1
|
Fernandes RA, Yadav SS, Moharana S. Stereoselective convergent total synthesis of oxylipins. Org Biomol Chem 2024; 22:5835-5842. [PMID: 38957082 DOI: 10.1039/d4ob00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We synthesized stereoselectively four stereoisomers of oxylipins (1a-d) by a convergent approach based on chiral catalysis. The synthetic approach involved sequential assembly of two key fragments - ene-diol and allyl alcohol - for an intended convergent cross-metathesis reaction to join these fragments. The key steps include Sharpless kinetic resolution, asymmetric dihydroxylation and Grubbs cross-metathesis. The characterization of the synthesized oxylipins revealed spectroscopic data that were consistent with previously reported values.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sandhya S Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sanjita Moharana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
2
|
Wu X, Wang Y, Wang D, Wang Z, Yang M, Yang L, Wang F, Wang W, Zhang X. Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo. Food Funct 2024; 15:2181-2196. [PMID: 38315103 DOI: 10.1039/d3fo05309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in tea and exerts several health-promoting effects. It easily autoxidizes into complex polymers and becomes deactivated due to the presence of multiple phenolic hydroxyl structures. Nonetheless, the morphology and biological activity of complex EGCG polymers are yet to be clarified. The present study demonstrated that EGCG autoxidation self-assembled nanoparticles (ENPs) exhibit antioxidant activity in vitro and hepatic REDOX homeostasis regulation activity in vivo. Also, the formation of ENPs during the EGCG autoxidation process was based on the intermolecular interaction forces that maintain the stability of the nanoparticles. Similar to EGCG, ENPs are scavengers of reactive oxygen species and hydroxyl radicals in vitro and also regulate hepatic REDOX activity through liver redox enzymes, including thioredoxin reductase (TrxR), thioredoxin (Trx), glutathione reductase (GR), glutaredoxin (Grx), and glutathione S-transferase (GST) in vivo. Moreover, ENPs activate the NRF2 antioxidant-responsive element pathway, exerting a detoxification effect at high doses. Unlike EGCG, ENPs do not cause liver damage at low doses and also maintain liver biosafety at high doses through self-assembly, forming large particles, which is supported by the unchanged levels of liver damage biomarkers, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver γ-phosphorylated histone 2AX (γ-H2AX), and P53-related genes (Thbs, MDM2, P53, and Bax). Collectively, these findings revealed that ENPs, with adequate biosafety and regulation of hepatic redox activity in vivo, may serve as substitutes with significant potential for antioxidant applications or as food additives to overcome the instability and liver toxicity of EGCG.
Collapse
Affiliation(s)
- Ximing Wu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, 230601, China.
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yijun Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, School of Biological and Food Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
3
|
Schytz Andersen-Civil AI, Arora P, Zhu L, Myhill LJ, Büdeyri Gökgöz N, Castro-Mejia JL, Leppä MM, Hansen LH, Lessard-Lord J, Salminen JP, Thamsborg SM, Sandris Nielsen D, Desjardins Y, Williams AR. Gut microbiota-mediated polyphenol metabolism is restrained by parasitic whipworm infection and associated with altered immune function in mice. Gut Microbes 2024; 16:2370917. [PMID: 38944838 PMCID: PMC11216105 DOI: 10.1080/19490976.2024.2370917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Polyphenols are phytochemicals commonly found in plant-based diets which have demonstrated immunomodulatory and anti-inflammatory properties. However, the interplay between polyphenols and pathogens at mucosal barrier surfaces has not yet been elucidated in detail. Here, we show that proanthocyanidin (PAC) polyphenols interact with gut parasites to influence immune function and gut microbial-derived metabolites in mice. PAC intake inhibited mastocytosis during infection with the small intestinal roundworm Heligmosomoides polygyrus, and altered the host tissue transcriptome at the site of infection with the large intestinal whipworm Trichuris muris, with a notable enhancement of type-1 inflammatory and interferon-driven gene pathways. In the absence of infection, PAC intake promoted the expansion of Turicibacter within the gut microbiota, increased fecal short chain fatty acids, and enriched phenolic metabolites such as phenyl-γ-valerolactones in the cecum. However, these putatively beneficial effects were reduced in PAC-fed mice infected with T. muris, suggesting concomitant parasite infection can attenuate gut microbial-mediated PAC catabolism. Collectively, our results suggest an inter-relationship between a phytonutrient and infection, whereby PAC may augment parasite-induced inflammation (most prominently with the cecum dwelling T. muris), and infection may abrogate the beneficial effects of health-promoting phytochemicals.
