations using NMR. Although the crystal structures of various pHLAs were almost identical independent of the peptides, fluctuation analyses identified a peptide-dependent minor state that would be more tightly packed toward the peptide. The minor population correlated well with the thermostability and cell surface presentation of pHLA, indicating that this newly identified minor state is important for stabilizing the pHLA and facilitating T-cell recognition.
Collapse
Affiliation(s)
- Saeko Yanaka
- From the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8562, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yi Shi
- Research Network of Immunity and Health, Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- Research Network of Immunity and Health, Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- Research Network of Immunity and Health, Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kouhei Tsumoto
- From the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8562, Japan, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 108-8693, Japan, Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo 108-8693, Japan, and
| | - Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503, Japan
| |
Collapse
|
28
|
Ren C, Yin G, Qin M, Suo J, Lv Q, Xie L, Wang Y, Huang X, Chen Y, Liu X, Suo X. CDR3 analysis of TCR Vβ repertoire of CD8⁺ T cells from chickens infected with Eimeria maxima. Exp Parasitol 2014; 143:1-4. [PMID: 24801021 DOI: 10.1016/j.exppara.2014.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
CD8(+) T cells play a major role in the immune protection of host against the reinfection of Eimeria maxima, the most immunogenic species of eimerian parasites in chickens. To explore the dominant complementarity-determining regions 3 (CDR3) of CD8(+) T cell populations induced by the infection of this parasite, sequence analysis was performed in this study for CDR3 of CD8(+) T cells from E. maxima infected chickens. After 5 days post the third or forth infection, intraepithelial lymphocytes were isolated from the jejunum of bird. CD3(+)CD8(+) T cells were sorted and subjected to total RNA isolation and cDNA preparation. PCR amplification and cloning of the loci between Vβ1 and Cβ was conducted for the subsequent sequencing of CDR3 of T cell receptor (TCR). After the forth infection, 2 birds exhibited two same frequent TCR CDR3 sequences, i.e., AKQDWGTGGYSNMI and AGRVLNIQY; while the third bird showed two different frequent TCR CDR3 sequences, AKQGARGHTPLN and AKQDIEVRGPNTPLN. No frequent CDR3 sequence was detected from uninfected birds, though AGRVLNIQY was also found in two uninfected birds. Our result preliminarily demonstrates that frequent CDR3 sequences may exist in E. maxima immunized chickens, encouraging the mining of the immunodominant CD8(+) T cells against E. maxima infection.
Collapse
Affiliation(s)
- Chao Ren
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangwen Yin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mei Qin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiyao Lv
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Xie
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yunzhou Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxi Huang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuchen Chen
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xun Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
29
|
Kim S, Pinto AK, Myers NB, Hawkins O, Doll K, Kaabinejadian S, Netland J, Bevan MJ, Weidanz JA, Hildebrand WH, Diamond MS, Hansen TH. A novel T-cell receptor mimic defines dendritic cells that present an immunodominant West Nile virus epitope in mice. Eur J Immunol 2014; 44:1936-46. [PMID: 24723377 DOI: 10.1002/eji.201444450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/18/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
We used a newly generated T-cell receptor mimic monoclonal antibody (TCRm MAb) that recognizes a known nonself immunodominant peptide epitope from West Nile virus (WNV) NS4B protein to investigate epitope presentation after virus infection in C57BL/6 mice. Previous studies suggested that peptides of different length, either SSVWNATTAI (10-mer) or SSVWNATTA (9-mer) in complex with class I MHC antigen H-2D(b) , were immunodominant after WNV infection. Our data establish that both peptides are presented on the cell surface after WNV infection and that CD8(+) T cells can detect 10- and 9-mer length variants similarly. This result varies from the idea that a given T-cell receptor (TCR) prefers a single peptide length bound to its cognate class I MHC. In separate WNV infection studies with the TCRm MAb, we show that in vivo the 10-mer was presented on the surface of uninfected and infected CD8α(+) CD11c(+) dendritic cells, which suggests the use of direct and cross-presentation pathways. In contrast, CD11b(+) CD11c(-) cells bound the TCRm MAb only when they were infected. Our study demonstrates that TCR recognition of peptides is not limited to certain peptide lengths and that TCRm MAbs can be used to dissect the cell-type specific mechanisms of antigen presentation in vivo.
