1
|
LAPTM5 mediates immature B cell apoptosis and B cell tolerance by regulating the WWP2-PTEN-AKT pathway. Proc Natl Acad Sci U S A 2022; 119:e2205629119. [PMID: 36037365 PMCID: PMC9457450 DOI: 10.1073/pnas.2205629119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elimination of autoreactive developing B cells is an important mechanism to prevent autoantibody production. However, how B cell receptor (BCR) signaling triggers apoptosis of immature B cells remains poorly understood. We show that BCR stimulation up-regulates the expression of the lysosomal-associated transmembrane protein 5 (LAPTM5), which in turn triggers apoptosis of immature B cells through two pathways. LAPTM5 causes BCR internalization, resulting in decreased phosphorylation of SYK and ERK. In addition, LAPTM5 targets the E3 ubiquitin ligase WWP2 for lysosomal degradation, resulting in the accumulation of its substrate PTEN. Elevated PTEN levels suppress AKT phosphorylation, leading to increased FOXO1 expression and up-regulation of the cell cycle inhibitor p27Kip1 and the proapoptotic molecule BIM. In vivo, LAPTM5 is involved in the elimination of autoreactive B cells and its deficiency exacerbates autoantibody production. Our results reveal a previously unidentified mechanism that contributes to immature B cell apoptosis and B cell tolerance.
Collapse
|
2
|
Cavazzoni CB, Bozza VB, Lucas TC, Conde L, Maia B, Mesin L, Schiepers A, Ersching J, Neris RL, Conde JN, Coelho DR, Lima TM, Alvim RG, Castilho LR, de Paula Neto HA, Mohana-Borges R, Assunção-Miranda I, Nobrega A, Victora GD, Vale AM. The immunodominant antibody response to Zika virus NS1 protein is characterized by cross-reactivity to self. J Exp Med 2021; 218:e20210580. [PMID: 34292314 PMCID: PMC8302445 DOI: 10.1084/jem.20210580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Besides antigen-specific responses to viral antigens, humoral immune response in virus infection can generate polyreactive and autoreactive antibodies. Dengue and Zika virus infections have been linked to antibody-mediated autoimmune disorders, including Guillain-Barré syndrome. A unique feature of flaviviruses is the secretion of nonstructural protein 1 (NS1) by infected cells. NS1 is highly immunogenic, and antibodies targeting NS1 can have both protective and pathogenic roles. In the present study, we investigated the humoral immune response to Zika virus NS1 and found NS1 to be an immunodominant viral antigen associated with the presence of autoreactive antibodies. Through single B cell cultures, we coupled binding assays and BCR sequencing, confirming the immunodominance of NS1. We demonstrate the presence of self-reactive clones in germinal centers after both infection and immunization, some of which present cross-reactivity with NS1. Sequence analysis of anti-NS1 B cell clones showed sequence features associated with pathogenic autoreactive antibodies. Our findings demonstrate NS1 immunodominance at the cellular level as well as a potential role for NS1 in ZIKV-associated autoimmune manifestations.
Collapse
Affiliation(s)
- Cecilia B. Cavazzoni
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Vicente B.T. Bozza
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tostes C.V. Lucas
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Maia
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Romulo L.S. Neris
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas N. Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego R. Coelho
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tulio M. Lima
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata G.F. Alvim
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leda R. Castilho
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor A. de Paula Neto
- Laboratório de Alvos Moleculares, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Nobrega
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Andre M. Vale
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Abstract
Defective clearance of apoptotic cells in MFG-E8 deficient mice results in lupus-like disease in the mixed B6x129, but not pure B6 background. The lack of overt autoimmunity in MFG-E8-/- B6 mice suggests that accumulation of apoptotic cells is not sufficient to break central tolerance. However, the delayed clearance of apoptotic cells in the follicles of MFG-E8-/- B6 mice provides an excellent opportunity to investigate how B cells respond to excessive apoptotic cells in the periphery under relatively non-inflammatory conditions. In MFG-E8-/- B6 mice, we found increased IgG2c production against apoptotic cells and oxidized LDL. Apoptotic cell induced antibody responses depended on MyD88 signal and T cell help. In addition, MFG-E8-/- B6 mice had enlarged MZ B cell compartments as well as an enhanced antibody response to NP-Ficoll. Moreover, a significant percentage of MZ B cells in aged MFG-E8-/- B6 mice migrated into follicles. Injecting apoptotic cells or oxidized LDL into wild type mice as well as physiological accumulation of LDL in ApoE-/- mice recapitulated the translocation of MZ B cells. To determine how MFG-E8 deficiency affects the functions of autoreactive B cells specific for nucleic acids in the periphery under non-inflammatory conditions, we utilized BCR transgenic mice to bypass central selection and compared the differentiation of TLR9 dependent anti-dsDNA 56R B cells and TLR7 dependent anti-ssRNA H564 B cells in MFG-E8-/- mice. In MFG-E8-/- 56R mice, anti-dsDNA specific 56R/Vκ38c B cells differentiated into MZ B cells but not AFCs. On the contrary, in MFG-E8-/-H564 mice, anti-ssRNA specific H564 B cells further differentiated into GC B cells and AFCs. Adoptive transfer of activated autoreactive B cells confirmed that H564 B cells were more sensitive to apoptotic cell antigens than 56R B cells. Our observations provide new insights about the MZ B cell translocation in lupus patients as well as the dichotomy of TLR9 and TLR7 signals in the pathogenesis of lupus.
Collapse
Affiliation(s)
- YuFeng Peng
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
4
|
Phenotyping of autoreactive B cells with labeled nucleosomes in 56R transgenic mice. Sci Rep 2017; 7:13232. [PMID: 29038433 PMCID: PMC5643551 DOI: 10.1038/s41598-017-13422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023] Open
Abstract
The phenotypic characterization of self-reactive B cells producing autoantibodies is one of the challenges to get further insight in the physiopathology of autoimmune diseases. We took advantage of our previously developed flow cytometry method, using labeled nucleosomes, prominent autoantigens in systemic lupus erythematosus, to analyze the phenotype of self-reactive B cells in the anti-DNA B6.56R mouse model. We showed that splenic anti-nucleosome B cells express mostly kappa light chains and harbor a marginal zone phenotype. Moreover, these autoreactive B cells fail to acquire a germinal center phenotype and are less abundant in the transitional T3 compartment. In conclusion, the direct detection of autoreactive B cells helped determine their phenotypic characteristics and provided a more direct insight into the B cell tolerance process in B6.56R mice. This method constitutes an interesting new tool to study the mechanisms of B cell tolerance breakdown in B6.56R mice crossed with autoimmune prone models.