Collapse
Affiliation(s)
| | - Pankaj Arora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J. Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Milla M. Leppä
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Cheng Z, Wang Y, Li B. Dietary Polyphenols Alleviate Autoimmune Liver Disease by Mediating the Intestinal Microenvironment: Challenges and Hopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10708-10737. [PMID: 36005815 DOI: 10.1021/acs.jafc.2c02654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autoimmune liver disease is a chronic liver disease caused by an overactive immune response in the liver that imposes a significant health and economic cost on society. Due to the side effects of existing medicinal medications, there is a trend toward seeking natural bioactive compounds as dietary supplements. Currently, dietary polyphenols have been proven to have the ability to mediate gut-liver immunity and control autoimmune liver disease through modulating the intestinal microenvironment. Based on the preceding, this Review covers the many forms of autoimmune liver illnesses, their pathophysiology, and the modulatory effects of polyphenols on immune disorders. Finally, we focus on how polyphenols interact with the intestinal milieu to improve autoimmune liver disease. In conclusion, we suggest that dietary polyphenols have the potential as gut-targeted modulators for the prevention and treatment of autoimmune liver disease and highlight new perspectives and critical issues for future pharmacological applications.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
5
|
Ichikawa T, Sugamoto K, Matsuura Y, Kunitake H, Shimoda K, Morishita K. Inhibition of ATL cell proliferation by polymerized proanthocyanidin from blueberry leaves through JAK proteolysis. Cancer Sci 2022; 113:1406-1416. [PMID: 35100463 PMCID: PMC8990289 DOI: 10.1111/cas.15277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/27/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that the proanthocyanidin (PAC) fraction of blueberry leaf extract (BB-PAC) inhibits the proliferation of human T lymphotropic retrovirus (HTLV-1)-infected adult T-cell leukemia (ATL) by inducing apoptosis. In the present study, we further analyzed the structure of BB-PAC and elucidated the molecular mechanism underlying the inhibitory function of HTLV-1 infected and ATL cells. After hot water extraction with fractionation with methanol-acetone, BB-PAC was found to be concentrated in fractions 4 to 7 (Fr 7). The strongest inhibition of ATL cell growth was observed with Fr7, which contained the highest BB-PAC polymerization degree of 14. The basic structure of BB-PAC is mainly B-type bonds, with A-type bonds (7.1%) and cinchonain I units as the terminal unit (6.1%). The molecular mechanism of cytotoxicity observed around Fr7 against ATL cells was the degradation of JAK1 to 3 and the dephosphorylation of STAT3/5, which occurs by proteasome-dependent proteolysis, confirming that PAC directly binds to HSP90. JAK degradation was caused by proteasome-dependent proteolysis, and we identified the direct binding of PAC to HSP90. In addition, the binding of cochaperone ATPase homolog 1 (AHA1) to HSP90, which is required for activation of the cofactor HSP90, was inhibited by BB-PAC treatment. Therefore, BB-PAC inhibited the formation of the HSP90/AHA1 complex and promoted the degradation of JAK protein due to HSP90 dysfunction. These results suggest that the highly polymerized PAC component from blueberry leaves has great potential as a preventive and therapeutic agent against HTLV-1 infected and ATL cells.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Sugamoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yasushi Matsuura
- Miyazaki Prefectural Food Research and Development Center, Miyazaki, Japan
| | - Hisato Kunitake
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Director of Center for Collaborative Research & Community Cooperation, University of Miyazaki, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.,Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
6
|
Dias R, Pereira CB, Pérez-Gregorio R, Mateus N, Freitas V. Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Moravejolahkami AR, Paknahad Z, Chitsaz A. Dietary intake of energy and fiber in MS patients; an approach to prebiotics role. ACTA ACUST UNITED AC 2019. [DOI: 10.1108/nfs-01-2019-0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Purpose
Dietary fiber and energy intakes seem to be related to disability and anthropometric indices in multiple sclerosis (MS), a chronic inflammatory disorder of the central nervous system. So, this study was designed to investigate the association between dietary fiber and energy intakes with systemic inflammation, disease severity and anthropometric measurements in MS subjects.
Design/methodology/approach
Four subtypes of 261 MS volunteers were recruited (female = 210, male = 51; mean age 38.9 ± 8.3). A 168-item food frequency questionnaire and nutritionist IV software were used to estimate the amounts of dietary, insoluble, soluble, crude fiber and energy intakes. Serum hs-CRP, extended disability status scale (EDSS), height, weight and Deurenberg equation were also used to evaluate systemic inflammation, disease severity, body mass index (BMI) and percentage body fat, respectively.
Findings
Mean differences among the three hs-CRP and EDSS subgroups for dietary fibers and energy intake were significant (p < 0.001). Dietary fiber intake (M = 19.9 ± 4.3 g/day) was a good predictor for EDSS (B = −0.196, p = 0.012), and insoluble fiber intake was introduced as the best predictor of hs-CRP (B = −3.293, p < 0.001). Energy intake predicted both BMI (B = 0.007, p < 0.001) and percentage body fat (B = 0.015, p < 0.001).
Originality/value
Hypocaloric and high prebiotic fiber diet may suppress systemic inflammation and thereby modulate disease severity, as well as control anthropometric indices.
Collapse
|
8
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
9
|
Fan Y, Zhang J. Dietary Modulation of Intestinal Microbiota: Future Opportunities in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Microbiol 2019; 10:740. [PMID: 31040833 PMCID: PMC6476896 DOI: 10.3389/fmicb.2019.00740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the functioning of the central nervous system (CNS). Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have shown that the composition and abundance of microbes in the intestinal microbiota are an environmental risk factor for the development of MS and EAE. Changes in certain microbial populations in the gastrointestinal tract can cause MS in humans, but MS inflammation can be reduced or even prevented by introducing other commensal microbes that produce beneficial metabolites. Other risk factors for MS include the presence of an altered gut physiology and the interaction between the intestinal microbiota and the immune system. Metabolites including short-chain fatty acids (SCFAs), such as butyrate, are the primary signaling molecules produced by the intestinal microbiota that interact with the host immune system, suggesting an association between MS pathophysiology and gut microbiota. In addition, several host microRNAs present in the gut have been found to interact with the intestinal microbial community, these interactions may indirectly affect the neurological system. Increasing evidence has shown that regulation of the intestinal microbiota is an important approach for reducing MS inflammation. Thus, here we review the use of diet to alter the gut microbiota and its application in the treatment and prevention of MS.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junmei Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Midttun HLE, Ramsay A, Mueller-Harvey I, Williams AR. Cocoa procyanidins modulate transcriptional pathways linked to inflammation and metabolism in human dendritic cells. Food Funct 2018; 9:2883-2890. [DOI: 10.1039/c8fo00387d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A mechanistic insight into the immunomodulatory effects of a purified procyanidin fraction from cocoa beans.