Collapse
Affiliation(s)
- Sojung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li S, Lefranc MP, Miles JJ, Alamyar E, Giudicelli V, Duroux P, Freeman JD, Corbin VDA, Scheerlinck JP, Frohman MA, Cameron PU, Plebanski M, Loveland B, Burrows SR, Papenfuss AT, Gowans EJ. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat Commun 2014; 4:2333. [PMID: 23995877 PMCID: PMC3778833 DOI: 10.1038/ncomms3333] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/23/2013] [Indexed: 02/08/2023] Open
Abstract
T cell repertoire diversity and clonotype follow-up in vaccination, cancer, infectious and immune diseases represent a major challenge owing to the enormous complexity of the data generated. Here we describe a next generation methodology, which combines 5'RACE PCR, 454 sequencing and, for analysis, IMGT, the international ImMunoGeneTics information system (IMGT), IMGT/HighV-QUEST web portal and IMGT-ONTOLOGY concepts. The approach is validated in a human case study of T cell receptor beta (TRB) repertoire, by chronologically tracking the effects of influenza vaccination on conventional and regulatory T cell subpopulations. The IMGT/HighV-QUEST paradigm defines standards for genotype/haplotype analysis and characterization of IMGT clonotypes for clonal diversity and expression and achieves a degree of resolution for next generation sequencing verifiable by the user at the sequence level, while providing a normalized reference immunoprofile for human TRB.
Collapse
Affiliation(s)
- Shuo Li
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eugster A, Lindner A, Heninger AK, Wilhelm C, Dietz S, Catani M, Ziegler AG, Bonifacio E. Measuring T cell receptor and T cell gene expression diversity in antigen-responsive human CD4+ T cells. J Immunol Methods 2013; 400-401:13-22. [PMID: 24239865 DOI: 10.1016/j.jim.2013.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022]
Abstract
T cells have diversity in TCR, epitope recognition, and cytokine production, and can be used for immune monitoring. Furthermore, clonal expansion of TCR families in disease may provide opportunities for TCR-directed therapies. We developed methodology for sequencing expressed genes of TCR alpha and beta chains from single cells and applied this to vaccine (tetanus-toxoid)-responsive CD4(+) T cells. TCR alpha and beta chains were both successfully sequenced in 1309 (43%) of 3038 CD4(+) T cells yielding 677 different receptors. TRAV and TRBV gene usage differed between tetanus-toxoid-responsive and non-responsive cells (p=0.004 and 0.0002), and there was extensive TCR diversity in tetanus-toxoid-responsive cells within individuals. Identical TCRs could be recovered in different samples from the same subject: TCRs identified after booster vaccination were frequent in pre-booster memory T cells (31% of pre-booster TCR), and also identified in pre-booster vaccination naïve cells (6.5%). No TCR was shared between subjects, but tetanus toxoid-responsive cells sharing one of their TCR chains were observed within and between subjects. Coupling single-cell gene expression profiling to TCR sequencing revealed examples of distinct cytokine profiles in cells bearing identical TCR. Novel molecular methodology demonstrates extensive diversity of Ag-responsive CD4(+) T cells within and between individuals.
Collapse
Affiliation(s)
- Anne Eugster
- DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD).
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, Eckle SBG, Uldrich AP, Birkinshaw RW, Patel O, Kostenko L, Meehan B, Kedzierska K, Liu L, Fairlie DP, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J, Kjer-Nielsen L. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. ACTA ACUST UNITED AC 2013; 210:2305-20. [PMID: 24101382 PMCID: PMC3804952 DOI: 10.1084/jem.20130958] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Generation of antigen-loaded MR1 tetramers that specifically stain MAIT cells identifies heterogeneity in phenotypes and TCR repertoires in humans and mice. Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2–TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)–related class I–like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-d-ribityllumazine (rRL-6-CH2OH), specifically detect all human MAIT cells. Tetramer+ MAIT subsets were predominantly CD8+ or CD4−CD8−, although a small subset of CD4+ MAIT cells was also detected. Notably, most human CD8+ MAIT cells were CD8α+CD8β−/lo, implying predominant expression of CD8αα homodimers. Tetramer-sorted MAIT cells displayed a TH1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1–rRL-6-CH2OH tetramers detected CD4+, CD4−CD8− and CD8+ MAIT cells in Vα19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-β repertoire, and although the majority of human MAIT cells expressed TRAV1-2–TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.