Collapse
|
5
|
Identification of autoreactive B cells with labeled nucleosomes. Sci Rep 2017; 7:602. [PMID: 28377609 PMCID: PMC5428865 DOI: 10.1038/s41598-017-00664-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of autoimmune diseases has not been completely elucidated yet, and only a few specific treatments have been developed so far. In autoimmune diseases mediated by pathogenic autoantibodies, such as systemic lupus erythematosus, the specific detection and analysis of autoreactive B cells is crucial for a better understanding of the physiopathology. Biological characterization of these cells may help to define new therapeutic targets. Very few techniques allowing the precise detection of autoreactive B cells have been described so far. Herein we propose a new flow cytometry technique for specific detection of anti-nucleosome B cells, which secrete autoantibodies in systemic lupus erythematosus, using labeled nucleosomes. We produced different fluorochrome-labeled nucleosomes, characterized them, and finally tested them in flow cytometry. Nucleosomes labeled via the cysteines present in H3 histone specifically bind to autoreactive B cells in the anti-DNA transgenic B6.56R mice model. The present work validates the use of fluorochrome-labeled nucleosomes via cysteines to identify anti-nucleosome B cells and offers new opportunities for the description of autoreactive B cell phenotype.
Collapse
|
6
|
Ruer-Laventie J, Simoni L, Schickel JN, Soley A, Duval M, Knapp AM, Marcellin L, Lamon D, Korganow AS, Martin T, Pasquali JL, Soulas-Sprauel P. Overexpression of Fkbp11, a feature of lupus B cells, leads to B cell tolerance breakdown and initiates plasma cell differentiation. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:265-79. [PMID: 26417441 PMCID: PMC4578525 DOI: 10.1002/iid3.65] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 05/03/2015] [Indexed: 12/20/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is a severe systemic autoimmune disease, characterized by multi-organ damages, triggered by an autoantibody-mediated inflammation, and with a complex genetic influence. It is today accepted that adult SLE arises from the building up of many subtle gene variations, each one adding a new brick on the SLE susceptibility and contributing to a phenotypic trait to the disease. One of the ways to find these gene variations consists in comprehensive analysis of gene expression variation in a precise cell type, which can constitute a good complementary strategy to genome wide association studies. Using this strategy, and considering the central role of B cells in SLE, we analyzed the B cell transcriptome of quiescent SLE patients, and identified an overexpression of FKBP11, coding for a cytoplasmic putative peptidyl-prolyl cis/trans isomerase and chaperone enzyme. To understand the consequences of FKBP11 overexpression on B cell function and on autoimmunity's development, we created lentiviral transgenic mice reproducing this gene expression variation. We showed that high expression of Fkbp11 reproduces by itself two phenotypic traits of SLE in mice: breakdown of B cell tolerance against DNA and initiation of plasma cell differentiation by acting upstream of Pax5 master regulator gene.
Collapse
Affiliation(s)
- Julie Ruer-Laventie
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Léa Simoni
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Jean-Nicolas Schickel
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne Soley
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France
| | - Monique Duval
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne-Marie Knapp
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France
| | - Luc Marcellin
- Department of Anatomopathology, H, ô, pitaux Universitaires de Strasbourg F-67085, France
| | - Delphine Lamon
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne-Sophie Korganow
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Thierry Martin
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Jean-Louis Pasquali
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Pauline Soulas-Sprauel
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France ; Université de Strasbourg, UFR Sciences Pharmaceutiques Illkirch, F-67401, France
| |
Collapse
|
7
|
Silva-Sanchez A, Liu CR, Vale AM, Khass M, Kapoor P, Elgavish A, Ivanov II, Ippolito GC, Schelonka RL, Schoeb TR, Burrows PD, Schroeder HW. Violation of an evolutionarily conserved immunoglobulin diversity gene sequence preference promotes production of dsDNA-specific IgG antibodies. PLoS One 2015; 10:e0118171. [PMID: 25706374 PMCID: PMC4338297 DOI: 10.1371/journal.pone.0118171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/08/2015] [Indexed: 11/24/2022] Open
Abstract
Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3), which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH) gene segment sequence content by reading frame (RF) is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1), which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies.
Collapse
Affiliation(s)
- Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cun Ren Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andre M. Vale
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohamed Khass
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Genetic Engineering Division, National Research Center of Egypt, Ad Doqi, Egypt
| | - Pratibha Kapoor
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ada Elgavish
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ivaylo I. Ivanov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gregory C. Ippolito
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robert L. Schelonka
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Trenton R. Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter D. Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Harry W. Schroeder
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
8
|
Chang SH, Kim TJ, Kim YJ, Liu Y, Min SY, Park MJ, Park HS, Lee SK, Nam KH, Kim HY, Mohan C, Kim HR. The lupus susceptibility locus Sle1 facilitates the peripheral development and selection of anti-DNA B cells through impaired receptor editing. THE JOURNAL OF IMMUNOLOGY 2014; 192:5579-85. [PMID: 24835399 DOI: 10.4049/jimmunol.1201558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is characterized by the spontaneous production of IgG autoantibodies in patients and lupus-prone mice. In this study, we investigated the effect of the Sle1 lupus susceptibility locus on the peripheral development of 56R(+) anti-DNA transgenic B cells by tracking 56R(+) B cells in mice without (B6.56R) or with (B6.Sle1.56R) the Sle1 locus. Compared with B6.56R mice, B6.Sle1.56R mice exhibited increased class-switched IgG2a anti-DNA Abs in their serum, encoded by the transgene. Interestingly, within the spleen, Sle1 facilitated the development of these cells into clusters of IgG2a class-switched B cells juxtaposed to CD4(+) T cells within extrafollicular sites. Through sequence analysis of B cell hybridomas, we also found that B cells from B6.Sle1.56R mice are inefficient at Ig H and L chain editing. Thus, the Ig H chains in Sle1.56R(+) B cells are partnered more often with cationic L chains that facilitate DNA binding. Taken together, these findings indicate that the Sle1 lupus-susceptibility locus may facilitate the emergence of anti-DNA B cells by subduing BCR revision and possibly by shaping the extrafollicular development of effector B cells, although the precise molecular mechanisms await further study.
Collapse
Affiliation(s)
- Soog-Hee Chang
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Tae-Joo Kim
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Young-Joo Kim
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Yang Liu
- Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - So-Youn Min
- Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Min-Jung Park
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Hyun-Sil Park
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Sun-Kyung Lee
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Ki-Hoan Nam
- Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Ho-Youn Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea;
| | - Chandra Mohan
- Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Hang-Rae Kim
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea;
| |
Collapse
|
9
|
Meng W, Jayaraman S, Zhang B, Schwartz GW, Daber RD, Hershberg U, Garfall AL, Carlson CS, Luning Prak ET. Trials and Tribulations with VH Replacement. Front Immunol 2014; 5:10. [PMID: 24523721 PMCID: PMC3906580 DOI: 10.3389/fimmu.2014.00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 11/13/2022] Open
Abstract
VH replacement (VHR) is a type of antibody gene rearrangement in which an upstream heavy chain variable gene segment (VH) invades a pre-existing rearrangement (VDJ). In this Hypothesis and Theory article, we begin by reviewing the mechanism of VHR, its developmental timing and its potential biological consequences. Then we explore the hypothesis that specific sequence motifs called footprints reflect VHR versus other processes. We provide a compilation of footprint sequences from different regions of the antibody heavy chain, and include data from the literature and from a high throughput sequencing experiment to evaluate the significance of footprint sequences. We conclude by discussing the difficulties of attributing footprints to VHR.