Collapse
Affiliation(s)
- Helene L. E. Midttun
- Department of Veterinary and Animal Sciences
- University of Copenhagen
- Frederiksberg
- Denmark
| | - Aina Ramsay
- Chemistry and Biochemistry Laboratory
- School of Agriculture
- Policy and Development
- University of Reading
- Reading
| | - Irene Mueller-Harvey
- Chemistry and Biochemistry Laboratory
- School of Agriculture
- Policy and Development
- University of Reading
- Reading
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences
- University of Copenhagen
- Frederiksberg
- Denmark
| |
Collapse
|
11
|
Wang J, Qi Y, Niu X, Tang H, Meydani SN, Wu D. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem 2017; 54:130-139. [PMID: 29331869 DOI: 10.1016/j.jnutbio.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Autoimmune disease is highly prevalent in humans. Since conventional therapies have limited efficacy and often come with significant side effects, nutrition may provide an alternative and complementary approach to improving autoimmune disorders. Naringenin, a flavonoid found in citrus fruits, has been shown to have anti-inflammatory and antioxidant properties. Using the experimental autoimmune encephalomyelitis (EAE), a rodent model of human multiple sclerosis, we determined the effect of dietary naringenin (0.5%) on autoimmune disease. We found that naringenin reduced the incidence, delayed the onset, and attenuated the symptoms of EAE, which were accompanied by reduced immune cell infiltration and demyelination in the spinal cord. Additionally, the pro-inflammatory CD4+ T cell subsets Th1, Th9, and Th17 cells together with their respective transcription factors T-bet, PU.1, and RORγt were reduced in both the central nervous system (CNS) and lymph nodes of EAE mice fed naringenin while no difference was found in Th2 and regulatory T cell (Treg) populations in either CNS or lymph nodes between the two groups. We further showed that pathologic T cell proliferation induced by ex vivo re-stimulation with MOG35-55 and proinflammatory cytokines IL-6 and TNF-α were lower in naringenin-fed mice than in the control mice. Additionally, we found that naringenin treatment inhibited mRNA expression of CXCL10 (Th1 recruiting chemokine), vascular cell adhesion molecule-1 (VCAM-1), and VLA-4 (VCAM-1 ligand) in the CNS of EAE mice. Altogether, these results indicate that naringenin may have a potential to ameliorate autoimmune disease by favorably modulating autoimmune response.
Collapse
Affiliation(s)
- Junpeng Wang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA; Institute of Infection and Immunity of Huaihe Clinical College, Henan University, Kaifeng, China
| | - Ying Qi
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA; Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinli Niu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA; College of Life Science, Henan University, Kaifeng, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA.
| |
Collapse
|
12
|
Identification of 14-dehydroergosterol as a novel anti-inflammatory compound inducing tolerogenic dendritic cells. Sci Rep 2017; 7:13903. [PMID: 29066789 PMCID: PMC5654777 DOI: 10.1038/s41598-017-14446-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023] Open
Abstract
Tolerogenic dendritic cells (DCs) have the ability to induce regulatory T cells and play an important role in preventing chronic inflammatory and autoimmune diseases. We have identified a novel compound, 14-dehydroergosterol, from Koji, a Japanese traditional food material fermented with fungi. 14-dehydroergosterol is an ergosterol analogue with a conjugated double bond, but the activity of 14-dehydroergosterol is much higher than that of ergosterol. 14-dehydroergosterol induces the conversion of murine bone marrow (BM)-derived DCs and differentiated DCs into tolerogenic DCs, in which the production of IL-12 is suppressed and that of IL-10 is increased. In a co-culture experiment, DCs treated with 14-dehydroergosterol induced the conversion of naïve CD4-positive T cells into regulatory T cells. In a murine model of multiple sclerosis, experimental autoimmune encephalopathy, 14-dehydroergosterol suppressed the clinical score and inflammatory responses of myeloid DCs and T cells to myelin oligodendrocyte glycoprotein. 14-dehydroergosterol-treated human DCs induced from PBMCs also showed a tolerogenic phenotype. This is the first report to identify a novel compound, 14-dehydroergosterol, that induces DCs to convert to a tolerogenic type. 14-dehydroergosterol is contained in various fermented foods based on Koji, so 14-dehydroergosterol might be a helpful aid to prevent chronic inflammatory and autoimmune diseases.