Collapse
Affiliation(s)
- Rangsima Reantragoon
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity; and 2 Department of Anatomy and Neuroscience; The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Predisposed αβ T cell antigen receptor recognition of MHC and MHC-I like molecules? Curr Opin Immunol 2013; 25:653-9. [PMID: 23993410 DOI: 10.1016/j.coi.2013.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
The diverse αβ T cell receptor (TCR) repertoire exhibits versatility in its ability to generate antigen (Ag) receptors capable of interacting with polymorphic Major Histocompatibility Complex (MHC) molecules and monomorphic MHC-I like molecules, including the CD1 and MR1 families. Collectively, these evolutionarily related Ag-presenting molecules present peptides, lipids and vitamin B metabolites for T cell surveillance. Interestingly, whilst common TCR gene usage can underpin recognition of these distinct classes of Ags, it is unclear whether the 'rules' that govern αβTCR-Ag MHC interactions are shared. We highlight recent observations in the context of TCR biases towards MHC and MHC-I like molecules.
Collapse
|
34
|
Holland CJ, Cole DK, Godkin A. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough. Front Immunol 2013; 4:172. [PMID: 23847615 PMCID: PMC3696884 DOI: 10.3389/fimmu.2013.00172] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/14/2013] [Indexed: 11/17/2022] Open
Abstract
Recombinant αβ T cell receptors, expressed on T cell membranes, recognize short peptides presented at the cell surface in complex with MHC molecules. There are two main subsets of αβ T cells: CD8(+) T cells that recognize mainly cytosol-derived peptides in the context of MHC class I (pMHC-I), and CD4(+) T cells that recognize peptides usually derived from exogenous proteins presented by MHC class II (pMHC-II). Unlike the more uniform peptide lengths (usually 8-13mers) bound in the MHC-I closed groove, MHC-II presented peptides are of a highly variable length. The bound peptides consist of a core bound 9mer (reflecting the binding motif for the particular MHC-II type) but with variable peptide flanking residues (PFRs) that can extend from both the N- and C-terminus of the MHC-II binding groove. Although pMHC-I and pMHC-II play a virtually identical role during T cell responses (T cell antigen presentation) and are very similar in overall conformation, there exist a number of subtle but important differences that may govern the functional dichotomy observed between CD8(+) and CD4(+) T cells. Here, we provide an overview of the impact of structural differences between pMHC-I and pMHC-II and the molecular interactions with the T cell receptor including the functional importance of MHC-II PFRs. We consider how factors such as anatomical location, inflammatory milieu, and particular types of antigen presenting cell might, in theory, contribute to the quantitative (i.e., pMHC ligand frequency) as well as qualitative (i.e., variable PFR) nature of peptide epitopes, and hence offer a means of control and influence of a CD4(+) T cell response. Lastly, we review our recent findings showing how modifications to MHC-II PFRs can modify CD4(+) T cell antigen recognition. These findings may have novel applications for the development of CD4(+) T cell peptide vaccines and diagnostics.
Collapse
Affiliation(s)
| | - David K. Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew Godkin
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Department of Integrated Medicine, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
35
|
Rist MJ, Theodossis A, Croft NP, Neller MA, Welland A, Chen Z, Sullivan LC, Burrows JM, Miles JJ, Brennan RM, Gras S, Khanna R, Brooks AG, McCluskey J, Purcell AW, Rossjohn J, Burrows SR. HLA peptide length preferences control CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:561-71. [PMID: 23749632 DOI: 10.4049/jimmunol.1300292] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Class I HLAs generally present peptides of 8-10 aa in length, although it is unclear whether peptide length preferences are affected by HLA polymorphism. In this study, we investigated the CD8(+) T cell response to the BZLF1 Ag of EBV, which includes overlapping sequences of different size that nevertheless conform to the binding motif of the large and abundant HLA-B*44 supertype. Whereas HLA-B*18:01(+) individuals responded strongly and exclusively to the octamer peptide (173)SELEIKRY(180), HLA-B*44:03(+) individuals responded to the atypically large dodecamer peptide (169)EECDSELEIKRY(180), which encompasses the octamer peptide. Moreover, the octamer peptide bound more stably to HLA-B*18:01 than did the dodecamer peptide, whereas, conversely, HLA-B*44:03 bound only the longer peptide. Furthermore, crystal structures of these viral peptide-HLA complexes showed that the Ag-binding cleft of HLA-B*18:01 was more ideally suited to bind shorter peptides, whereas HLA-B*44:03 exhibited characteristics that favored the presentation of longer peptides. Mass spectrometric identification of > 1000 naturally presented ligands revealed that HLA-B*18:01 was more biased toward presenting shorter peptides than was HLA-B*44:03. Collectively, these data highlight a mechanism through which polymorphism within an HLA class I supertype can diversify determinant selection and immune responses by varying peptide length preferences.