Collapse
Affiliation(s)
- Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Sahana Jayaraman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Bochao Zhang
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA
| | - Gregory W Schwartz
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA
| | - Robert D Daber
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA ; Center for Personalized Diagnostics, University of Pennsylvania Health System , Philadelphia, PA , USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA ; Department of Microbiology and Immunology, College of Medicine, Drexel University , Philadelphia, PA , USA
| | - Alfred L Garfall
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Christopher S Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA , USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
10
|
Peterson LK, Pennington LF, Shaw LA, Brown M, Treacy EC, Friend SF, Hatlevik Ø, Rubtsova K, Rubtsov AV, Dragone LL. SLAP deficiency decreases dsDNA autoantibody production. Clin Immunol 2014; 150:201-9. [PMID: 24440645 DOI: 10.1016/j.clim.2013.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022]
Abstract
Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response. Despite equivalent production of anti-peptide antibodies compared to BALB/c controls, SLAP(-/-) mice did not produce anti-dsDNA. Second, we used the 56R tolerance model. SLAP(-/-) 56R mice had decreased levels of dsDNA-reactive antibodies compared to 56R mice due to skewed light chain usage. Thus, SLAP is a critical regulator of B-cell development and function and its deficiency leads to decreased autoreactive B cells that are otherwise maintained by inefficient receptor editing or failed negative selection.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Luke F Pennington
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Laura A Shaw
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Meredith Brown
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Eric C Treacy
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Samantha F Friend
- Department of Pediatrics, University of Colorado Denver, 13001 E. 17th Place, Aurora, CO 80045, USA; Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Øyvind Hatlevik
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kira Rubtsova
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Anatoly V Rubtsov
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Leonard L Dragone
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Department of Pediatrics, University of Colorado Denver, 13001 E. 17th Place, Aurora, CO 80045, USA; Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Rheumatology, Colorado Children's Hospital, 13123 E. 16th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Khass M, Buckley K, Kapoor P, Schelonka RL, Watkins LS, Zhuang Y, Schroeder HW. Recirculating bone marrow B cells in C57BL/6 mice are more tolerant of highly hydrophobic and highly charged CDR-H3s than those in BALB/c mice. Eur J Immunol 2013; 43:629-40. [PMID: 23225217 DOI: 10.1002/eji.201242936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/01/2012] [Accepted: 11/30/2012] [Indexed: 11/07/2022]
Abstract
To test whether mechanisms controlling the range of diversity of the developing antibody repertoire in C57BL/6 mice (IgH(b)) operate similarly to those identified in BALB/c mice (IgH(a)), we compared the sequences of VH 7183-containing H-chain transcripts from sorted adult bone marrow C57BL/6 B-cell subsets with those previously obtained from BALB/c mice. Patterns of VDJ gene segment utilization and CDR-H3 amino acid composition, charge, and average length in C57BL/6 pro-B cells were similar, although not identical, to BALB/c pro-B cells. However, C57BL/6 mature, recirculating B cells failed to demonstrate the reduction in the use of VH81X and the narrowing in the range of variance of CDR-H3 hydrophobicity that characterizes B-cell maturation in BALB/c mice. To further test the ability of the C57BL/6 strain to discard B cells expressing highly charged CDR-H3s, we introduced a mutant IgH(a) DH allele that forces use of arginine, asparagine, and histidine. Unlike BALB/c mice, C57BL/6 mice congenic for the charged DH maintained normal numbers of mature, recirculating B cells that were enriched for charged CDR-H3s. Together these findings indicate that the mature C57BL/6 B-cell pool permits expression of immunoglobulins with antigen-binding sites that are typically discarded during late-stage bone marrow B-cell development in BALB/c mice.
Collapse
Affiliation(s)
- Mohamed Khass
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Apoptotic marginal zone deletion of anti-Sm/ribonucleoprotein B cells. Proc Natl Acad Sci U S A 2012; 109:7811-6. [PMID: 22547827 DOI: 10.1073/pnas.1204509109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD40L is excessively produced in both human and murine lupus and plays a role in lupus pathogenesis. To address how excess CD40L induces autoantibody production, we crossed CD40L-transgenic mice with the anti-DNA H-chain transgenic mouse lines 3H9 and 56R, well-characterized models for studying B-cell tolerance to nuclear antigens. Excess CD40L did not induce autoantibody production in 3H9 mice in which anergy maintains self-tolerance, nor did it perturb central tolerance, including deletion and receptor editing, of anti-DNA B cells in 56R mice. In contrast, CD40L/56R mice restored a large number of marginal zone (MZ) B cells reactive to Sm/ribonucleoprotein (RNP) and produced autoantibody, whereas these B cells were deleted by apoptosis in MZ of 56R mice. Thus, excess CD40L efficiently blocked tolerance of Sm/RNP-reactive MZ B cells, leading to production of anti-Sm/RNP antibody implicated in the pathogenesis of lupus. These results suggest that self-reactive B cells such as anti-Sm/RNP B cells, which somehow escape tolerance in the bone marrow and migrate to MZ, are tolerized by apoptotic deletion in MZ and that a break in this tolerance may play a role in the pathogenesis of lupus.
Collapse
|
13
|
B cell receptor light chain repertoires show signs of selection with differences between groups of healthy individuals and SLE patients. Mol Immunol 2012; 51:273-82. [PMID: 22516082 DOI: 10.1016/j.molimm.2012.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/01/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
We have developed a microarray to study the expression of L-chain V genes (V(L) genes) in healthy and SLE patient peripheral κ- and λ-sorted B cells. In all repertoires tested, one V(L) gene accounts for over 10% of all gene V(L) expression, consistent with positive selection acting on L-chains. While a few V(L) genes were highly expressed in all individuals, most V(L) genes were expressed at different levels. Some V(L) genes (5 out of a total of 78) were not detected. We attribute their absence from the repertoire to negative selection. Positive selection and negative selection were also found in SLE repertoires, but expression of V(L) genes was different; the differences point to less regulation of V(L) gene repertoires in SLE. Our data shows that V(L) gene expression is variable and supports a model where the L-chain repertoire is generated by both positive and negative selection on L-chains.