Collapse
|
13
|
Procyanidin, a kind of biological flavonoid, induces protective anti-tumor immunity and protects mice from lethal B16F10 challenge. Int Immunopharmacol 2017; 47:251-258. [DOI: 10.1016/j.intimp.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
14
|
Mirza A, Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin Immunol 2017; 183:213-224. [PMID: 28286112 DOI: 10.1016/j.clim.2017.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Individuals with multiple sclerosis (MS) have a distinct intestinal microbial community (microbiota) and increased low-grade translocation of bacteria from the intestines into the circulation. The observed change of intestinal bacteria in MS patients regulate immune functions involved in MS pathogenesis. These functions include: systemic and central nervous system (CNS) immunity (including peripheral regulatory T cell function), the blood-brain barrier (BBB) permeability and CNS-resident cell activity. This review discusses the MS intestinal microbiota implication on MS systemic- and CNS-immunopathology. We introduce the possible contributions of MS low-grade microbial translocation (LG-MT) to the development of MS, and end on a discussion on microbiota therapies for MS patients.
Collapse
Affiliation(s)
- Ali Mirza
- Department of Microbiology and Immunology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States; Department of Neurology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan School of Medicine, 4015 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
15
|
Huang Y, Sumida M, Kumazoe M, Sugihara K, Suemasu Y, Yamada S, Yamashita S, Miyakawa J, Takahashi T, Tanaka H, Fujimura Y, Tachibana H. Oligomer formation of a tea polyphenol, EGCG, on its sensing molecule 67 kDa laminin receptor. Chem Commun (Camb) 2017; 53:1941-1944. [DOI: 10.1039/c6cc09504f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) has been attributed to the activation of its cell surface sensing receptor 67 kDa laminin receptor (67LR).
Collapse
|
16
|
Williams AR, Klaver EJ, Laan LC, Ramsay A, Fryganas C, Difborg R, Kringel H, Reed JD, Mueller-Harvey I, Skov S, van Die I, Thamsborg SM. Co-operative suppression of inflammatory responses in human dendritic cells by plant proanthocyanidins and products from the parasitic nematode Trichuris suis. Immunology 2016; 150:312-328. [PMID: 27905107 DOI: 10.1111/imm.12687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Interactions between dendritic cells (DCs) and environmental, dietary and pathogen antigens play a key role in immune homeostasis and regulation of inflammation. Dietary polyphenols such as proanthocyanidins (PAC) may reduce inflammation, and we therefore hypothesized that PAC may suppress lipopolysaccharide (LPS) -induced responses in human DCs and subsequent T helper type 1 (Th1) -type responses in naive T cells. Moreover, we proposed that, because DCs are likely to be exposed to multiple stimuli, the activity of PAC may synergise with other bioactive molecules that have anti-inflammatory activity, e.g. soluble products from the helminth parasite Trichuris suis (TsSP). We show that PAC are endocytosed by monocyte-derived DCs and selectively induce CD86 expression. Subsequently, PAC suppress the LPS-induced secretion of interleukin-6 (IL-6) and IL-12p70, while enhancing secretion of IL-10. Incubation of DCs with PAC did not affect lymphocyte proliferation; however, subsequent interferon-γ production was markedly suppressed, while IL-4 production was unaffected. The activity of PAC was confined to oligomers (degree of polymerization ≥ 4). Co-pulsing DCs with TsSP and PAC synergistically reduced secretion of tumour necrosis factor-α, IL-6 and IL-12p70 while increasing IL-10 secretion. Moreover, both TsSP and PAC alone induced Th2-associated OX40L expression in DCs, and together synergized to up-regulate OX40L. These data suggest that PAC induce an anti-inflammatory phenotype in human DCs that selectively down-regulates Th1 response in naive T cells, and that they also act cooperatively with TsSP. Our results indicate a novel interaction between dietary compounds and parasite products to influence immune function, and may suggest that combinations of PAC and TsSP can have therapeutic potential for inflammatory disorders.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Elsenoor J Klaver
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Aina Ramsay
- Chemistry and Biochemistry Laboratory, University of Reading, Reading, UK
| | - Christos Fryganas
- Chemistry and Biochemistry Laboratory, University of Reading, Reading, UK
| | - Rolf Difborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Helene Kringel
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jess D Reed
- Department of Animal Science, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Søren Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Stig M Thamsborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
17
|
Zempo H, Suzuki JI, Watanabe R, Wakayama K, Kumagai H, Ikeda Y, Akazawa H, Komuro I, Isobe M. Cacao polyphenols ameliorate autoimmune myocarditis in mice. Hypertens Res 2015; 39:203-9. [PMID: 26657007 DOI: 10.1038/hr.2015.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 08/22/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hirofumi Zempo
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, University of Tokyo, Tokyo, Japan
| | - Ryo Watanabe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouji Wakayama
- Department of Advanced Clinical Science and Therapeutics, University of Tokyo, Tokyo, Japan
| | - Hidetoshi Kumagai
- Department of Advanced Clinical Science and Therapeutics, University of Tokyo, Tokyo, Japan
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Advanced Clinical Science and Therapeutics, University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
18
|
Goto M, Wakagi M, Shoji T, Takano-Ishikawa Y. Oligomeric Procyanidins Interfere with Glycolysis of Activated T Cells. A Novel Mechanism for Inhibition of T Cell Function. Molecules 2015; 20:19014-26. [PMID: 26492229 PMCID: PMC6332502 DOI: 10.3390/molecules201019014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/03/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Procyanidins, which are flavonoids that are found in a variety of plant species, reduce or prevent immune disorders, such as allergy and autoimmune diseases, through an unknown mechanism. In the present study, we investigated the effects of procyanidins on the T cell receptor (TCR)-mediated responses of CD4+ T cells in vitro. Apple procyanidins strongly suppressed the proliferation of splenic CD4+ T cells that were stimulated by an anti-CD3ε antibody, as well as splenocytes stimulated by antigen, but did not alter interleukin (IL)-2 secretion from these cells. Furthermore, we found that oligomeric procyanidins strongly suppressed, in a degree of polymerization dependent manner, the proliferation of activated CD4+ T cells, as well as their production of effector cytokines, including glycolysis associated-cytokines, without affecting IL-2 secretion. Additionally, we investigated the inhibitory effects of oligomeric procyanidins on the glycolytic activity of activated CD4+ T cells. We show that pentameric procyanidin suppressed L-lactate production and glucose uptake in activated CD4+ T cells. These results suggest that oligomeric procyanidins suppress the functions of activated CD4+ T cells by interfering with glycolysis.