Collapse
Affiliation(s)
- Melissa J Rist
- Centre for Immunotherapy and Vaccine Development, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Koning D, Costa AI, Hoof I, Miles JJ, Nanlohy NM, Ladell K, Matthews KK, Venturi V, Schellens IMM, Borghans JAM, Keşmir C, Price DA, van Baarle D. CD8+ TCR Repertoire Formation Is Guided Primarily by the Peptide Component of the Antigenic Complex. THE JOURNAL OF IMMUNOLOGY 2012; 190:931-9. [DOI: 10.4049/jimmunol.1202466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Abstract
αβ-TCRs expressed at the CD8(+) T-cell surface interact with short peptide fragments (p) bound to MHC class I molecules (pMHCI). The TCR/pMHCI interaction is pivotal in all aspects of CD8(+) T-cell immunity. However, the rules that govern the outcome of TCR/pMHCI engagement are not entirely understood, and this is a major barrier to understanding the requirements for both effective immunity and vaccination. In the present study, we discovered an unexpected feature of the TCR/pMHCI interaction by showing that any given TCR exhibits an explicit preference for a single MHCI-peptide length. Agonists of nonpreferred length were extremely rare, suboptimal, and often entirely distinct in sequence. Structural analysis indicated that alterations in peptide length have a major impact on antigenic complexity, to which individual TCRs are unable to adapt. This novel finding demonstrates that the outcome of TCR/pMHCI engagement is determined by peptide length in addition to the sequence identity of the MHCI-bound peptide. Accordingly, the effective recognition of pMHCI Ag, which is a prerequisite for successful CD8(+) T-cell immunity and protective vaccination, can only be achieved by length-matched Ag-specific CD8(+) T-cell clonotypes.
Collapse
|
38
|
High frequency of herpesvirus-specific clonotypes in the human T cell repertoire can remain stable over decades with minimal turnover. J Virol 2012; 87:697-700. [PMID: 23077319 DOI: 10.1128/jvi.02180-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
High-throughput T cell receptor sequencing on sequentially banked blood samples from healthy individuals has shown that high-frequency clonotypes can remain relatively stable for up to 18 years, with minimal inflation, deflation, or turnover. These populations included T cell expansions specific for Epstein-Barr virus. Thus, in spite of exposure to a barrage of microorganisms over the course of life, the dominant clonotypes in the mature peripheral T cell repertoire can alter surprisingly little.
Collapse
|
39
|
Gras S, Burrows SR, Turner SJ, Sewell AK, McCluskey J, Rossjohn J. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol Rev 2012; 250:61-81. [DOI: 10.1111/j.1600-065x.2012.01159.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology; School of Biomedical Sciences; Monash University; Clayton; Australia
| | - Scott R. Burrows
- Queensland Institute of Medical Research and Australian Centre for Vaccine Development; Brisbane; Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | - Andrew K. Sewell
- Institute of Infection and Immunity; Cardiff University School of Medicine; Cardiff; UK
| | - James McCluskey
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | | |
Collapse
|
40
|
The potential role of epitope-specific T-cell receptor diversity in the control of HIV replication. Curr Opin HIV AIDS 2012; 2:177-82. [PMID: 19372884 DOI: 10.1097/coh.0b013e3280ef692f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess the influence of T-cell receptor clonotype diversity on the recognition and control of chronic viral infections, and specifically in the case of HIV infection. RECENT FINDINGS The latest publications have examined the role of T-cell receptor repertoires specific for dominant epitopes in the ability to recognize variants and control viremia in chronic viral infections. In the hepatitis C virus and SIV models, diverse T-cell receptor repertoires appear to limit immune escape. In HIV infection, circulating clonotypes may have different functional abilities, showing another potential advantage of diverse clonotypic repertoires. A recent study suggests that at times narrow repertoires against a conserved epitope may be effective, perhaps through the ability to cross-recognize potential epitope variants. SUMMARY The studies discussed in this review have identified T-cell receptor diversity as an important factor for understanding the immune recognition of highly variable viruses. Further studies are needed to determine whether T-cell receptor repertoire analysis of HIV epitope-specific immune responses will provide a more accurate correlate for the control of viremia than conventional immune function assays.