Collapse
|
14
|
Murine gammaherpesvirus 68 infection protects lupus-prone mice from the development of autoimmunity. Proc Natl Acad Sci U S A 2012; 109:E1092-100. [PMID: 22474381 DOI: 10.1073/pnas.1203019109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gammaherpesvirus infections, such as those caused by EBV, have been suggested to promote the development of autoimmunity. To test this idea, we infected healthy WT and lupus-prone B6.Sle123 mice with an EBV-related and rodent-specific gammaherpesvirus, γHV68. Although acute γHV68 infection increased autoantibody levels for 4 to 6 wk, latent infection inhibited these responses for 1 y. The inhibition of autoantibody expression was only observed in B6.Sle123 females and not in males, which already displayed lower autoantibody titers. Contrary to the initial hypothesis, infection of young B6.Sle123 mice, both male and female, resulted in suppression of lymphoid activation and expansion and of glomerular inflammation and sclerosis, preserving kidney function. Moreover, γHV68 infection led to reduced autoantibody titers, lymphoid activation, and glomerular inflammation whether lupus-prone females were infected before or during disease manifestation. Finally, γHV68 infection also inhibited autoantibody production in the genetically distinct MRL/lpr lupus-prone mice. Our findings indicate that γHV68 infection strongly inhibits the development and progression of lupus-like disease in mice that spontaneously develop this condition mediating its beneficial effects at the humoral, cellular, and organ levels. The mechanisms by which the virus exerts this down-modulatory action are not yet clear, but appear to operate via reduced activation of dendritic cells, T cells, and B cells. Gammaherpesviruses coevolved with the vertebrate immune systems, establishing lifelong infections in humans and other mammals. Our findings that γHV68 infection prevents rather than exacerbates autoimmunity in mice suggest that infection with gammaherpesviruses may be protective rather than pathological in most individuals.
Collapse
|
15
|
B-cell tolerance defects in the B6.Aec1/2 mouse model of Sjögren's syndrome. J Clin Immunol 2012; 32:551-64. [PMID: 22350147 DOI: 10.1007/s10875-012-9663-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/31/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE Primary Sjögren's syndrome (SjS) is an autoimmune disorder characterized by lymphocytic infiltration of the salivary and lacrimal glands, B-cell clonal expansions and an increased risk of lymphoma. In order to understand the role of B cells in this disorder, the antibody repertoire and B-cell maturation were studied in a mouse model of SjS called B6.Aec1/2. METHODS B6.Aec1/2 serum was analyzed for antibodies by ELISA and immunoprecipitation, B-cell development by flow cytometry, and antibody gene rearrangements by CDR3 spectratyping and quantitative PCR. In order to test the functional consequences of the observed defects, B6.Aec1/2 mice were crossed with anti-dsDNA antibody heavy chain knock-in mice (B6.56R). RESULTS B6.Aec1/2 mice exhibit B-cell clonal expansions, have altered serum immunoglobulin levels and spontaneously produce multireactive autoantibodies. B6.Aec1/2 mice also have decreased numbers of bone marrow pre-B cells and decreased frequencies of kappa light chain gene deletion. These findings suggest that B6.Aec1/2 mice have a defective early B-cell tolerance checkpoint. B6.56R.Aec1/2 mice unexpectedly had lower anti-dsDNA antibody levels than B6.56R mice and less salivary gland infiltration than B6.Aec1/2 mice. CONCLUSIONS These data suggest that the early tolerance checkpoint defect in B6.Aec1/2 mice is not sufficient to promulgate disease in mice with pre-formed autoantibodies, such as B6.56R. Rather, B6.Aec1/2 mice may require a diverse B-cell repertoire for efficient T-B-cell collaboration and disease propagation. These findings imply that therapies aimed at reducing B-cell diversity or T-B interactions may be helpful in treating SjS.
Collapse
|
16
|
Hassaballa AE, Palmer VL, Anderson DK, Kassmeier MD, Nganga VK, Parks KW, Volkmer DL, Perry GA, Swanson PC. Accumulation of B1-like B cells in transgenic mice over-expressing catalytically inactive RAG1 in the periphery. Immunology 2012; 134:469-86. [PMID: 22044391 DOI: 10.1111/j.1365-2567.2011.03509.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
During their development, B lymphocytes undergo V(D)J recombination events and selection processes that, if successfully completed, produce mature B cells expressing a non-self-reactive B-cell receptor (BCR). Primary V(D)J rearrangements yield self-reactive B cells at high frequency, triggering attempts to remove, silence, or reprogramme them through deletion, anergy induction, or secondary V(D)J recombination (receptor editing), respectively. In principle, expressing a catalytically inactive V(D)J recombinase during a developmental stage in which V(D)J rearrangement is initiated may impair this process. To test this idea, we generated transgenic mice expressing a RAG1 active site mutant (dnRAG1 mice); RAG1 transcript was elevated in splenic, but not bone marrow, B cells in dnRAG1 mice relative to wild-type mice. The dnRAG1 mice accumulate splenic B cells with a B1-like phenotype that exhibit defects in B-cell activation, and are clonally diverse, yet repertoire restricted with a bias toward Jκ1 gene segment usage. The dnRAG1 mice show evidence of impaired B-cell development at the immature-to-mature transition, immunoglobulin deficiency, and poorer immune responses to thymus-independent antigens. Interestingly, dnRAG1 mice expressing the anti-dsDNA 3H9H56R heavy chain fail to accumulate splenic B1-like cells, yet retain peritoneal B1 cells. Instead, these mice show an expanded marginal zone compartment, but no difference is detected in the frequency of heavy chain gene replacement. Taken together, these data suggest a model in which dnRAG1 expression impairs secondary V(D)J recombination. As a result, selection and/or differentiation processes are altered in a way that promotes expansion of B1-like B cells in the spleen.
Collapse
Affiliation(s)
- Ashraf E Hassaballa
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jog NR, Frisoni L, Shi Q, Monestier M, Hernandez S, Craft J, Prak ETL, Caricchio R. Caspase-activated DNase is required for maintenance of tolerance to lupus nuclear autoantigens. ACTA ACUST UNITED AC 2011; 64:1247-56. [PMID: 22127758 DOI: 10.1002/art.33448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Caspase-activated DNase (CAD) is an endonuclease that is activated by active caspase 3 during apoptosis and is responsible for degradation of chromatin into nucleosomal units. These nucleosomal units are then included in apoptotic bodies. The presence of apoptotic bodies is considered important for the generation of autoantigen in autoimmune diseases, such as systemic lupus erythematosus (SLE), that are characterized by the presence of antinuclear antibodies. The present study was carried out to determine the role of CAD in SLE and to investigate the ability of lupus autoantibodies to bind to CAD-deficient or CAD-sufficient apoptotic cells. METHODS The Sle1, Sle123, and 3H9 mouse models of SLE, in which autoimmunity is genetically predetermined, were used. To determine the role of chromatin fragmentation in SLE, CAD deficiency was introduced in these mouse models. RESULTS Deficiency of CAD resulted in increased anti-double-stranded DNA antibody titers in lupus-prone mice. Surprisingly, the absence of CAD exacerbated only genetically predetermined autoimmune responses. To further determine whether nuclear modifications are needed in order to maintain tolerance to nuclear autoantigens, we used the 3H9 mouse, an anti-DNA heavy chain knockin; in this model, the autoreactive B cells are tolerized by anergy. In accordance with findings in the CAD-mutant Sle1 and Sle123 mice, CAD-deficient 3H9 mice spontaneously generated anti-DNA antibodies. Finally, we showed that autoantibodies with specificities toward histone-DNA complexes bind more to CAD-deficient apoptotic cells than to CAD-sufficient apoptotic cells. CONCLUSION We propose that in mice that are genetically predisposed to lupus development, nuclear apoptotic modifications are needed to maintain tolerance. In the absence of these modifications, apoptotic chromatin is abnormally exposed, facilitating the autoimmune response.