Collapse
Affiliation(s)
- Masao Goto
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Manabu Wakagi
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Toshihiko Shoji
- Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan.
| | - Yuko Takano-Ishikawa
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
19
|
Kanojia SV, Chatterjee S, Gamre S, Chattopadhyay S, Sharma A. Asymmetric synthesis of the constitutive C22-carboxylic acid of macroviracin A. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Brain Protection Conferred by Long-Term Administration of 2-(2-Benzofuranyl)-2-Imidazoline Against Experimental Autoimmune Encephalomyelitis. Neurochem Res 2014; 40:572-8. [DOI: 10.1007/s11064-014-1502-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/26/2022]
|
21
|
Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. "Disease modifying nutricals" for multiple sclerosis. Pharmacol Ther 2014; 148:85-113. [PMID: 25435020 DOI: 10.1016/j.pharmthera.2014.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
Abstract
The association between vitamin D and multiple sclerosis has (re)-opened new interest in nutrition and natural compounds in the prevention and treatment of this neuroinflammatory disease. The dietary amount and type of fat, probiotics and biologicals, salmon proteoglycans, phytoestrogens and protease inhibitor of soy, sodium chloride and trace elements, and fat soluble vitamins including D, A and E were all considered as disease-modifying nutraceuticals. Studies in experimental autoimmune encephalomyelitis mice suggest that poly-unsaturated fatty acids and their 'inflammation-resolving' metabolites and the gut microflora may reduce auto-aggressive immune cells and reduce progression or risk of relapse, and infection with whipworm eggs may positively change the gut-brain communication. Encouraged by the recent interest in multiple sclerosis-nutrition nature's pharmacy has been searched for novel compounds with anti-inflammatory, immune-modifying and antioxidative properties, the most interesting being the scorpion toxins that inhibit specific potassium channels of T cells and antioxidative compounds including the green tea flavonoid epigallocatechin-3-gallate, curcumin and the mustard oil glycoside from e.g. broccoli and sulforaphane. They mostly also inhibit pro-inflammatory signaling through NF-κB or toll-like receptors and stabilize the blood brain barrier. Disease modifying functions may also complement analgesic and anti-spastic effects of cannabis, its constituents, and of 'endocannabinoid enhancing' drugs or nutricals like inhibitors of fatty acid amide hydrolase. Nutricals will not solve multiple sclerosis therapeutic challenges but possibly support pharmacological interventions or unearth novel structures.
Collapse
Affiliation(s)
- Katja Schmitz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Julia Barthelmes
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Leonie Stolz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Susanne Beyer
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Olaf Diehl
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Irmgard Tegeder
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany.
| |
Collapse
|
22
|
Oral Administration of Highly Oligomeric Procyanidins of Jatoba Reduces the Severity of Collagen-Induced Arthritis. Biosci Biotechnol Biochem 2014; 72:1781-8. [DOI: 10.1271/bbb.80074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Singh Yadav J, Shiva Shankar K, Srinivas Reddy A, Subba Reddy BV. Stereoselective Total Synthesis of Oxylipins: (6S,7E,9R,10S)-6,9,10-Trihydroxyoctadec-7-enoic Acid and (6Z,8R,9R,10S)-8,9,10-Trihydroxyoctadec-6-enoic Acid. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Stereoselective total synthesis of both (6R,9R,10S,7E)- and (6S,9R,10S,7E)-epimers of oxylipin (9R,10S,7E)-6,9,10-trihydroxyoctadec-7-enoic acid. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.12.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:541971. [PMID: 22829957 PMCID: PMC3395274 DOI: 10.1155/2012/541971] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022]
Abstract
Although it has been long believed that new neurons were only generated during development, there is now growing evidence indicating that at least two regions in the brain are capable of continuously generating functional neurons: the subventricular zone and the dentate gyrus of the hippocampus. Adult hippocampal neurogenesis (AHN) is a widely observed phenomenon verified in different adult mammalian species including humans. Factors such as environmental enrichment, voluntary exercise, and diet have been linked to increased levels of AHN. Conversely, aging, stress, anxiety and depression have been suggested to hinder it. However, the mechanisms underlying these effects are still unclear and yet to be determined. In this paper, we discuss some recent findings addressing the effects of different dietary polyphenols on hippocampal cell proliferation and differentiation, models of anxiety, and depression as well as some proposed molecular mechanisms underlying those effects with particular focus on those related to AHN. As a whole, dietary polyphenols seem to exert positive effects on anxiety and depression, possibly in part via regulation of AHN. Studies on the effects of dietary polyphenols on behaviour and AHN may play an important role in the approach to use diet as part of the therapeutic interventions for mental-health-related conditions.