Collapse
|
41
|
Yousef S, Planas R, Chakroun K, Hoffmeister-Ullerich S, Binder TMC, Eiermann TH, Martin R, Sospedra M. TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+T Cells during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3618-30. [DOI: 10.4049/jimmunol.1201612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Reboul CF, Meyer GR, Porebski BT, Borg NA, Buckle AM. Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex. PLoS Comput Biol 2012; 8:e1002404. [PMID: 22412359 PMCID: PMC3297556 DOI: 10.1371/journal.pcbi.1002404] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/11/2012] [Indexed: 11/25/2022] Open
Abstract
The crystal structures of unliganded and liganded pMHC molecules provide a structural basis for TCR recognition yet they represent ‘snapshots’ and offer limited insight into dynamics that may be important for interaction and T cell activation. MHC molecules HLA-B*3501 and HLA-B*3508 both bind a 13 mer viral peptide (LPEP) yet only HLA-B*3508-LPEP induces a CTL response characterised by the dominant TCR clonetype SB27. HLA-B*3508-LPEP forms a tight and long-lived complex with SB27, but the relatively weak interaction between HLA-B*3501-LPEP and SB27 fails to trigger an immune response. HLA-B*3501 and HLA-B*3508 differ by only one amino acid (L/R156) located on α2-helix, but this does not alter the MHC or peptide structure nor does this polymorphic residue interact with the peptide or SB27. In the absence of a structural rationalisation for the differences in TCR engagement we performed a molecular dynamics study of both pMHC complexes and HLA-B*3508-LPEP in complex with SB27. This reveals that the high flexibility of the peptide in HLA-B*3501 compared to HLA-B*3508, which was not apparent in the crystal structure alone, may have an under-appreciated role in SB27 recognition. The TCR pivots atop peptide residues 6–9 and makes transient MHC contacts that extend those observed in the crystal structure. Thus MD offers an insight into ‘scanning’ mechanism of SB27 that extends the role of the germline encoded CDR2α and CDR2β loops. Our data are consistent with the vast body of experimental observations for the pMHC-LPEP-SB27 interaction and provide additional insights not accessible using crystallography. When pathogens replicate within a host cell, their proteins are degraded into peptides, which are captured by the major histocompatibility complex (MHC) and brought to the cell surface. The peptide-MHC (pMHC) is surveyed by T cell receptors (TCRs) expressed on the surface of T cells. If the peptide is foreign, the peptide-MHC-TCR interaction initiates an immune response to eliminate the pathogen. However, the combinations of pMHC and TCRs are diverse. We ask how TCRs discriminate between structurally similar pMHCs? We address this by focusing on two MHC molecules that differ by a single change, both bind the same peptide but only one instigates a dominant immune response. Intriguingly, the single difference between the two MHCs does not alter the peptide shape nor does it contact the peptide or TCR. We examined the flexibility of the pMHC-TCR interface using molecular dynamics simulations. We observed differences in the peptide and TCR flexibilities that could explain their contrasting physiologies, as well as clues to how the TCR moves atop the MHC in order to ‘scan’ it. Our analysis provides insight into a particular pMHC-TCR interaction not accessible using crystallographic methods, and indicate dynamics may play an influential and perhaps under-appreciated role in other pMHC-TCR systems.