Collapse
|
18
|
Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci 2011; 1217:96-121. [PMID: 21251012 DOI: 10.1111/j.1749-6632.2010.05877.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.
Collapse
Affiliation(s)
- Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
19
|
Ota M, Duong BH, Torkamani A, Doyle CM, Gavin AL, Ota T, Nemazee D. Regulation of the B cell receptor repertoire and self-reactivity by BAFF. THE JOURNAL OF IMMUNOLOGY 2010; 185:4128-36. [PMID: 20817867 DOI: 10.4049/jimmunol.1002176] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The TNF-family cytokine BAFF (BLyS) promotes B lymphocyte survival and is overexpressed in individuals with systemic lupus erythematosus and Sjögren's Syndrome. BAFF can rescue anergic autoreactive B cells from death, but only when competition from nonautoreactive B cells is lacking. Yet, high BAFF levels promote autoantibody formation in individuals possessing diverse B cells. To better understand how excess BAFF promotes autoimmunity in a polyclonal immune system, Ig L chain usage was analyzed in 3H9 site-directed IgH chain transgenic mice, whose B cells recognize DNA and chromatin when they express certain endogenous L chains. BAFF levels were manipulated in 3H9 mice by introducing transgenes expressing either BAFF or its natural inhibitor ΔBAFF. B cells in BAFF/3H9 mice were elevated in number, used a broad L chain repertoire, including L chains generating high-affinity autoreactivity, and produced abundant autoantibodies. Comparison of spleen and lymph node B cells suggested that highly autoreactive B cells were expanded. By contrast, ΔBAFF/3H9 mice had reduced B cell numbers with a repertoire similar to that of 3H9 mice, but lacking usage of a subset of Vκ genes. The results show that limiting BAFF signaling only slightly selects against higher affinity autoreactive B cells, whereas its overexpression leads to broad tolerance escape and positive selection of autoreactive cells. The results have positive implications for the clinical use of BAFF-depleting therapy.
Collapse
Affiliation(s)
- Miyo Ota
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Dragone LL, Shaw LA, Myers MD, Weiss A. SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking. Immunol Rev 2010; 232:218-28. [PMID: 19909366 DOI: 10.1111/j.1600-065x.2009.00827.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Src-like adapter proteins (SLAP and SLAP-2) constitute a family of proteins that are expressed in a variety of cell types but are studied most extensively in lymphocytes. They have been shown to associate with proximal components of the T-cell receptor (TCR) and B-cell receptor (BCR) signaling complexes. An interaction of SLAP with c-Cbl leads to the ubiquitination and degradation of phosphorylated components of the TCR- and BCR-signaling complexes. The absence of this process in immature SLAP-deficient T and B cells leads to increased immunoreceptor levels due to decreased intracellular retention and degradation. We propose a model in which SLAP-dependent regulation of immunoreceptor levels allows for finer control of immunoreceptor signaling. Thus, SLAP functions to dampen immunoreceptor signaling, thereby influencing lymphocyte development and repertoire selection.
Collapse
|
21
|
Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc Natl Acad Sci U S A 2009; 107:181-6. [PMID: 20018688 DOI: 10.1073/pnas.0912914107] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that some of the rare broadly reactive, HIV-1 neutralizing antibodies are polyreactive, leading to the hypothesis that induction of these types of neutralizing antibody may be limited by immunologic tolerance. However, the notion that such antibodies are sufficiently autoreactive to trigger B cell tolerance is controversial. To test directly whether rare neutralizing HIV-1 antibodies can activate immunologic tolerance mechanisms, we generated a knock-in mouse in which the Ig heavy chain (HC) variable region rearrangement (V(H)DJ(H)) from the polyreactive and broadly neutralizing human monoclonal antibody 2F5 was targeted into the mouse Igh locus. In vitro, this insertion resulted in chimeric human/mouse 2F5 antibodies that were functionally similar to the human 2F5 antibody, including comparable reactivity to human and murine self-antigens. In vivo, the 2F5 V(H)DJ(H) insertion supported development of large- and small pre-B cells that expressed the chimeric human/mouse Igmu chain but not the production of immature B cells expressing membrane IgM. The developmental arrest exhibited in 2F5 V(H)DJ(H) knock-in mice is characteristic of other knock-in strains that express the Ig HC variable region of autoreactive antibodies and is consistent with the loss of immature B cells bearing 2F5 chimeric antibodies to central tolerance mechanisms. Moreover, homozygous 2F5 V(H)DJ(H) knock-in mice support reduced numbers of residual splenic B cells with low surface IgM density, severely diminished serum IgM levels, but normal to elevated quantities of serum IgGs that did not react with autoantigens. These features are consistent with elimination of 2F5 HC autoreactivity by additional negative selection mechanism(s) in the periphery.
Collapse
|
22
|
Activating systemic autoimmunity: B's, T's, and tolls. Curr Opin Immunol 2009; 21:626-33. [PMID: 19800208 DOI: 10.1016/j.coi.2009.08.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 08/24/2009] [Indexed: 01/05/2023]
Abstract
A recent advance in the treatment and understanding of autoimmune disease has been the efficacy of B-cell-targeted therapy. Such therapies are effective for several such diseases, with systemic autoimmunity being a prototypical example. The mechanism of action is not fully defined, but blocking B cell Ag presentation to T cells is likely to be important. T-B interactions probably engender a positive feedback loop that amplifies and sustains autoimmunity. But how is self-tolerance first broken to initiate this loop? I propose, based on recent data, a model in which autoreactive B cells are activated first, independent of T cells, but dependent upon BCR and TLR signals. These activated B cells then break T cell tolerance, resulting in full-blown autoimmunity.