Collapse
|
26
|
Xin J, Feinstein DL, Hejna MJ, Lorens SA, McGuire SO. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5743-8. [PMID: 22243431 DOI: 10.1021/jf203611t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune disease that presents with pathological and clinical features similar to those of multiple sclerosis (MS) including inflammation and neurodegeneration. This study investigated whether blueberries, which possess immunomodulatory, anti-inflammatory, and neuroprotective properties, could provide protection in EAE. Dietary supplementation with 1% whole, freeze-dried blueberries reduced disease incidence by >50% in a chronic EAE model (p < 0.01). When blueberry-fed mice with EAE were compared with control-fed mice with EAE, blueberry-fed mice had significantly lower motor disability scores (p = 0.03) as well as significantly greater myelin preservation in the lumbar spinal cord (p = 0.04). In a relapsing-remitting EAE model, blueberry-supplemented mice showed improved cumulative and final motor scores compared to control diet-fed mice (p = 0.01 and 0.03, respectively). These data demonstrate that blueberry supplementation is beneficial in multiple EAE models, suggesting that blueberries, which are easily administered orally and well-tolerated, may provide benefit to MS patients.
Collapse
Affiliation(s)
- Junping Xin
- Rehabilitation Research and Development Service, U.S. Veterans Administration , Edward Hines, Jr., VA Hospital, Mail Stop 151, 5000 South Fifth Avenue, Hines, Illinois 60141, United States
| | | | | | | | | |
Collapse
|
27
|
Wu D, Wang J, Pae M, Meydani SN. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Mol Aspects Med 2012; 33:107-18. [DOI: 10.1016/j.mam.2011.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
|
28
|
Wang J, Ren Z, Xu Y, Xiao S, Meydani SN, Wu D. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:221-34. [PMID: 22056360 DOI: 10.1016/j.ajpath.2011.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/19/2011] [Accepted: 09/14/2011] [Indexed: 12/01/2022]
Abstract
The green tea component epigallocatechin-3-gallate (EGCG) may be beneficial in autoimmune diseases; however, the underlying mechanisms are not well understood. In this study, we determined the effect of EGCG on the development of experimental autoimmune encephalomyelitis, an animal model for human multiple sclerosis, and the underlying mechanisms. Female C57BL/6 mice were fed EGCG (0%, 0.15%, 0.3%, and 0.6% in diet) for 30 days and then immunized with specific antigen myelin oligodendrocyte glycoprotein 35-55. EGCG dose dependently attenuated clinical symptoms and pathological features (leukocyte infiltration and demyelination) in the central nervous system and inhibited antigen-specific T-cell proliferation and delayed-type hypersensitivity skin response. We further showed that EGCG reduced production of interferon-γ, IL-17, IL-6, IL-1β, and tumor necrosis factor-α; decreased types 1 and 17 helper T cells (Th1 and Th17, respectively); and increased regulatory T-cell populations in lymph nodes, the spleen, and the central nervous system. Moreover, EGCG inhibited expression of transcription factors T-box expressed in T cells and retinoid-related orphan receptor-γt, the specific transcription factor for Th1 and Th17 differentiation, respectively; the plasma levels of intercellular adhesion molecule 1; and CCR6 expression in CD4(+) T cells. These results indicate that EGCG may attenuate experimental autoimmune encephalomyelitis autoimmune response by inhibiting immune cell infiltration and modulating the balance among pro- and anti-autoimmune CD4(+) T-cell subsets. Thus, we identified a novel mechanism that underlies EGCG's beneficial effect in autoimmune disease.