Collapse
Affiliation(s)
- Cyril F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Australia
| | - Grischa R. Meyer
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
- Monash eResearch Centre, Monash University, Victoria, Australia
| | - Benjamin T. Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Natalie A. Borg
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
- * E-mail: (NAB); (AMB)
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
- * E-mail: (NAB); (AMB)
| |
Collapse
|
43
|
Liu YC, Chen Z, Burrows SR, Purcell AW, McCluskey J, Rossjohn J, Gras S. The energetic basis underpinning T-cell receptor recognition of a super-bulged peptide bound to a major histocompatibility complex class I molecule. J Biol Chem 2012; 287:12267-76. [PMID: 22343629 DOI: 10.1074/jbc.m112.344689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the major histocompatibility complex class I (MHC-I) molecules typically bind short peptide (p) fragments (8-10 amino acids in length), longer, "bulged" peptides are often be presented by MHC-I. Such bulged pMHC-I complexes represent challenges for T-cell receptor (TCR) ligation, although the general principles underscoring the interaction between TCRs and bulged pMHC-I complexes are unclear. To address this, we have explored the energetic basis of how an immunodominant TCR (termed SB27) binds to a 13-amino acid viral peptide (LPEPLPQGQLTAY) complexed to human leukocyte antigen (HLA) B*3508. Using the crystal structure of the SB27 TCR-HLA B*3508(LPEP) complex as a guide, we undertook a comprehensive alanine-scanning mutagenesis approach at the TCR-pMHC-I interface and examined the effect of the mutations by biophysical (affinity measurements) and cellular approaches (tetramer staining). Although the structural footprint on HLA B*3508 was small, the energetic footprint was even smaller in that only two HLA B*3508 residues were critical for the TCR interaction. Instead, the energetic basis of this TCR-pMHC-I interaction was attributed to peptide-mediated interactions in which the complementarity determining region 3α and germline-encoded complementarity determining region 1β loops of the SB27 TCR played the principal role. Our findings highlight the peptide-centricity of TCR ligation toward a bulged pMHC-I complex.
Collapse
Affiliation(s)
- Yu Chih Liu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
He J, Yang G, Rao H, Li Z, Ding X, Chen Y. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method. Artif Intell Med 2011; 55:107-15. [PMID: 22134095 DOI: 10.1016/j.artmed.2011.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. METHODS In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. RESULTS Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. CONCLUSIONS Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance.
Collapse
Affiliation(s)
- Ju He
- College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Miles JJ, Douek DC, Price DA. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol 2011; 89:375-87. [PMID: 21301479 DOI: 10.1038/icb.2010.139] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The naïve T-cell repertoire is vast, containing millions of unique T-cell receptor (TCR) structures. Faced with such diversity, the mobilization of TCR structures from this enormous pool was once thought to be a stochastic, even chaotic, process. However, steady and systematic dissection over the last 20 years has revealed that this is not the case. Instead, the TCR repertoire deployed against individual antigens is routinely ordered and biased. Often, identical and near-identical TCR repertoires can be observed across different individuals, suggesting that the system encompasses an element of predictability. This review provides a catalog of αβ TCR bias by disease and by species, and discusses the mechanisms that govern this inherent and widespread phenomenon.
Collapse
Affiliation(s)
- John J Miles
- T Cell Modulation Laboratory, Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK.