Collapse
|
23
|
Yunk L, Meng W, Cohen PL, Eisenberg RA, Luning Prak ET. Antibodies in a heavy chain knock-in mouse exhibit characteristics of early heavy chain rearrangement. THE JOURNAL OF IMMUNOLOGY 2009; 183:452-61. [PMID: 19542457 DOI: 10.4049/jimmunol.0804060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies in autoantibody transgenic mice have demonstrated receptor editing rearrangements at Ab H and L chain loci. However, the physiologic role of H chain editing (V(H) replacement and rearrangement on the second allele) has been called into question. It is unclear if additional rounds of H chain rearrangement are driven by BCR specificity. In this study, we analyze the manner in which B cells undergo additional H chain rearrangements in an anti-DNA H chain knock-in mouse, B6.56R. We find that rearrangements in 56R(+) B cells tend to involve the D gene locus on both alleles and the most J(H)-proximal V(H) gene segments on the endogenous allele. As a result, some B cells exhibit V(D)J rearrangements on both H chain alleles, yet allelic exclusion is tightly maintained in mature 56R B cells. As B cells mature, a higher proportion expresses the nontransgenic H chain allele. Rearrangements on both H chain alleles exhibit junctional diversity consistent with TdT-mediated N-addition, and TdT RNA is expressed exclusively at the pro-B cell stage in B6.56R. Collectively, these findings favor a single, early window of H chain rearrangement in B6.56R that precedes the expression of a functional BCR. B cells that happen to successfully rearrange another H chain may be favored in the periphery.
Collapse
Affiliation(s)
- Lenka Yunk
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Lange MD, Waldbieser GC, Lobb CJ. Patterns of receptor revision in the immunoglobulin heavy chains of a teleost fish. THE JOURNAL OF IMMUNOLOGY 2009; 182:5605-22. [PMID: 19380808 DOI: 10.4049/jimmunol.0801013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H chain cDNA libraries were constructed from the RNA derived from seven different organs and tissues from the same individual catfish. Sequence analysis of >300 randomly selected clones identified clonal set members within the same or different tissues, and some of these represented mosaic or hybrid sequences. These hybrids expressed V(H) members of the same or different V(H) families within different regions of the same clone. Within some clonal sets multiple hybrids were identified, and some of these represented the products of sequential V(H) replacement events. Different experimental methods confirmed that hybrid clones identified in the cDNA library from one tissue could be reisolated in the cDNA pool or from the total RNA derived from the same or a different tissue, indicating that these hybrids likely represented the products of in vivo receptor revision events. Murine statistical recombination models were used to evaluate cryptic recombination signal sequences (cRSS), and significant cRSS pairs in the predicted V(H) donor and recipient were identified. These models supported the hypothesis that seamless revisions may have occurred via hybrid joint formation. The heptamers of the cRSS pairs were located at different locations within the coding region, and different events resulted in the replacement of one or both CDR as well as events that replaced the upstream untranslated region and the leader region. These studies provide phylogenetic evidence that receptor revision may occur in clonally expanded B cell lineages, which supports the hypothesis that additional levels of somatic H chain diversification may exist.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
25
|
Guth A, Detanico T, Smith D, Tung KSK, Bonorino C, Wysocki LJ. Spontaneous autoimmunity in mice that carry an IghV partial transgene: a required arginine in VHCDR3. Lupus 2009; 18:299-308. [PMID: 19276297 DOI: 10.1177/0961203308097480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe a unique spontaneous mouse model of autoimmunity, which occurs on a non-autoimmune-prone SWR genetic background. In this model, SWR mice carry an IghV partial transgene (pTg) encoding only the heavy chain variable domain of an antibody directed against chromatin. Autoimmune disease in pTg mice was manifested by some of the features of systemic lupus erythematosus (SLE), including the presence of serum anti-nuclear antibodies, splenomegaly, skin lesions and a moderate degree of kidney pathology, in various combinations among individuals. Autoimmunity was observed in three independent transgenic lines, but not in three control lines carrying a nearly identical pTg, in which a VHCDR3 codon for Arg was replaced by one for Ser to ablate chromatin reactivity. Various features of disease were often but not always accompanied by anti-chromatin antibodies. Unexpectedly, the anti-chromatin antibodies detected in seropositive animals were not encoded by the pTg. These observations strongly implicate a role for the transgene product in disease initiation but not necessarily for end-state pathology, and they raise the possibility that autoreactive B cells may play a previously unappreciated role in initiating the development of systemic autoimmunity.
Collapse
Affiliation(s)
- A Guth
- Integrated Department of Immunology, National Jewish Health, Denver, USA
| | | | | | | | | | | |
Collapse
|
26
|
Vinocur JM, Fesnak AD, Liu Y, Charan D, Prak ETL. Violations of the 12/23 rule at the mouse immunoglobulin kappa locus, including V kappa-V kappa rearrangement. Mol Immunol 2009; 46:2183-9. [PMID: 19467709 DOI: 10.1016/j.molimm.2009.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
Classically, recombination between immunoglobulin gene segments uses a pair of recombination signal sequences (RSSs) with dissimilar spacers (the "12/23 rule"). Using a series of different genotyping assays, four different kinds of atypical rearrangements were identified at the murine kappa locus: (1) V kappa to V kappa, (2) J kappa to J kappa, (3) V kappa to iRS, a heptameric sequence found in the J kappa C kappa intron, and (4) a possible by-product of a rearrangement between a V kappa and the hypothetical 12-RSS side of a pre-existing signal joint. The novel V kappa-V kappa structure prompted further characterization. Sequence analysis of 14 different V kappa-V kappa rearrangements cloned from murine splenocytes and hybridomas revealed a V kappa 4 family member as one participant in 13 rearrangements, but no rearrangements contained two V kappa 4 genes. The V kappa 4 partner in the V kappa-V kappa rearrangement exhibited more trimming of nucleotides at the V kappa-V kappa junction. A signal joint derived from the inversional rearrangement of two neighboring V kappas was also recovered. These data suggest that the V kappa-V kappa structures arise via RAG-mediated, intrachromosomal recombination.
Collapse
Affiliation(s)
- Jeffrey M Vinocur
- University of Pennsylvania School of Medicine, Department of Pathology and Laboratory Medicine, 405B Stellar Chance Labs, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
27
|
Tsao PY, Jiao J, Ji MQ, Cohen PL, Eisenberg RA. T cell-independent spontaneous loss of tolerance by anti-double-stranded DNA B cells in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:7770-7. [PMID: 19017966 DOI: 10.4049/jimmunol.181.11.7770] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus is characterized by loss of tolerance to DNA and other nuclear Ags. To understand the role of T cells in the breaking of tolerance, an anti-DNA site-specific transgenic model of spontaneous lupus, B6x56R, was studied. T cells were eliminated by crossing B6x56R with CD4(-/)(-) or TCRbeta(-/-)delta(-/-) mice, and the effects on anti-dsDNA serum levels, numbers of anti-dsDNA Ab-secreting cells, and isotypes of anti-dsDNA were analyzed. In addition, the development and activation of B cells in these mice were examined. Surprisingly, the presence of T cells made little difference in the development and character of the serum anti-dsDNA Ab in B6x56R mice. At 1 mo of age, anti-dsDNA Abs were somewhat lower in mice deficient in alphabeta and gammadelta T cells. Levels of Abs later were not affected by T cells, nor was autoantibody class switching. B cell activation was somewhat diminished in T cell-deficient mice. Thus, in the B6 background, the presence of an anti-dsDNA transgene led the production of autoantibodies with a specificity and isotype characteristic of murine systemic lupus erythematosus with little influence from T cells. TLR9 also did not appear to play a role. Although we do not yet understand the mechanism of this failure of immunoregulation, these results suggest that similar processes may influence autoimmunity associated with clinical disease.