Collapse
Affiliation(s)
- Junpeng Wang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Sackler Graduate School of Biochemical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wang CC, Lin HL, Liang HJ, Jan TR. Areca nut extracts enhance the development of CD11b(+) Gr-1(+) cells with the characteristics of myeloid-derived suppressor cells in antigen-stimulated mice. J Oral Pathol Med 2011; 40:769-77. [PMID: 21481006 DOI: 10.1111/j.1600-0714.2011.01043.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Areca quid chewing is an etiological factor contributing to the development of oral cancer and pre-cancers, whose pathophysiology has been linked to inflammation and immune deterioration. Myeloid-derived suppressor cells (MDSC) play a key role in the regulation of immunity under certain pathological conditions, such as inflammation and cancer. As areca nut extracts (ANE) have been reported to induce a proinflammatory effect in antigen-stimulated mice, we hypothesized that ANE might enhance the development of MDSC. METHODS Ovalbumin (OVA)-sensitized BALB/c mice were daily administered with ANE (5-50 mg/kg), polyphenol-enriched ANE (PANE; 25 mg/kg) or arecoline (5 mg/kg) by intraperitoneal injection for 10 doses. The mouse footpads were then subcutaneously challenged with OVA to induce local inflammatory responses. RESULTS ANE and PANE treatment significantly increased the spleen index and the population of CD11b(+) Gr-1(+) cells in the spleen and peripheral blood, whereas arecoline was inactive. In addition, ANE and PANE treatment enhanced the expression of cytokines and enzymes associated with the immunosuppressive function of MDSC, including IL-10, arginase-I and iNOS in splenic CD11b(+) cells. Concordantly, ANE and PANE treatment augmented the infiltration of Gr-1(+) IL-10(+) cells in the footpads challenged with OVA. CONCLUSIONS Our results suggested that areca nut constituents, in particular, polyphenols enhanced the development of myeloid-derived suppressor cells in vivo, which may be a critical mechanism linking inflammation and the compromised immunity reported to be associated with the pathophysiology of areca-related oral diseases.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Animal Cancer Center, Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei
| | | | | | | |
Collapse
|
30
|
Napolitano A, Benavides A, Pizza C, Piacente S. Qualitative on-line profiling of ceramides and cerebrosides by high performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry: The case of Dracontium loretense. J Pharm Biomed Anal 2011; 55:23-30. [DOI: 10.1016/j.jpba.2010.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
31
|
Chatterjee S, Kanojia SV, Chattopadhyay S, Sharma A. First asymmetric synthesis of the oxylipin, (6S,9R,10S)-6,9,10-trihydroxyoctadeca-7E-enoic acid. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
NISHIZUKA T, FUJITA Y, SATO Y, NAKANO A, KAKINO A, OHSHIMA S, KANDA T, YOSHIMOTO R, SAWAMURA T. Procyanidins are potent inhibitors of LOX-1: a new player in the French Paradox. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:104-13. [PMID: 21422743 PMCID: PMC3066543 DOI: 10.2183/pjab.87.104] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lectin-like oxidized LDL receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL (oxLDL) and plays multiple roles in the development of cardiovascular diseases. We screened more than 400 foodstuff extracts for identifying materials that inhibit oxLDL binding to LOX-1. Results showed that 52 extracts inhibited LOX-1 by more than 70% in cell-free assays. Subsequent cell-based assays revealed that a variety of foodstuffs known to be rich in procyanidins such as grape seed extracts and apple polyphenols, potently inhibited oxLDL uptake in Chinese hamster ovary (CHO) cells expressing LOX-1. Indeed, purified procyanidins significantly inhibited oxLDL binding to LOX-1 while other ingredients of apple polyphenols did not. Moreover, chronic administration of oligomeric procyanidins suppressed lipid accumulation in vascular wall in hypertensive rats fed with high fat diet. These results suggest that procyanidins are LOX-1 inhibitors and LOX-1 inhibition might be a possible underlying mechanism of the well-known vascular protective effects of red wine, the French Paradox.
Collapse
Affiliation(s)
- Taichi NISHIZUKA
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries, Ltd., Ibaraki, Japan
| | - Yoshiko FUJITA
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuko SATO
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Atushi NAKANO
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akemi KAKINO
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shunji OHSHIMA
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries, Ltd., Ibaraki, Japan
| | - Tomomasa KANDA
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries, Ltd., Ibaraki, Japan
| | - Ryo YOSHIMOTO
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tatsuya SAWAMURA
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Correspondence should be addressed: T. Sawamura, MD, PhD, Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan (e-mail: )
| |
Collapse
|
33
|
Elango C, Devaraj SN. Immunomodulatory effect of Hawthorn extract in an experimental stroke model. J Neuroinflammation 2010; 7:97. [PMID: 21192826 PMCID: PMC3022819 DOI: 10.1186/1742-2094-7-97] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we reported a neuroprotective effect for Hawthorn (Crataegus oxyacantha) ethanolic extract in middle cerebral artery occlusion-(MCAO) induced stroke in rats. The present study sheds more light on the extract's mechanism of neuroprotection, especially its immunomodulatory effect. METHODS After 15 days of treatment with Hawthorn extract [100 mg/kg, pretreatment (oral)], male Sprague Dawley rats underwent transient MCAO for 75 mins followed by reperfusion (either 3 or 24 hrs). We measured pro-inflammatory cytokines (IL-1β, TNF-α, IL-6), ICAM-1, IL-10 and pSTAT-3 expression in the brain by appropriate methods. We also looked at the cytotoxic T cell sub-population among leukocytes (FACS) and inflammatory cell activation and recruitment in brain (using a myeloperoxidase activity assay) after ischemia and reperfusion (I/R). Apoptosis (TUNEL), and Bcl-xL- and Foxp3- (T(reg) marker) positive cells in the ipsilateral hemisphere of the brain were analyzed separately using immunofluorescence. RESULTS Our results indicate that occlusion followed by 3 hrs of reperfusion increased pro-inflammatory cytokine and ICAM-1 gene expressions in the ipsilateral hemisphere, and that Hawthorn pre-treatment significantly (p ≤ 0.01) lowered these levels. Furthermore, such pre-treatment was able to increase IL-10 levels and Foxp3-positive cells in brain after 24 hrs of reperfusion. The increase in cytotoxic T cell population in vehicle rats after 24 hrs of reperfusion was decreased by at least 40% with Hawthorn pretreatment. In addition, there was a decrease in inflammatory cell activation and infiltration in pretreated brain. Hawthorn pretreatment elevated pSTAT-3 levels in brain after I/R. We also observed an increase in Bcl-xL-positive cells, which in turn may have influenced the reduction in TUNEL-positive cells compared to vehicle-treated brain. CONCLUSIONS In summary, Hawthorn extract helped alleviate pro-inflammatory immune responses associated with I/R-induced injury, boosted IL-10 levels, and increased Foxp3-positive T(regs) in the brain, which may have aided in suppression of activated inflammatory cells. Such treatment also minimizes apoptotic cell death by influencing STAT-3 phosphorylation and Bcl-xL expression in the brain. Taken together, the immunomodulatory effect of Hawthorn extract may play a critical role in the neuroprotection observed in this MCAO-induced stroke model.