| | | | | |
Collapse
|
46
|
The structural bases of direct T‐cell allorecognition: implications for T‐cell‐mediated transplant rejection. Immunol Cell Biol 2011; 89:388-95. [DOI: 10.1038/icb.2010.150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Miles JJ, Thammanichanond D, Moneer S, Nivarthi UK, Kjer-Nielsen L, Tracy SL, Aitken CK, Brennan RM, Zeng W, Marquart L, Jackson D, Burrows SR, Bowden DS, Torresi J, Hellard M, Rossjohn J, McCluskey J, Bharadwaj M. Antigen-driven patterns of TCR bias are shared across diverse outcomes of human hepatitis C virus infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:901-12. [PMID: 21160049 DOI: 10.4049/jimmunol.1003167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection causes significant morbidity and mortality worldwide. T cells play a central role in HCV clearance; however, there is currently little understanding of whether the disease outcome in HCV infection is influenced by the choice of TCR repertoire. TCR repertoires used against two immunodominant HCV determinants--the highly polymorphic, HLA-B*0801 restricted (1395)HSKKKCDEL(1403) (HSK) and the comparatively conserved, HLA-A*0101-restricted, (1435)ATDALMTGY(1443) (ATD)--were analyzed in clearly defined cohorts of HLA-matched, HCV-infected individuals with persistent infection and HCV clearance. In comparison with ATD, TCR repertoire selected against HSK was more narrowly focused, supporting reports of mutational escape in this epitope, in persistent HCV infection. Notwithstanding the Ag-driven divergence, T cell repertoire selection against either Ag was comparable in subjects with diverse disease outcomes. Biased T cell repertoires were observed early in infection and were evident not only in persistently infected individuals but also in subjects with HCV clearance, suggesting that these are not exclusively characteristic of viral persistence. Comprehensive clonal analysis of Ag-specific T cells revealed widespread use of public TCRs displaying a high degree of predictability in TRBV/TRBJ gene usage, CDR3 length, and amino acid composition. These public TCRs were observed against both ATD and HSK and were shared across diverse disease outcomes. Collectively, these observations indicate that repertoire diversity rather than particular Vβ segments are better associated with HCV persistence/clearance in humans. Notably, many of the anti-HCV TCRs switched TRBV and TRBJ genes around a conserved, N nucleotide-encoded CDR3 core, revealing TCR sequence mosaicism as a potential host mechanism to combat this highly variant virus.
Collapse
Affiliation(s)
- John J Miles
- Queensland Institute of Medical Research, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Protective immunity against a variety of infections depends on the amplification and differentiation of rare naïve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.
Collapse
|
49
|
Macdonald IK, Harkiolaki M, Hunt L, Connelley T, Carroll AV, MacHugh ND, Graham SP, Jones EY, Morrison WI, Flower DR, Ellis SA. MHC class I bound to an immunodominant Theileria parva epitope demonstrates unconventional presentation to T cell receptors. PLoS Pathog 2010; 6:e1001149. [PMID: 20976198 PMCID: PMC2954893 DOI: 10.1371/journal.ppat.1001149] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/10/2010] [Indexed: 01/07/2023] Open
Abstract
T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.
Collapse
Affiliation(s)
- Isabel K. Macdonald
- The Jenner Institute, University of Oxford, Compton, Berkshire, United Kingdom
| | - Maria Harkiolaki
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (MH, for structural data); (SAE)
| | - Lawrence Hunt
- Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - A. Victoria Carroll
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Niall D. MacHugh
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P. Graham
- Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - W. Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Darren R. Flower
- The Jenner Institute, University of Oxford, Compton, Berkshire, United Kingdom
| | - Shirley A. Ellis
- Institute for Animal Health, Compton, Berkshire, United Kingdom
- * E-mail: (MH, for structural data); (SAE)
| |
Collapse
|
50
|
Morice A, Charreau B, Neveu B, Brouard S, Soulillou JP, Bonneville M, Houssaint E, Degauque N. Cross-reactivity of herpesvirus-specific CD8 T cell lines toward allogeneic class I MHC molecules. PLoS One 2010; 5:e12120. [PMID: 20711433 PMCID: PMC2920819 DOI: 10.1371/journal.pone.0012120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/19/2010] [Indexed: 12/02/2022] Open
Abstract
Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495–503/A*0201, BMLF1259–267/A*0201, or BZLF154–64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-α production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-α production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection.
Collapse
Affiliation(s)
- Alexis Morice
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | | | - Bérangère Neveu
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Sophie Brouard
- UMR 643, INSERM, Nantes, France
- ITUN, CHU Nantes, Nantes, France
- Faculté de Médecine, Université de Nantes, Nantes, France
| | - Jean-Paul Soulillou
- UMR 643, INSERM, Nantes, France
- ITUN, CHU Nantes, Nantes, France
- Faculté de Médecine, Université de Nantes, Nantes, France
| | - Marc Bonneville
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Elisabeth Houssaint
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
- Faculté des Sciences, Université de Nantes, Nantes, France
| | - Nicolas Degauque
- UMR 643, INSERM, Nantes, France
- ITUN, CHU Nantes, Nantes, France
- Faculté de Médecine, Université de Nantes, Nantes, France
- * E-mail:
| |
Collapse
|