Collapse
Affiliation(s)
- Patricia Y Tsao
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | | | | | | | | |
Collapse
|
28
|
Panigrahi AK, Goodman NG, Eisenberg RA, Rickels MR, Naji A, Luning Prak ET. RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes. ACTA ACUST UNITED AC 2008; 205:2985-94. [PMID: 19075293 PMCID: PMC2605238 DOI: 10.1084/jem.20082053] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Continued antibody gene rearrangement, termed receptor editing, is an important mechanism of central B cell tolerance that may be defective in some autoimmune individuals. We describe a quantitative assay for recombining sequence (RS) rearrangement that we use to estimate levels of antibody light chain receptor editing in various B cell populations. RS rearrangement is a recombination of a noncoding gene segment in the κ antibody light chain locus. RS rearrangement levels are highest in the most highly edited B cells, and are inappropriately low in autoimmune mouse models of systemic lupus erythematosus (SLE) and type 1 diabetes (T1D), including those without overt disease. Low RS rearrangement levels are also observed in human subjects with SLE or T1D.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Halcomb KE, Musuka S, Gutierrez T, Wright HL, Satterthwaite AB. Btk regulates localization, in vivo activation, and class switching of anti-DNA B cells. Mol Immunol 2008; 46:233-41. [PMID: 18849077 DOI: 10.1016/j.molimm.2008.08.278] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/25/2008] [Accepted: 08/27/2008] [Indexed: 12/13/2022]
Abstract
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nuclear antigens such as chromatin, DNA, and RNA. This focused autoreactivity is thought to arise from the ability of DNA or RNA specific B cells to receive dual signals from the BCR and TLR9 or TLR7, respectively. The Tec kinase Btk is necessary for the production of anti-DNA antibodies in several murine models of SLE. To assess the role of Btk in the fate of DNA reactive B cells, we generated Btk-/- mice carrying the 56R anti-DNA Ig transgene on the C57BL/6 background. dsDNA specific B cells were present in 56R.Btk-/- mice, although they were not preferentially localized to the marginal zone. These cells were able to proliferate in response to large CpG DNA containing fragments that require BCR-induced internalization to access TLR9. However, anti-DNA antibodies were not observed in the serum of 56R.Btk-/- mice. A transgene expressing a low level of Btk in B cells (Btk(lo)) restored anti-DNA IgM in these mice. This correlated with partial rescue of proliferative response to BCR engagement and TLR9-induced IL-10 secretion in Btk(lo) B cells. anti-DNA IgG was not observed in 56R.Btk(lo) mice, however. This was likely due, at least in part, to a role for Btk in controlling the expression of T-bet and AID in cells stimulated with CpG DNA. Thus, Btk is required for the initial loss of tolerance to DNA and the subsequent production of pathogenic autoantibodies once tolerance is breached.
Collapse
Affiliation(s)
- Kristina E Halcomb
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States
| | | | | | | | | |
Collapse
|
30
|
Liu Y, Li L, Mohan C. The role of rearrangement at the second Ig heavy chain locus in maintaining B cell tolerance to DNA. THE JOURNAL OF IMMUNOLOGY 2008; 180:7721-7. [PMID: 18490776 DOI: 10.4049/jimmunol.180.11.7721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recently generated B6.56R anti-DNA autoantibody-transgenic mice, it was noted that a substantial fraction of the B cells that had avoided DNA reactivity had done so through the rearrangement and usage of the endogenous, nontargeted H chain (HC) allele. This suggested that rearrangement at the second HC locus might be an important mechanism through which self-reactive B cells might successfully revise their initial Ag specificity. To test the importance of this mechanism in B cell tolerance, we generated B6.56R/56R mice that possessed the 56R anti-DNA H chain transgene inserted into both HC loci. These transgenic homozygotes developed higher titers of anti-DNA Abs, with an expanded population of B220(low)MHC class II(low) B cells, enriched for CD21(low)CD23(low) preplasmablasts. The analysis of hybridomas from these mice revealed that the only avenue by which these B cells could avoid DNA reactivity was through the use of the editor L chains, V(k)20 or V(k)21. Hence, in addition to LC editing, rearrangement and usage of the second HC locus/allele constitutes an important safety valve for B cells the primary BCR of which confers DNA reactivity. In contrast to these tolerance mechanisms, editing the first rearranged HC locus (through HC replacement) and somatic mutations appear to be less frequently used to edit/revise self-reactive B cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Internal Medicine and Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | | | |
Collapse
|
31
|
Kiefer K, Nakajima PB, Oshinsky J, Seeholzer SH, Radic M, Bosma GC, Bosma MJ. Antigen receptor editing in anti-DNA transitional B cells deficient for surface IgM. THE JOURNAL OF IMMUNOLOGY 2008; 180:6094-106. [PMID: 18424731 DOI: 10.4049/jimmunol.180.9.6094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In response to encounter with self-Ag, autoreactive B cells may undergo secondary L chain gene rearrangement (receptor editing) and change the specificity of their Ag receptor. Knowing at what differentiative stage(s) developing B cells undergo receptor editing is important for understanding how self-reactive B cells are regulated. In this study, in mice with Ig transgenes coding for anti-self (DNA) Ab, we report dsDNA breaks indicative of ongoing secondary L chain rearrangement not only in bone marrow cells with a pre-B/B cell phenotype but also in immature/transitional splenic B cells with little or no surface IgM (sIgM(-/low)). L chain-edited transgenic B cells were detectable in spleen but not bone marrow and were still found to produce Ab specific for DNA (and apoptotic cells), albeit with lower affinity for DNA than the unedited transgenic Ab. We conclude that L chain editing in anti-DNA-transgenic B cells is not only ongoing in bone marrow but also in spleen. Indeed, transfer of sIgM(-/low) anti-DNA splenic B cells into SCID mice resulted in the appearance of a L chain editor (Vlambdax) in the serum of engrafted recipients. Finally, we also report evidence for ongoing L chain editing in sIgM(low) transitional splenic B cells of wild-type mice.