Collapse
Affiliation(s)
- Chinnasamy Elango
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| | | |
Collapse
|
34
|
Hurst SM, McGhie TK, Cooney JM, Jensen DJ, Gould EM, Lyall KA, Hurst RD. Blackcurrant proanthocyanidins augment IFN-gamma-induced suppression of IL-4 stimulated CCL26 secretion in alveolar epithelial cells. Mol Nutr Food Res 2010; 54 Suppl 2:S159-70. [PMID: 20229526 DOI: 10.1002/mnfr.200900297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epidemiological studies reveal that fruit consumption reduces the prevalence of airway inflammation and childhood asthma. In particular, blackcurrant polyphenolic extracts have been shown to alleviate lung inflammation. Since IL-4-stimulated eotaxin-3 (CCL26) secretion is a major factor in the continuous eosinophil recruitment observed in atopic asthma, our focus was to evaluate the effectiveness of blackcurrant polyphenolic compounds on CCL26 secretion in human alveolar epithelial cells. Our results indicate that a proanthocyanin-enriched blackcurrant extract (BC-P), but not anthocyanin-enriched blackcurrant extract suppressed both IL-4- and IL-13-stimulated CCL26 secretion in a dose-dependent manner. Furthermore pre-incubation of cells with BC-P caused a time-dependent suppression of IL-4-stimulated CCL26 secretion. Moreover, epigallocatechin (EGC), and to a lesser extent epicatechin, metabolites identified in the proanthocyanidin extract, suppressed IL-4-stimulated CCL26 secretion. EGC was also effective at reducing the cellular phosphorylated STAT-6/STAT-6 ratio. Furthermore, both BC-P and purified EGC potentiated the ability of IFN-gamma to suppress IL-4-stimulated CCL26 secretion. The progression of an allergic immune response is complex, identifying plant compounds that target specific cellular events and complement the body's own immune actions is important for the development of functional foods. Our findings support the potential for blackcurrant polyphenolic compounds to reduce eosinophil recruitment and alleviate eosinophilic-driven airway inflammation.
Collapse
Affiliation(s)
- Suzanne M Hurst
- Food Innovation portfolio, The Plant and Food Research Institute of New Zealand Ltd., Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang CC, Huang PL, Liu TY, Jan TR. Highly oligomeric procyanidins from areca nut induce lymphocyte apoptosis via the depletion of intracellular thiols. Toxicol In Vitro 2009; 23:1234-41. [DOI: 10.1016/j.tiv.2009.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/30/2009] [Accepted: 07/30/2009] [Indexed: 11/25/2022]
|
36
|
Benavides A, Napolitano A, Bassarello C, Carbone V, Gazzerro P, Malfitano A, Saggese P, Bifulco M, Piacente S, Pizza C. Oxylipins from Dracontium loretense. JOURNAL OF NATURAL PRODUCTS 2009; 72:813-817. [PMID: 19341262 DOI: 10.1021/np8006205] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Four novel oxylipins (1-4) were isolated from the n-butanol extract of the corms of Dracontium loretense. Their structures were assigned by 1D and 2D NMR analyses and electrospray ionization multistage ion trap mass spectrometry (ESI-ITMS(n)) data. Relative configurations were assigned on the basis of combined analysis of homonuclear and heteronuclear (2,3)J couplings, along with ROE data. Oxylipin 2 exhibited an immunostimulatory effect on human PBMC proliferation.
Collapse
Affiliation(s)
- Angelyne Benavides
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano, SA, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miljković D, Dekanski D, Miljković Z, Momcilović M, Mostarica-Stojkovic M. Dry olive leaf extract ameliorates experimental autoimmune encephalomyelitis. Clin Nutr 2009; 28:346-50. [PMID: 19386399 DOI: 10.1016/j.clnu.2009.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Experimental autoimmune encephalomyelitis (EAE) is an animal model of CNS inflammatory and demyelinating disease multiple sclerosis. Mediterranean diet, rich in olive products is associated with lower incidence of multiple sclerosis in South European population. Therefore, the influence of dry olive leaf extract (DOLE) on EAE course was investigated. METHODS Spinal cord homogenate and complete Freund's adjuvant were used for the induction of EAE in Dark Agouti rats. DOLE was applied intragastrically once per day, starting from the day of the immunization. Real time PCR and ELISA were used for the determination of IFN-gamma and IL-17 gene expression and production, respectively. RESULTS DOLE reduced various parameters of EAE severity in DA rats, including cumulative disease index, maximal clinical score and disease duration. Also, DOLE decreased cellularity of the draining lymph nodes and production of IFN-gamma and IL-17 by the cells infiltrating spinal cord of EAE rats. CONCLUSIONS The results presented in this paper strongly suggest that DOLE-enriched diet has a beneficial effect in EAE in rats. Further studies in humans are required in order to investigate if DOLE could be a useful supplementary dietetic for the patients suffering from multiple sclerosis and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Djordje Miljković
- Institute for Biological Research Sinisa Stanković, Department of Immunology, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|