Collapse
Affiliation(s)
- Kerstin Kiefer
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
B cells are essential for the development and pathogenesis of both systemic and organ-specific autoimmune diseases. Autoreactive B cells are typically thought of as sources of autoantibody, but their most important pathogenetic roles may be to present autoantigens to T cells and to secrete proinflammatory cytokines. A rate-limiting step in the genesis of autoimmunity then is the activation of autoreactive B cells. Here, mechanisms are discussed that normally prevent such activation and how they break down during disease. Integrating classic work with recent insights, emphasis is placed on efforts to pinpoint the precursor cells for autoantibody-secreting cells and the unique stimuli and pathways by which they are activated.
Collapse
|
33
|
Tarasenko T, Kole HK, Bolland S. A Lupus-Suppressor BALB/c Locus Restricts IgG2 Autoantibodies without Altering Intrinsic B Cell-Tolerance Mechanisms. THE JOURNAL OF IMMUNOLOGY 2008; 180:3807-14. [DOI: 10.4049/jimmunol.180.6.3807] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Witsch EJ, Bettelheim E. Allelic and Isotypic Light Chain Inclusion in Peripheral B Cells from Anti-DNA Antibody Transgenic C57BL/6 and BALB/c Mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3708-18. [DOI: 10.4049/jimmunol.180.6.3708] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Abstract
Tolerance to dsDNA is achieved through editing of Ig receptors that react with dsDNA. Nevertheless, some B cells with anti-dsDNA receptors escape editing and migrate to the spleen. Certain anti-dsDNA B cells that are recovered as hybridomas from the spleens of anti-dsDNA H chain transgenic mice also bind an additional, Golgi-associated antigen. B cells that bind this antigen accumulate intracellular IgM. The intracellular accumulation of IgM is incomplete, because IgM clusters are observed at the cell surface. In the spleen, B cells that express the heavy and light chains encoding this IgM are surface IgM-bright and acquire the CD21-high/CD23-low phenotype of marginal zone B cells. Our data imply that expression of an Ig that binds dsDNA and an additional antigen expressed in the secretory compartment renders B cells resistant to central tolerance. In the periphery, these B cells may be sequestered in the splenic marginal zone.
Collapse
|
36
|
Kumar KR, Mohan C. Understanding B-cell tolerance through the use of immunoglobulin transgenic models. Immunol Res 2007; 40:208-23. [DOI: 10.1007/s12026-007-8008-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Liu Y, Li L, Kumar KR, Xie C, Lightfoot S, Zhou XJ, Kearney JF, Weigert M, Mohan C. Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:1340-52. [PMID: 17617627 DOI: 10.4049/jimmunol.179.2.1340] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.
Collapse
Affiliation(s)
- Yang Liu
- Department of Internal Medicine and Center for Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The types of mathematical models used in immunology and their scope have changed drastically in the past 10 years. Classical models were based on ordinary differential equations (ODEs), difference equations, and cellular automata. These models focused on the 'simple' dynamics obtained between a small number of reagent types (e.g. one type of receptor and one type of antigen or two T-cell populations). With the advent of high-throughput methods, genomic data, and unlimited computing power, immunological modeling shifted toward the informatics side. Many current applications of mathematical models in immunology are now focused around the concepts of high-throughput measurements and system immunology (immunomics), as well as the bioinformatics analysis of molecular immunology. The types of models have shifted from mainly ODEs of simple systems to the extensive use of Monte Carlo simulations. The transition to a more molecular and more computer-based attitude is similar to the one occurring over all the fields of complex systems analysis. An interesting additional aspect in theoretical immunology is the transition from an extreme focus on the adaptive immune system (that was considered more interesting from a theoretical point of view) to a more balanced focus taking into account the innate immune system also. We here review the origin and evolution of mathematical modeling in immunology and the contribution of such models to many important immunological concepts.
Collapse
Affiliation(s)
- Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
39
|
Abstract
The specificities of lymphocytes for antigen are generated by a quasi-random process of gene rearrangement that often results in non-functional or autoreactive antigen receptors. Regulation of lymphocyte specificities involves not only the elimination of cells that display 'unsuitable' receptors for antigen but also the active genetic correction of these receptors by secondary recombination of the DNA. As I discuss here, an important mechanism for the genetic correction of antigen receptors is ongoing recombination, which leads to receptor editing. Receptor editing is probably an adaptation that is necessitated by the high probability of receptor autoreactivity. In both B cells and T cells, the genes that encode the two chains of the antigen receptor seem to be specialized to promote, on the one hand, the generation of diverse specificities and, on the other hand, the regulation of these specificities through efficient editing.
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, Mail Drop IMM-29, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
40
|
Doyle CM, Han J, Weigert MG, Prak ETL. Consequences of receptor editing at the lambda locus: multireactivity and light chain secretion. Proc Natl Acad Sci U S A 2006; 103:11264-9. [PMID: 16847259 PMCID: PMC1544076 DOI: 10.1073/pnas.0604053103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To investigate the manner in which B cells with lambda light (L) chains undergo receptor editing, we have studied hybridoma panels from 56R/kappa-deleted (kdel) mice. 56R/kdel mice only produce four L chains (lambda1, lambda2, lambda3, and lambdaX). They also have a simplified heavy (H) chain repertoire: All B cells start out with a 56R anti-DNA H chain. A few frankly autoreactive 56R lambda1 cells appear to escape into the periphery, but the majority of the peripheral B cell repertoire in 56R/kdel is made up of B cells expressing the 56R H chain with the lambdaX L chain. Surprisingly, 56R lambdaX B cells are multireactive, binding to a variety of self and nonself antigens, including dsDNA (albeit at reduced affinity compared with the other lambda L chains). Another significant population in the 56R/kdel mouse consists of allelically included B cells that express lambdaX along with another L chain. The multireactivity of both 56R lambdaX and 56R lambdaX/lambda1 receptors could contribute to autoimmunity if these B cells were to become activated. Also found among 56R/kdel hybridomas are clones that have inactivated the H chain and secrete only L chains. These clones may represent products of exhaustive rearrangement. Multireactivity, allelic inclusion, and L chain secretion are three consequences of editing at the lambda locus that may predispose toward the development of autoimmunity.
Collapse
Affiliation(s)
- Colleen M. Doyle
- *Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637; and
| | - Jiong Han
- Department of Pathology, Committee on Immunology and
| | - Martin G. Weigert
- *Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637; and
- To whom correspondence may be addressed. E-mail:
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- To whom correspondence may be addressed at:
Department of Pathology and Laboratory Medicine, University of Pennsylania School of Medicine, 405B Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
41
|
Affiliation(s)
- Christopher C Goodnow
- John Curtin School of Medical Research and Australian Phenomics Facility, Australian National University, Post Office Box 334, Canberra, ACT 0200, Australia.
| |
Collapse
|